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Abstract

The anti-van der Waerden number of a graph G is the fewest number
of colors needed to guarantee a rainbow 3-term arithmetic progression
in any vertex coloring of G, denoted aw(G, 3). It is known that the
anti-van der Waerden number of graph products is 3 ≤ aw(G�H, 3) ≤ 4.
Previous work has been done on classifying families of graph products into
aw(G�H, 3) = 3 and aw(G�H, 3) = 4. Some of these families include
the product of two paths, the product of paths and cycles, the product
of two cycles, and the product of odd cycles with any graph. Recently, a
partial characterization of the product of two trees was established. This
paper completes the characterization for aw(T�T ′, 3) where T and T ′ are
trees. Moreover, this result extends to a full classification of products of
forests.

1 Introduction

Ramsey Theory is a branch of mathematics that assigns colors to elements of a set and
then determines whether monochromatic substructures exist within the set, whereas
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Anti-Ramsey Theory determines whether rainbow (polychromatic) substructures ex-
ist within the set. Ramsey Theory has a long history dating back to around 1920
with Schur, Ramsey and van der Waerden making the earliest contributions (see
[12, 14, 16]) where the sets considered were integers or graph edges. It was not until
1973 when Erdős, Simonovits, and Sós, in [8], introduced the idea of Anti-Ramsey
Theory. Thirty years later, Jungić et al started investigating anti-van der Waerden
problems where the sets being colored were {1, 2, . . . , n} = [n] and Zn and the rain-
bow substructures were 3-term arithmetic progressions (see [9, 10]). These papers
focused on the conditions on the sizes of the color classes that guarantee rainbow
arithmetic progressions. The anti-van der Waerden number was first defined in [15]
by Uherka in 2013. The question asked was: given a fixed value of n, what is the
fewest number of colors needed to guarantee a rainbow k-term arithmetic progres-
sion in [n] or Zn, denoted aw([n], k) and aw(Zn, k), respectively? In [7], Butler et
al. bounded aw(Zn, 3) based on the prime factorization of n and found a logarith-
mic bound for aw([n], 3). The exact values of aw([n], 3) were then determined by
Berikkyzy, Schulte and Young in [5]. Young, in [18], determined the anti-van der
Waerden numbers for finite abelian groups based on the order of the group. Con-
currently, authors noted that a 3-term arithmetic progression (a1, a1 + d, a1 + 2d)
satisfies the equation x1 + x3 = 2x2 and anti-van der Waerden numbers for Sidon
sets and other linear equations were investigated (see [1], [2], [6]).

Investigations then turned to arithmetic progressions in graphs as it was observed
that the path Pn behaves like [n] and the cycle Cn behaves like Zn.

Given a graph G, an exact r-coloring of G is a surjective function c : V (G) →
[1, . . . , r]. An arithmetic progression in G of length k (k-AP) with common difference
d is a list of vertices (v1, . . . , vk) such that d(vi, vi+1) = d for 1 ≤ i < k. An arithmetic
progression is rainbow if all of the vertices are colored distinctly. The fewest number
of colors that guarantees a rainbow k-AP is called the anti-van der Waerden number
of G and is denoted aw(G, k). To show r ≤ aw(G, k) we construct an exact (r − 1)-
coloring that avoids rainbow k-APs. To show aw(G, k) ≤ r, we show that every
exact r-coloring gives a rainbow k-AP.

The definition of aw(G, k) was introduced in [13] and provided the first results
about Cartesian graph products. In particular, Theorems 1.1 and 1.2 have proven
to be essential in most results about aw(G�H, k).

Theorem 1.1 ([13]). For m,n ≥ 2,

aw(Pm�Pn, 3) =

{
3 if m = 2 and n is even, or m = 3 and n is odd,

4 otherwise.

A subgraph H of G is isometric if for every u, v ∈ V (H) we have dH(u, v) =
dG(u, v). Theorem 1.1 is used when we find an isometric subgraph Pm�Pn within
G�H to either show that our coloring must have a rainbow within the isometric
subgraph or that we know we can color the isometric subgraph in some way and
avoid rainbows. This result was used extensively when determining aw(Pm�Cn, 3)
in [11].
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Theorem 1.2 ([13]). If G and H are connected graphs and |G|, |H| ≥ 2, then
aw(G�H, 3) ≤ 4.

Authors investigated aw(G, k) on trees and graphs with small diameter in [3],
graph products of paths and cycles in [11], and graph products of trees T and T ′

where diam(T�T ′) is odd in [4].

This paper completes the classification of aw(T�T ′, 3) by considering when
diam(T�T ′) is even. The following is the main result of this paper.

Theorem 1.3. Let T and T ′ be nontrivial trees, where diam(T�T ′) is even. Then

aw(T�T ′, 3) =

{
3 if T or T ′ is weakly non-3-peripheral or isomorphic to P2,

4 if T and T ′ are both strongly non-3-peripheral and not P2.

We summarize the full classification of anti-van der Waerden numbers of graph
products of trees in the following corollary.

Corollary 1.4. Let T and T ′ be trees. Then, aw(T�T ′, 3) =
3 if T or T ′ is 3-peripheral, or

if diam(T�T ′) is even and either T or T ′ is P2, or

if diam(T�T ′) is even and either T or T ′ is weakly non-3-peripheral;

4 otherwise.

The paper is organized as follows. In Section 2, definitions, notation and conven-
tions are established along with several results that support the main theorem of the
paper. Section 3 provides a case-analysis for aw(T�T ′, 3) based on properties of T
and T ′, e.g. whether the trees are strongly or weakly 3-peripheral (which we define
in Section 2), and concludes with the main result.

2 Preliminary Results

This section introduces the tools needed to prove the main result. We begin with
basic definitions and known results.

If G = (V,E) and H = (V ′, E ′) then the Cartesian product, written G�H, has
vertex set {(x, y) : x ∈ V and y ∈ V ′} and (x, y) and (x′, y′) are adjacent in G�H if
either x = x′ and yy′ ∈ E ′ or y = y′ and xx′ ∈ E. This paper will use the convention
that if

V (G) = {u1, . . . , un1} and V (H) = {w1, . . . , wn2},

then V (G�H) = {v1,1, . . . , vn1,n2} where vi,j corresponds to the vertices ui ∈ V (G)
and wj ∈ V (H). Also, if 1 ≤ i ≤ n2, then Gi denotes the ith labeled copy of G in
G�H. Likewise, if 1 ≤ j ≤ n1, then Hj denotes the jth labeled copy of H in G�H.
In other words, Gi is the induced subgraph Gi = G�H[{v1,i, . . . , vn2,i}], and Hj is
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Figure 1: The product of G = P4 and broom graph H. The subgraph G1 is
bolded and the subgraph H3 is dashed. Graph H is an example of a weakly
non-3-peripheral tree of odd diameter (see Definition 2.17) while the path G is an
example of a strongly non-3-peripheral graph of odd diameter.

the induced subgraph Hj = G�H[{vj,1, . . . , vj,n1}]. Notice that the i subscript in Gi

corresponds to the ith vertex of H and the j in the subscript in Hj corresponds to
the jth vertex of G. See Figure 1 below for an example where G = P4 and H is a
broom graph.

