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Abstract

Let G be a simple graph. The diagonal graph Ramsey number R(G,G) is
defined to be the minimum n, where every 2-coloring of the edges of Kn

contains a red G or a blue G. In this paper, new diagonal graph Ramsey
numbers are calculated for some classes of even cycles with pendant edges.

1 Introduction

In 1929, Frank Ramsey [15] established an innocuous-looking result in his ground-
breaking paper on formal logic. Although it was not apparent at the time, his
theorem would eventually form the cornerstone of Ramsey theory, a vibrant and rich
area of extremal combinatorics.

The following general question [4] is investigated in Ramsey theory.

If a particular mathematical structure (e.g., algebraic, combinatorial, or ge-
ometric) is arbitrarily partitioned into finitely many classes, what kinds of
substructures must always remain intact in at least one of the classes?

Over many decades, Ramsey-type questions involving the set of integers, graphs,
Euclidean space and topological spaces have been investigated. As of this writing, a
keyword search for “Ramsey” yields 8121 entries in the MathSciNet database. The
interested reader is directed to [4, 5] for a comprehensive overview of Ramsey theory.
For gentle introductions to Ramsey theory, [8, 17] are recommended.

The reader should note that the seeds of Ramsey theory were planted even before
Ramsey introduced his theorem. Soifer’s [20] beautifully written book is filled with
deep mathematics and also provides a rich historical context of Ramsey theory.

Interesting applications of Ramsey theory can be found in number theory, algebra,
geometry, topology, set theory, logic, ergodic theory, information theory and com-
puter science. The reader is directed to Rosta’s [18] survey for a detailed exposition
of some of these applications.
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2 Preliminaries

First, we recall some standard definitions and notation from graph theory. In this
paper, all graphs are finite and simple.

For a graph G with vertex set V (G) and edge set E(G), the order and size of
G are defined to be |V (G)| and |E(G)|, respectively. A pendant edge of G is an
edge of G where one of its vertices is of degree one. The complete graph Kn is the
graph on n (≥ 2) vertices, where every pair of vertices is adjacent. The path on n

vertices is denoted by Pn. For n ≥ 3, the cycle on n vertices is denoted by Cn. Any
graph-theoretic terms which are not explicitly defined in this paper can be found in
[4, 22]

Definition. Let k ≥ 2. A k-coloring of graph G is a coloring of E(G), using a
maximum of k colors.

Using graph-theoretic language, a simple version of Ramsey’s theorem can be stated
in the following way.

Theorem 2.1. (Ramsey [15]). Let s, t ≥ 2. Then, there exists a smallest positive
integer n such that every 2-coloring of Kn contains a red Ks or a blue Kt.

Definition. Let G and H be simple connected graphs. The graph Ramsey number
R(G,H) is the minimum n, where every 2-coloring of Kn contains a red G or a blue
H. When G = H, we say that R(G,G) is the diagonal graph Ramsey number of G.

Notation. For brevity, we use the notation R(G) to denote R(G,G).

Considerable work has been done in graph Ramsey theory. In addition to the
calculation of Ramsey numbers in the classical theory, many different concepts have
been introduced over time. They include Ramsey functions on graphs, many kinds
of mixed Ramsey numbers, size Ramsey numbers, connected Ramsey numbers, anti-
Ramsey numbers and Gallai-Ramsey numbers. For an overview of classical graph
Ramsey theory, the general surveys of Burr [1, 2], Radziszowski [14], Read andWilson
[16], and Sudakov [21] are invaluable. New directions and additional open questions
in graph Ramsey theory are addressed in [3, 23, 24].

Calculating graph Ramsey numbers is a difficult problem. In this paper, we
compute R(G), where G is in a certain class of connected unicyclic graphs of even
girth. This is motivated by the following remarkable conjecture.

Conjecture 2.2. (Grossman [6]). Let G be a connected unicyclic graph of odd girth
and |V (G)| ≥ 4. Then, R(G) = 2 · |V (G)| − 1.

This conjecture has been proved for various classes of connected unicylic graphs of
odd girth. These include:

• C3 with pendant edges from its three vertices [6]

• C3 with pendant edges from a vertex and pendant edges and a path from
another vertex [6]
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• Any odd cycle with pendant edges at a single vertex [9]

• Any odd cycle with a pendant edge at two adjacent vertices [10]

• C3 with pendant edges and/or a star at a single vertex [12]

Resolving Conjecture 2.2 appears to be a formidable task. We believe that Conjecture
2.2 is true and that its proof is as difficult (if not more) as determining the diagonal
graph Ramsey numbers of trees, which is currently an unsolved problem. At this
time, there is no “obvious” conjecture which describes the diagonal graph Ramsey
numbers of connected unicyclic graphs of even girth.

3 R(G), where G is an even cycle with pendant edges

Notation. Let Ck
n denote a cycle Cn with k pendant edges at a common vertex

of the cycle. When there is no danger of confusion, it is convenient to use KX to
denote the complete graph on vertex set X. Similarly, KX,Y can be used to denote
the complete bipartite graph with vertex partite sets X and Y .

The diagonal graph Ramsey number of G = C1
n (for n ≥ 3) was determined in

[12].

