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Abstract

The anti-van der Waerden number of a graph G is the fewest number
of colors needed to guarantee a rainbow 3-term arithmetic progression
in any vertex coloring of G, denoted aw(G,3). It is known that the
anti-van der Waerden number of graph products is 3 < aw(GOH, 3) < 4.
Previous work has been done on classifying families of graph products into
aw(GOH,3) = 3 and aw(GOH,3) = 4. Some of these families include
the product of two paths, the product of paths and cycles, the product
of two cycles, and the product of odd cycles with any graph. Recently, a
partial characterization of the product of two trees was established. This
paper completes the characterization for aw (707", 3) where T and 7" are
trees. Moreover, this result extends to a full classification of products of
forests.

1 Introduction

Ramsey Theory is a branch of mathematics that assigns colors to elements of a set and
then determines whether monochromatic substructures exist within the set, whereas
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Anti-Ramsey Theory determines whether rainbow (polychromatic) substructures ex-
ist within the set. Ramsey Theory has a long history dating back to around 1920
with Schur, Ramsey and van der Waerden making the earliest contributions (see
[12, 14, [16]) where the sets considered were integers or graph edges. It was not until
1973 when Erd6s, Simonovits, and Sés, in [§], introduced the idea of Anti-Ramsey
Theory. Thirty years later, Jungi¢ et al started investigating anti-van der Waerden
problems where the sets being colored were {1,2,...,n} = [n] and Z,, and the rain-
bow substructures were 3-term arithmetic progressions (see [9, [10]). These papers
focused on the conditions on the sizes of the color classes that guarantee rainbow
arithmetic progressions. The anti-van der Waerden number was first defined in [15]
by Uherka in 2013. The question asked was: given a fixed value of n, what is the
fewest number of colors needed to guarantee a rainbow k-term arithmetic progres-
sion in [n] or Z,, denoted aw([n], k) and aw(Z,, k), respectively? In [7], Butler et
al. bounded aw(Z,, 3) based on the prime factorization of n and found a logarith-
mic bound for aw([n],3). The exact values of aw([n],3) were then determined by
Berikkyzy, Schulte and Young in [5]. Young, in [18], determined the anti-van der
Waerden numbers for finite abelian groups based on the order of the group. Con-
currently, authors noted that a 3-term arithmetic progression (aq,a; + d,a; + 2d)
satisfies the equation z; + 3 = 2z, and anti-van der Waerden numbers for Sidon
sets and other linear equations were investigated (see [1], [2], [6]).

Investigations then turned to arithmetic progressions in graphs as it was observed
that the path P, behaves like [n] and the cycle C,, behaves like Z,,.

Given a graph G, an ezact r-coloring of G is a surjective function ¢ : V(G) —
[1,...,7]. An arithmetic progression in G of length k (k-AP) with common difference
d is a list of vertices (vy, . .., vg) such that d(v;, v;41) = d for 1 < i < k. An arithmetic
progression is rainbow if all of the vertices are colored distinctly. The fewest number
of colors that guarantees a rainbow k-AP is called the anti-van der Waerden number
of G and is denoted aw(G, k). To show r < aw(G, k) we construct an exact (r — 1)-
coloring that avoids rainbow k-APs. To show aw(G, k) < r, we show that every
exact r-coloring gives a rainbow k-AP.

The definition of aw(G, k) was introduced in [I3] and provided the first results

about Cartesian graph products. In particular, Theorems and have proven
to be essential in most results about aw(GOH, k).

Theorem 1.1 ([13]). For m,n > 2,

3 ifm =2 andn is even, or m =3 and n is odd,

aw(P,0P,,3) = { ,
4 otherwise.

A subgraph H of G is isometric if for every u,v € V(H) we have dy(u,v) =
dg(u,v). Theorem is used when we find an isometric subgraph F,,,[JP, within
GUH to either show that our coloring must have a rainbow within the isometric
subgraph or that we know we can color the isometric subgraph in some way and
avoid rainbows. This result was used extensively when determining aw(P,,[JC,,, 3)
in [I1].
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Theorem 1.2 ([13]). If G and H are connected graphs and |G|,|H| > 2, then
aw(GOH,3) < 4.

Authors investigated aw(G, k) on trees and graphs with small diameter in [3],
graph products of paths and cycles in [I1], and graph products of trees T" and T’
where diam(707") is odd in [4].

This paper completes the classification of aw(70J7",3) by considering when
diam(707T") is even. The following is the main result of this paper.

Theorem 1.3. Let T and T" be nontrivial trees, where diam(TOT") is even. Then

3 if T orT' is weakly non-3-peripheral or isomorphic to P,

aw(TOT',3) = . .
4 if T and T" are both strongly non-3-peripheral and not Ps.
We summarize the full classification of anti-van der Waerden numbers of graph
products of trees in the following corollary.

Corollary 1.4. Let T and T' be trees. Then, aw(TOT",3) =

3 if T orT' is 3-peripheral, or
if diam(TOT") is even and either T or T' is Py, or
if diam(7T0T") is even and either T or T" is weakly non-3-peripheral;

4  otherwise.

The paper is organized as follows. In Section [2| definitions, notation and conven-
tions are established along with several results that support the main theorem of the
paper. Section |3| provides a case-analysis for aw (77", 3) based on properties of T'
and 7", e.g. whether the trees are strongly or weakly 3-peripheral (which we define
in Section , and concludes with the main result.

2 Preliminary Results

This section introduces the tools needed to prove the main result. We begin with
basic definitions and known results.

If G =(V,E) and H = (V', E') then the Cartesian product, written GOH, has
vertex set {(x,y) :x € V and y € V'} and (z,y) and (2, ) are adjacent in GOH if
either x = 2’ and yy’ € E' or y = ¢/ and xz2’ € E. This paper will use the convention
that if

V(G) ={uy,...,un, } and V(H)={wy,...,wp,},

then V(GOH) = {v11,...,Un, n, } Where v;; corresponds to the vertices u; € V(G)
and w; € V(H). Also, if 1 < i < ny, then G, denotes the ith labeled copy of G in
GUH. Likewise, if 1 < j < n4, then H; denotes the jth labeled copy of H in GLIH.
In other words, G; is the induced subgraph G; = GOH [{vi,...,vn,,}], and H; is
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Figure 1: The product of G = P, and broom graph H. The subgraph G; is
bolded and the subgraph Hs is dashed. Graph H is an example of a weakly
non-3-peripheral tree of odd diameter (see Definition while the path G is an
example of a strongly non-3-peripheral graph of odd diameter.

the induced subgraph H; = GOH [{v;1,...,vjn, }|. Notice that the ¢ subscript in G;
corresponds to the ith vertex of H and the j in the subscript in H; corresponds to
the jth vertex of G. See Figure 1| below for an example where G = P, and H is a
broom graph.

