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Abstract

A Grand Dyck path of semilength n with m flaws is a path in the integer
lattice which starts at the origin and consists of n up steps U = (1, 1) and
n down steps D = (1,−1), and that has exactly m up steps below the
line y = 0. The classical Chung-Feller theorem asserts that the number
of grand Dyck paths of semilength n with m flaws is the nth Catalan
number and is independent of m. In this paper, by using a bijection and
generating functions, we prove a refinement of the Chung-Feller theorem:
the number of Grand Dyck paths of semilength n having m flaws and k

descents is the Narayana number Nn,k, and is independent of m. We also
enumerate the Grand Dyck paths ending with a down step or an up step,
and obtain some interesting results related to the Narayana numbers or
Catalan numbers.

1 Introduction

A Grand Dyck path of semilength n ≥ 0 is a lattice path from (0, 0) to (2n, 0), using
exactly n up steps U = (1, 1) and n down steps D = (1,−1), and that has exactly m

up steps below the line y = 0. Let Gn be the set of all Grand Dyck paths of semilength
n, and G =

⋃∞

n=0 Gn, where G0 = {ǫ} and ǫ is the empty path. The cardinality of
Gn is given by the nth central binomial coefficient

(

2n
n

)

(sequence A000984 in OEIS
[20]). A Dyck path is a Grand Dyck path that never goes below the x-axis. We
denote by Dn, n ≥ 0, the set of all Dyck paths of semilength n, and D =

⋃∞

n=0 Dn.
Every up step of a Grand Dyck path that lies below the x-axis is called a flaw. The
set of Grand Dyck paths of semilength n with m flaws is denoted Gn,m. In particular,
Gn,0 = Dn is the set of Dyck paths of semilength n, and Gn,n = Dn is the set of
reflected Dyck paths of semilength n.
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It is well known that the set Dn is counted by the Catalan number Cn = 1
n+1

(

2n
n

)

[4, 20, 21]. The classical Chung-Feller theorem states that |Gn,m| = Cn, for all
0 ≤ m ≤ n. The proof of the Chung-Feller theorem in [3] is based on an analytic
method. A combinatorial proof is given by Narayana [18] and rediscovered by Chen
[2]. Eu, Fu and Yeh obtained a refinement of this theorem in [8]. Liu, Wang and
Yeh [14] use a unified algebra approach to prove the Chung-Feller theorems for Dyck
paths and Motzkin paths and develop a new method for finding some combinatorial
structures which have the Chung-Feller property. Some other interesting proofs and
generalizations are given in [7, 12, 13, 16, 17, 19, 26, 28, 29, 32].

In a Grand Dyck path, a peak (respectively, valley) is an occurrence of UD

(respectively, DU). A double rise (respectively, double fall) is an occurrence of
UU (respectively, DD). An ascent (respectively, descent) is a maximal sequence
of consecutive up steps U (respectively, down steps D) in a Dyck path, that is, a
sequence that is not preceded or followed immediately by another U (respectively,
D).

The Narayana polynomials are defined as [1, 23, 27]

N0(x) = 1, Nn(x) =
n
∑

k=1

1

n

(

n

k

)(

n

k − 1

)

xk for n ≥ 1,

and Nn,k = [xk]Nn(x) = 1
n

(

n

k

)(

n

k−1

)

is known as a Narayana number. Equivalently,
the Narayana polynomials are determined by the generating function

∞
∑

n=0

Nn(x)tn =
1 + t− xt−

√

(1 + t− xt)2 − 4t

2t
.

The Narayana numbers are widely used in enumeration of Dyck paths [5, 6, 22,
23, 24, 25, 31]. For example, the number of Dyck paths of semilength n with k

peaks equals the number of Dyck paths of semilength n with k ascents (or descents),
and is given by the Narayana number Nn,k = 1

n

(

n

k

)(

n

k−1

)

. Similarly, the number
of Dyck paths of semilength n with k valleys equals the number of Dyck paths of
semilength n with k double rises (or double falls), and is given by the Narayana
number Nn,k+1 = 1

n

(

n

k+1

)(

n

k

)

.
In [15], Ma and Yeh proved a refined Chung-Feller type theorem for Dyck paths

of semilength n with k double rises.

