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Abstract

Let G be a simple graph. The diagonal graph Ramsey number R(G, G) is
defined to be the minimum n, where every 2-coloring of the edges of K,
contains a red G or a blue GG. In this paper, new diagonal graph Ramsey
numbers are calculated for some classes of even cycles with pendant edges.

1 Introduction

In 1929, Frank Ramsey [15] established an innocuous-looking result in his ground-
breaking paper on formal logic. Although it was not apparent at the time, his
theorem would eventually form the cornerstone of Ramsey theory, a vibrant and rich
area of extremal combinatorics.

The following general question [4] is investigated in Ramsey theory.

If a particular mathematical structure (e.g., algebraic, combinatorial, or ge-
ometric) is arbitrarily partitioned into finitely many classes, what kinds of
substructures must always remain intact in at least one of the classes?

Over many decades, Ramsey-type questions involving the set of integers, graphs,
Euclidean space and topological spaces have been investigated. As of this writing, a
keyword search for “Ramsey” yields 8121 entries in the MathSciNet database. The
interested reader is directed to [4, 5] for a comprehensive overview of Ramsey theory.
For gentle introductions to Ramsey theory, [8, 17] are recommended.

The reader should note that the seeds of Ramsey theory were planted even before
Ramsey introduced his theorem. Soifer’s [20] beautifully written book is filled with
deep mathematics and also provides a rich historical context of Ramsey theory.

Interesting applications of Ramsey theory can be found in number theory, algebra,
geometry, topology, set theory, logic, ergodic theory, information theory and com-
puter science. The reader is directed to Rosta’s [18] survey for a detailed exposition
of some of these applications.
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2 Preliminaries

First, we recall some standard definitions and notation from graph theory. In this
paper, all graphs are finite and simple.

For a graph G with vertex set V(G) and edge set E(G), the order and size of
G are defined to be |V(G)| and |E(G)|, respectively. A pendant edge of G is an
edge of GG where one of its vertices is of degree one. The complete graph K, is the
graph on n (> 2) vertices, where every pair of vertices is adjacent. The path on n
vertices is denoted by P,. For n > 3, the cycle on n vertices is denoted by C),. Any
graph-theoretic terms which are not explicitly defined in this paper can be found in
[4, 22

Definition. Let k& > 2. A k-coloring of graph G is a coloring of E(G), using a
maximum of k colors.

Using graph-theoretic language, a simple version of Ramsey’s theorem can be stated
in the following way.

Theorem 2.1. (Ramsey [15]). Let s,t > 2. Then, there ezists a smallest positive
integer n such that every 2-coloring of K, contains a red K, or a blue K.

Definition. Let G and H be simple connected graphs. The graph Ramsey number
R(G, H) is the minimum n, where every 2-coloring of K, contains a red G or a blue
H. When G = H, we say that R(G, G) is the diagonal graph Ramsey number of G.

Notation. For brevity, we use the notation R(G) to denote R(G,G).

Considerable work has been done in graph Ramsey theory. In addition to the
calculation of Ramsey numbers in the classical theory, many different concepts have
been introduced over time. They include Ramsey functions on graphs, many kinds
of mixed Ramsey numbers, size Ramsey numbers, connected Ramsey numbers, anti-
Ramsey numbers and Gallai-Ramsey numbers. For an overview of classical graph
Ramsey theory, the general surveys of Burr [1, 2], Radziszowski [14], Read and Wilson
[16], and Sudakov [21] are invaluable. New directions and additional open questions
in graph Ramsey theory are addressed in [3, 23, 24].

Calculating graph Ramsey numbers is a difficult problem. In this paper, we
compute R(G), where G is in a certain class of connected unicyclic graphs of even
girth. This is motivated by the following remarkable conjecture.

Conjecture 2.2. (Grossman [6]). Let G be a connected unicyclic graph of odd girth
and |V(G)| > 4. Then, R(G) =2-|V(G)| — 1.

This conjecture has been proved for various classes of connected unicylic graphs of
odd girth. These include:

e (5 with pendant edges from its three vertices [6]

e (3 with pendant edges from a vertex and pendant edges and a path from
another vertex [6]
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e Any odd cycle with pendant edges at a single vertex [9]
e Any odd cycle with a pendant edge at two adjacent vertices [10]
e ('3 with pendant edges and/or a star at a single vertex [12]

Resolving Conjecture 2.2 appears to be a formidable task. We believe that Conjecture
2.2 is true and that its proof is as difficult (if not more) as determining the diagonal
graph Ramsey numbers of trees, which is currently an unsolved problem. At this
time, there is no “obvious” conjecture which describes the diagonal graph Ramsey
numbers of connected unicyclic graphs of even girth.