Proposition 2.1 ([I1]). If v j,vn, € V(GOH), then
deon (Vi g, vnk) = da(ui, up) + d(w;, wy).

Note that if G and H are graphs, then a direct consequence of Proposition [2.1] is
that
diam(GOH) = diam(G) + diam(H).

Corollary 2.2 ([L1]). If G’ is an isometric subgraph of G and H' is an isometric
subgraph of H, then G'OH’ is an isometric subgraph of GOH .

Corollary is particularly useful, as it is often used to find a rainbow structure
in the graph product by only considering a small subgraph that preserves distances.
Lemma takes this a step further when we have exact 3-colorings. Since we are
applying the lemma to products of trees, we know that C3 subgraphs do not exist
so an isometric path exists that has all three colors. In practice, we take a shortest
such path which implies that endpoints are uniquely colored and all interior vertices
colored the same. This allows us to find structure within an arbitrary coloring.

Lemma 2.3 ([13]). If G is a connected graph on at least three vertices with an exact
r-coloring ¢ where v > 3, then there exists a subgraph G’ in G with at least three
colors where G' is either an isometric path or G' = Cs.

Lemma 2.4 ([11]). If G and H are connected, |G|,|H| > 2 and c is an ezact
r-coloring of GOH, 3 < r, that avoids rainbow 3-APs, then |c(V(G;))| < 2 for
1<i<|H]|.
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The following results are used to derive structural properties of rainbow-free col-
orings.

Corollary 2.5 ([11]). If G and H are connected graphs, |G| > 2, |H| > 3, ¢ is an
exact, rainbow-free r-coloring of GOH with r > 3, and v;v; € E(H), then

|c(V(Gi) UV(Gy))| < 2.

Proposition 2.6 ([I1]). If G and H are connected graphs, |G| > 2, |H| > 3, ¢ is an
exact, rainbow-free r-coloring of GOH with r > 3, then there is a color in ¢(GOH)
that appears in every copy of G.

The following proposition guarantees existence of a dominating color in a rainbow-
free coloring. This observation is helpful in constructing such coloring, when it exists.

Proposition 2.7. If G and H are connected graphs, |G| > 2, |H| > 2, ¢ is an ezact,
rainbow-free r-coloring of GOOH with r > 3, then there is a color in ¢(GOH) that
appears in every copy of G.

Proof. The case of |H| > 3 is handled by Proposition So, suppose |H| = 2, say
V(H) = {wy, ws}. Assume G and G2 do not share a color. The pigeonhole principle
implies that some copy of G must have at least two colors, say G; has at least two
colors. Then, up to relabeling the vertices of GG, there must exist adjacent vertices
V11,10 € V(Gy) such that ¢(vys-1) # c(v1,). Since Gy and Gy do not share a
color, the 3-AP (vy ¢-1,v1,,v2y) is rainbow, a contradiction. Thus, G and Go share
a color, as desired. O

Many conditions in this paper are about peripheral vertices, which we define next.
For common graph theory terminology, see [I7]. For a vertex v in a connected graph
G the eccentricity of v, denoted €(v), is the distance between v and a vertex furthest
from v in G. If a vertex has minimum eccentricity, we call it a central vertex. The
radius of G, denoted rad(G), is the eccentricity of any central vertex. The collection
of all central vertices in G is the center of G. If a vertex v has €(v) = diam(G)
we call v a peripheral vertex. If a graph G contains vertices uq,...,u, such that
d(u;,uj) = diam(G) for all distinct 7,5 € {1,...,n}, then we call G n-peripheral.
A graph is non-n-peripheral if we cannot find n vertices that are pairwise diameter
away from each other. Specifically, we focus on graphs that are 3-peripheral and
graphs that are non-3-peripheral.

Theorem 2.8 ([4]). If T is a 3-peripheral tree and G is connected with 2 < |G|, then
aw(T0G, 3) = 3.

Theorem 2.9 ([4]). If T and T' are trees which are non-3-peripheral with |T|,|T"| >
2 and diam(TOT") is odd, then aw(TOT",3) = 4.

Corollary says that the eccentricity of any vertex in a tree is realized by a
peripheral vertex. However, it is stated in a way that is easier to use in practice.
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Corollary 2.10 ([4]). If u is not a peripheral vertex of T and v € V(T), then there
exists a vertex w € V(T) such that d(w,v) = d(u,v) + 1.

Theorem 2.11 (Jordan 1869). The center of a tree consists of one vertex or two
vertices.

In general, the center of a graph need not be connected, and in fact, components
of the center can be arbitrarily far apart. Consider, for example, a Cs with a leaf on
every other vertex. For trees, this is not the case. We include the following useful
observation and its proof for completeness.

Observation 2.12. All diameter paths in a tree T intersect every central verter of
T. In particular, all diameter paths in a tree T intersect.

Proof. Suppose we have a diameter path P with peripheral vertices u and v. Define
Cr to be the center of T" and Cp to be the center of P as a subgraph of T. Let

w € Cp and assume w ¢ Cr. Since rad(T) € {dialg(T), diam(T) 1

x € V(T) such that d(w,z) > %. But now, either d(u,z) = d(u,w) + d(w, )
or d(v,z) = d(v,w) + d(w, ). Since d(v,w),d(u,w) > EL2DO=L cither case gives a

2
distance larger than the diameter, a contradiction.

}, there exists some

Thus, Cp C Cp. Theorem [2.11}implies the center of our tree is one or two vertices
depending on the parity of the diameter. This means |Cp| = |Cr| in either case. So,
Cp = Cr, our desired result. O

The structure given by Observation [2.12| allows us to give the proof of the follow-
ing straightforward result.

Lemma 2.13. Suppose T is a tree with u,v € V(T') which realize the diameter. If x
is a peripheral vertex of T', then x is diameter away from u or diameter away from v.

