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Abstract

For each t ≥ 1 let Wt denote the class of graphs other than stars that
have diameter 2 and contain neither a triangle nor a K2,t. The famous
Hoffman–Singleton Theorem implies that W2 is finite. Recently Wood
suggested the study of Wt for t > 2 and conjectured that Wt is finite
for all t ≥ 2. In this note we show that (1) W3 is infinite, (2) W5

contains infinitely many regular graphs, and (3) W7 contains infinitely
many Cayley graphs. Our W3 and W5 examples are based on so-called
crooked graphs, first constructed by de Caen, Mathon, and Moorhouse.
Our W7 examples are Cayley graphs with vertex set F

2
p for prime p ≡

11 (mod 12). We also highlight the surprising fact that crooked graphs
themselves provide an infinite family of graphs which imply that

ex(n, {C3, K2,3}) =
(

1√
2
+ o(1)

)

n3/2

for an infinite, albeit sparse, set of n’s.
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1 Introduction

Let G be a graph. The diameter of G is the maximum distance between two vertices
in G. The girth of G is the length of a shortest cycle in G, or else ∞ if G is acyclic.
The girth of a graph can also be defined in terms of forbidden subgraphs. Given a
family of graphs F , we say G is F-free if G has no subgraph isomorphic to a member
of F . Hence G has girth at least g if and only if G is {C3, C4, . . . , Cg−1}-free.

A particularly important family of graphs is the class of diameter-2 graphs of
girth 5. Such a graph G is known as a Moore graph (of diameter 2). The famous
Hoffman–Singleton theorem implies that only finitely many such graphs exist.

Theorem 1.1 (Hoffman–Singleton [9, 16]). Let G be a finite graph with girth 5 and
diameter 2. Then G is d-regular with d ∈ {2, 3, 7, 57}.

In fact the only such graphs are

(1) the 5-cycle (d = 2),

(2) the Petersen graph (d = 3),

(3) the Hoffman–Singleton graph (d = 7),

(4) possibly, one or more graphs of degree d = 57 and order 3250.

The existence of a graph of the fourth type has been a mystery for 65 years.

Attempting to identify a relaxation of the class of Moore graphs that is more
suggestive of extremal rather than algebraic combinatorics, Wood proposed the study
of {C3, K2,t}-free graphs of diameter 2 (see [4]).

Definition 1.2. A graph G is called a Wood graph (with parameter t) if it has
diameter 2, it is {C3, K2,t}-free, and it is not a star. We denote by Wt the class of
Wood graphs with parameter t.

Note that W2 is precisely the class of Moore graphs, so in particular W2 is finite.
Wood conjectured the following generalization.

Conjecture 1.3. The class Wt is finite for all t ≥ 2. In other words, there is an nt

such that if G is a {C3, K2,t}-free graph of diameter 2 with n > nt vertices then G is
isomorphic to the star graph Kn−1,1.

This conjecture and particularly the class W3 were studied by Devillers, Kamčev,
McKay, Ó Catháin, Royle, Van de Voorde, Wanless, and Wood [4], who found more
than five million graphs in W3 but no infinite family.

Our main contribution is to present an infinite family of graphs in W3, which
shows that this conjecture is false for all t ≥ 3, albeit for a sparse set of n’s.

Theorem 1.4. For each integer e ≥ 3 there is a graph G ∈ W3 of order 2
4e−1+22e+1.
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Our proof of Theorem 1.4 uses a family of antipodal, distance-regular graphs of
diameter 3 called crooked graphs, defined by Bending and Fon-Der-Flaass [2] gen-
eralizing previous work of de Caen, Mathon, and Moorhouse [6]. We modify these
graphs suitably to reduce the diameter to 2 without creating any triangles or K2,3’s.

Notably, the resulting graphs are not regular, and it would be interesting to find
an infinite family of regular graphs in W3. We have not found such a family, but
we can construct an infinite sequence of regular graphs in W5. The construction is
again based on crooked graphs.

Theorem 1.5. For each integer e ≥ 2 there is a regular graph G ∈ W5 of order
22

e−1.

In [6], the automorphism group of the first family of crooked graphs was computed
and it follows that this family is not vertex-transitive. Embracing the view that a
family of vertex-transitive Wood graphs would be even better, we give an unrelated
construction of an infinite sequence of Cayley graphs in W7. These graphs were first
described on the first author’s blog [7] and arose in discussions between him and
Padraig Ó Catháin.