Theorem 3.1. (Low and Kapbasov [12]). Let n ≥ 3. Then,

R(C1
n) =

{

2n+ 1 if n is odd,
3n
2

if n is even.

Theorem 3.2. Let n ≥ 3. Then,

R(C2
n) =

{

2n+ 3 if n is odd,
3n
2
+ 1 if n is even.

Proof. Let G = C2
n. In [12], we see that R(G) = 7 when n = 4. So, the claim holds

when n = 4.

Case 1: R(G) where n ≥ 6 and is even.

First, we show that R(G) ≤ 3n
2
+ 1. Let j = 3n

2
+ 1 and C be a 2-coloring

of Kj. Since R(C1
n) = j − 1 (see [12]), there is a (say) blue subgraph C1

n =
v1v2, v2v3, . . . , vn−1vn, vnv1 with pendant edge vnvn+1. Consider the vertex sets X =
{v1, v2, . . . , vn} and Y = V (Kj) −X = {vn+1, vn+2, vn+3, . . . , vj} and form the com-
plete bipartite graph B = KX,Y . Note that |X| = n and |Y | = n+2

2
.

The edges vnvn+2, vnvn+3, . . . vnvj are all red. If not, then there is a blue G and
we are done. Observe that there is at most one blue edge from each vertex in X to
the vertices in Y . Otherwise, there is a blue G and we are done. Furthermore, the
number of blue edges from X to Y is between 1 and n, inclusive. The remaining
edges of B are red. By a straightforward counting argument, one sees the existence



R.M. LOW AND A. KAPBASOV/AUSTRALAS. J. COMBIN. 94 (1) (2026), 221–234 224

of many red copies of G. Here, n
2
vertices of the cycle are from X, n

2
vertices of the

cycle are from Y , and the two pendant vertices are from X. Thus, R(G) ≤ 3n
2
+ 1.

Finally, we show that R(G) > 3n
2
. In particular, we construct a 2-coloring

of Kl where l = 3n
2
, which does not contain a monochromatic G. Let Q1 =

{w1, w2, . . . , wn, wn+1} be the vertices of a blue C1
n in Kl (see [12]) and Q2 =

V (Kl) − Q1. Let B′ = KQ1,Q2
and color the edges of B′ with red. Since |Q2| <

n
2

(as |Q2| =
n−2
2
), a red Cn does not exist in B′. In particular, there is no red G in

B′. Finally, color all of the edges in the complete subgraphs KQ1
and KQ2

, induced
by Q1 and Q2 respectively, blue. Since KQ1

and KQ2
each contain less vertices than

G, those complete subgraphs do not contain a blue G. Thus, R(G) > 3n
2
.

Hence, 3n
2
< R(G) ≤ 3n

2
+ 1 and we conclude that R(G) = 3n

2
+ 1.

Case 2: R(G) where n ≥ 3 and is odd.

This case follows from a theorem of Köhler ([9], see Theorem A in the Appendix).

The diagonal graph Ramsey number of G = Ck
4 was determined in [12].

Theorem 3.3. (Low and Kapbasov [12]). Let k ≥ 1. Then,

R(Ck
4 ) =

{

2k + 4 if k is odd,

2k + 3 if k is even.

Notation. Let NR(v) denote the set of vertices which are red adjacent to v. Let
Nγ,R(v) denote the set of vertices in γ which are red adjacent to v.

Lemma 3.4. Let k ≥ 3 be odd. Then, R(Ck
6 ) ≤ 2k + 5.

Proof. Using scientific computing (via a SAT solver) as found in [13], we determined
that R(C3

6) = 11. Thus, the lemma holds for k = 3.

Let G = Ck
6 where k ≥ 5 is odd, and consider a 2-coloring C of K2k+5 (say,

vertices v1, v2, . . . , v2k+4, v2k+5). By a theorem of Harary ([7], see Theorem B in
the Appendix), there exists a monochromatic K1,k+3 (say red, with central vertex
v1 and leaves v2, v3, . . . , vk+4) in coloring C of K2k+5. Let A = {v2, v3, . . . , vk+4}
and B = {vk+5, vk+6, . . . , v2k+5}; |A| = k + 3 and |B| = k + 1. Furthermore by a
theorem of Zhang, Sun, and Wu ([25], see Theorem C in the Appendix), there exists
a monochromatic C6 in KA,B in coloring C. If this C6 is red, then there exists a
red G in C and the lemma is proved. Therefore, this C6 is blue (say, with vertices
v2, v3, v4, vk+5, vk+6 and vk+7). Let α = A\{v2, v3, v4} and β = B\{vk+5, vk+6, vk+7},
with |α| = k and |β| = k − 2. Now, consider (in coloring C) the complete bipartite
subgraph KX,Y (= K6,2k−1) with vertex partitions X = {v2, v3, v4, vk+5, vk+6, vk+7}
and Y = α ∪ β ∪ {v1}.

From each vertex in {vk+5, vk+6, vk+7} to α ∪ β ∪ {v1}, there are at most k − 1
blue edges (and hence, at least k red edges). Otherwise, the lemma is established.
From each vertex in {v2, v3, v4} to α ∪ β, there are at most k − 1 blue edges (and
hence, at least k − 1 red edges). Otherwise, the lemma is established.
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Now, let us focus on the red edges of KX,Y in coloring C.