Proof. If x is diameter away from u or v we are done so assume d(z,u) # diam(7")
and d(x,v) # diam(7"). Since x is peripheral, there exists some y ¢ {u,v} such that
d(x,y) = diam(T'). Define P and P’ to be the u—v and x—y paths in T, respectively.
By Observation we know that P and P’ intersect so define s and ¢ to be the
vertices in V' (P) NV (P’) closest to = and y, respectively.

Without loss of generality, suppose d(u, s) < d(u,t) (see Figure [2). If d(z,s) <
d(u, s), then a contradiction follows from

diam(7T") = d(z,y)
=d(x,s)+d(s,t)+d(t,
< d(u,s) +d(s,t) + d(t,
=d(u,y).

Similarly, if d(u, s) < d(z, s) we get the contradiction that diam(7") < d(z,v). Thus,
d(u, s) = d(z, s) which implies that d(x,v) = diam(T). O
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Figure 2: Relationship between peripheral vertices u,z,y and v when d(u,s) <
d(u,t), as in Lemma m

Lemma 2.14 ([4]). Suppose T is a non-3-peripheral tree with and w;,u; € V(T)
realize the diameter of T'. If there exist uy,u, € V(T) such that d(uy, u;) = diam(7")
and d(u;, u,) = diam(7"), then d(u,,u,) = diam(7").

Note that the four vertices in Lemma need not be distinct to apply the result,
a fact that is used regularly in this paper.

Lemma 2.15 ([4]). If T is 3-peripheral, then diam(T') is even. Further, for any
three vertices that are pairwise distance diam(T') apart, there is some vertex that is
equidistant from all three of them.

In Section 5 of [4], it was found that when classifying aw(7T07",3) when
diam(7TOT") is even, the partition of trees into 3-peripheral and non-3-peripheral
was insufficient. To refine the partition further some new definitions are needed.

If T is a tree with peripheral vertex v, we define T,,- to be the tree obtained from
T by removing all vertices which realize the diameter of 7" with v. If w is any vertex
of T', we define T,,+ to be the tree T with an additional leaf adjacent to w.

One motivation for the T,- definition is that when v is peripheral we change
the parity of the diameter of T'. In particular, we want to use Lemma with
leaves that are diam(7") — 1 away from each other. By moving to the subgraph T;,-,
Observation [2.16| allows us to apply the desired lemma.

Observation 2.16. For any peripheral vertex v in a tree T', we have
diam (7,-) = diam(7") — 1.

Proof. Since e _(v) = diam(7T') — 1, we certainly have diam (7;-) > diam(7') — 1.
To show the other inequality, we will show that all diameter paths in 7" lose a vertex
in T,—. If x and y realize the diameter of T, Lemma [2.13| implies that either x or
y is diameter away from v meaning that one of them will not appear in T,-. Thus,
T,- has no geodesics of length diam(7’), our desired result. O

Since T,- is an isometric subgraph of T" and T is an isometric subgraph of T+,
we will often use the notation dr(z,y) interchangeably with dr _(x,y) or dr , (v,y)
since these quantities are equal provided x and y are in each of the necessary trees.
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Definition 2.17. Let T be a nontrivial tree.

(i) Let T' be non-3-peripheral with odd diameter. We say T is strongly non-3-
peripheral if there exists a peripheral vertex v such that T,- is non-3-peripheral.
Otherwise, we say T is weakly non-3-peripheral. That is, for all peripheral
vertices v of T', T,- is 3-peripheral.

(ii) Let T be non-3-peripheral with even diameter. We say T is strongly non-3-
peripheral if for all v € V(T'), T,+ is non-3-peripheral. Otherwise, we say it is
weakly non-3-peripheral. That is, there exists some v € V(T') such that T,+ is
3-peripheral.

Example 2.18. Recall from Figure [I| that the graph H is weakly non-3-peripheral
with odd diameter. Using the same vertex labeling as the figure, this can be seen
because va is 3-peripheral. However, Py is strongly non-3-peripheral of odd diameter
because the removal of any peripheral vertex yields a P3 which is not 3-peripheral.

An example of a weakly non-3-peripheral tree with even diameter is P3. This
can be seen because if ¢ is the central vertex of Ps, then T.+ is isomorphic to the
star K; 3 which is 3-peripheral. However, P; is strongly non-3-peripheral with even
diameter via Lemma Specifically, Ps has no vertex which is diam(P5) — 1 away
from both its peripheral vertices.

Recall that Observation [2.16|states that the T~ operation lowers the diameter by
1 when applied to a peripheral vertex. This is important because we would like to be
able to achieve a 3-peripheral graph with this. Since this can only be done if 7" has
even diameter (as seen in Lemma , it is important to alter the diameter in some
fashion. However, when using the T,+ operation to an even diameter vertex, it is
important that we do not change the diameter. Since T,+ only changes the diameter
when applied to a peripheral vertex, we never use it on a peripheral vertex. As we
will find in Lemma [2.19] it is useful to apply T,+ to a vertex whose eccentricity is
one less than the diameter of our tree.

Lemma 2.19. If T is a weakly non-3-peripheral tree with even diameter, say T+ is
3-peripheral, then for any peripheral vertez v of T, d(u,v) = diam(T") — 1.

Proof. Let v’ be the added leaf to v in T,+. Since T+ is 3-peripheral while 7" is not,
there exist peripheral vertices v; and v, in T" which realize the diameter of 7" with
each other and with «’. If v; and v; are the only peripheral vertices of 7', then we are
done. So suppose v is any other peripheral vertex of T'. Since T is non-3-peripheral,
either d(v,v;) or d(v,vy) is less than diam(7"). Without loss of generality, suppose
d(v,v;) < diam(T). Since v’ and v; realize the diameter in T,+, applying Lemma [2.13]
gives dr  (v,u') = diam(7,+) = diam(7"). This means d(v,u) = diam(T") — 1. O
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3 Strongly and weakly peripheral trees

In this section, we prove our main theorem below which classifies the anti-van der
Waerden number of all products of trees when the diameter is even.

Theorem 1.3. Let 7" and 7" be nontrivial trees, where diam(7'0J7") is even. Then

3 if T or T" is weakly non-3-peripheral or isomorphic to P,

aw(TOT",3) = { . .
4 if T and T" are both strongly non-3-peripheral and not Ps.