3 R(G), where G is an even cycle with pendant edges

Notation. Let C* denote a cycle C, with k pendant edges at a common vertex
of the cycle. When there is no danger of confusion, it is convenient to use Kx to
denote the complete graph on vertex set X. Similarly, Kyy can be used to denote
the complete bipartite graph with vertex partite sets X and Y.

The diagonal graph Ramsey number of G = C} (for n > 3) was determined in
[12].

Theorem 3.1. (Low and Kapbasov [12]). Let n > 3. Then,

R(CY) = {irler 1 if nis odd,

5 if n is even.

Theorem 3.2. Let n > 3. Then,

R(C?

n

)_{2n+3 if n is odd,

33”+1 if n is even.

Proof. Let G = C2. In [12], we see that R(G) =7 when n = 4. So, the claim holds

when n = 4.
Case 1: R(G) where n > 6 and is even.

First, we show that R(G) < 22 4+ 1. Let j = % + 1 and C be a 2-coloring
of K;. Since R(C}) = j — 1 (see [12]), there is a (say) blue subgraph C} =
V1V, VU3, . . ., Up_1Up, U,v1 With pendant edge v,v,,1. Consider the vertex sets X =
{vi,ve,...,v,} and Y = V(K;) — X = {Up41, Vns2, Ungts, - .., v;} and form the com-
plete bipartite graph B = K y. Note that |X| =n and |Y| = 2.

The edges v,Vnt2, VnUnys, ... 00, are all red. If not, then there is a blue G' and
we are done. Observe that there is at most one blue edge from each vertex in X to
the vertices in Y. Otherwise, there is a blue G and we are done. Furthermore, the
number of blue edges from X to Y is between 1 and n, inclusive. The remaining

edges of B are red. By a straightforward counting argument, one sees the existence



R.M. LOW AND A. KAPBASOV / AUSTRALAS. J. COMBIN. 94 (1) (2026), 221234 224

n

of many red copies of G. Here, 3 vertices of the cycle are from X, & vertices of the
cycle are from Y, and the two pendant vertices are from X. Thus, R(G) < 37” + 1.
Finally, we show that R(G) > 37" In particular, we construct a 2-coloring

of K; where [ = 37", which does not contain a monochromatic G. Let Q; =
{wi,wa, ..., Wn, w1} be the vertices of a blue C! in K; (see [12]) and Qy =
V(K;) — Q1. Let B = Kg, 0, and color the edges of B" with red. Since |Qs| < 3
(as |Qo] = %52), a red C, does not exist in B’. In particular, there is no red G in

B’. Finally, color all of the edges in the complete subgraphs Ko, and Ko,, induced
by Q; and Qs respectively, blue. Since Ko, and Ko, each contain less vertices than
G, those complete subgraphs do not contain a blue G. Thus, R(G) > 37”

Hence, &' < R(G) < 2% + 1 and we conclude that R(G) = % + 1.

Case 2: R(G) where n > 3 and is odd.

This case follows from a theorem of Kéhler ([9], see Theorem A in the Appendix).
O

The diagonal graph Ramsey number of G = C} was determined in [12].
Theorem 3.3. (Low and Kapbasov [12]). Let k > 1. Then,

R(Cy) =

2k +4 if k is odd,
2k +3 if k is even.

Notation. Let Ng(v) denote the set of vertices which are red adjacent to v. Let
N, r(v) denote the set of vertices in v which are red adjacent to v.

Lemma 3.4. Let k > 3 be odd. Then, R(CE) < 2k + 5.

Proof. Using scientific computing (via a SAT solver) as found in [13], we determined
that R(CZ) = 11. Thus, the lemma holds for k = 3.

Let G = Cé“ where k£ > 5 is odd, and consider a 2-coloring C of Koy, 5 (say,

vertices vy, U, ..., Ugkid,Vokts). By a theorem of Harary ([7], see Theorem B in
the Appendix), there exists a monochromatic K ;i3 (say red, with central vertex
vy and leaves vg,v3,...,vV5yq) in coloring C of Kopys. Let A = {vq,vs3,..., 0514}

and B = {Vki5, Vk16,-- -, Vokss}; |[Al = k+ 3 and |B] = k + 1. Furthermore by a
theorem of Zhang, Sun, and Wu ([25], see Theorem C in the Appendix), there exists
a monochromatic Cg in K4 p in coloring C. If this Cg is red, then there exists a
red G in C and the lemma is proved. Therefore, this Cg is blue (say, with vertices
Vg, U3, Uy, Ukts, Vkre and vgy7). Let o = A\{vg, v3,v4} and 5 = B\{vki5, Vki6, Vki7}s
with |a| = k and || = k — 2. Now, consider (in coloring C) the complete bipartite
subgraph Kxy (= Kgor—1) with vertex partitions X = {v, v3, Vs, Vg5, Vg6, Vkt7}
and Y = aUpBU{v}.