Claim: Either a red P5 with endpoints in α and not containing v1, or a red C6

containing v1 (and not containing v3, v4) exists within KX,Y . Recall that k ≥ 5 is
odd.

(We first establish that vk+5 is red adjacent to vertex vα1
∈ α and vertex vβ1

∈ β).
By the Pigeonhole Principle, each vertex in {vk+5, vk+6, vk+7} is red adjacent to some
(possibly different) vertex in α. Now, if there are no red edges from {vk+5, vk+6, vk+7}
to β, then one of three possibilities can occur for each vertex in {vk+5, vk+6, vk+7}:
(i). k red edges to all of α and one red edge to v1. (ii). k − 1 red edges to vertices
in α and one red edge to v1. (iii). k red edges to all of α and one blue edge to v1.
In all instances, a red P5 with endpoints in α (and not containing v1) exists or a red
C6 containing v1 exists, which establishes the Claim. Thus, we have (WLOG) that
vk+5 is red adjacent to vertex vα1

∈ α and vertex vβ1
∈ β.

(Now, we establish that vk+6 is red adjacent to a vertex vβ2
( 6= vβ1

) in β). We
have that vk+5 is red adjacent to vα1

∈ α and vβ1
∈ β. If there are no red edges

from {vk+6, vk+7} to β, then one of three possibilities can occur for each vertex in
{vk+6, vk+7}: (i). k red edges joining vk+6 to all of α and k red edges joining vk+7

to all of α. (ii). k red edges joining vk+6 to all of α and k − 1 red edges joining
vk+7 to vertices of α (and one red edge v1vk+7). (iii). k− 1 red edges joining vk+6 to
vertices of α (and one red edge v1vk+6) and k−1 red edges joining vk+7 to vertices of
α (and one red edge v1vk+7). In all instances, a red P5 with endpoints in α (and not
containing v1) exists or a red C6 containing v1 exists, which establishes the Claim.
Thus, we have (WLOG) that vk+6 is red adjacent to a vertex vβ2

∈ β. If vβ2
6= vβ1

,
then this bullet point is established. If vβ2

= vβ1
, then vk+6 must only be red adjacent

to vα1
in α. Otherwise, a red P5 exists and the Claim is proved. Consequently, vk+5

has exactly one red neighbor in α, namely vα1
. Otherwise, a red P5 would exist and

the Claim is proved. Hence, the red neighborhoods of vk+5 and vk+6 are identical,
namely {vα1

, v1} ∪ β. So, now choose a “new” vβ2
∈ β ( 6= vβ1

) which is red adjacent
to vk+6, which exists since k ≥ 5 is odd.

Case 1. Both vk+6 and vk+7 are red adjacent to vβ1
. Then by the argument in

the second bullet point, the red neighborhoods of vk+5, vk+6 and vk+7 are identical,
namely {vα1

, v1} ∪ β. Here, a red C6 exists and the Claim is established.

Case 2. Vertex vk+6 is red adjacent to vβ1
and vk+7 is blue adjacent to vβ1

. Then the
maximum number of red edges from vk+7 to β is k− 3. By the Pigeonhole Principle,
there exist two vertices (let vk+4 6= vα1

be one of them) in α which are red adjacent
to vk+7. By the Pigeonhole Principle, the red neighborhood of vk+6 is {vα1

, v1} ∪ β.
Otherwise, a red P5 exists and the Claim is proved. Thus, vk+7 is blue adjacent to
all of β. Otherwise, a red P5 would exist and the Claim is proved. Also, vk+5 is blue
adjacent to all of α−{vα1

} and hence, the red neighborhood of vk+5 is {vα1
, v1}∪ β.

Otherwise, a red P5 exists and the Claim is proved. If v1vk+7 is red, then the red
neighborhood of vk+7 is (v1∪α)−{vα1

} (since a red vα1
vk+7 would give a red C6 and
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establish the Claim). On the other hand, if v1vk+7 is blue, then the red neighborhood
of vk+7 is α. Thus, α− {vα1

} is a subset of vk+7’s red neighborhood. Note that v2 is
red adjacent to at least one vertex in α. If v2 is red adjacent to at least two vertices
in α − {vα1

}, then a red P5 exists and the Claim is proved. If v2 is red adjacent to
vα1

and vj in α, then a red P5 exists and the Claim is proved. Thus, all vertices of
β are red-adjacent to v2, v3 and v4, since each vertex in {v2, v3, v4} to α ∪ β has at
least k − 1 red edges. Here, a red Ck

6 exists and the lemma is proved.

Case 3. Vertex vk+6 is blue adjacent to vβ1
. Then the maximum number of red edges

from vk+6 to β is k− 3. By the Pigeonhole Principle, there exist two vertices (let vα2

[ 6= vα1
] be one of them) in α which are red adjacent to vk+6. Furthermore, vk+5vβ2

is
blue. Otherwise, a red P5 exists and the Claim is proved.