Recall that Theorem says this number will be either three or four. In [4],
this has already been done when one of the trees is 3-peripheral in which we get an
anti-van der Waerden number of three. As for the remaining cases, the language
developed allows us to succinctly categorize the two different possibilities. If both
trees are strongly non-3-peripheral, then the anti-van der Waerden number is 4, and
if either tree is weakly non-3-peripheral, then the anti-van der Waerden number is 3.
These two cases will be split further into the cases of whether our trees both have odd
diameter or both have even diameter. These four cases can be seen in Propositions

B.5 and .6

The first step in this process is handling when the anti-van der Waerden number is
four, which as we stated is when both trees are strongly non-3-peripheral. To achieve
this, Theorem [1.2| implies that it suffices to provide a 3-coloring that is rainbow 3-
AP free. Lemma [3.1] will provide such coloring, however, this classification differs
depending on the parity of the trees’ diameters and the argument is separated into

Propositions [3.2] and

The intuition of why these definitions are important can be seen by exploring
past papers. In [3, @4 [7, 11, 13|, 18], rainbow-free colorings are often constructed
using red, blue, green where one color is dominantly used (green in Section [3]) and
a small number of vertices are colored with red and blue. The intuition is that in
order to avoid a rainbow 3-AP, we would like the distance from any red vertex to
any blue vertex to be odd and large. If the distance were even, then it is possible
for a path with red and blue endpoints to have a midpoint colored green giving us a
rainbow 3-AP of the form (red, green, blue), and if the distance were small enough,
then it may be possible to construct a rainbow 3-AP of the form (red, blue, green)
or (blue,red, green). Therefore, our rainbow-3AP-free coloring in Lemma was
constructed by making the distance between any red and blue vertices as large as
possible, i.e. diam(7TO7T") — 1 since diam(7T07") is even. This was the motivation to
turn to subgraphs of 7" and 7" whose diameter is exactly 1 less than diameter of T or
diameter of 7”. While not obvious, it turns out that the correct way to achieve this
is with T, when the diameter of T is odd and T,+ when the diameter of T' is even.
Observation [2.16| explains that performing the T, operation on a tree will lower the
diameter by 1. If red and blue vertices have distance diam(707") — 1, then one
must be peripheral. Lemma [2.19] now gives a specific and exploitable vertex which
is diam(7") — 1 from this red or blue vertex.
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Lemma 3.1. Suppose T, T’ are nontrivial trees which are non-3-peripheral such that
diam(7T07T") is even. Suppose vy1 and v, realize the diameter of TOT" such that T,-

and T' _ are non-3-peripheral. Define ¢ : V(TOT") — {red,blue, green} as follows
wy

blue  if d(vgp,v11) = diam(7T0T") — 1,
c(vap) = { red if d(Vap,vjx) = diam(T0OT"),

green  otherwise.

Then we have the following:

(i) c is well-defined;

(it) if c(x) = red, then c(y) = blue if and only if d(z,y) = diam(7T0T") — 1;
(i) if (x,y,2) is a rainbow 3-AP, then c(y) = blue.

Proof. To show (%), note that by the definition of ¢, no vertex will be blue and green,
and no vertex will be red and green. Thus, we only need to check if a vertex will
be colored both red and blue. For the sake of contradiction, assume v, is such
a vertex, that is, d(vep,v11) = diam(T0O7") — 1 and d(vep,vjx) = diam(TOT7).
Since d(vgp,v11) = diam(TOT") — 1, either dr(uq,uy) = diam(T) or dp(wp, wy) =
diam(7"). Further, d(v,p,v;r) = diam(7T07") implies dr(u,,u;) = diam(7") and
dr (wp, wi) = diam(7"). In either case, either T" or T" is 3-peripheral, a contradiction.
Thus, c¢ is well-defined.

To prove the forward direction of (ii), suppose c¢(z) = red with = v,, ,, and
c(y) = blue with y = vy, ,,. Since d(vy, 4,,v11) = diam(TOT") — 1, it follows
that dr(uy,,u1) = diam(7) and dg (wy,w,,) = diam(7”) — 1, or that dT(uyl,ul) =
diam(7T") — 1 and dy(wy,w,,) = diam(7”).

First, suppose that
dr(uy,, uy) = diam(T) and d(wy, wy,) = diam(7") — 1.

Since d(vg, 4,,vk) = diam(T0OT"), it follows that dr(us,,u;) = diam(7") and
dr (W, wy) = diam(7”). So, Lemma implies that dr(ug,,u,, ) = diam(T).

It remains to show d(w,,,w,,) = diam(7") — 1. We first rule out some trivial
cases. If w,, = w;, then we immediately have our desired result. Notice w,, #
wy and w; # wy since both pairs realize the diameter. That is, we can suppose
wy,wy and w,, are distinct. Let wy_; be the unique neighbor of wy, and note
that Observation [2.16] implies that diam(Tqﬁ)l_) = diam(7") — 1 = dp/(wWey, wg_1).
Additionally, dr (w,,,w,) # diam(7"); otherwise wy, wy, w,, are pairwise diameter
apart, contradicting that 7” is non-3-peripheral. This implies w,, € V(T’ ). Recall

that dp/(wy,wy,) = diam(7") — 1 = diam(7” _) implying that w,, € V(T’ ). Since
wy

T’ _ is non-3-peripheral, Lemma [2.14] can be applied to vertices w;, wy_ 1,wx2 and
wy

Y2

o !
inT wr to get

dpr (Way, Wy,) = dpr_ (Wyy, wy,) = diam(T) ) = diam(7") — 1.

1 1
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Thus,
d(z,y) = dr(tg,, uy,) + dp(Wey, wy,) = diam(T) + diam(7") — 1 = diam(707") — 1.
Second, if we instead suppose
dr(uy,,u) = diam(7T) — 1 and dp (wy, wy,) = diam(7"),

then a similar argument shows that w;,u; and u,, are distinct and that applying
Lemma [2.14] to wq, wg, wy, and w,y, in 7" and to uy,u;_1,u,, and u,, in T,- yields
the same result.

To prove the reverse direction of (43), suppose that c¢(z) = red and d(x,y) =
diam(707") — 1. Since ¢(x) = red, we have d(z,v;) = diam(7T07") implying that
AUy, u;) = diam(7T) and dgr (W, , wy) = diam(7”). Since d(x,y) = diam(7T07T")—1,
we have that dp(uy,,u,,) = diam(7) and dp(w,,,w,,) = diam(7”) — 1 or that
dr(ug,, uy, ) = diam(T") — 1 and dp(w,,, w,,) = diam(7"). First, suppose dr(tz,, ty,)
= diam(7") and dy(wy,, w,,) = diam(7”) — 1. Notice that since

dr(u1,u;) = dp(Ugy, uj) = dr(tg,, uy, ) = diam(7T'),

Lemma implies that dr(uq,u,,) = diam(T).