From each vertex in {viis, Vki6, Vi) to U B U {v1}, there are at most k — 1
blue edges (and hence, at least k red edges). Otherwise, the lemma is established.
From each vertex in {vq,v3,v4} to o U 3, there are at most k — 1 blue edges (and
hence, at least k — 1 red edges). Otherwise, the lemma is established.
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Now, let us focus on the red edges of Kxy in coloring C.

Claim: Either a red Ps with endpoints in « and not containing v, or a red Cg
containing v, (and not containing vz, v,) exists within Ky y. Recall that £ > 5 is
odd.

(We first establish that vys is red adjacent to vertex v,, € o and vertex vg, € ).
By the Pigeonhole Principle, each vertex in {vg 5, Ug16, k1 7} is red adjacent to some
(possibly different) vertex in . Now, if there are no red edges from {vg. 5, Vki6, Vii7}
to (3, then one of three possibilities can occur for each vertex in {viys, Vki6, Vgi7}:
(i). k red edges to all of & and one red edge to vy. (ii). k — 1 red edges to vertices
in o and one red edge to v;. (iii). k red edges to all of o and one blue edge to .
In all instances, a red Ps with endpoints in « (and not containing vy) exists or a red
Cs containing v; exists, which establishes the Claim. Thus, we have (WLOG) that
Vg5 is red adjacent to vertex v,, € a and vertex vg, € f.

(Now, we establish that vy is red adjacent to a vertex wvg, (# vg ) in 8). We
have that vjys5 is red adjacent to v,, € o and vg, € [. If there are no red edges
from {vji6,vr47} to B, then one of three possibilities can occur for each vertex in
{Vk+6, Vki7}: (1). k red edges joining vii6 to all of @ and k red edges joining vy 7
to all of a. (ii). k red edges joining vg ¢ to all of @ and k — 1 red edges joining
Ug47 to vertices of @ (and one red edge vivg 7). (iii). k£ — 1 red edges joining vg,6 to
vertices of o (and one red edge v1vg1¢) and k — 1 red edges joining vy, 7 to vertices of
a (and one red edge v1vg47). In all instances, a red Ps with endpoints in « (and not
containing v ) exists or a red Cg containing vy exists, which establishes the Claim.
Thus, we have (WLOG) that vy is red adjacent to a vertex vg, € 5. If vg, # vg,,
then this bullet point is established. If vg, = vg,, then vy must only be red adjacent
to v,, in a. Otherwise, a red Ps exists and the Claim is proved. Consequently, vgi5
has exactly one red neighbor in «a, namely v,,. Otherwise, a red P; would exist and
the Claim is proved. Hence, the red neighborhoods of vy, 5 and vy, are identical,
namely {v,,,v1} U . So, now choose a “new” vg, € 5 (# vg, ) which is red adjacent
to Vg1, Which exists since k£ > 5 is odd.

Case 1. Both vy and vi7 are red adjacent to vg,. Then by the argument in
the second bullet point, the red neighborhoods of vy, 5, vr16 and vy 7 are identical,
namely {v,,,v1} U 5. Here, a red Cj exists and the Claim is established.

Case 2. Vertex vy is red adjacent to vg, and vy 7 is blue adjacent to vg,. Then the
maximum number of red edges from vy 7 to 8 is kK — 3. By the Pigeonhole Principle,
there exist two vertices (let vgy4 # v4, be one of them) in o which are red adjacent
to vy7. By the Pigeonhole Principle, the red neighborhood of vgi¢ is {va,,v1} U S.
Otherwise, a red Ps exists and the Claim is proved. Thus, vy 7 is blue adjacent to
all of 8. Otherwise, a red P; would exist and the Claim is proved. Also, v, 5 is blue
adjacent to all of a — {v,, } and hence, the red neighborhood of vy 5 is {v,,,v1} U .
Otherwise, a red P; exists and the Claim is proved. If vjvi 7 is red, then the red
neighborhood of vy 7 is (v Ua) — {v,, } (since a red v,, vg47 would give a red Cg and
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establish the Claim). On the other hand, if vjvg. 7 is blue, then the red neighborhood
of vgy7 is a. Thus, oo — {v,, } is a subset of v 7’s red neighborhood. Note that vy is
red adjacent to at least one vertex in «. If vy is red adjacent to at least two vertices
in @ — {va, }, then a red Ps exists and the Claim is proved. If vy is red adjacent to
Vo, and v; in o, then a red Ps exists and the Claim is proved. Thus, all vertices of
[ are red-adjacent to ve,v3 and vy, since each vertex in {vs,v3,v4} to @ U has at
least k — 1 red edges. Here, a red CF exists and the lemma is proved.