(Here, we establish that vk+5vα2
is blue). Assume that vk+5vα2

is red. Then, vk+6 is
not red adjacent to any vertex in α−{vα1

, vα2
}. Otherwise, there would be a red P5

and the Claim is established. Now, examine the red adjacent vertices to vk+6. By
the Pigeonhole Principle, we must have that NR(vk+6) = {vα1

, vα2
, v1}∪ (β−{vβ1

}).
Furthermore, vk+5 is not red adjacent to any vertices in α−{vα1

, vα2
}. Otherwise, a

red P5 would exist and the Claim is proved. By the Pigeonhole Principle, vk+5 and
vk+6 both share a red vertex neighbor in β. Here, a red P5 exists and the Claim is
established. We therefore conclude that vk+5vα2

is blue.

(Now, we establish that vk+6vα1
is blue). Assume that vk+6vα1

is red. Then, vk+5 is
not red adjacent to any vertex in α − {vα1

, vα2
}. Otherwise, there would be a red

P5 and the Claim is established. Thus, |NR(vk+5)| is at most (k − 3) + 1 + 1, which
gives a desired contradiction. We therefore conclude that vk+6vα1

is blue.

Thus far, we have the following: In KX,Y , red edges – vk+5vα1
, vk+5vβ1

, vk+6vβ2
,

vk+6vα2
; blue edges – vk+5vβ2

, vk+5vα2
, vk+6vβ1

, vk+6vα1
. If vertices vk+5 and vk+6

have a common red neighbor in α∪ β, then a red P5 exists and the Claim is proved.
So, Nα∪β,R(vk+5)∩Nα∪β,R(vk+6) = ∅. Since |α∪ β ∪{v1}| = 2k− 1 and |NR(vk+5)|+
|NR(vk+6)| ≥ 2k, this implies that v1 is the only shared red neighbor of vk+5 and vk+6.
Also, note that |Nα∪β,R(vk+5)| = k−1 = |Nα∪β,R(vk+6)| and that each vertex in α∪β is
red adjacent to either vk+5 or vk+6, but not both. We also have that |Nα,R(vk+5)| ≥ 2
and |Nα,R(vk+6)| ≥ 2. Let vα1

, vα3
∈ Nα,R(vk+5) and vα2

, vα4
∈ Nα,R(vk+6).

Case 1. Let v′ ∈ Nα∪β,R(vk+7)∩Nα∪β,R(vk+6) and v′′ ∈ Nα∪β,R(vk+7)∩Nα∪β,R(vk+5).
Then, the red C6 = v1vk+5v

′′vk+7v
′vk+6v1 exists and the Claim is proved.

Case 2. Let NR(vk+7) = NR(vk+5). Then, the red P5 = vα1
vk+7vβ1

vk+5 vα3
exists and

the Claim is proved.

Case 3. Let NR(vk+7) = NR(vk+6). Then, the red P5 = vα2
vk+7vβ2

vk+6 vα4
exists and

the Claim is proved.

All possible scenarios lead to a red C6 or a red P5. Thus, the Claim is established. ♦
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It follows immediately from the Claim that a red Ck
6 exists in C. Thus, the lemma

is established.

Lemma 3.5. Let k ≥ 2 be even. Then, R(Ck
6 ) ≤ 2k + 6.

Proof. By Theorem 3.2, we see that R(C2
6) = 10. So the claim holds when k = 2.

Let G = Ck
6 , where k ≥ 4 is even, and C be a 2-coloring of K2k+6 (say, vertices

v1, v2, . . . , v2k+5, v2k+6). By [7] (see Theorem B in the Appendix), there exists a
monochromatic K1,k+3 (say red, with central vertex v1 and leaves v2, v3, . . . , vk+4) in
coloring C of K2k+6. Consider the edge-coloring of the complete bipartite subgraph
with vertex sets {v2, v3, . . . , v7} and {v2k+1, v2k+2, . . . , v2k+6}. By [25] (see Theorem
C in the Appendix), there exists a monochromatic C6 containing three vertices from
each vertex set. If this C6 is red, then there exists a red G in C and the lemma
is proved. Therefore, this C6 is blue (say, with vertices say v2, v3, v4, v2k+4, v2k+5,
v2k+6). Let X = {v2k+4, v2k+5, v2k+6}, α = {v5, v6, . . . , vk+4}, and β = {vk+5, vk+6,
. . . , v2k+3}. Consider (in coloring C) the complete bipartite subgraph KX,Y (= K3,2k)
with vertex partitions X and Y = α ∪ β ∪ {v1}.

From each vertex in X to Y , there are at most k − 1 blue edges (and hence, at
least k + 1 red edges). Otherwise, a blue Ck

6 exists and the lemma is established.
Now, let us focus on the red edges of KX,Y in coloring C.

Claim: Either a red P5 with endpoints in α and not containing v1, or a red C6

containing v1 (and not containing v3, v4) exists. Recall that k ≥ 4 and even.

(We establish that v2k+6 is red adjacent to vertex vα1
∈ α and vertex vβ1

∈ β). By the
Pigeonhole Principle, each vertex in {v2k+4, v2k+5, v2k+6} is red adjacent to a (possibly
different) vertex in α. Now, if there are no red edges from {v2k+4, v2k+5, v2k+6} to β,
then only one possibility can occur for each vertex in {v2k+4, v2k+5, v2k+6}, namely k

red edges to all of α and one red edge to v1. In this instance, a red P5 with endpoints
in α (and not containing v1) exists and the Claim is established. Thus, we have
(WLOG) that v2k+6 is red adjacent to vertex vα1

∈ α and vertex vβ1
∈ β.