It remains to show d(wy, wy,) = diam(7") — 1. If w,, = wy, then we immediately
have our desired result. Notice w,, # wy and w; # wy since both pairs realize the
diameter. Thus we can suppose wy,w; and w,, are distinct. It now follows that
dr(Wyg,, wi_1) = diam(7T") — 1. Notice that

dT'(w1, wk—l) = dp (wxz, wk—l) = dT’<w:C27 wa) = diam(T') —1= diam(TéJ?).

Since TLJ _ is non-3-peripheral, we now show wjy_1, Ws,, wy,wy, € V(Tl’v _) so that
1 1

Lemma [2.14] applied to T" _ gives dp (w1, w,,) = diam(T") — 1. Since dp(wy, wy) =
diam(7T"), we have wl,wk_ll e V(T ). lfw,, ¢ V(T ), then d(wy, w,,) = diam(7")
and wy,wy and w,, pairwise realizle the diameter, clontradicting that 7" is non-3-
peripheral. If w,, & V(1 _), then dz/(w1,w,,) = diam(71"), then combining Lemma
2.14] and that 1

dr (w1, wy,) = dp (W, wg) = dpr (Wy,, wg) = diam(7T")
shows that dr (ws,, w,,) = diam(7”), a contradiction. Thus,

dpr (wr,wy,) = dp(wr,wy,) = diam(T") — 1,
“1

as desired. Finally,
d(vl,la y) = dT(ulv uyl) + dp (wh wyz) = dlam(TDT/> -1,

showing that c(y) = blue.
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Alternatively, if dp(uy,,u,,) = diam(7") — 1 and dp/(w,,, wy,) = diam(7”), then
a similar argument shows that u;,u; and u,, are distinct and that applying Lemma
2.14] to wy, wi, wy, and wy, in 7" and to uq, uj_1, Uy, and u,, in Tul_ yields the same
result.

To show (%3), note that because of the symmetry of 3-APs, any rainbow 3-AP can
be classified by the color of the middle vertex. Suppose (z,y, z) is a rainbow 3-AP.
First, assume c(y) = green. Then x and z are colored red and blue in some order.
Recall that TOT" is bipartite. Since diam(7'07") is even, the forward direction of
(ii) implies that x and z are in different partite sets. Thus, no such y can be an
equal distance from = and z, contradicting that (z,vy, 2) is a 3-AP. Second, assume
c(y) = red. Since one of z or z is blue, the forward direction of (ii) implies the
common distance of our 3-AP is diam(7'0J7") — 1. But the reverse direction of (ii)
implies any vertex distance diam(7T0T") — 1 from y has color blue, contradicting that
one of z or z is green. Thus, c¢(y) = blue. O

The remainder of this section completes the proof of the main theorem, showing
that when diam(7'0J7") is even, we have

, 3 if T or T" is weakly non-3-peripheral or isomorphic to P,
aw(TOT",3) = . .
4 if T and T" are both strongly non-3-peripheral and not Px.

This will be broken into four cases depending on whether the trees have odd or
even diameter and on weakly and strongly non-3-peripheral properties of trees. The
case when one of the trees is P, is quite different, since (P),- is an isolated vertex.
Therefore, we separate this case from the remaining trees in Lemma [3.4]

We provide the motivation for two of the four cases below. First, if T is a strongly
non-3-peripheral tree of odd diameter, then for some vertex u, T),- is non-3-peripheral
and Lemma 3.1 gives a rainbow-free 3-coloring of T,-C7". By carefully extending
this coloring to TOT”, we can avoid rainbow 3-APs. Applying Theorem [1.2] this
means the anti-van der Waerden number is four. Second, if T is a weakly non-3-
peripheral tree of even diameter, consider an arbitrary 3-coloring of TTIT”. This can
be extended to a 3-coloring of T,+[T" where T,+ is 3-peripheral. Then Theorem
says this coloring admits a 3-AP. If we choose our extension coloring carefully, we
can guarantee that this 3-AP is in TOT", too. The formal proof the authors provide
for Proposition [3.6] is a slight variation of this idea. It is based on the fact that any
3-peripheral tree with all its leaves removed will remain 3-peripheral or will be a
single vertex. The proof looks for a 3-AP in this subgraph rather than in 7,+O7".
That way, we are guaranteed that any 3-AP we find will also appear in the parent
graph. While the remaining two cases are less intuitive, they work out as desired

(see Propositions and .

We begin showing that if 7" and 7" are strongly non-3-peripheral trees, where
neither are P, then their product TJ7” has anti-van der Waerden number 4. Before
we begin Proposition 3.2, as a reminder, a tree T' with odd diameter is called strongly
non-3-peripheral if the tree T~ is non-3-peripheral for every peripheral v € V(7).
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Proposition 3.2. Suppose T and T' are strongly non-3-peripheral trees with odd
diameter of at least 3. Then, aw(TOT",3) = 4.

Proof. Since T and T" are strongly non-3-peripheral, there exist peripheral vertices
up € V(T) and wy € V(T") such that T,— and T" _ are non-3-peripheral. Since u

and w; are peripheral, there exist u; € V(T') and wlk € V(T") such that dr(uq,u;) =
diam(7T) and dp (wy,wy) = diam(7T"). Now color TOT" using the coloring from
Lemma with vy, and v, playing the same role as in the lemma. If (z,y,2) is
a rainbow 3-AP, then Lemma [3.1{(ii) and (iii) give that the common difference is
diam(707T") — 1 and, without loss of generality, that c¢(z) = green, c¢(y) = blue and
c(z) = red.