Theorem 1.1 ( [15] ). Let n be an integer with n ≥ 0 and 0 ≤ k ≤ n − 1. Then,

the total number of Grand Dyck paths in Gn,m having k double rises is equal to

Nn,k+1 = 1
n

(

n

k+1

)(

n

k

)

, for any 0 ≤ m ≤ n.

In this paper, we provide the following Chung-Feller type theorem for the Grand
Dyck paths.

Theorem 1.2. For 1 ≤ k ≤ n, the number of Grand Dyck paths of semilength n

having m flaws and k descents is equal to Nn,k = 1
n

(

n

k

)(

n

k−1

)

, and independent of m

for 0 ≤ m ≤ n.
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We will give two proofs of this result. Although the combinatorial proof in Sec-
tion 2 is short and self-contained, we include a generating-function proof in Section 3
for additional reasons. The functional equations and bivariate generating functions
developed there are new and encode several refined statistics (such as descents, flaws,
and the type of the last step) in a unified analytic framework. These generating func-
tions allow us to derive further identities and refined enumerative results that are not
easily accessible from the bijective argument alone. Thus, the generating-function
approach provides an additional perspective that we believe is of independent inter-
est.

This paper is organized as follows. In Section 2, we provide a combinatorial proof
of Theorem 1.2. In Section 3, we give a generating function proof. In Section 4, we
enumerate the Grand Dyck paths that end with a down step or an up step, and
obtain some interesting results related to the Narayana numbers. Specifically, we
show that the number of the Grand Dyck paths of semilength n that end with a
down step and having k descents and exactly 1 flaw is equal to Nn,k − Nn−1,k, and
that the total number of the Grand Dyck paths of semilength n ending with a down
step and having k descents is kNn,k.

2 A combinatorial proof of Theorem 1.2

Now we give a bijective proof of Theorem 1.2. To do this, we establish a bijection from
Gn,m to Gn,m+1, for each 0 ≤ m ≤ n−1. Every α ∈ Gn,m can be uniquely decomposed
into the form α = βUγDδ, where β ∈ G, γ ∈ D and δ ∈ D, where D =

⋃∞

n=0 Dn

is the set of all reflected Dyck paths. This is the last-non-flaw decomposition. We
define a path g(α) as

g(α) = γDδUβ.

Clearly, the number of descents in g(α) is equal to the number of descents in α, and
the number of flaws in g(α) is 1 more than the number of flaws in α (see Figure 1).

β
γ

δ

The last-non-flaw decomposition of G \ D

g

γ

δ
β

The first-flaw decomposition of G \ D

Figure 1: The bijection g.

To prove that the mapping g is a bijection, we describe the inverse g−1 of the
mapping g as follows. Every α′ ∈ Gn,m+1 can be uniquely decomposed into the form
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α′ = γDδUβ, where γ ∈ D, δ ∈ D, β ∈ G. This is the first-flaw decomposition. We
define a path g−1(α′) as

g−1(α′) = βUγDδ.

Clearly, the number of descents in g−1(α′) is equal to the number of descents in α′,
and the number of flaws in g−1(α′) is 1 less than the number of flaws in α′.

The bijection g preserves the statistic “number of descents”. In the set Gn,0, the
set of Dyck paths of semilength n, we have (see [6])

|{α;α ∈ Gn,0, |α|des = k}| =
1

n

(

n

k

)(

n

k − 1

)

.

Therefore, for any 0 ≤ m ≤ n,

|{α;α ∈ Gn,m, |α|des = k}| =
1

n

(

n

k

)(

n

k − 1

)

,

where |α|des denotes the number of descents in the path α.
In Figure 2, we illustrate the bijection for n = 3, where the blue segments indicate

descents and the red segments indicate flaws.
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Figure 2: Illustration of the bijection g used to prove Theorem 1.2.

3 Proof of Theorem 1.2 using the generating functions

In this section, we give a generating function proof of Theorem 1.2 by using the
symbolic method [11] and the linear algebra method [9, 10].
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3.1 The generating function of Dyck paths with respect to peaks or

valleys

Although the results of Lemma 3.1 and Lemma 3.2 have been previously given in
[15], we provide a new proof using a combinatorial method here.