(We establish that v2k+5 is red adjacent to a vertex vβ2
( 6= vβ1

) in β). If there are
no red edges from {v2k+4, v2k+5} to β, then only one possibility can occur for each
vertex in {v2k+4, v2k+5}, namely k red edges to all of α and one red edge to v1. Here,
a red P5 exists and the Claim is established. Thus, we have (WLOG) that v2k+5 is
red adjacent to a vertex vβ2

∈ β. If vβ2
6= vβ1

, then this bullet point is established.
If vβ2

= vβ1
, then v2k+5 must only be red adjacent to vα1

in α. Otherwise, a red P5

exists and the Claim is proved. Consequently, v2k+6 has exactly one red neighbor in
α, namely vα1

. Otherwise, a red P5 would exist and the Claim is proved. Hence, the
red neighborhoods of v2k+5 and v2k+6 are identical, namely {vα1

, v1} ∪ β. So, now
choose a “new” vβ2

∈ β ( 6= vβ1
) which is red adjacent to v2k+5, which exists since

k ≥ 4 even.

(We establish that v2k+5vα2
is red ( 6= vα1

)). If there is no vα2
which is red adjacent

to v2k+5, then v2k+5vα1
is red and NR(v2k+5) = β ∪ {vα1

} ∪ {v1}, by the Pigeonhole
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Principle. This implies that that NR(v2k+6) = β ∪ {vα1
} ∪ {v1}. Otherwise, a red P5

exists and the Claim is proved. Now, every vertex in {v2, v3, v4} has at most k−1 blue
edges (and hence, at least k red edges) going to vertices in α∪β. If v2 is red adjacent
to a vertex vβt

, then a red Ck
6 (underlying red C6 = v1v2vβs

v2k+6vβt
v2k+5v1) exists

and the lemma is proved. Thus, v2vα1
is red. However, now a red Ck

6 (underlying red
C6 = v1v2vα1

v2k+6vβt
v2k+5v1) exists and the lemma is proved. Therefore, we conclude

that v2k+5vα2
is red ( 6= vα1

).

(We establish that v2k+5vβ1
is blue and v2k+6vβ2

is blue). If either v2k+5vβ1
is red or

v2k+6vβ2
is red, then a red P5 exists and the Claim is proved.

(We establish the following: v2k+5vα1
is blue and v2k+5vα3

is red ( 6= vα1
, vα2

)). Sup-
pose that v2k+5vα1

is red. By the Pigeonhole Principle, v2k+6 has at least two
red neighbors in α. They must only be vα1

and vα2
. Otherwise, a red P5 exists

and the Claim is proved. Thus, NR(v2k+6) = (β − {vβ2
}) ∪ {v1, vα1

, vα2
}. By

the Pigeonhole Principle, v2k+5 has at least two red neighbors in α. They must
only be vα1

and vα2
. Otherwise, a red P5 exists and the Claim is proved. Thus,

NR(v2k+5) = (β−{vβ2
})∪{v1, vα1

, vα2
}. However, now a red P5 exists and the Claim

is proved. Therefore, we conclude that v2k+5vα1
is blue. Since v2k+5 has at most

k − 2 red neighbors in β, v2k+5 must have at least two red neighbors in α. Let vα3

( 6= vα1
, vα2

) be a red neighbor of v2k+5.

Finally, recall that there are at least 2k + 2 red edges to α ∪ β ∪ {v1} from v2k+5

and v2k+6. Furthermore, |α ∪ β ∪ {v1}| = 2k. Thus, there are only two cases left to
consider.

Case 1. |Nα,R(v2k+5) ∩ Nα,R(v2k+6)| ≥ 1. Here, a red P5 exists and the Claim is
proved.

Case 2. |Nβ,R(v2k+5) ∩ Nβ,R(v2k+6)| ≥ 1. Here, a red P5 exists and the Claim is
proved.

All possible scenarios lead to a red C6 or a red P5. Thus, the Claim is established. ♦

It follows immediately from the Claim that a red Ck
6 exists in C. Thus, the lemma

is proved.

Theorem 3.6. Let k ≥ 1 and n ≥ 4 be even. Then, R(Ck
n) > 2(k + ⌊n−1

2
⌋).

Proof. Let G = Ck
n, l = 2(k + ⌊n−1

2
⌋) and consider the following 2-coloring of Kl

with vertices {v1, v2, . . . , vl}: Let X = {v1, v2, . . . , v l

2

} and Y = {v l

2
+1, v l

2
+2, . . . ,

vl}. Color all of the edges of KX and KY red. Since |X| = |Y | = k + ⌊n−1
2
⌋ and

|V (G)| = k + n, a red G does not exist within KX nor KY . Now, color all the edges
of KX,Y blue. Since n

2
vertices (from X) and n

2
vertices (from Y ) are needed for a

blue Cn, at most a blue Ck−1
n exists. Thus, R(Ck

n) > 2(k + ⌊n−1
2
⌋).