Proposition 2.1 ([11]). If vi,j, vh,k ∈ V (G�H), then

dG�H(vi,j, vh,k) = dG(ui, uh) + dH(wj, wk).

Note that if G and H are graphs, then a direct consequence of Proposition 2.1 is
that

diam(G�H) = diam(G) + diam(H).

Corollary 2.2 ([11]). If G′ is an isometric subgraph of G and H ′ is an isometric
subgraph of H, then G′�H ′ is an isometric subgraph of G�H.

Corollary 2.2 is particularly useful, as it is often used to find a rainbow structure
in the graph product by only considering a small subgraph that preserves distances.
Lemma 2.3 takes this a step further when we have exact 3-colorings. Since we are
applying the lemma to products of trees, we know that C3 subgraphs do not exist
so an isometric path exists that has all three colors. In practice, we take a shortest
such path which implies that endpoints are uniquely colored and all interior vertices
colored the same. This allows us to find structure within an arbitrary coloring.

Lemma 2.3 ([13]). If G is a connected graph on at least three vertices with an exact
r-coloring c where r ≥ 3, then there exists a subgraph G′ in G with at least three
colors where G′ is either an isometric path or G′ = C3.

Lemma 2.4 ([11]). If G and H are connected, |G|, |H| ≥ 2 and c is an exact
r-coloring of G�H, 3 ≤ r, that avoids rainbow 3-APs, then |c(V (Gi))| ≤ 2 for
1 ≤ i ≤ |H|.
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The following results are used to derive structural properties of rainbow-free col-
orings.

Corollary 2.5 ([11]). If G and H are connected graphs, |G| ≥ 2, |H| ≥ 3, c is an
exact, rainbow-free r-coloring of G�H with r ≥ 3, and vivj ∈ E(H), then

|c(V (Gi) ∪ V (Gj))| ≤ 2.

Proposition 2.6 ([11]). If G and H are connected graphs, |G| ≥ 2, |H| ≥ 3, c is an
exact, rainbow-free r-coloring of G�H with r ≥ 3, then there is a color in c(G�H)
that appears in every copy of G.

The following proposition guarantees existence of a dominating color in a rainbow-
free coloring. This observation is helpful in constructing such coloring, when it exists.

Proposition 2.7. If G and H are connected graphs, |G| ≥ 2, |H| ≥ 2, c is an exact,
rainbow-free r-coloring of G�H with r ≥ 3, then there is a color in c(G�H) that
appears in every copy of G.

Proof. The case of |H| ≥ 3 is handled by Proposition 2.6. So, suppose |H| = 2, say
V (H) = {w1, w2}. Assume G1 and G2 do not share a color. The pigeonhole principle
implies that some copy of G must have at least two colors, say G1 has at least two
colors. Then, up to relabeling the vertices of G, there must exist adjacent vertices
v1,`−1, v1,` ∈ V (G1) such that c(v1,`−1) 6= c(v1,`). Since G1 and G2 do not share a
color, the 3-AP (v1,`−1, v1,`, v2,`) is rainbow, a contradiction. Thus, G1 and G2 share
a color, as desired.

Many conditions in this paper are about peripheral vertices, which we define next.
For common graph theory terminology, see [17]. For a vertex v in a connected graph
G the eccentricity of v, denoted ε(v), is the distance between v and a vertex furthest
from v in G. If a vertex has minimum eccentricity, we call it a central vertex. The
radius of G, denoted rad(G), is the eccentricity of any central vertex. The collection
of all central vertices in G is the center of G. If a vertex v has ε(v) = diam(G)
we call v a peripheral vertex. If a graph G contains vertices u1, . . . , un such that
d(ui, uj) = diam(G) for all distinct i, j ∈ {1, . . . , n}, then we call G n-peripheral.
A graph is non-n-peripheral if we cannot find n vertices that are pairwise diameter
away from each other. Specifically, we focus on graphs that are 3-peripheral and
graphs that are non-3-peripheral.

Theorem 2.8 ([4]). If T is a 3-peripheral tree and G is connected with 2 ≤ |G|, then

aw(T�G, 3) = 3.

Theorem 2.9 ([4]). If T and T ′ are trees which are non-3-peripheral with |T |, |T ′| ≥
2 and diam(T�T ′) is odd, then aw(T�T ′, 3) = 4.

Corollary 2.10 says that the eccentricity of any vertex in a tree is realized by a
peripheral vertex. However, it is stated in a way that is easier to use in practice.
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Corollary 2.10 ([4]). If u is not a peripheral vertex of T and v ∈ V (T ), then there
exists a vertex w ∈ V (T ) such that d(w, v) = d(u, v) + 1.

Theorem 2.11 (Jordan 1869). The center of a tree consists of one vertex or two
vertices.

In general, the center of a graph need not be connected, and in fact, components
of the center can be arbitrarily far apart. Consider, for example, a C6 with a leaf on
every other vertex. For trees, this is not the case. We include the following useful
observation and its proof for completeness.

Observation 2.12. All diameter paths in a tree T intersect every central vertex of
T . In particular, all diameter paths in a tree T intersect.

Proof. Suppose we have a diameter path P with peripheral vertices u and v. Define
CT to be the center of T and CP to be the center of P as a subgraph of T . Let

w ∈ CP and assume w /∈ CT . Since rad(T ) ∈
{

diam(T )
2

, diam(T )+1
2

}
, there exists some

x ∈ V (T ) such that d(w, x) > diam(T )+1
2

. But now, either d(u, x) = d(u,w) + d(w, x)

or d(v, x) = d(v, w) + d(w, x). Since d(v, w), d(u,w) ≥ diam(T )−1
2

, either case gives a
distance larger than the diameter, a contradiction.

Thus, CP ⊆ CT . Theorem 2.11 implies the center of our tree is one or two vertices
depending on the parity of the diameter. This means |CP | = |CT | in either case. So,
CP = CT , our desired result.

The structure given by Observation 2.12 allows us to give the proof of the follow-
ing straightforward result.

Lemma 2.13. Suppose T is a tree with u, v ∈ V (T ) which realize the diameter. If x
is a peripheral vertex of T , then x is diameter away from u or diameter away from v.

Proof. If x is diameter away from u or v we are done so assume d(x, u) 6= diam(T )
and d(x, v) 6= diam(T ). Since x is peripheral, there exists some y /∈ {u, v} such that
d(x, y) = diam(T ). Define P and P ′ to be the u−v and x−y paths in T , respectively.
By Observation 2.12 we know that P and P ′ intersect so define s and t to be the
vertices in V (P ) ∩ V (P ′) closest to x and y, respectively.