Case 3. Vertex vj¢ is blue adjacent to vg,. Then the maximum number of red edges
from vyy¢ to B is k — 3. By the Pigeonhole Principle, there exist two vertices (let v,,
[# Va,] be one of them) in v which are red adjacent to vgye. Furthermore, vg 5vp, is
blue. Otherwise, a red P5 exists and the Claim is proved.

(Here, we establish that vg 50, is blue). Assume that vg 50,4, is red. Then, vy is
not red adjacent to any vertex in o — {va,, Vs, }. Otherwise, there would be a red P;
and the Claim is established. Now, examine the red adjacent vertices to vii.g. By
the Pigeonhole Principle, we must have that Ng(vii6) = {Vays Vay, 01} U (8 —{vs, })-
Furthermore, vy5 is not red adjacent to any vertices in o — {vq,, Vo, }. Otherwise, a
red Ps would exist and the Claim is proved. By the Pigeonhole Principle, v, 5 and
vg+¢ both share a red vertex neighbor in 3. Here, a red P;5 exists and the Claim is
established. We therefore conclude that vy 5v,, is blue.

(Now, we establish that vy, 6v,, is blue). Assume that vy ygv,, is red. Then, vy, 5 is
not red adjacent to any vertex in o — {va,, v, }. Otherwise, there would be a red
P5 and the Claim is established. Thus, |[Ng(vgs5)| is at most (k — 3) + 1 4 1, which
gives a desired contradiction. We therefore conclude that vy gv,, is blue.

Thus far, we have the following: In Kxy, red edges — Vk15Va,, Vk+5V8,, Vk+6Uss,
Uk+6Vay; Dlue edges — UVpi5V8,, UktsVass Ukt6UB,, Vk+6Va,- Lf vertices vpys and vjye
have a common red neighbor in a U 3, then a red Ps exists and the Claim is proved.
S0, Naug.r(Vk15) N Naup r(Vkse) = 0. Since [aUSU{v1}| = 2k — 1 and |Ng(vg4s)| +
|Ng(vii6)| > 2k, this implies that v, is the only shared red neighbor of vy, 5 and vj..
Also, note that [Noup r(vits)| = k—1 = | Naug.r(vk+e)| and that each vertex in aUf is
red adjacent to either vy 5 or vgig, but not both. We also have that | N, g(viis5)| > 2
and |Na r(vkie)| > 2. Let vy, Vay € Nar(Uk+s) and vay, Vo, € Nor(Vkie).

Case 1. Let v’ € NaUB,R<Uk+7) N Nauﬂ,R(Uk+6) and v” € NaUﬁ,R<Uk+7) M NaUB,R<Uk+5)~
Then, the red Cg = v1044 50" vp 170" 0 1 6v1 exists and the Claim is proved.

Case 2. Let Np(vkt7) = Np(vikts). Then, the red Ps = vq, Vk1708, Vkt5 Vay €xists and
the Claim is proved.

Case 3. Let Ng(vkt7) = Ng(vite). Then, the red Ps = vq,Vk51+708,Vk46 Vo, €xists and
the Claim is proved.

All possible scenarios lead to a red Cs or a red Ps. Thus, the Claim is established.
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It follows immediately from the Claim that a red C¥ exists in C. Thus, the lemma
is established. O

Lemma 3.5. Let k > 2 be even. Then, R(CE) < 2k +6.
Proof. By Theorem 3.2, we see that R(CZ) = 10. So the claim holds when k = 2.

Let G = C¥ where k > 4 is even, and C be a 2-coloring of Ky, (say, vertices
V1, V2, ..., Vg5, Vakae). By [7] (see Theorem B in the Appendix), there exists a
monochromatic K 43 (say red, with central vertex vy and leaves vy, vs, ..., Vg1q) in
coloring C of Kyy6. Consider the edge-coloring of the complete bipartite subgraph
with vertex sets {vq, vs,...,v7} and {vogy1, Vors2, ..., Vogre}. By [25] (see Theorem
C in the Appendix), there exists a monochromatic Cg containing three vertices from
each vertex set. If this Cy is red, then there exists a red G in C and the lemma
is proved. Therefore, this (4 is blue (say, with vertices say vq, v3, U4, Voki4, Uagts,
Vopye). Let X = {Vopia, Vorgs, Varto}, @ = {Us,06, ..., Vkqa}, and B = {Vrys5, Vie,
..., Ua43}. Consider (in coloring C) the complete bipartite subgraph Ky y (= K3 9x)
with vertex partitions X and Y = a U U {v;}.