Corollary 3.7. Let k ≥ 2 be even. Then, 2k + 5 ≤ R(Ck
6 ) ≤ 2k + 6.
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Proof. The lower bound is established by Theorem 3.6, with n = 6. The upper
bound is established by Lemma 3.5.

Theorem 3.8. Let k ≥ 3 be odd. Then, R(Ck
6 ) = 2k + 5.

Proof. Using Theorem 3.6 with n = 6, one obtains R(Ck
6 ) > 2k+4. This, along with

Lemma 3.4, establishes the claim.

Theorem 3.9. Let n ≥ 6 be even and k ≥ 1. Then, R(Ck
n) > R(Cn) + k − 1 =

3n
2
+ k − 2.

Proof. Let G = Ck
n. For k ≥ 1, n ≥ 6 even and k > n

2
, the claim follows from

Theorem 3.6 since 3n
2
+ k − 2 < 2(k + ⌊n−1

2
⌋). So, let 1 ≤ k ≤ n

2
and l = 3n

2
+

k − 2. Consider the following 2-coloring of Kl with vertices {v1, v2, . . . , vl}: Let
X = {v1, v2, . . . , vn+k−1} and Y = {vn+k, vn+k+1, . . . , vl}. Color all of the edges of
KX and KY red. Since |X| = n + k − 1, |Y | = n

2
− 1 and |V (G)| = k + n, a red G

does not exist within KX nor KY . Now, color all the edges of KX,Y blue. Since n
2

vertices (from X) and n
2
vertices (from Y ) are needed for a blue Cn, there is no blue

Cn. In particular, there is no blue G. Thus, R(Ck
n) >

3n
2
+ k − 2.

Remark. With regards to Theorems 3.6 and 3.9 (for n ≥ 6 even), note the following:

• [k = n
2
]: 3n

2
+ k − 2 = 2n− 2 = 2(n

2
+ n

2
− 1) = 2(k + ⌊n−1

2
⌋).

• [k < n
2
]: Since k+n < n

2
+n, we have 2k+n < 3n

2
+k and 2k+n−2 < 3n

2
+k−2.

Hence, 2(k + ⌊n−1
2
⌋) < 3n

2
+ k − 2.

• [k > n
2
]: Since n

2
+ n < k + n, we have 3n

2
+ k < 2k + n. Hence, 3n

2
+ k − 2 <

2(k + ⌊n−1
2
⌋).

Thus, 3n
2
+k−2 is a better lower bound of R(Ck

n), for “smaller” k, whereas 2(k+⌊n−1
2
⌋)

is a better lower bound for “larger” k.

Theorem 3.10. Let n ≥ 6 be even and 1 ≤ k ≤ ⌈n
4
⌉. Then, R(Ck

n) ≤ R(Cn) + k =
3n
2
− 1 + k.

Proof. Fix even n ≥ 6 and 1 ≤ k ≤ ⌈n
4
⌉. Let c = 3n

2
− 1 + k and C be a 2-

coloring of Kc = {v1, v2, . . . , vc}. Since k ≥ 1, there exists a monochromatic (say,
red) Cn with edge set {v1v2, v2v3, . . . , vn−1vn, vnv1} in C. Let X = {v1, v2, . . . , vn}
and Y = V (Kc)\X = {vn+1, vn+2, . . . , vc}. Note that |Y | = n

2
− 1 + k. In particular,

if k = ⌈n
4
⌉, then

|Y | =

{

3n−4
4

if n
2
is even,

3n−2
4

if n
2
is odd.

In C, consider the 2-coloring of KX,Y . From each vertex in X to vertex set Y , there
are at most k−1 red edges. Otherwise, a red Ck

n exists and the theorem is established.
Hence, there are at least n

2
blue edges from each vertex in X to vertex set Y . Thus,

there are at least n2

2
blue edges in KX,Y .
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Using a result by Li and Ning ([11], see Theorem E in the Appendix), let n = |X|,
n
2
≤ m = |Y | ≤ 3n−4

4
or 3n−2

4
, and t = n

2
. For the range of m, it is straightforward to

verify that t ≤ m ≤ 2t− 2. Furthermore,

(t− 1)(n− 1) +m ≤

{

n2

2
− 3n

4
if m is even,

n2

2
− 3n

4
+ 1

2
if m is odd.

In both cases, (t−1)(n−1)+m < |EB(KX,Y )|, where |EB(KX,Y )| denotes the number
of blue edges in KX,Y . Thus by Theorem E, a blue Cn exists in KX,Y in coloring C.

From X, n
2
vertices are needed and from Y , n

2
vertices are needed to form the

blue Cn. Let X
′ and Y ′ denote the sets containing the required vertices, respectively.

Then, let X ′′ = X\X ′ and Y ′′ = Y \Y ′. Note that |X ′| = |Y ′| = |X ′′| = n
2
and

|Y ′′| = k − 1.

Claim: There exists a blue Ck
n, where the cycle is formed by the n

2
vertices of X ′,

the n
2
vertices of Y ′ and the k pendants are from a vertex v ∈ Y ′ to vertices in X ′′.