Lemma 3.1 ([15]). Let Pn,k denote the number of Dyck paths of semilength n with

exactly k peaks. Define the generating function

P (t, x) =
∑

n≥0

∑

k≥0

Pn,k t
nxk,

where t marks the semilength and x marks the number of peaks. Then

P (t, x) =
1 + t− xt−

√

(1 + t− xt)2 − 4t

2t
. (3.1)

Proof. Any non-empty Dyck path α decomposes uniquely as α = UDβ, or as α =
Uβ′Dβ′′ with β, β′, β′′ ∈ D and β′ 6= ǫ (see Figure 3). Hence, we have the identity

P (t, x) = 1 + txP (t, x) + t(P (t, x) − 1)P (t, x)

whose solution is (3.1).

x
β

β′

β′′

Figure 3: Decomposition of Dyck paths according to the occurrence of peaks.

Applying the Lagrange inversion formula, we obtain, for n ≥ 1

[tn]P (t, x) =
n
∑

k=1

1

n

(

n

k

)(

n

k − 1

)

xk = Nn(x),

which is the Narayana polynomial Nn(x).

Lemma 3.2 ([15]). Let Vn,k denote the number of Dyck paths of semilength n with

exactly k valleys. Define the generating function

V (t, x) =
∑

n≥0

∑

k≥0

Vn,k t
nxk,

where t marks the semilength and x marks the number of valleys. Then,

V (t, x) =
1 − t + xt−

√

(1 − t + xt)2 − 4xt

2xt
. (3.2)
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γ

x

γ′

γ′′

Figure 4: Decomposition of the Dyck paths according to the occurrence of valleys.

Proof. Any non-empty Dyck path α decomposes uniquely as α = UγD (with γ ∈ D)
or as α = Uγ′Dγ′′ (with γ′, γ′′ ∈ D, γ′′ 6= ǫ) (see Figure 4). Hence, we have

V (t, x) = 1 + tV (t, x) + txV (t, x)(V (t, x) − 1)

whose solution is series (3.2).

By the Lagrange inversion formula, we obtain, for n ≥ 1

[xktn]V (t, x) = [xk]
n−1
∑

k=0

1

n

(

n

k + 1

)(

n

k

)

xk =
1

n

(

n

k + 1

)(

n

k

)

= Nn,k+1.

From the formulas (3.1) and (3.2) we derive successively

P (t, x) − 1 = xV (t, x) − x, (3.3)

P (t, x) − 1 = txP (t, x)V (t, x). (3.4)

Equation (3.3) also admits a direct combinatorial interpretation. The generating
function P (t, x) − 1 enumerates nonempty Dyck paths by semilength t and number
of peaks x, while V (t, x) − 1 enumerates nonempty Dyck paths by semilength t and
number of valleys x. The factor of x in x(V (t, x) − 1) accounts for the fact that
a nonempty Dyck path with k valleys always has k + 1 peaks. This one-to-one
correspondence increases the statistic marked by x by one, and thus establishes the
generating function identity (3.3).

To derive the generating function for Grand Dyck paths, we first establish two
determinant identities relating P (t, x) and V (t, x).

Lemma 3.3. The generating functions P (t, x) and V (t, x) satisfy the following de-

terminant identity

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x) xytV (ty, x) − 1

∣

∣

∣

∣

=
y − 1

yP (ty, x) − P (t, x)
, (3.5)

∣

∣

∣

∣

tP (t, x) − 1 tP (t, x)

txyP (ty, x) tyP (ty, x) − 1

∣

∣

∣

∣

=
y − 1

yV (ty, x) − V (t, x)
. (3.6)
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Proof. By using the formulas (3.3) and (3.4) iteratively, we have

(yP (ty, x) − P (t, x))

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x) xytV (ty, x) − 1

∣

∣

∣

∣

= yP (ty, x)

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x) xytV (ty, x) − 1

∣

∣

∣

∣

−P (t, x)

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x) xytV (ty, x)

∣

∣

∣

∣

− P (t, x)

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

0 −1

∣

∣

∣

∣

= y

∣

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x)P (ty, x) −1

∣

∣

∣

∣

∣

−y

∣

∣

∣

∣

x2tV (t, x) − x tV (t, x)

xtV (ty, x)P (t, x) tV (ty, x)P (t, x)