From each vertex in X to Y, there are at most k£ — 1 blue edges (and hence, at
least k + 1 red edges). Otherwise, a blue Cf exists and the lemma is established.
Now, let us focus on the red edges of Kxy in coloring C.

Claim: Either a red Ps with endpoints in « and not containing v, or a red Cg
containing v; (and not containing vs, v4) exists. Recall that k > 4 and even.

(We establish that vy is red adjacent to vertex v,, € a and vertex vg, € ). By the
Pigeonhole Principle, each vertex in {vog 44, Vor+5, Vart6} is red adjacent to a (possibly
different) vertex in . Now, if there are no red edges from {vogi4, Vog15, Vars6} t0 5,
then only one possibility can occur for each vertex in {vogi4, Vog1s, Vakt6 }, namely k
red edges to all of @ and one red edge to vy. In this instance, a red Ps; with endpoints
in @ (and not containing v;) exists and the Claim is established. Thus, we have
(WLOG) that vo46 is red adjacent to vertex v,, € o and vertex vg, € [3.

(We establish that vy, 5 is red adjacent to a vertex vg, (# vg,) in ). If there are
no red edges from {vogi4, Vopis} to 3, then only one possibility can occur for each
vertex in {vok14, Vog15}, namely k red edges to all of a and one red edge to v;. Here,
a red P5 exists and the Claim is established. Thus, we have (WLOG) that vgr 5 is
red adjacent to a vertex vg, € 5. If vg, # vg,, then this bullet point is established.
If vg, = vs,, then vyi45 must only be red adjacent to v,, in a. Otherwise, a red P
exists and the Claim is proved. Consequently, vo ¢ has exactly one red neighbor in
a, namely v,,. Otherwise, a red P5; would exist and the Claim is proved. Hence, the
red neighborhoods of vgyy5 and wvgr ¢ are identical, namely {v,,,v1} U 8. So, now
choose a “new” vg, € B (# vp,) which is red adjacent to ve45, which exists since
k > 4 even.

(We establish that vogi5va, is red (# v,,)). If there is no v,, which is red adjacent
t0 Vog15, then vor 504, is red and Ng(voprs) = B U {va, } U {v1}, by the Pigeonhole
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Principle. This implies that that Ng(vegis) = fU{va, } U{v1}. Otherwise, a red Ps
exists and the Claim is proved. Now, every vertex in {vs, v3,v,} has at most k—1 blue
edges (and hence, at least k red edges) going to vertices in aU . If vy is red adjacent
to a vertex vg,, then a red Cé‘“‘ (underlying red Cs = 10205, Vok+60p, Vak+501) €xists
and the lemma is proved. Thus, vyv,, is red. However, now a red C§ (underlying red
Cs = V1V9V,, Vog 16U, Vak4+501 ) exists and the lemma is proved. Therefore, we conclude
that vog 1504, is red (F# vq,).

(We establish that vgg 5vp, is blue and vy 6vg, is blue). If either voyi5vp, is red or
Uok46Vp, is red, then a red Ps exists and the Claim is proved.

(We establish the following: vy 504, is blue and vog 504, is Ted (# Vo, Vay)). Sup-
pose that wvigi5v,, is red. By the Pigeonhole Principle, vy has at least two
red neighbors in . They must only be v,, and v,,. Otherwise, a red P; exists
and the Claim is proved. Thus, Ng(vayie) = (8 — {vg,}) U {v1,v0,, 00, }- By
the Pigeonhole Principle, vgr5 has at least two red neighbors in «. They must
only be v,, and v,,. Otherwise, a red P; exists and the Claim is proved. Thus,
Ng(vagys) = (8 —A{vs, }) U{v1, Vo, , Va, }- However, now a red Pj exists and the Claim
is proved. Therefore, we conclude that ver 5v,, is blue. Since vori5 has at most
k — 2 red neighbors in 3, ve,45 must have at least two red neighbors in a. Let v,,
(# Vay s Vay) be a red neighbor of voy 5.

Finally, recall that there are at least 2k + 2 red edges to a U S U {v;} from vor 5
and vgr1¢. Furthermore, |o U U {v1}| = 2k. Thus, there are only two cases left to
consider.

Case 1. |Nyr(vogss) N Ny r(varss)| > 1. Here, a red Ps exists and the Claim is
proved.

Case 2. |Ng g(vak+s) N N r(varte)| > 1. Here, a red Ps exists and the Claim is
proved.

All possible scenarios lead to a red Cs or a red Ps. Thus, the Claim is established.