Without loss of generality, suppose d(u, s) ≤ d(u, t) (see Figure 2). If d(x, s) <
d(u, s), then a contradiction follows from

diam(T ) = d(x, y)

= d(x, s) + d(s, t) + d(t, y)

< d(u, s) + d(s, t) + d(t, y)

= d(u, y).

Similarly, if d(u, s) < d(x, s) we get the contradiction that diam(T ) < d(x, v). Thus,
d(u, s) = d(x, s) which implies that d(x, v) = diam(T ).
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u s t v

x
y

Figure 2: Relationship between peripheral vertices u, x, y and v when d(u, s) ≤
d(u, t), as in Lemma 2.13.

Lemma 2.14 ([4]). Suppose T is a non-3-peripheral tree with and ui, uj ∈ V (T )
realize the diameter of T . If there exist ux, uy ∈ V (T ) such that d(ux, uj) = diam(T )
and d(ui, uy) = diam(T ), then d(ux, uy) = diam(T ).

Note that the four vertices in Lemma 2.14 need not be distinct to apply the result,
a fact that is used regularly in this paper.

Lemma 2.15 ([4]). If T is 3-peripheral, then diam(T ) is even. Further, for any
three vertices that are pairwise distance diam(T ) apart, there is some vertex that is
equidistant from all three of them.

In Section 5 of [4], it was found that when classifying aw(T�T ′, 3) when
diam(T�T ′) is even, the partition of trees into 3-peripheral and non-3-peripheral
was insufficient. To refine the partition further some new definitions are needed.

If T is a tree with peripheral vertex v, we define Tv− to be the tree obtained from
T by removing all vertices which realize the diameter of T with v. If u is any vertex
of T , we define Tu+ to be the tree T with an additional leaf adjacent to u.

One motivation for the Tv− definition is that when v is peripheral we change
the parity of the diameter of T . In particular, we want to use Lemma 2.14 with
leaves that are diam(T )− 1 away from each other. By moving to the subgraph Tv− ,
Observation 2.16 allows us to apply the desired lemma.

Observation 2.16. For any peripheral vertex v in a tree T , we have

diam (Tv−) = diam(T )− 1.

Proof. Since εTv−
(v) = diam(T ) − 1, we certainly have diam (Tv−) ≥ diam(T ) − 1.

To show the other inequality, we will show that all diameter paths in T lose a vertex
in Tv− . If x and y realize the diameter of T , Lemma 2.13 implies that either x or
y is diameter away from v meaning that one of them will not appear in Tv− . Thus,
Tv− has no geodesics of length diam(T ), our desired result.

Since Tv− is an isometric subgraph of T and T is an isometric subgraph of Tv+ ,
we will often use the notation dT (x, y) interchangeably with dTv−

(x, y) or dTv+
(x, y)

since these quantities are equal provided x and y are in each of the necessary trees.
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Definition 2.17. Let T be a nontrivial tree.

(i) Let T be non-3-peripheral with odd diameter. We say T is strongly non-3-
peripheral if there exists a peripheral vertex v such that Tv− is non-3-peripheral.
Otherwise, we say T is weakly non-3-peripheral. That is, for all peripheral
vertices v of T , Tv− is 3-peripheral.

(ii) Let T be non-3-peripheral with even diameter. We say T is strongly non-3-
peripheral if for all v ∈ V (T ), Tv+ is non-3-peripheral. Otherwise, we say it is
weakly non-3-peripheral. That is, there exists some v ∈ V (T ) such that Tv+ is
3-peripheral.

Example 2.18. Recall from Figure 1 that the graph H is weakly non-3-peripheral
with odd diameter. Using the same vertex labeling as the figure, this can be seen
because Tv−1 is 3-peripheral. However, P4 is strongly non-3-peripheral of odd diameter
because the removal of any peripheral vertex yields a P3 which is not 3-peripheral.

An example of a weakly non-3-peripheral tree with even diameter is P3. This
can be seen because if c is the central vertex of P3, then Tc+ is isomorphic to the
star K1,3 which is 3-peripheral. However, P5 is strongly non-3-peripheral with even
diameter via Lemma 2.19. Specifically, P5 has no vertex which is diam(P5)− 1 away
from both its peripheral vertices.

Recall that Observation 2.16 states that the Tv− operation lowers the diameter by
1 when applied to a peripheral vertex. This is important because we would like to be
able to achieve a 3-peripheral graph with this. Since this can only be done if T has
even diameter (as seen in Lemma 2.15), it is important to alter the diameter in some
fashion. However, when using the Tv+ operation to an even diameter vertex, it is
important that we do not change the diameter. Since Tv+ only changes the diameter
when applied to a peripheral vertex, we never use it on a peripheral vertex. As we
will find in Lemma 2.19, it is useful to apply Tv+ to a vertex whose eccentricity is
one less than the diameter of our tree.

Lemma 2.19. If T is a weakly non-3-peripheral tree with even diameter, say Tu+ is
3-peripheral, then for any peripheral vertex v of T , d(u, v) = diam(T )− 1.

Proof. Let u′ be the added leaf to u in Tu+ . Since Tu+ is 3-peripheral while T is not,
there exist peripheral vertices vj and vk in T which realize the diameter of T with
each other and with u′. If vi and vj are the only peripheral vertices of T , then we are
done. So suppose v is any other peripheral vertex of T . Since T is non-3-peripheral,
either d(v, vj) or d(v, vk) is less than diam(T ). Without loss of generality, suppose
d(v, vj) < diam(T ). Since u′ and vj realize the diameter in Tu+ , applying Lemma 2.13
gives dTu+

(v, u′) = diam(Tu+) = diam(T ). This means d(v, u) = diam(T )− 1.
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3 Strongly and weakly peripheral trees

In this section, we prove our main theorem below which classifies the anti-van der
Waerden number of all products of trees when the diameter is even.

Theorem 1.3. Let T and T ′ be nontrivial trees, where diam(T�T ′) is even. Then

aw(T�T ′, 3) =

{
3 if T or T ′ is weakly non-3-peripheral or isomorphic to P2,

4 if T and T ′ are both strongly non-3-peripheral and not P2.

Recall that Theorem 1.2 says this number will be either three or four. In [4],
this has already been done when one of the trees is 3-peripheral in which we get an
anti-van der Waerden number of three. As for the remaining cases, the language
developed allows us to succinctly categorize the two different possibilities. If both
trees are strongly non-3-peripheral, then the anti-van der Waerden number is 4, and
if either tree is weakly non-3-peripheral, then the anti-van der Waerden number is 3.
These two cases will be split further into the cases of whether our trees both have odd
diameter or both have even diameter. These four cases can be seen in Propositions
3.2, 3.3, 3.5, and 3.6.