Theorem 1.6. For every prime p ≡ 11 (mod 12) there is a symmetric subset A ⊂ F
2
p

such that the Cayley graph G = Cay(F2
p, A) ∈ W7.

Finally, we observe an application of crooked graphs to the Turán number
ex(n, {C3, K2,3}) which equals the maximum number of edges that a graph of or-
der n which is C3-free, and K2,3-free can have. Until now, the best bounds stated in
the literature are

(

1√
3
+ o(1)

)

n3/2 ≤ ex(n, {C3, K2,3}) ≤
(

1√
2
+ o(1)

)

n3/2.

The lower bound follows from the work of Allen, Keevash, Sudakov, and Verstraëte
[1] who studied Turán problems on forbidding odd cycles together with at least one
bipartite graph. The upper bound holds for all n as the Kővári–Sós–Turán Theorem
[13] implies ex(n,Ks,t) ≤ 1

2
(t− 1)1/sn2−1/s + sn

2
for 2 ≤ s ≤ t.

The following fact, which follows as an immediate consequence of the existence of
crooked graphs, was brought to the attention of the second author by Sam Mattheus.

Theorem 1.7. Let k > 1 be a positive integer and n = 22k+1. Then

ex(n, {C3, K2,3}) =
(

1√
2
+ o(1)

)

n3/2.

2 Crooked graphs

Our proof of Theorem 1.4 uses a remarkable family of antipodal distance-regular
graphs of diameter 3 called crooked graphs (see [2, 6]). Let V be an n-dimensional
vector space over F2. A function Q : V → V is crooked if
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(1) Q(0) = 0,

(2)
∑4

i=1 Q(xi) 6= 0 for all distinct x1, x2, x3, x4 ∈ V with x1 + x2 + x3 + x4 = 0,
and

(3)
∑3

i=1(Q(xi) +Q(xi + a)) 6= 0 for all x1, x2, x3 ∈ V and a ∈ V \ {0}.

The prototypical example of a crooked function is Q(x) = x3 where V = F2e with e
odd. Given a crooked function Q, the corresponding crooked graph GQ is the graph
GQ with vertex set V ×F2×V where distinct vertices (a, i, α) and (b, j, β) are adjacent
if and only if

α + β = Q(a+ b) + (i+ j + 1)(Q(a) +Q(b)). (1)

Many properties of crooked graphs were established in [2, 6] (see particularly [2,
Section 2]).1 We summarize these properties as a lemma.

Lemma 2.1. Let Q be a crooked function over F2e and GQ the corresponding crooked
graph. Then

(1) e is odd;

(2) GQ is distance-regular of order 22e+1, and degree 2e+1 − 1, and diameter 3;

(3) GQ is a triangle-free;

(4) any pair of vertices at distance two have exactly two common neighbors;

(5) GQ is antipodal, i.e., if u, v, w ∈ V (GQ) are distinct vertices and d(u, v) =
d(u, w) = 3 then d(v, w) = 3;

(6) the map (a, i, α) 7→ (a, i) defines a q-fold cover GQ → K2q with fibers I1, I2, . . . ,
I2q. Between any two fibers exists a perfect matching. Two distinct vertices are
in the same fiber if and only if they are at distance 3.

Proof of Theorem 1.4. Let q = 2e and let Q : Fq → Fq be any crooked function. Let
GQ be the corresponding crooked graph. Define a new graph G′

Q by adding 2q + 1
vertices v1, . . . , v2q, v to GQ with the following adjacency rules. For 1 ≤ j ≤ 2q, the
neighborhood of vj is Ij ∪ {v}. The neighborhood of v is {v1, . . . , v2q}. See Figure 1
below. Then G′

Q has 2q2+2q+1 vertices and it contains GQ as an induced subgraph.

We claim thatG′
Q ∈ W3. IfG

′
Q contains a triangle, then this triangle must contain

at least one of the new vertices v1, . . . , v2q, v. There is no triangle containing v because
the neighborhood of v is the independent set {v1, v2, . . . v2q}. Similarly there is no
triangle containing vj because the neighborhood of vj is Ij ∪ {v}, which is also an
independent set. Therefore G′

Q is triangle-free.