It follows immediately from the Claim that a red C¥ exists in C. Thus, the lemma
is proved. O

Theorem 3.6. Let k > 1 and n > 4 be even. Then, R(CF) > 2(k + [251]).

Proof. Let G = Ck, 1 = 2(k + [*5*]) and consider the following 2-coloring of K
with vertices {vy,vq,...,u}: Let X = {vl,v2,...,vé} and Y = {vé+1,v%+2,...,
v}. Color all of the edges of Kx and Ky red. Since |X| = |[V] =k + [25*] and
\V(G)| =k +n, ared G does not exist within Ky nor Ky. Now, color all the edges

of Kxy blue. Since § vertices (from X) and § vertices (from Y) are needed for a

blue C,,, at most a blue C*~* exists. Thus, R(CF) > 2(k + [ %5 ]). O
Corollary 3.7. Let k > 2 be even. Then, 2k +5 < R(CF) < 2k + 6.
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Proof. The lower bound is established by Theorem 3.6, with n = 6. The upper
bound is established by Lemma 3.5. ]

Theorem 3.8. Let k > 3 be odd. Then, R(CE) = 2k + 5.

Proof. Using Theorem 3.6 with n = 6, one obtains R(C¥) > 2k +4. This, along with
Lemma 3.4, establishes the claim. O

Theorem 3.9. Let n > 6 be even and k > 1. Then, R(C*) > R(C,) +k —1 =
3n

4k —2.

2

Proof. Let G = C*. For k > 1, n > 6 even and k > 5, the claim follows from
Theorem 3.6 since 2 + k — 2 < 2(k + [251]). So,let 1 < k < 2 and | = 2 4
k — 2. Consider the following 2-coloring of K; with vertices {vq,vq,...,v;}: Let
X = A{vi,v9,..., 041} and Y = {vp1k, Vnsks1,---, 0 }. Color all of the edges of
Kx and Ky red. Since [X| =n+k -1, |Y|=% —1and [V(G)| =k +n,ared G
does not exist within Kx nor Ky. Now, color all the edges of Kxy blue. Since 3
vertices (from X)) and % vertices (from Y’) are needed for a blue C,,, there is no blue

C,. In particular, there is no blue G. Thus, R(CF) > 2 4+ k — 2. O
Remark. With regards to Theorems 3.6 and 3.9 (for n > 6 even), note the following:

e k=22 4k—2=2n-2=2(2+2-1)=2(k+ [2]).
o [k < Z]: Since k+n < Z+4n, we have 2k+n < 2 +k and 2k+n—2 < 2 +k—2.
Hence, 2(k + [251]) < 2 + &k — 2.

e [k>2]: Since 2 +n < k+n, we have 2 + k < 2k +n. Hence, 2 + k — 2 <
2(k+ ["51)):
Thus, 22 +k—2 is a better lower bound of R(C¥), for “smaller” k, whereas 2(k+| 25" )

is a better lower bound for “larger” k.

Theorem 3.10. Let n > 6 be even and 1 < k < [%]. Then, R(C}) < R(C,,) + k =
1 +k

Proof. Fix even n > 6 and 1 < k < [%]. Let ¢ = 37”—1+k:andCbea2—
coloring of K. = {vy,vq,...,v.}. Since k > 1, there exists a monochromatic (say,
red) C,, with edge set {vivg, V903, ..., Vp_10n, v} in C. Let X = {vy,vq,...,0,}
and Y = V(K )\X = {vn11,Vn12,...,0.}. Note that |Y| =2 — 1+ k. In particular,

2
if k= [2], then
3n—4 if
Y= {3n42 .
M=z if

4

is even,

is odd.

[SISENIN

In C, consider the 2-coloring of Kxy. From each vertex in X to vertex set Y, there
are at most k—1 red edges. Otherwise, a red C* exists and the theorem is established.
Hence, there are at least § blue edges from each vertex in X to vertex set Y. Thus,

there are at least %2 blue edges in Kxy.
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Using a result by Li and Ning ([11], see Theorem E in the Appendix), let n = | X],

2<m=|Y] <24 or =2 and ¢t = 2. For the range of m, it is straightforward to

verify that ¢ < m < 2t — 2. Furthermore,

n2 3n : 1

n® _ 3n if m is even
t—1D(n—1)+m<< 2 . 7
( )( ) {%2_%”4—% if m is odd.

In both cases, (t—1)(n—1)+m < |Ep(Kxy)|, where |Eg(Kx y)| denotes the number

of blue edges in Kxy. Thus by Theorem E, a blue (), exists in Kxy in coloring C.