The first step in this process is handling when the anti-van der Waerden number is
four, which as we stated is when both trees are strongly non-3-peripheral. To achieve
this, Theorem 1.2 implies that it suffices to provide a 3-coloring that is rainbow 3-
AP free. Lemma 3.1 will provide such coloring, however, this classification differs
depending on the parity of the trees’ diameters and the argument is separated into
Propositions 3.2 and 3.3.

The intuition of why these definitions are important can be seen by exploring
past papers. In [3, 4, 7, 11, 13, 18], rainbow-free colorings are often constructed
using red, blue, green where one color is dominantly used (green in Section 3) and
a small number of vertices are colored with red and blue. The intuition is that in
order to avoid a rainbow 3-AP, we would like the distance from any red vertex to
any blue vertex to be odd and large. If the distance were even, then it is possible
for a path with red and blue endpoints to have a midpoint colored green giving us a
rainbow 3-AP of the form (red, green, blue), and if the distance were small enough,
then it may be possible to construct a rainbow 3-AP of the form (red, blue, green)
or (blue, red, green). Therefore, our rainbow-3AP-free coloring in Lemma 3.1 was
constructed by making the distance between any red and blue vertices as large as
possible, i.e. diam(T�T ′)− 1 since diam(T�T ′) is even. This was the motivation to
turn to subgraphs of T and T ′ whose diameter is exactly 1 less than diameter of T or
diameter of T ′. While not obvious, it turns out that the correct way to achieve this
is with Tv− when the diameter of T is odd and Tv+ when the diameter of T is even.
Observation 2.16 explains that performing the Tv− operation on a tree will lower the
diameter by 1. If red and blue vertices have distance diam(T�T ′) − 1, then one
must be peripheral. Lemma 2.19 now gives a specific and exploitable vertex which
is diam(T )− 1 from this red or blue vertex.
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Lemma 3.1. Suppose T, T ′ are nontrivial trees which are non-3-peripheral such that
diam(T�T ′) is even. Suppose v1,1 and vj,k realize the diameter of T�T ′ such that Tu−1
and T ′

w−1
are non-3-peripheral. Define c : V (T�T ′)→ {red, blue, green} as follows

c(va,b) =


blue if d(va,b, v1,1) = diam(T�T ′)− 1,

red if d(va,b, vj,k) = diam(T�T ′),

green otherwise.

Then we have the following:

(i) c is well-defined;

(ii) if c(x) = red, then c(y) = blue if and only if d(x, y) = diam(T�T ′)− 1;

(iii) if (x, y, z) is a rainbow 3-AP, then c(y) = blue.

Proof. To show (i), note that by the definition of c, no vertex will be blue and green,
and no vertex will be red and green. Thus, we only need to check if a vertex will
be colored both red and blue. For the sake of contradiction, assume va,b is such
a vertex, that is, d(va,b, v1,1) = diam(T�T ′) − 1 and d(va,b, vj,k) = diam(T�T ′).
Since d(va,b, v1,1) = diam(T�T ′) − 1, either dT (ua, u1) = diam(T ) or dT ′(wb, w1) =
diam(T ′). Further, d(va,b, vj,k) = diam(T�T ′) implies dT (ua, uj) = diam(T ) and
dT ′(wb, wk) = diam(T ′). In either case, either T or T ′ is 3-peripheral, a contradiction.
Thus, c is well-defined.

To prove the forward direction of (ii), suppose c(x) = red with x = vx1,x2 and
c(y) = blue with y = vy1,y2 . Since d(vy1,y2 , v1,1) = diam(T�T ′) − 1, it follows
that dT (uy1 , u1) = diam(T ) and dT ′(w1, wy2) = diam(T ′) − 1, or that dT (uy1 , u1) =
diam(T )− 1 and dT ′(w1, wy2) = diam(T ′).

First, suppose that

dT (uy1 , u1) = diam(T ) and dT ′(w1, wy2) = diam(T ′)− 1.

Since d(vx1,x2 , vj,k) = diam(T�T ′), it follows that dT (ux1 , uj) = diam(T ) and
dT ′(wx2 , wk) = diam(T ′). So, Lemma 2.14 implies that dT (ux1 , uy1) = diam(T ).

It remains to show d(wx2 , wy2) = diam(T ′) − 1. We first rule out some trivial
cases. If wx2 = w1, then we immediately have our desired result. Notice wx2 6=
wk and w1 6= wk since both pairs realize the diameter. That is, we can suppose
w1, wk and wx2 are distinct. Let wk−1 be the unique neighbor of wk, and note
that Observation 2.16 implies that diam(T ′

w−1
) = diam(T ′) − 1 = dT ′(wx2 , wk−1).

Additionally, dT ′(wx2 , w1) 6= diam(T ′); otherwise w1, wk, wx2 are pairwise diameter
apart, contradicting that T ′ is non-3-peripheral. This implies wx2 ∈ V (T ′

w−1
). Recall

that dT ′(w1, wy2) = diam(T ′) − 1 = diam(T ′
w−1

) implying that wy2 ∈ V (T ′
w−1

). Since

T ′
w−1

is non-3-peripheral, Lemma 2.14 can be applied to vertices w1, wk−1, wx2 and

wy2 in T ′
w−1

to get

dT ′(wx2 , wy2) = dT ′
w−1

(wx2 , wy2) = diam(T ′
w−1

) = diam(T ′)− 1.
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Thus,

d(x, y) = dT (ux1 , uy1) + dT ′(wx2 , wy2) = diam(T ) + diam(T ′)− 1 = diam(T�T ′)− 1.

Second, if we instead suppose

dT (uy1 , u1) = diam(T )− 1 and dT ′(w1, wy2) = diam(T ′),

then a similar argument shows that u1, uj and ux1 are distinct and that applying
Lemma 2.14 to w1, wk, wx2 and wy2 in T ′ and to u1, uj−1, ux1 and uy1 in Tu−1 yields
the same result.

To prove the reverse direction of (ii), suppose that c(x) = red and d(x, y) =
diam(T�T ′) − 1. Since c(x) = red, we have d(x, vj,k) = diam(T�T ′) implying that
dT (ux1 , uj) = diam(T ) and dT ′(wx2 , wk) = diam(T ′). Since d(x, y) = diam(T�T ′)−1,
we have that dT (ux1 , uy1) = diam(T ) and dT ′(wx2 , wy2) = diam(T ′) − 1 or that
dT (ux1 , uy1) = diam(T )−1 and dT ′(wx2 , wy2) = diam(T ′). First, suppose dT (ux1 , uy1)
= diam(T ) and dT ′(wx2 , wy2) = diam(T ′)− 1. Notice that since

dT (u1, uj) = dT (ux1 , uj) = dT (ux1 , uy1) = diam(T ),

Lemma 2.14 implies that dT (u1, uy1) = diam(T ).