Suppose that © = vy, 4, and y = vy, ,,. Since c(y) = blue, we have that d(y,v1 1) =
diam(70J7") — 1 implying that either

dr(uy, uy, ) = diam(T) and dg (wy, w,y,) = diam(7") — 1 (1)

or

dr(uy,uy, ) = diam(7T) — 1 and dp (wy, wy,) = diam(7"). (2)
Additionally, since d(x,y) = diam(TOT") — 1, it follows that

dr (g, uy,) = diam(T) — 1 and dp/(wy,, w,,) = diam(7") (3)

or

dr (g, s uy, ) = diam(T) and dp (wy,, wy,) = diam(7") — 1. (4)

First suppose that Equations from and hold. Recall that dg(wy,wy) =
diam(7”). Since dg(wy,w,,) < diam(7") and w,, is a peripheral vertex of 7", Lemma
2.13|implies that dg(wy,, w;) = diam(7”). Let wy_; be the neighbor of wy in 7" and
notice that wy_1,w,, and w; are vertices in T 7:) _. Additionally, Observation [2.16

implies diam(7" ) = diam(7") — 1. Thus, 1

1

diam(Tl'Ul_) = dpr (w1, wy,) = dpr(wy, we—1) = dpr(wWy,, Wg—1).

Furthermore, these three vertices are distinct since otherwise we have that diam(7")
=1 < 3. Thus, Tl’u _ is 3-peripheral, a contradiction.
1

Second, suppose that Equations and hold. Since dr(uq,u;) = diam(T),
Lemma implies that dr(uy,,u;) = diam(7T).

Consider the case where dg(wy,w,,) = diam(7”). Let P and P’ represent the
wy — wy, and w,, — w,, paths, respectively. Let w, € V(1) be the vertex in V(P) N
V(P’) nearest to w;. Then

dlam(T') —1= dT/ (wl, wa) = dT/ (wl, UJg) + dT/ (U)g, wa),
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diam(T") — 1 = dy/ (Wyy, Wy, ) = dpr (Way, we) + dpr(wy, wy,), and
dlam(T’) = dT/ (wl, wa) = dT/ (wl, U)g) + dT/ (wg, wm).

The first two equations imply that dr(wy,wp) = dp/(wy,, w,) and the third implies
that both distances equal diam(7")/2. However, diam(7”) is odd, a contradiction.
Thus, dr (w1, w,,) < diam(7"). It follows that w,, € V(1" _) and applying Lemma

2.14) to wy,wy,,Wy,,wr—1 and graph 1" _ gives dp/(wy,, wi—1) = diam(7”) — 1. If
Wy

Wy, = wg, then the previous sentence implies diam(7”") is even, a contradiction.
This means w,, # wy so the w,, — wy path contains wy_; and we can conclude
dr(wy,,wy) = diam(7”). Finally, we have

d(z,vjx) = dr(ug,, u;) + dp(Wey, wy) = diam(T) + diam(7") = diam(707"),

showing that ¢(z) = red, contradicting the assumption that c¢(x) = green.

The case where the Equations from and hold has an argument similar
to the case where Equations and hold. The case where the Equations from
and hold has an argument similar to the case where Equations and
hold. Since all cases end in a contradiction, ¢ is rainbow-free and aw(707T",3) > 3.
Theorem now completes the proof. O]

Recall that non-3-peripheral tree T" with even diameter is strongly non-3-peri-
pheral if T,+ is non-3-peripheral for all v € V(T).

Proposition 3.3. Suppose T and T' are nontrivial, strongly non-3-peripheral trees
with even diameter. Then aw(TOT",3) = 4.

Proof. First notice that Lemmas [2.15] and [2.16] imply that any peripheral vertices
uy € V(T') and wy € V(T") have the property that T\, and T _ are non-3-peripheral.

Let ¢ be the coloring from Lemma and let vy 1, vj k€ V(TDT’ ) also be defined as
in the statement of Lemma B.1]

For the sake of contradiction, assume (z,vy, z) is a rainbow 3-AP. Lemma (ii)
and (iii) now give that the common difference is diam(707") — 1 and, without loss
of generality, that c(z) = green, c¢(y) = blue and ¢(z) = red. Suppose & = v, », and
Y = Uy, 4, Since c(y) = blue, we have d(y, vy 1) = diam(7T07") — 1 implying that

dr(uy, uy, ) = diam(T) and dg (wy, w,,) = diam(7") — 1 (5)

or that

dr(uy, uy, ) = diam(T) — 1 and dp(wy, wy,) = diam(7"). (6)

Additionally, since d(x,y) = diam(TOT") — 1, it follows that

dr (g, , uy,) = diam(T) and dp(wy,, w,,) = diam(T") — 1 (7)
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or that
dr (g, uy, ) = diam(T) — 1 and dp (w,,, wy,) = diam(7”). (8)

First, suppose that Equations and hold. Lemma applied to wuy, uy,,
u; and u,, implies that dr(u,,,u;) = diam(7").

Assume d(wy, w,,) = diam(7”) and recall that dg(wy,w,,) = diam(7”) — 1 and
dpr (W, wy,) = diam(7”) — 1. Notice that w,, ¢ {w,w,,} otherwise diam(7") is
odd, a contradiction. Thus, T;J . is 3-peripheral, contradicting that 7" is strongly

non-3-peripheral. This means we must have d(w;, w,,) < diam(7"). Let wy_; be the
neighbor of wy in T". Applying Lemma [2.14] to w1, wy,, Wa,, wi—1 € V(T! ) gives
dr (Wey, wi—1) = diam(7") — 1. If w,, = wy, then this means diam(7") = 2. éo, T is
a star with at least two leaves. However, no such star is strongly non-3-peripheral,
a contradiction. Thus, w,, # wy so the w,, — w; path contains wy_; and we can
conclude dp(wy,, wy) = diam(7”). Finally, d(z,v;;) = diam(T07") so c(x) = red
which contradicts that c¢(z) = green.

Second, assume that Equations and hold. Recall that dp(wy,wg) =
diam(7"). Since dg/(wy,w,,) < diam(7”) and w,, is a peripheral vertex, Lemma[2.13
implies that dp(wy,, w;) = diam(T”). Applying Lemma [2.14] to wy, w,,, wy and w,,
implies that d(w,,,w;) = diam(7"). Note that wy, w,, and w,, are distinct since 7"
is nontrivial with even diameter. Let P be the wy — w,, path, P’ be the w,, — w,,
path and let w, € V/(P) NV (P’) be the vertex closest to w,,. Then

diam(7T") = dp(wy, wy,) = dp (w1, wy) + dyr (wy, Wy, ),
diam(T") = dp (g, Wy,) = dr (Wey, we) + dr (we, wy, ), and
dlam(T') —1= dT’ (wl, wa) = dT’ (wl, ’LU() + dT/(wg, U)yz).