From X, ¢ vertices are needed and from Y, 7 vertices are needed to form the

blue C,,. Let X’ and Y’ denote the sets containing the required vertices, respectively.
Then, let X" = X\X’ and Y” = Y\Y’. Note that [X'| = |Y'| = [X"| = % and
Y =k —1.

Claim: There exists a blue C*, where the cycle is formed by the 5 vertices of X',
the § vertices of Y’ and the k pendants are from a vertex v € Y to vertices in X".

If 2 is even, then |Y| < 324 y”| < 8t 2 — nd gpd 1 < k < 2. If 2 is odd,

then Y] < B2, [17] < 3502 8~ o2 and 1S k£ 22

Case 1. = is even. Then, |Ep(Kx»yr)| < g(”T_‘l) = %2 — 4. So, |Ep(Kxry)| >
2 2

(% —%)=%(%+1) > Z(k+1). Thus, there is a vertex v € Y’ with at least k

blue edges joined to vertices of X”.

o]

CQase 2.2 2 is odd. Then, |Eg(Kxnyr)| < 2(%32) = %2 — 4. So, |Ep(Kxny)| >
n— (= —12) =2(%+3) > (k). Thus, there is a vertex v € Y’ with at least k blue

edges joined to vertices of X”.
This finishes the proof of the Claim. O
<

Hence, coloring C must contain a red C* or a blue C*. Therefore, R(C¥)
R(Cy)+ k=2 —1+k.

U

Theorem 3.11. Letn > 8, n=0 (mod 4) and 1 < k < [2]. Then, R(CE,CF1) =
B _1+k
2

Proof. From Case 1 (of Claim) in the proof of Theorem 3.10, there is a vertex v € Y’
with at least k+ 1 blue edges joined to vertices of X”. This yields a blue C¥*1. Thus,
R(CE,CEt1) < 3 — 14 k. The 2-coloring of K; (found in the proof of Theorem 3.9),
where | = 2 + k — 2, does not contain a red C¥ nor a blue CE. O

<

Theorem 3.12. Let n > 8, n = 0 (mod 4) and k = 2 + 1. Then, R(CE)
R(C,)+ k=% —1+k.

Proof. Fix even n > 8, wheren =0 (mod 4). Let k=2 +1,¢=32 —-14+k =10
and C be a two-coloring of K. = {vy,vs,...,v.}. There exists a monochromatic (say,
red) C, in C. Let X = {vy,vs,...,v,} be the set of vertices of this particular C,



R.M. LOW AND A. KAPBASOV / AUSTRALAS. J. COMBIN. 94 (1) (2026), 221-234 231

and Y = V(K.) — X. Note that |[Y| =% —1+k =3 In C, consider the 2-coloring
of Kxy. From each vertex in X to vertex set Y, there are at most k — 1 red edges.
Otherwise, a red C¥ exists and the theorem is established. Hence, there are at least
5 blue edges from each vertex in X to vertex set Y. Thus, there are at least %2 blue
edges in Kxy.

Using a result by Li and Ning ([11], see Theorem E in the Appendix), since
%2 > (2 —1)(n—1)+ 22, there exists a blue C,, with vertex set X’ in X and vertex
set Y/ in Y. Let X" = X\X’'and Y = Y'\Y’. Note that | X"| = |X'| = |[Y'| = §
and [Y'| =k —-1=12.

Each vertex in Y is blue adjacent to at most k—1 = 7 vertices in X”. Otherwise,
a blue CF exists and the theorem is proved. Thus, each ;/ertex in Y’ is red adjacent

to at least 7 vertices in X”. So, a minimum of § - 7 = % red edges exist in Ky y.

Also, there are at least 7 - 7 blue edges. If this was not the case, then there are at

most %2 — 1 blue edges (implying at least %2 + 1 red edges). This results in a red C*
and the theorem is proved.

Since |Kxry/| = %2, this implies that each vertex in Y” has exactly % red edges
and exactly % blue edges to vertex set X”. Furthermore, because each vertex in X
is red adjacent to at most % vertices in Y, this implies that Kx» yn is blue.

(Lifting Process). We now assert that C contains another blue C,, with § — 2

n

vertices in X', two vertices in X", & — 1 vertices in Y and one vertex in Y. This
can be seen from the following:

e There is a blue P, 3 in Kx/y» with § — 2 vertices in X’ and % — 1 vertices in
Y.

e Each vertex in Y’ has exactly 7 blue edges to vertex set X”. Each vertex in
X" has exactly 7 blue edges to vertex set Y.

e There is a blue P in Kx»y~ with two vertices in X” and one vertex in Y.

In the case where n > 12, there is a blue C¥ (since 2 — 2 > k) and the theorem is
established.