It remains to show d(w1, wy2) = diam(T ′)− 1. If wx2 = w1, then we immediately
have our desired result. Notice wx2 6= wk and w1 6= wk since both pairs realize the
diameter. Thus we can suppose w1, wk and wx2 are distinct. It now follows that
dT ′(wx2 , wk−1) = diam(T ′)− 1. Notice that

dT ′(w1, wk−1) = dT ′(wx2 , wk−1) = dT ′(wx2 , wy2) = diam(T ′)− 1 = diam(T ′w0
1
).

Since T ′
w−1

is non-3-peripheral, we now show wk−1, wx2 , w1, wy2 ∈ V (T ′
w−1

) so that

Lemma 2.14 applied to T ′
w−1

gives dT ′(w1, wy2) = diam(T ′) − 1. Since dT ′(w1, wk) =

diam(T ′), we have w1, wk−1 ∈ V (T ′
w−1

). If wx2 /∈ V (T ′
w−1

), then d(w1, wx2) = diam(T ′)

and w1, wk and wx2 pairwise realize the diameter, contradicting that T ′ is non-3-
peripheral. If wy2 /∈ V (T ′

w−1
), then dT ′(w1, wy2) = diam(T ′), then combining Lemma

2.14 and that

dT ′(w1, wy2) = dT ′(w1, wk) = dT ′(wx2 , wk) = diam(T ′)

shows that dT ′(wx2 , wy2) = diam(T ′), a contradiction. Thus,

dT ′
w−1

(w1, wy2) = dT ′(w1, wy2) = diam(T ′)− 1,

as desired. Finally,

d(v1,1, y) = dT (u1, uy1) + dT ′(w1, wy2) = diam(T�T ′)− 1,

showing that c(y) = blue.
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Alternatively, if dT (ux1 , uy1) = diam(T ) − 1 and dT ′(wx2 , wy2) = diam(T ′), then
a similar argument shows that u1, uj and ux1 are distinct and that applying Lemma
2.14 to w1, wk, wx2 and wy2 in T ′ and to u1, uj−1, ux2 and uy2 in Tu−1 yields the same
result.

To show (iii), note that because of the symmetry of 3-APs, any rainbow 3-AP can
be classified by the color of the middle vertex. Suppose (x, y, z) is a rainbow 3-AP.
First, assume c(y) = green. Then x and z are colored red and blue in some order.
Recall that T�T ′ is bipartite. Since diam(T�T ′) is even, the forward direction of
(ii) implies that x and z are in different partite sets. Thus, no such y can be an
equal distance from x and z, contradicting that (x, y, z) is a 3-AP. Second, assume
c(y) = red. Since one of x or z is blue, the forward direction of (ii) implies the
common distance of our 3-AP is diam(T�T ′) − 1. But the reverse direction of (ii)
implies any vertex distance diam(T�T ′)−1 from y has color blue, contradicting that
one of x or z is green. Thus, c(y) = blue.

The remainder of this section completes the proof of the main theorem, showing
that when diam(T�T ′) is even, we have

aw(T�T ′, 3) =

{
3 if T or T ′ is weakly non-3-peripheral or isomorphic to P2,

4 if T and T ′ are both strongly non-3-peripheral and not P2.

This will be broken into four cases depending on whether the trees have odd or
even diameter and on weakly and strongly non-3-peripheral properties of trees. The
case when one of the trees is P2 is quite different, since (P2)u− is an isolated vertex.
Therefore, we separate this case from the remaining trees in Lemma 3.4.

We provide the motivation for two of the four cases below. First, if T is a strongly
non-3-peripheral tree of odd diameter, then for some vertex u, Tu− is non-3-peripheral
and Lemma 3.1 gives a rainbow-free 3-coloring of Tu−�T ′. By carefully extending
this coloring to T�T ′, we can avoid rainbow 3-APs. Applying Theorem 1.2, this
means the anti-van der Waerden number is four. Second, if T is a weakly non-3-
peripheral tree of even diameter, consider an arbitrary 3-coloring of T�T ′. This can
be extended to a 3-coloring of Tv+�T ′ where Tv+ is 3-peripheral. Then Theorem 2.8
says this coloring admits a 3-AP. If we choose our extension coloring carefully, we
can guarantee that this 3-AP is in T�T ′, too. The formal proof the authors provide
for Proposition 3.6 is a slight variation of this idea. It is based on the fact that any
3-peripheral tree with all its leaves removed will remain 3-peripheral or will be a
single vertex. The proof looks for a 3-AP in this subgraph rather than in Tv+�T ′.
That way, we are guaranteed that any 3-AP we find will also appear in the parent
graph. While the remaining two cases are less intuitive, they work out as desired
(see Propositions 3.3 and 3.5).

We begin showing that if T and T ′ are strongly non-3-peripheral trees, where
neither are P2, then their product T�T ′ has anti-van der Waerden number 4. Before
we begin Proposition 3.2, as a reminder, a tree T with odd diameter is called strongly
non-3-peripheral if the tree Tv− is non-3-peripheral for every peripheral v ∈ V (T ).
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Proposition 3.2. Suppose T and T ′ are strongly non-3-peripheral trees with odd
diameter of at least 3. Then, aw(T�T ′, 3) = 4.

Proof. Since T and T ′ are strongly non-3-peripheral, there exist peripheral vertices
u1 ∈ V (T ) and w1 ∈ V (T ′) such that Tu−1 and T ′

w−1
are non-3-peripheral. Since u1

and w1 are peripheral, there exist uj ∈ V (T ) and wk ∈ V (T ′) such that dT (u1, uj) =
diam(T ) and dT ′(w1, wk) = diam(T ′). Now color T�T ′ using the coloring from
Lemma 3.1 with v1,1 and vj,k playing the same role as in the lemma. If (x, y, z) is
a rainbow 3-AP, then Lemma 3.1(ii) and (iii) give that the common difference is
diam(T�T ′)− 1 and, without loss of generality, that c(x) = green, c(y) = blue and
c(z) = red.

Suppose that x = vx1,x2 and y = vy1,y2 . Since c(y) = blue, we have that d(y, v1,1) =
diam(T�T ′)− 1 implying that either

dT (u1, uy1) = diam(T ) and dT ′(w1, wy2) = diam(T ′)− 1 (1)

or

dT (u1, uy1) = diam(T )− 1 and dT ′(w1, wy2) = diam(T ′). (2)

Additionally, since d(x, y) = diam(T�T ′)− 1, it follows that

dT (ux1 , uy1) = diam(T )− 1 and dT ′(wx2 , wy2) = diam(T ′) (3)

or

dT (ux1 , uy1) = diam(T ) and dT ′(wx2 , wy2) = diam(T ′)− 1. (4)

First suppose that Equations from (1) and (3) hold. Recall that dT ′(w1, wk) =
diam(T ′). Since dT ′(w1, wy2) < diam(T ′) and wy2 is a peripheral vertex of T ′, Lemma
2.13 implies that dT ′(wy2 , wk) = diam(T ′). Let wk−1 be the neighbor of wk in T ′ and
notice that wk−1, wy2 and w1 are vertices in T ′

w−1
. Additionally, Observation 2.16

implies diam(T ′
w−1

) = diam(T ′)− 1. Thus,

diam(T ′
w−1

) = dT ′(w1, wy2) = dT ′(w1, wk−1) = dT ′(wy2 , wk−1).