∣

∣

∣

∣

−1

= y

∣

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

−1 −1

∣

∣

∣

∣

∣

+ y

∣

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x)P (ty, x) + 1 0

∣

∣

∣

∣

∣

−y

∣

∣

∣

∣

x2tV (t, x) − x tV (t, x)

xtV (ty, x)P (t, x) tV (ty, x)P (t, x)

∣

∣

∣

∣

− 1

= y − 1 + y

∣

∣

∣

∣

∣

x2tV (t, x) − x tV (t, x)

xytV (ty, x)P (ty, x) − xtV (ty, x)P (t, x) + x −tV (ty, x)P (t, x)

∣

∣

∣

∣

∣

= y − 1 + y · 0 = y − 1,

which is equivalent to (3.5). The proof of (3.6) is obtained similarly.

We include Formula (3.7) here as an example of how the function V (t, x) derived
above can be applied in the enumeration of Grand Dyck paths. To this end, recall
that Ma and Yeh [15] proved the generating function for the class of Grand Dyck
paths with respect to semilength (marked by t), double rises (marked by x), and
flaws (marked by y) is given by

A(t, x, y) =
yV (ty, x) − V (t, x)

y − 1
, (3.7)

where V (t, x) is the generating function given by (3.2).
In the following subsection, we will provide the generating function for the class

of Grand Dyck paths with respect to semilength (marked by t), descents (marked by
x) and flaws (marked by y).

3.2 The generating function of Grand Dyck paths with respect to

descents

A descent of a Grand Dyck path is a maximal sequence of consecutive down steps.
For a Dyck path, the total number of descents is equal to the number of peaks.
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Hence, the generating function for the class of Dyck paths with respect to semilength

(marked by t) and descents (marked by x) is P (t, x) =
1+t−xt−

√
(1+t−xt)2−4t

2t
. Recall

that Dn denotes the set of reflected Dyck paths of semilength n, i.e., Dn = Gn,n.
Accordingly, recall that D denotes the class of all reflected Dyck paths. We study its
corresponding generating function F (t, x, y), where t keeps track of the semilength,
x keeps track of the descents, and y keeps track of the flaws. Since every nonempty
path α ∈ D uniquely decomposes as α = DUβ (with β ∈ D) or as α = Dβ′Uβ′′ (with
β′, β′′ ∈ D, β′ 6= ǫ), we have the identity F (t, x, y) = 1+txyF (t, x, y)+ty(F (t, x, y)−
1)F (t, x, y), whose unique solution is F (t, x, y) = P (ty, x).

Theorem 3.4. Let bn,i,j denote the number of Grand Dyck paths of semilength n

with i descents and j flaws. Define the generating function

B(t, x, y) =
∑

n≥0

∑

i≥0

∑

j≥0

bn,i,j t
nxiyj,

where t marks the semilength, x marks the number of descents, and y marks the

number of flaws. Then

B(t, x, y) =
1

(1 − xtV (t, x))(1 − xytV (yt, x)) − xyt2V (t, x)V (yt, x)
, (3.8)

where V (t, x) is the generating function given in (3.2).

Proof. Let B1(t, x, y) be the generating function of the Grand Dyck paths ending
with a down step and let B2(t, x, y) be the generating function of the Grand Dyck
paths ending with an up step.

Since every path α ∈ G uniquely decomposes as product of paths of the form
UβD (with β ∈ D) and DγU (with γ ∈ D), we have the linear system (using the
decompositions illustrated in Figure 5 and Figure 6)











B = 1 + B1 + B2,

B1 = xtB + t(P − 1)B,

B2 = xyt + ytB1 + xytB2 + yt(F − 1) + x−1yt(F − 1)B1 + yt(F − 1)B2,

where P = P (t, x) and F = P (ty, x).
Solving for B = B(t, x, y), using the formulas (3.3) and (3.4), we obtain (3.8).

Furthermore, we have

B1(t, x, y) =
xtV (t, x)

(1 − xtV (t, x))(1 − xytV (yt, x)) − xyt2V (t, x)V (yt, x)
,

B2(t, x, y) =
xytV (yt, x) − (x− 1)xyt2V (t, x)V (yt, x)

(1 − xtV (t, x))(1 − xytV (yt, x)) − xyt2V (t, x)V (yt, x)
.
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Figure 5: Decomposition of the Grand Dyck paths ending with a down step.