The first two equations imply that dr (wy,w;) = dg(we, wy,) and third imply that
both equal (diam(7") — 1)/2, contradicting that 7" has even diameter.

The case where Equations @ and hold is similar to when Equations and
hold. The case where Equations @ and hold is similar to when Equations
and (7)) hold. All cases end in a contradiction so ¢ is rainbow-free and aw (7071, 3) >
3. Applying Theorem [I.2] completes the proof. O

The remaining results in this section consider conditions on tree products that
give aw(TOT",3) = 3. This is done by taking an arbitrary 3-coloring and guarantee-
ing a rainbow 3-AP. We begin with the smallest case when one of the trees is P, as
it behaves quite differently from other trees.

Lemma 3.4. If T is a tree with odd diameter, then aw(P,OT,3) = 3.

Proof. Assume, for the sake of contradiction, that ¢ is an exact rainbow-free 3-
coloring of P,LT. By Lemma [2.3] we can find either an isometric path or a C'3 that
contains all three colors. No such Cj exists since P,[IT is bipartite, so let P be a
shortest isometric path that contains all three colors. Further, denote the first vertex
of the path by v,; and the last vertex of the path by v.4 with a < ¢ and b < d.
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Without loss of generality, assume that c(v,;) = red, ¢(v.q) = blue and note that
every other vertex on the path is green. Note that a # ¢ else we contradict Lemma
2.4/ or the minimality of P. Also, P has odd length of at least three, else we can find a
rainbow 3-AP. Since P, only has two vertices which are u, and u,, for the remainder
of the proof we will use u; = v, and uy = u.. Note that the path vy, —vep —v2 4 and
the path vy, — v1,4 — va4 are both of shortest length and both have interior vertices
that are all green, thus green is in both 77 and T5.

Since dp,(uy,uz) = 1, it follows that dr(wy, wg) = d(vip,v24) — 1 which is even.
Additionally, diam(7") is odd, so we have dr(w,, wg) < diam(7). Without loss of
generality, assume that wy is peripheral or wy is not peripheral. If wj is peripheral,
then there is a geodesic (wy, wy,, Wp,, - - - ,wbdiam(T)) such that d(wy,wy,) = i for each
1 <i < diam(7T). Since dr(wsy, wy) < diam(T"), we must be able to find some w, € T
for which dr(wy, we) = dp(wy, wg)+1. If wy is not peripheral, then by Corollary
there exists some wy € V(1) such that dp(wy, we) = dr(wp, wa) + 1. Consider vy
where w,_; is the unique neighbor of w, on the w, — w, path. If wy = w,_1, then
we have ¢(va—1) = blue. If not, then the 3-AP (vg 4, v1p, vVo—1) implies ¢(ver—1) #
green and Lemma [2.4] implies that c¢(vqe—1) # red since blue, green € ¢(V(1y)). So,
c(vgp—1) = blue. Now, the vy, — v, path contains all three colors and is a subgraph
of some PP, where n is even because d(wy, w;) = d(wy, wy) + 1 is odd. This
PP, subgraph is isometric, so Theorem implies P,JT has a rainbow 3-AP, a
contradiction. O

Recall that a tree T" with odd diameter is weakly non-3-peripheral if for every
peripheral vertex v, T,- is 3-peripheral.

Proposition 3.5. Suppose T is a weakly non-3-peripheral tree with odd diameter.
Then aw(TOT",3) = 3 for any nontrivial tree T' with odd diameter.

Proof. Assume, for a contradiction, that ¢ is a rainbow-free, exact 3-coloring of TTJT”
using the colors red, blue, and green. By Lemma there is either an isometric
(35 or isometric path containing all three colors. Since TUJT” is bipartite, it has no
(5 subgraph so there must be an isometric path containing all three colors. Let P
be a shortest such path. Specifically, say P is a v, — v.q path where v,y is red,
Uc,q 1s blue and all others are green and, without loss of generality, a < c and b < d.
Note that P must have odd length; otherwise there is a rainbow 3-AP. Note that
b # d and a # c otherwise T, = T; and T! = T, respectively, contain all three colors
contradicting Lemma 2.4 Define u._1 € V(T) as the unique neighbor of u. on the
u, — u. path. Note that the path following v, — Vga — Ved IS @ Vg p — Ucq geodesic.
So, c(v;q) = green for a < i < ¢ — 1 otherwise we can construct a path containing
all three colors which is shorter than P. In particular, this shows green is in every
copy of T" which intersects P except for possibly 7.

First consider the case where dp(ug,u.) < diam(T). Then there exists some
u; € V(T) such that P is contained in 7,-07". In particular, if either u, or u.
is peripheral, then choose that to be w;; otherwise, if neither is peripheral, any
peripheral u; suffices. Notice that Tu; 7" is an isometric subgraph of TTIT" and
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contains three colors. Since T' is weakly non-3-peripheral, T - is 3-peripheral. By
Theorem , there is a rainbow 3-AP in 7,-07". Since 7,-07" is an isometric
subgraph, this contradicts that ¢ is a rainbow-free coloring.

Now consider when dr(u,, u.) = diam(7"). Since the length of P is odd, it must
be less than diam(TC7T”). So, dp(wy, wy) < diam(7”). Without loss of general-
ity, assume that w, is peripheral or wy is not peripheral. If w, is peripheral, then
there exists some wy, € V(T”) such that dp(wp, we) = dp(wy,wg) + 1. If wy is
not peripheral, then by Corollary 2.10] there exists some w, € V(I”) such that
dr (wp, we) = dp(wp, wg) + 1. Define P’ to be a v, — ve—1,¢ geodesic in TOT” and
note that P and P’ have the same length. We will show ¢(v._1 ) = blue and all inte-
rior vertices of P’ are colored green by c. If ¢(v._1,4) = green, then (ved, Vap, Ve—1.¢)
is a rainbow 3-AP, a contradiction. If ¢(v._1 ) = red, then since green € ¢(V(T._,)),
we have green,red,blue € ¢(V(T!_,) UV (T!)), contradicting Corollary . Thus,
c(ve—10) = blue. Recall that green appears in every copy of 7] for each u; on
the u, — u._; path in 7. Since we also have red € ¢(V(T7)), blue € ¢(V(T._,)),
repeated applications of Corollary show that there is some u; € V(T) on the
Uq — Ue—1 path such that ¢(V(T;)) = {green}. In particular, there is some interior
vertex of P’ colored green. So, if any other interior vertex of P’ were not colored
green, then there exists a path containing all three colors which is shorter than P,
contradicting the minimality of P. Thus, all interior vertices of P’ are green. Since
dr (g, ue—1) < diam(T") applying the argument in the previous paragraph to P’ yields
a rainbow 3-AP. O]

Recall that a tree T with even diameter is weakly non-3-peripheral if there exists
some vertex v € V(T') such that T,+ is 3-peripheral.