Furthermore, these three vertices are distinct since otherwise we have that diam(T ′)
= 1 < 3. Thus, T ′

w−1
is 3-peripheral, a contradiction.

Second, suppose that Equations (1) and (4) hold. Since dT (u1, uj) = diam(T ),
Lemma 2.14 implies that dT (ux1 , uj) = diam(T ).

Consider the case where dT ′(w1, wx2) = diam(T ′). Let P and P ′ represent the
w1−wy2 and wx2 −wy2 paths, respectively. Let w` ∈ V (T ′) be the vertex in V (P )∩
V (P ′) nearest to w1. Then

diam(T ′)− 1 = dT ′(w1, wy2) = dT ′(w1, w`) + dT ′(w`, wy2),
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diam(T ′)− 1 = dT ′(wx2 , wy2) = dT ′(wx2 , w`) + dT ′(w`, wy2), and

diam(T ′) = dT ′(w1, wx2) = dT ′(w1, w`) + dT ′(w`, wx2).

The first two equations imply that dT ′(w1, w`) = dT ′(wx2 , w`) and the third implies
that both distances equal diam(T ′)/2. However, diam(T ′) is odd, a contradiction.
Thus, dT ′(w1, wx2) < diam(T ′). It follows that wx2 ∈ V (T ′

w−1
) and applying Lemma

2.14 to w1,wy2 ,wx2 ,wk−1 and graph T ′
w−1

gives dT ′(wx2 , wk−1) = diam(T ′) − 1. If

wx2 = wk, then the previous sentence implies diam(T ′) is even, a contradiction.
This means wx2 6= wk so the wx2 − wk path contains wk−1 and we can conclude
dT ′(wx2 , wk) = diam(T ′). Finally, we have

d(x, vj,k) = dT (ux1 , uj) + dT ′(wx2 , wk) = diam(T ) + diam(T ′) = diam(T�T ′),

showing that c(x) = red, contradicting the assumption that c(x) = green.

The case where the Equations from (2) and (4) hold has an argument similar
to the case where Equations (1) and (3) hold. The case where the Equations from
(2) and (3) hold has an argument similar to the case where Equations (1) and (4)
hold. Since all cases end in a contradiction, c is rainbow-free and aw(T�T ′, 3) > 3.
Theorem 1.2 now completes the proof.

Recall that non-3-peripheral tree T with even diameter is strongly non-3-peri-
pheral if Tv+ is non-3-peripheral for all v ∈ V (T ).

Proposition 3.3. Suppose T and T ′ are nontrivial, strongly non-3-peripheral trees
with even diameter. Then aw(T�T ′, 3) = 4.

Proof. First notice that Lemmas 2.15 and 2.16 imply that any peripheral vertices
u1 ∈ V (T ) and w1 ∈ V (T ′) have the property that Tu−1 and T ′

w−1
are non-3-peripheral.

Let c be the coloring from Lemma 3.1 and let v1,1, vj,k ∈ V (T�T ′) also be defined as
in the statement of Lemma 3.1.

For the sake of contradiction, assume (x, y, z) is a rainbow 3-AP. Lemma 3.1(ii)
and (iii) now give that the common difference is diam(T�T ′)− 1 and, without loss
of generality, that c(x) = green, c(y) = blue and c(z) = red. Suppose x = vx1,x2 and
y = vy1,y2 . Since c(y) = blue, we have d(y, v1,1) = diam(T�T ′)− 1 implying that

dT (u1, uy1) = diam(T ) and dT ′(w1, wy2) = diam(T ′)− 1 (5)

or that

dT (u1, uy1) = diam(T )− 1 and dT ′(w1, wy2) = diam(T ′). (6)

Additionally, since d(x, y) = diam(T�T ′)− 1, it follows that

dT (ux1 , uy1) = diam(T ) and dT ′(wx2 , wy2) = diam(T ′)− 1 (7)
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or that
dT (ux1 , uy1) = diam(T )− 1 and dT ′(wx2 , wy2) = diam(T ′). (8)

First, suppose that Equations (5) and (7) hold. Lemma 2.14 applied to u1, uy1 ,
uj and ux1 implies that dT (ux1 , uj) = diam(T ).

Assume d(w1, wx2) = diam(T ′) and recall that dT ′(w1, wy2) = diam(T ′) − 1 and
dT ′(wx2 , wy2) = diam(T ′) − 1. Notice that wy2 /∈ {w1, wx2} otherwise diam(T ′) is
odd, a contradiction. Thus, T ′

w+
y2

is 3-peripheral, contradicting that T ′ is strongly

non-3-peripheral. This means we must have d(w1, wx2) < diam(T ′). Let wk−1 be the
neighbor of wk in T ′. Applying Lemma 2.14 to w1, wy2 , wx2 , wk−1 ∈ V (T ′

w−1
) gives

dT ′(wx2 , wk−1) = diam(T ′)− 1. If wx2 = wk, then this means diam(T ′) = 2. So, T ′ is
a star with at least two leaves. However, no such star is strongly non-3-peripheral,
a contradiction. Thus, wx2 6= wk so the wx2 − wk path contains wk−1 and we can
conclude dT ′(wx2 , wk) = diam(T ′). Finally, d(x, vj,k) = diam(T�T ′) so c(x) = red
which contradicts that c(x) = green.

Second, assume that Equations (5) and (8) hold. Recall that dT ′(w1, wk) =
diam(T ′). Since dT ′(w1, wy2) < diam(T ′) and wy2 is a peripheral vertex, Lemma 2.13
implies that dT ′(wy2 , wk) = diam(T ′). Applying Lemma 2.14 to wk, wy2 , w1 and wx2

implies that d(wx2 , w1) = diam(T ′). Note that w1, wx2 and wy2 are distinct since T ′

is nontrivial with even diameter. Let P be the w1 − wx2 path, P ′ be the wy2 − wx2

path and let w` ∈ V (P ) ∩ V (P ′) be the vertex closest to wy2 . Then

diam(T ′) = dT ′(w1, wx2) = dT ′(w1, w`) + dT ′(w`, wx2),

diam(T ′) = dT ′(wx2 , wy2) = dT ′(wx2 , w`) + dT ′(w`, wy2), and

diam(T ′)− 1 = dT ′(w1, wy2) = dT ′(w1, w`) + dT ′(w`, wy2).