Next we claim that G′
Q does not contain a K2,3. Equivalently, any two distinct

vertices x, y ∈ V (G′
Q) have at most two common neighbors. We may assume x and

y are not adjacent, since G′
Q is triangle-free. There are a number of cases. If x = v

and y ∈ Ij then x and y have a unique common neighbor vj. If x = vj and y = vj′

1Conversely, Godsil and Roy [8] characterized crooked functions in terms of the distance-
regularity of the corresponding graph defined by (1).
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v

v1 v2 . . . v2q

I1 I2 · · · I2q

GQ

Figure 1: A visual of the graph GQ.

then x and y have a unique common neighbor v. If x = vj and y ∈ Ij′ then x and y
have a unique common neighbor z ∈ Ij, because the edges between Ij and Ij′ form
a perfect matching. If x and y lie in a common fiber Ij then they have a unique
common neighbor vj. Finally, if x ∈ Ij and y ∈ Ij′ with j 6= j′ then their common
neighbors are exactly their common neighbors in GQ, of which there are exactly two
by parts (4) and (6) of Lemma 2.1

The case analysis of the previous paragraph also shows that every two nonadjacent
vertices have at least one common neighbor, so G′

Q has diameter 2. Thus G′
Q ∈

W3.

We now turn our attention to proving Theorem 1.5, which yields an infinite family
of regular graphs G ∈ W5. As in the proof of Theorem 1.4, we start with GQ, but
instead of adding vertices we add edges within each fiber.

Lemma 2.2. Let GQ be a crooked graph on 2q2 vertices where q = 22e−1 and e is a
positive integer. Let H ∈ W5 have order q. If one arbitrarily embeds a copy of H
into each fiber of GQ, then the resultant graph is again in W5.

Proof. Let G′′
Q be a graph resulting from embedding a copy of H into each fiber of

GQ. For each index j let Hj
∼= H denote the subgraph of G′′

Q induced by Ij. Note
that since no edges were added between any two distinct fibers, the edges between
them still form a perfect matching in G′′

Q. Also, G
′′
Q has GQ as a subgraph.

Since Hj has diameter 2, any two vertices in the same fiber Hj are at distance at
most 2. Any two vertices in distinct fibers are at distance at most 2 in GQ, and so
also have distance at most 2 in G′′

Q. This shows G
′′
Q has diameter 2.

There is no triangle in G′′
Q with all three vertices contained in the same fiber

Hj, because Hj is triangle-free. Similarly, there is no triangle in G′′
Q with vertices in

distinct fibers, because GQ is triangle-free and no edges were added between fibers.
Finally, there is no triangle in G′′

Q with one vertex in a fiber Hi and the other two
vertices in another fiber Hj, because the edges between Hi and Hj form a perfect
matching. Thus G′′

Q is triangle-free.

Now suppose that G′′
Q contains a K2,5 with vertex classes {r1, r2} and {ℓ1, ℓ2, ℓ3,

ℓ4, ℓ5}. We argue similarly as above. It cannot be that all 7 vertices are contained in
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a single fiber Hj, because Hj is K2,5-free. If r1, r2 ∈ Hi for some i, then some ℓk must
be contained in a different fiber Hj, but this is impossible because the edges between
Hi and Hj form a perfect matching. Thus r1 and r2 must be in distinct fibers, say
H1 and H2. Similarly, ℓ1, . . . , ℓ5 must be in distinct fibers. Therefore at least 3 of
the vertices ℓi are in fibers distinct from H1 and H2, say ℓ3 ∈ H3, ℓ4 ∈ H4, ℓ5 ∈ H5

without loss of generality. But this is impossible because GQ is K2,3-free. Thus G′′
Q

is K2,5-free, which finishes the proof that G′′
Q ∈ W5.

Proof of Theorem 1.5. We use induction on e. The base case e = 2 is established
by observing that K4,4 ∈ W5. Now suppose inductively that H ∈ W5 is a regular
graph of order q = 22

e−1. Let Q : Fq → Fq be a crooked function and let GQ be the
corresponding crooked graph of order 2q2 = 22

e+1−1. Embed copies of H into the
fibers of GQ, obtaining G′′

Q, which is again a regular graph. By Lemma 2.2, G′′
Q is

again in W5. This completes the induction.

Finally, we comment that parts (2) and (3) of Lemma 2.1 imply that a crooked
graph of order n is C3-free, K2,3-free and has 1√

2
n3/2− n

2
edges. Thus, crooked graphs

yield an infinite family of graphs whose edge count meets the known upper bound
for ex(n, {C3, K2,3}).