Proposition 3.6. Suppose T is a weakly non-3-peripheral tree with even diameter.
Then aw(TOT",3) = 3 for any nontrivial even diameter tree T".

Proof. Assume, for the sake of contradiction, that c is a rainbow-free, exact 3-coloring
of TOT" using the colors red, blue, and green. By Lemma 2.3 there is either a
isometric C3 or isometric path containing all three colors. Since T[IT” is bipartite no
such Cj exists so let P be a shortest such path. Specifically, say P is a v, — v, 4 path
where v, is red, v, q is blue, and all others are green. We remark that all v, — ve 4
paths must have the interior vertices be green, else we can construct a shorter path
containing all three colors. Furthermore, P must have odd length; otherwise there
is a rainbow 3-AP.

First consider the case when d(ug, u.) = diam(7"). Then dr(ug,u.) is even imply-
ing that dp(wy, wq) is odd, and in particular, dp (wp, wg) < diam(7”). Without loss
of generality, suppose wy is peripheral or w, is not peripheral. If wj is peripheral,
then there is a geodesic (we, wy, , Wy, . . ., Wy, v, ) such that d(wy, w,) = i for each
1 < < diam(7"). Since dp(wp, wg) < diam(7”), we must be able to find some
we € T for which dp(wy, we) = dp(wy, wg) + 1. If wy is not peripheral, Corol-
lary yields a vertex wg in T” for which dp (wp, we) = dp(wy, wy) + 1. Since
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T' is weakly non-3-peripheral, there exists some vertex u, in 71" such that T, + is 3-
peripheral. Lemma implies dr(uq, ue) = dp(ue, ug) = diam(7") — 1. This 1mphes
(Veds Vaps Vear) is @ 3-AP. To avoid a rainbow 3-AP, vy 4 is not green. Since v, 4 and
Uep lie on a v, — v g geodesic, an earlier remark implies they must be green. Now,
the 3-APs (vg,4, Vo7, Ve,d) OF (Vap, Vear, Vep) are rainbow depending on whether vy 4 is
red or blue, respectively, contradicting that c¢ is a rainbow free coloring.

Now consider the case when d(uy,u.) < diam(7). Applying the same argument
used in the previous case, there exists some u., in T such that, without loss of
generality, dr(uq, uy) = d(uq,ue) + 1. Let wg—y € V(T") be the unique neighbor of
wgq on the w, — wy path. Consider the vertex vy q—1 and the 3-AP (ve4, Vap, Ve d—1)-
Notice vy 41 cannot be green; otherwise this 3-AP is rainbow. Since 7" is nontrivial
and has even diameter, |V (T")| > 3. So, Corollary 2.5/ implies that v. 4_; cannot be
red; otherwise |c(V (Ty—1) UV (Ty))| = 3 because green must appear in T,_; or Ty.
Thus, ¢(ve g-1) = blue.

Let P’ be a v, — Ve 4-1 geodesic. Since the length of P’ is the same as the
length of P, all internal vertices of P must be colored green; otherwise there is
a shorter path than P containing all three colors. If dy(u4,ur) = diam(7T), then
apply the argument from the previous case. So, suppose dr(ug, uys) < diam(T).
Also, d(wy, wg—1) < d(wp, wg) < diam(7”). So, there are some peripheral vertices
u, € V(T),w; € V(T') such that P’ is contained in 7,-0JT" . We choose u, to
be equal u, or u. if either are peripheral; otherwise we may choose u, to be any
peripheral vertex. Likewise for choosing w; depending on whether w;, and wy_; are
peripheral or not. Recall T}, + is 3-peripheral. Since u, is a peripheral vertex of T,
there exists some u, € V(T) such that dr(u,,us) = diam(7T). Lemma [2.19] implies
that d(ug, u,) = d(ug, us) = diam(7T") — 1. Let u,_; and us_; be the unique neighbors
of u, and uy, respectively, so that

d(tp—1,us—1) = d(up, up—1) = d(ug, us—1) = diam(7") — 2 = diam <(Tu;)u£_> ,
where the last equality holds by Observation [2.16] If diam(7T) = 2, then u,_; =
us—1 = ug, and if diam(7) > 2, then these three vertices are pairwise distinct. So,
(T 7)UZ is a single vertex or 3-peripheral. This implies T,- = P, or T, - is weakly

U

non-3-peripheral. By Observation 2.16] Lemma [3.4] and Proposition [3.5, we have
aw (T Y 3> = 3. Since P’ contains all three colors, it follows that 7,07

contains all three colors and thus contains a rainbow 3-AP. Since this is an 1sometrlc
subgraph of TCIT”, this rainbow 3-AP also exists in 17", a contradiction. O

Now, using Theorems and we have a full classification of the anti-
van der Waerden number of the product of two trees. This quickly leads to a full
classification of products of two forests.
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Corollary 1.4. Let T and T” be trees. Then, aw(707",3) =

3 if T or T" is 3-peripheral, or
if diam(707T") is even and either T or T" is P, or
if diam(707") is even and either T or T" is weakly non-3-peripheral;

4  otherwise.

The following observation relies on the pigeonhole principle and helps to provide
a full classification for products of forests.

Observation 3.7 ([3]). If G is disconnected with connected components {G;}_,,
then

y4
aw(G, k) =1+ Y (aw(Gy, k) — 1),

=1

Corollary and Observation give the following corollary. Note that Corol-
lary was previously known, but it was not known how to compute |P| and |S]
explicitly.

Corollary 3.8. Let F'y and F, be forests and let P be the set of connected components
of F10F, whose anti-van der Waerden number is 3 and S be the set of connected
components of F1lOF, whose anti-van der Waerden number is 4. Then,

aw(F0F, 3) = 2|P| + 3|S| + 1.
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