If n
2
is even, then |Y | ≤ 3n−4

4
, |Y ′′| ≤ 3n−4

4
− n

2
= n−4

4
and 1 ≤ k ≤ n

4
. If n

2
is odd,

then |Y | ≤ 3n−2
4

, |Y ′′| ≤ 3n−2
4

− n
2
= n−2

4
and 1 ≤ k ≤ n+2

4
.

Case 1. n
2
is even. Then, |EB(KX′′,Y ′′)| ≤ n

2
(n−4

4
) = n2

8
− n

2
. So, |EB(KX′′,Y ′)| ≥

n2

4
− (n

2

8
− n

2
) = n

2
(n
4
+ 1) ≥ n

2
(k + 1). Thus, there is a vertex v ∈ Y ′ with at least k

blue edges joined to vertices of X ′′.

Case 2. n
2
is odd. Then, |EB(KX′′,Y ′′)| ≤ n

2
(n−2

4
) = n2

8
− n

4
. So, |EB(KX′′,Y ′)| ≥

n2

4
− (n

2

8
− n

4
) = n

2
(n
4
+ 1

2
) ≥ n

2
(k). Thus, there is a vertex v ∈ Y ′ with at least k blue

edges joined to vertices of X ′′.

This finishes the proof of the Claim. ♦

Hence, coloring C must contain a red Ck
n or a blue Ck

n. Therefore, R(Ck
n) ≤

R(Cn) + k = 3n
2
− 1 + k.

Theorem 3.11. Let n ≥ 8, n ≡ 0 (mod 4) and 1 ≤ k ≤ ⌈n
4
⌉. Then, R(Ck

n, C
k+1
n ) =

3n
2
− 1 + k.

Proof. From Case 1 (of Claim) in the proof of Theorem 3.10, there is a vertex v ∈ Y ′

with at least k+1 blue edges joined to vertices of X ′′. This yields a blue Ck+1
n . Thus,

R(Ck
n, C

k+1
n ) ≤ 3n

2
− 1+k. The 2-coloring of Kl (found in the proof of Theorem 3.9),

where l = 3n
2
+ k − 2, does not contain a red Ck

n nor a blue Ck+1
n .

Theorem 3.12. Let n ≥ 8, n ≡ 0 (mod 4) and k = n
4
+ 1. Then, R(Ck

n) ≤
R(Cn) + k = 3n

2
− 1 + k.

Proof. Fix even n ≥ 8, where n ≡ 0 (mod 4). Let k = n
4
+ 1, c = 3n

2
− 1 + k = 7n

4

and C be a two-coloring of Kc = {v1, v2, . . . , vc}. There exists a monochromatic (say,
red) Cn in C. Let X = {v1, v2, . . . , vn} be the set of vertices of this particular Cn
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and Y = V (Kc)−X. Note that |Y | = n
2
− 1 + k = 3n

4
. In C, consider the 2-coloring

of KX,Y . From each vertex in X to vertex set Y , there are at most k − 1 red edges.
Otherwise, a red Ck

n exists and the theorem is established. Hence, there are at least
n
2
blue edges from each vertex in X to vertex set Y . Thus, there are at least n2

2
blue

edges in KX,Y .
Using a result by Li and Ning ([11], see Theorem E in the Appendix), since

n2

2
> (n

2
− 1)(n− 1) + 3n

4
, there exists a blue Cn with vertex set X ′ in X and vertex

set Y ′ in Y . Let X ′′ = X\X ′ and Y ′′ = Y \Y ′. Note that |X ′′| = |X ′| = |Y ′| = n
2

and |Y ′′| = k − 1 = n
4
.

Each vertex in Y ′ is blue adjacent to at most k−1 = n
4
vertices in X ′′. Otherwise,

a blue Ck
n exists and the theorem is proved. Thus, each vertex in Y ′ is red adjacent

to at least n
4
vertices in X ′′. So, a minimum of n

2
· n
4
= n2

8
red edges exist in KX′′,Y ′ .

Also, there are at least n
2
· n
4
blue edges. If this was not the case, then there are at

most n2

8
− 1 blue edges (implying at least n2

8
+1 red edges). This results in a red Ck

n

and the theorem is proved.
Since |KX′′,Y ′ | = n2

4
, this implies that each vertex in Y ′ has exactly n

4
red edges

and exactly n
4
blue edges to vertex set X ′′. Furthermore, because each vertex in X

is red adjacent to at most n
4
vertices in Y , this implies that KX′′,Y ′′ is blue.

(Lifting Process). We now assert that C contains another blue Cn with n
2
− 2

vertices in X ′, two vertices in X ′′, n
2
− 1 vertices in Y ′ and one vertex in Y ′′. This

can be seen from the following:

• There is a blue Pn−3 in KX′,Y ′ with n
2
− 2 vertices in X ′ and n

2
− 1 vertices in

Y ′.

• Each vertex in Y ′ has exactly n
4
blue edges to vertex set X ′′. Each vertex in

X ′′ has exactly n
4
blue edges to vertex set Y ′.

• There is a blue P3 in KX′′,Y ′′ with two vertices in X ′′ and one vertex in Y ′′.