3 Cayley graphs

Finally we prove Theorem 1.6.

Proof of Theorem 1.6. Let p ≡ 11 (mod 12) be a prime. By quadratic reciprocity,
this condition ensures that −1 and −3 are quadratic nonresidues in Fp. Let V be
the group F

2
p where the operation is component-wise addition. Define A ⊂ V by

A = {(x,±x2) : x ∈ Fp\{0}}.

Let G = Cay(V,A). By definition, distinct vertices (x1, y1), (x2, y2) ∈ V are adjacent
if and only if

y1 − y2 = ±(x1 − x2)
2 6= 0.

We claim that G is {C3, K2,7}-free and has diameter 2. Since G is vertex-transitive, it
is enough to show that the vertex (0, 0) is not in a triangle, and that for any nonzero
(a, b) ∈ F

2
p \ A, there is at least one but at most six paths of length 2 from (0, 0) to

(a, b).

The neighborhood of (0, 0) is the set A. Suppose a pair of distinct vertices in
A are adjacent. This implies that there exists x, y ∈ Fp\{0} such that one of the
following equations holds: x2+y2 = (x−y)2, x2+y2 = −(x−y)2, x2−y2 = (x−y)2,
or x2 − y2 = −(x− y)2. The first, third, and fourth cannot occur since x and y are
distinct and not zero. The second implies x2 − xy + y2 = 0 which implies x/y is a
solution to the quadratic equationX2−X+1 = 0. This discriminant of this quadratic
is −3 which is a quadratic nonresidue in Fp. We conclude that there can be no such
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x and y, so the neighborhood of (0, 0) is an independent set. By vertex-transitivity,
G is C3-free.

We now complete the proof of Theorem 1.6 by showing that for any nonzero
(a, b) ∈ F

2
p \ A, the number of paths of length 2 from (0, 0) to (a, b) is at least one

and at most six. Fix such a vertex (a, b) /∈ A ∪ {(0, 0)}. Suppose that (x, y) is the
middle vertex on a path of length 2 from (0, 0) to (a, b). Since (x, y) is adjacent to
(0, 0), we have x 6= 0 and y = ±x2. Since (x, y) is adjacent to (a, b), we have x 6= a
and b − y = ±(a − x)2. The four possibilities reduce to two quadratic equations
2x2 − 2ax+ a2 ± b = 0 and the two linear equations 2ax− a2 ± b = 0. The quadratic
equations have at most two solutions each.

Case 1: If a 6= 0 then the two linear equations each have a unique solution x.
Moreover, x /∈ {0, a} because (a, b) /∈ A. This gives at least one and at most six
paths of length 2 from (0, 0) to (a, b).

Case 2: If a = 0 then the two linear equations are impossible, for otherwise we
get a = b = 0, but (a, b) 6= (0, 0). The quadratic equations reduce to b = 2x2

and −b = 2x2. Since −1 is a quadratic nonresidue, one of these equations has two
solutions while the other has none. Thus, in Case 2 we have exactly two paths of
length 2 from (0, 0) to (a, b).

Once again using the fact that G is vertex-transitive, we can say that G is K2,7-
free and has diameter 2, so G ∈ W7.

4 Concluding remarks

Crooked graphs were first named by Bending and Fon-Der-Flaass [2] after abstract-
ing the key properties of the crooked functions Q(x) = x2k+1 considered by de Caen,
Mathon, and Moorhouse [6]. There are now many known crooked functions. It fol-
lows from [2, Proposition 11] that any quadratic almost perfect nonlinear (APN)
permutation function is crooked. In 2008, Budaghyan, Carlet and Leander [3] dis-
covered the first new infinite family of quadratic APN permutations inequivalent to
power APN functions. More recently, Li and Kaleyski [15] constructed another infi-
nite class of quadratic APN permutations that appear to be inequivalent to those in
previously known classes.

Crooked graphs have found a myriad of applications both in spectral graph the-
ory [11, 12, 14] and extremal graph theory [5, 10]. In light of Theorem 1.7, it seems
reasonable to conjecture that in fact

ex(n, {C3, K2,3}) =
(

1√
2
+ o(1)

)

n3/2

for all n. Do the crooked graphs contain dense induced subgraphs which would finally
put this problem to rest?
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