The first two equations imply that dT ′(w1, w`) = dT ′(w`, wy2) and third imply that
both equal (diam(T ′)− 1)/2, contradicting that T ′ has even diameter.

The case where Equations (6) and (7) hold is similar to when Equations (5) and
(8) hold. The case where Equations (6) and (8) hold is similar to when Equations (5)
and (7) hold. All cases end in a contradiction so c is rainbow-free and aw(T�T ′, 3) >
3. Applying Theorem 1.2 completes the proof.

The remaining results in this section consider conditions on tree products that
give aw(T�T ′, 3) = 3. This is done by taking an arbitrary 3-coloring and guarantee-
ing a rainbow 3-AP. We begin with the smallest case when one of the trees is P2, as
it behaves quite differently from other trees.

Lemma 3.4. If T is a tree with odd diameter, then aw(P2�T, 3) = 3.

Proof. Assume, for the sake of contradiction, that c is an exact rainbow-free 3-
coloring of P2�T . By Lemma 2.3 we can find either an isometric path or a C3 that
contains all three colors. No such C3 exists since P2�T is bipartite, so let P be a
shortest isometric path that contains all three colors. Further, denote the first vertex
of the path by va,b and the last vertex of the path by vc,d with a ≤ c and b ≤ d.
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Without loss of generality, assume that c(va,b) = red, c(vc,d) = blue and note that
every other vertex on the path is green. Note that a 6= c else we contradict Lemma
2.4 or the minimality of P . Also, P has odd length of at least three, else we can find a
rainbow 3-AP. Since P2 only has two vertices which are ua and uc, for the remainder
of the proof we will use u1 = ua and u2 = uc. Note that the path v1,b− v2,b− v2,d and
the path v1,b − v1,d − v2,d are both of shortest length and both have interior vertices
that are all green, thus green is in both T1 and T2.

Since dP2(u1, u2) = 1, it follows that dT (wb, wd) = d(v1,b, v2,d) − 1 which is even.
Additionally, diam(T ) is odd, so we have dT (wb, wd) < diam(T ). Without loss of
generality, assume that wb is peripheral or wd is not peripheral. If wb is peripheral,
then there is a geodesic (wb, wb1 , wb2 , . . . , wbdiam(T )

) such that d(wb, wbi) = i for each
1 ≤ i ≤ diam(T ). Since dT (wb, wd) < diam(T ), we must be able to find some w` ∈ T
for which dT (wb, w`) = dT (wb, wd)+1. If wd is not peripheral, then by Corollary 2.10,
there exists some w` ∈ V (T ) such that dT (wb, w`) = dT (wb, wd) + 1. Consider v2,`−1
where w`−1 is the unique neighbor of w` on the wb − w` path. If wd = w`−1, then
we have c(v2,`−1) = blue. If not, then the 3-AP (v2,d, v1,b, v2,`−1) implies c(vc,`−1) 6=
green and Lemma 2.4 implies that c(v2,`−1) 6= red since blue, green ∈ c(V (T2)). So,
c(v2,`−1) = blue. Now, the v1,b− v2,` path contains all three colors and is a subgraph
of some P2�Pn where n is even because d(wb, w`) = d(wb, wd) + 1 is odd. This
P2�Pn subgraph is isometric, so Theorem 1.1 implies P2�T has a rainbow 3-AP, a
contradiction.

Recall that a tree T with odd diameter is weakly non-3-peripheral if for every
peripheral vertex v, Tv− is 3-peripheral.

Proposition 3.5. Suppose T is a weakly non-3-peripheral tree with odd diameter.
Then aw(T�T ′, 3) = 3 for any nontrivial tree T ′ with odd diameter.

Proof. Assume, for a contradiction, that c is a rainbow-free, exact 3-coloring of T�T ′

using the colors red, blue, and green. By Lemma 2.3, there is either an isometric
C3 or isometric path containing all three colors. Since T�T ′ is bipartite, it has no
C3 subgraph so there must be an isometric path containing all three colors. Let P
be a shortest such path. Specifically, say P is a va,b − vc,d path where va,b is red,
vc,d is blue and all others are green and, without loss of generality, a ≤ c and b ≤ d.
Note that P must have odd length; otherwise there is a rainbow 3-AP. Note that
b 6= d and a 6= c otherwise Tb = Td and T ′a = T ′c, respectively, contain all three colors
contradicting Lemma 2.4. Define uc−1 ∈ V (T ) as the unique neighbor of uc on the
ua − uc path. Note that the path following va,b − va,d − vc,d is a va,b − vc,d geodesic.
So, c(vi,d) = green for a ≤ i ≤ c − 1 otherwise we can construct a path containing
all three colors which is shorter than P . In particular, this shows green is in every
copy of T ′ which intersects P except for possibly T ′c.

First consider the case where dT (ua, uc) < diam(T ). Then there exists some
ui ∈ V (T ) such that P is contained in Tu−i �T

′. In particular, if either ua or uc
is peripheral, then choose that to be ui; otherwise, if neither is peripheral, any
peripheral ui suffices. Notice that Tu−i �T

′ is an isometric subgraph of T�T ′ and
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contains three colors. Since T is weakly non-3-peripheral, Tu−i is 3-peripheral. By

Theorem 2.8, there is a rainbow 3-AP in Tu−i �T
′. Since Tu−i �T

′ is an isometric
subgraph, this contradicts that c is a rainbow-free coloring.

Now consider when dT (ua, uc) = diam(T ). Since the length of P is odd, it must
be less than diam(T�T ′). So, dT ′(wb, wd) < diam(T ′). Without loss of general-
ity, assume that wb is peripheral or wd is not peripheral. If wb is peripheral, then
there exists some w` ∈ V (T ′) such that dT ′(wb, w`) = dT ′(wb, wd) + 1. If wd is
not peripheral, then by Corollary 2.10, there exists some w` ∈ V (T ′) such that
dT ′(wb, w`) = dT ′(wb, wd) + 1. Define P ′ to be a va,b − vc−1,` geodesic in T�T ′ and
note that P and P ′ have the same length. We will show c(vc−1,`) = blue and all inte-
rior vertices of P ′ are colored green by c. If c(vc−1,`) = green, then (vc,d, va,b, vc−1,`)
is a rainbow 3-AP, a contradiction. If c(vc−1,`) = red, then since green ∈ c(V (T ′c−1)),
we have green, red, blue ∈ c(V (T ′c−1) ∪ V (T ′c)), contradicting Corollary 2.5. Thus,
c(vc−1,`) = blue. Recall that green appears in every copy of T ′i for each ui on
the ua − uc−1 path in T . Since we also have red ∈ c(V (T ′a)), blue ∈ c(V (T ′c−1)),
repeated applications of Corollary 2.5 show that there is some ui ∈ V (T ) on the
ua − uc−1 path such that c(V (Ti)) = {green}. In particular, there is some interior
vertex of P ′ colored green. So, if any other interior vertex of P ′ were not colored
green, then there exists a path containing all three colors which is shorter than P ,
contradicting the minimality of P . Thus, all interior vertices of P ′ are green. Since
dT (ua, uc−1) < diam(T ) applying the argument in the previous paragraph to P ′ yields
a rainbow 3-AP.