In the case where n ≥ 12, there is a blue Ck
n (since n

2
− 2 ≥ k) and the theorem is

established.
To complete the proof of the theorem, we must analyze the case where n = 8 (and

k = n
4
+ 1 = 3). Let Y ′′ = {vr, vs}. Here, we only have the existence of a blue Ck−1

n

(= C2
8) so far. Furthermore after applying the Lifting Process once, vr (WLOG) has

two red neighbors (not contained in the lifted blue C8) in X ′ and one red neighbor
in Y ′ (not contained in the lifted blue C8). Otherwise, a blue C3

8 exists and the
theorem is proved. Note that the original blue C8 (containing the four vertices from
X ′ and four vertices from Y ′) contains four blue P5s, where the end-vertices are in
Y ′. By applying the Lifting Process repeatedly (using each of these four blue P5s),
we can conclude that vr is red adjacent to all the vertices in X ′ and Y ′. An identical
argument shows that vs is also red adjacent to all the vertices in X ′ and Y ′.

Now, consider the red C8 = {v1, v2, . . . , v8}, where V (C8) = X. Without loss of
generality, let X ′ = {v1, v2, v3, v4} and X ′′ = {v5, v6, v7, v8}.

Case 1. If there is a red P3 = vxvvz with endpoints in X ′, then the red C8 can
be lifted to another red C8 which contains one vertex in Y ′′ and the vertices of the
original red C8 except v. From this, a red C3

8 exists and the theorem is proved.
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Case 2. Without loss of generality, if edge v1v2 is red, then edges v1v5 and v2v6 are
red, since there is no red P3 in X ′. If in addition, v3v6 is red, then the original red
C8 can be lifted to another red C8 which contains one vertex in Y ′′ and vertices
v1, v2, v3, v4, v5, v7 and v8. From this, a red C3

8 exists and the theorem is proved.
So thus far, we have that edges v1v5, v2v6 and v6v7 are red. Furthermore, edge
v5v8 is in the original red C8. Otherwise there is a similar lifting (as described
above) to another red C8 which leads to a red C3

8 , proving the theorem. Since
edge v5v8 is in the original red C8, this implies that edge v3v4 is in the original
red C8. To summarize up to this point, we have determined that the original red
C8 = v1v2, v2v6, v6v7, v7v3, v3v4, v4v8, v8v5, v5v1. Now in this red C8, replace the red
P5 = v2v6, v6v7, v7v3, v3v4 with the red P5 = v2vr, vrv3, v3vs, vsv4. This gives a lifting
of the original red C8 to another red C8 which contains the two vertices of Y ′′ and
vertices v1, v2, v3, v4, v5 and v8. From this, a red C3

8 exists and the theorem is proved.

Case 3. If edge v1v5 is red (WLOG), then edge v1v6 is red (WLOG). Otherwise, we
would be in Case 2 and hence, done. Furthermore, edges v5v7 and v6v8 are edges
of the original red C8. Otherwise, we would be in Case 1 and hence, done. So this
implies that v2v3 and v3v4 are edges in the original red C8. This is a red P3 with
endpoints in X ′. We are now back in Case 1 and the theorem is proved.

Theorem 3.13. Let n ≥ 6 be even and 1 ≤ k ≤ ⌈n+1
4
⌉. Then, R(Ck

n) =
3n
2
− 1 + k.

Proof. This follows immediately from Theorems 3.9, 3.10 and 3.12.

4 Directions for further research

Conjecture 4.1. Let k ≥ 2 be even. Then, R(Ck
6 ) = 2k + 6.

Conjecture 4.2. Let n ≥ 6 be even and k ∈ N. Then,

R(Ck
n) =

{

R(K1,k+n

2
) if k ≥ n

2
,

R(Cn) + k if 1 ≤ k ≤ n
2
− 1.
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Appendix

Some auxiliary concepts and theorems were used in this paper. For the sake of
completeness, we include them in this section.

Theorem A is used in the proof of Theorem 3.2.

Theorem A. (Köhler [9]). Let G be an odd cycle with k ≥ 1 pendant edges at a
single vertex of G. Then, R(G) = 2 · |V (G)| − 1.
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Theorems B and C are used in the proofs of Lemmas 3.4 and 3.5.

Theorem B. (Harary [7]). R(K1,n, K1,m) = n+m− ǫ, where ǫ = 1 for even n and
m, and ǫ = 0 otherwise.

Definition. Let G and H be simple connected bipartite graphs. The bipartite
Ramsey number BR(G,H) is the minimum n, where every 2-coloring ofKn,n contains
a monochromatic red G or a monochromatic blue H.

Theorem C. (Zhang, Sun and Wu [25]). BR(C6, C6) = 6.

Theorem D is alluded to in the statements of Theorem 3.9 and Conjecture 4.2.

Theorem D. (Rosta [19]). Let n ≥ 6 be even. Then, R(Cn) =
3n
2
− 1.

Theorem E is used in the proof of Theorem 3.10.

Theorem E. (Li and Ning [11]). Let t ≥ 1 and G be a bipartite graph with vertex
partitions X and Y , where |X| = m and |Y | = n. Suppose that n ≥ m and t ≤ m ≤
2t− 2. If |E(G)| > (t− 1)(n− 1) +m, then G contains a cycle of length 2t.
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