To complete the proof of the theorem, we must analyze the case where n = 8 (and
k=12+1=3). Let Y = {v,,v,}. Here, we only have the existence of a blue C¥~!
(= C%) so far. Furthermore after applying the Lifting Process once, v, (WLOG) has
two red neighbors (not contained in the lifted blue Cg) in X’ and one red neighbor
in Y’ (not contained in the lifted blue Cg). Otherwise, a blue C3 exists and the
theorem is proved. Note that the original blue Cs (containing the four vertices from
X' and four vertices from Y”) contains four blue Pss, where the end-vertices are in
Y’. By applying the Lifting Process repeatedly (using each of these four blue Pss),
we can conclude that v, is red adjacent to all the vertices in X’ and Y’. An identical
argument shows that v, is also red adjacent to all the vertices in X’ and Y.

Now, consider the red Cg = {vy,vy,...,vs}, where V(Cs) = X. Without loss of
generality, let X' = {vy, v, v3, 04} and X" = {ws, vg, v7, v3}.

Case 1. If there is a red P3 = v,vv, with endpoints in X', then the red Cyg can
be lifted to another red Cg which contains one vertex in Y” and the vertices of the
original red Cy except v. From this, a red Cj exists and the theorem is proved.
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Case 2. Without loss of generality, if edge viv, is red, then edges viv; and vyvg are
red, since there is no red P3 in X’. If in addition, v3vg is red, then the original red
Cg can be lifted to another red Cg which contains one vertex in Y” and vertices
V1, Vg, U3, Uy, U5, 7 and wvg. From this, a red Cg’ exists and the theorem is proved.
So thus far, we have that edges vivs, vovg and vgv; are red. Furthermore, edge
vsvg is in the original red Cg. Otherwise there is a similar lifting (as described
above) to another red Cg which leads to a red Cg, proving the theorem. Since
edge wvsvg is in the original red Cg, this implies that edge vsvy is in the original
red Cg. To summarize up to this point, we have determined that the original red
Cg = 0102, Uag, Vg7, U7U3, U3y, U4Ug, Ugs, Usv1. Now in this red Cy, replace the red
Ps = vovg, vgu7, U703, 304 With the red Ps = vav,., v,v3, U304, vsvy. This gives a lifting
of the original red Cg to another red Cg which contains the two vertices of Y and
vertices vy, vg, U3, V4, vs and vg. From this, a red CZ exists and the theorem is proved.

Case 3. If edge vyv5 is red (WLOG), then edge vyvg is red (WLOG). Otherwise, we
would be in Case 2 and hence, done. Furthermore, edges vsv; and vgvg are edges
of the original red Cg. Otherwise, we would be in Case 1 and hence, done. So this
implies that vouy and wvsvy are edges in the original red Cg. This is a red P3 with

endpoints in X’. We are now back in Case 1 and the theorem is proved. O]
Theorem 3.13. Let n > 6 be even and 1 < k < [™]. Then, R(CF) =32 — 1 + k.
Proof. This follows immediately from Theorems 3.9, 3.10 and 3.12. O]

4 Directions for further research

Conjecture 4.1. Let k > 2 be even. Then, R(CE) = 2k + 6.
Conjecture 4.2. Let n > 6 be even and k € N. Then,

>
R(Cy) +k if1<

n
27
k<1
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Appendix
Some auxiliary concepts and theorems were used in this paper. For the sake of
completeness, we include them in this section.

Theorem A is used in the proof of Theorem 3.2.

Theorem A. (Kohler [9]). Let G be an odd cycle with k > 1 pendant edges at a
single vertex of G. Then, R(G) =2-|V(G)| — 1.
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Theorems B and C are used in the proofs of Lemmas 3.4 and 3.5.

Theorem B. (Harary [7)). R(K,, K1) =n+m — ¢, where e =1 for even n and
m, and € = 0 otherwise.

Definition. Let G and H be simple connected bipartite graphs. The bipartite
Ramsey number BR(G, H) is the minimum n, where every 2-coloring of K, ,, contains
a monochromatic red G' or a monochromatic blue H.

Theorem C. (Zhang, Sun and Wu [25]). BR(Cs,Cs) = 6.
Theorem D is alluded to in the statements of Theorem 3.9 and Conjecture 4.2.

Theorem D. (Rosta [19]). Let n > 6 be even. Then, R(C,) =2 — 1.

Theorem E is used in the proof of Theorem 3.10.

Theorem E. (Li and Ning [11]). Let t > 1 and G be a bipartite graph with vertex
partitions X and 'Y, where | X| = m and |Y| = n. Suppose that n > m and t < m <
2t = 2. If |[E(G)| > (t = 1)(n — 1) +m, then G contains a cycle of length 2t.
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