Recall that a tree T with even diameter is weakly non-3-peripheral if there exists
some vertex v ∈ V (T ) such that Tv+ is 3-peripheral.

Proposition 3.6. Suppose T is a weakly non-3-peripheral tree with even diameter.
Then aw(T�T ′, 3) = 3 for any nontrivial even diameter tree T ′.

Proof. Assume, for the sake of contradiction, that c is a rainbow-free, exact 3-coloring
of T�T ′ using the colors red, blue, and green. By Lemma 2.3, there is either a
isometric C3 or isometric path containing all three colors. Since T�T ′ is bipartite no
such C3 exists so let P be a shortest such path. Specifically, say P is a va,b−vc,d path
where va,b is red, vc,d is blue, and all others are green. We remark that all va,b − vc,d
paths must have the interior vertices be green, else we can construct a shorter path
containing all three colors. Furthermore, P must have odd length; otherwise there
is a rainbow 3-AP.

First consider the case when d(ua, uc) = diam(T ). Then dT (ua, uc) is even imply-
ing that dT ′(wb, wd) is odd, and in particular, dT ′(wb, wd) < diam(T ′). Without loss
of generality, suppose wb is peripheral or wd is not peripheral. If wb is peripheral,
then there is a geodesic (wb, wb1 , wb2 , . . . , wbdiam(T ′)

) such that d(wb, wbi) = i for each

1 ≤ i ≤ diam(T ′). Since dT ′(wb, wd) < diam(T ′), we must be able to find some
wd′ ∈ T ′ for which dT ′(wb, wd′) = dT ′(wb, wd) + 1. If wd is not peripheral, Corol-
lary 2.10 yields a vertex wd′ in T ′ for which dT ′(wb, wd′) = dT ′(wb, wd) + 1. Since
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T is weakly non-3-peripheral, there exists some vertex u` in T such that Tu+
`

is 3-

peripheral. Lemma 2.19 implies dT (ua, u`) = dT (uc, u`) = diam(T )− 1. This implies
(vc,d, va,b, v`,d′) is a 3-AP. To avoid a rainbow 3-AP, v`,d′ is not green. Since va,d and
vc,b lie on a va,b − vc,d geodesic, an earlier remark implies they must be green. Now,
the 3-APs (va,d, v`,d′ , vc,d) or (va,b, v`,d′ , vc,b) are rainbow depending on whether v`,d′ is
red or blue, respectively, contradicting that c is a rainbow free coloring.

Now consider the case when d(ua, uc) < diam(T ). Applying the same argument
used in the previous case, there exists some uc′ in T such that, without loss of
generality, dT (ua, uc′) = d(ua, uc) + 1. Let wd−1 ∈ V (T ′) be the unique neighbor of
wd on the wb − wd path. Consider the vertex vc′,d−1 and the 3-AP (vc,d, va,b, vc′,d−1).
Notice vc′,d−1 cannot be green; otherwise this 3-AP is rainbow. Since T ′ is nontrivial
and has even diameter, |V (T ′)| ≥ 3. So, Corollary 2.5 implies that vc′,d−1 cannot be
red; otherwise |c(V (Td−1) ∪ V (Td))| = 3 because green must appear in Td−1 or Td.
Thus, c(vc′,d−1) = blue.

Let P ′ be a va,b − vc′,d−1 geodesic. Since the length of P ′ is the same as the
length of P , all internal vertices of P must be colored green; otherwise there is
a shorter path than P containing all three colors. If dT (ua, uc′) = diam(T ), then
apply the argument from the previous case. So, suppose dT (ua, uc′) < diam(T ).
Also, d(wb, wd−1) < d(wb, wd) ≤ diam(T ′). So, there are some peripheral vertices
ur ∈ V (T ), wi ∈ V (T ′) such that P ′ is contained in Tu−r �T

′
w−i

. We choose ur to

be equal ua or uc′ if either are peripheral; otherwise we may choose ur to be any
peripheral vertex. Likewise for choosing wi depending on whether wb and wd−1 are
peripheral or not. Recall Tu+

`
is 3-peripheral. Since ur is a peripheral vertex of T ,

there exists some us ∈ V (T ) such that dT (ur, us) = diam(T ). Lemma 2.19 implies
that d(u`, ur) = d(u`, us) = diam(T )− 1. Let ur−1 and us−1 be the unique neighbors
of ur and us, respectively, so that

d(ur−1, us−1) = d(u`, ur−1) = d(u`, us−1) = diam(T )− 2 = diam
((
Tu−r
)
u−`

)
,

where the last equality holds by Observation 2.16. If diam(T ) = 2, then ur−1 =
us−1 = u`, and if diam(T ) > 2, then these three vertices are pairwise distinct. So,(
Tu−r
)
u−`

is a single vertex or 3-peripheral. This implies Tu−r
∼= P2 or Tu−r is weakly

non-3-peripheral. By Observation 2.16, Lemma 3.4 and Proposition 3.5, we have

aw
(
Tu−r �T

′
w−i
, 3
)

= 3. Since P ′ contains all three colors, it follows that Tu−r �T
′
w−i

contains all three colors and thus contains a rainbow 3-AP. Since this is an isometric
subgraph of T�T ′, this rainbow 3-AP also exists in T�T ′, a contradiction.

Now, using Theorems 1.3, 2.8 and 2.9, we have a full classification of the anti-
van der Waerden number of the product of two trees. This quickly leads to a full
classification of products of two forests.
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Corollary 1.4. Let T and T ′ be trees. Then, aw(T�T ′, 3) =
3 if T or T ′ is 3-peripheral, or

if diam(T�T ′) is even and either T or T ′ is P2, or

if diam(T�T ′) is even and either T or T ′ is weakly non-3-peripheral;

4 otherwise.

The following observation relies on the pigeonhole principle and helps to provide
a full classification for products of forests.

Observation 3.7 ([3]). If G is disconnected with connected components {Gi}`i=1,
then

aw(G, k) = 1 +
∑̀
i=1

(aw(Gi, k)− 1).

Corollary 1.4 and Observation 3.7 give the following corollary. Note that Corol-
lary 3.8 was previously known, but it was not known how to compute |P | and |S|
explicitly.

Corollary 3.8. Let F1 and F2 be forests and let P be the set of connected components
of F1�F2 whose anti-van der Waerden number is 3 and S be the set of connected
components of F1�F2 whose anti-van der Waerden number is 4. Then,

aw(F1�F2, 3) = 2|P |+ 3|S|+ 1.
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