Figure 6: Decomposition of the Grand Dyck paths ending with an up step.

Theorem 3.5. The generating function B(t, x, y) can be written as

B(t, x, y) =
yP (ty, x) − P (t, x)

y − 1
,

where P (t, x) is given by (3.1).

Proof. From the previous theorem,

B(t, x, y) =
1

∣

∣

∣

∣

xtV (t, x) − 1 xtV (t, x)

ytV (ty, x) xytV (ty, x) − 1

∣

∣

∣

∣

.

Hence, the result follows from Lemma 3.3.

By the previous theorem, we have

B(t, x, y) =
yP (ty, x) − P (t, x)

y − 1

=
1

y − 1

(

y

∞
∑

n=0

Nn(x)(yt)n −
∞
∑

n=0

Nn(x)tn

)

=
1

y − 1

∞
∑

n=0

Nn(x)(yn+1 − 1)tn

=
∞
∑

n=0

Nn(x)(yn + yn−1 + · · · + y + 1)tn

=
∞
∑

n=0

(

Nn(x)
n
∑

i=0

yi

)

tn.
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Consequently, for 0 ≤ m ≤ n, [ymtn]B(t, x, y) = Nn(x), and [xkymtn]B(t, x, y) =
1
n

(

n

k

)(

n

k−1

)

, for 1 ≤ k ≤ n.
The formula derived above,

[xkymtn]B(t, x, y) =
1

n

(

n

k

)(

n

k − 1

)

,

directly yields the enumeration result stated in Theorem 1.2. It confirms that the
number of Grand Dyck paths of semilength n with exactly k descents and m flaws is
given by the Narayana number 1

n

(

n

k

)(

n

k−1

)

, which is independent of m. This completes
the proof of Theorem 1.2 via the generating function approach presented in this
section.

Since the generating function for the Narayana polynomials Nn(x) is P (t, x) =
∑∞

n=0 Nn(x)tn, it follows that

B(t, x, 1) =
∞
∑

n=0

(n + 1)Nn(x)tn =
∂

∂t
(tP (t, x))

=
1 + x− (1 − x)2t + (1 − x)

√

(1 + t− xt)2 − 4t

2
√

(1 + t− xt)2 − 4t
, (3.9)

and the number of Grand Dyck paths in Gn having k descents is

[xktn]B(t, x, 1) = [xktn]
∞
∑

n=0

(n + 1)Nn(x)tn = (n + 1)Nn,k.

Differentiating with respect to x and evaluating at x = 1, we then obtain
[

∂B(t, x, 1)

∂x

]

x=1

=
1 − 2t− (1 − 4t)

√
1 − 4t

2(1 − 4t)
√

1 − 4t

= 2t + 9t2 + 40t3 + 175t4 + 756t5 + 3234t6 + · · · ,

where the coefficient of tn is equal to (n+ 1)
(

2n−1
n

)

, which is the total number of de-
scents in all paths in Gn. The sequence 2, 9, 40, 175, 756, 3234, · · · is sequence A097070
in OEIS [20].

By setting x = 1 in B(t, x, y), we obtain

B(t, 1, y) =
2√

1 − 4ty +
√

1 − 4t
=

∞
∑

n=0

(

Cn

n
∑

i=0

yi

)

tn.

Differentiating with respect to y and evaluating at y = 1 we then obtain
[

∂B(t, 1, y)

∂y

]

y=1

=
t

(1 − 4t)
√

1 − 4t

= t + 6t2 + 30t3 + 140t4 + 630t5 + 2772t6 + 12012t7 + · · · ,

where the coefficient of tn is equal to (2n − 1)
(

2n−2
n−1

)

, which is the total number of
flaws in all paths in Gn. The sequence 1, 6, 30, 140, 630, 2772, · · · is sequence A002457
in OEIS [20].
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4 Enumerating the Grand Dyck paths ending with a down

step or an up step

In this section, we enumerate the Grand Dyck paths ending with a down step or an
up step, and we present several counting sequences in terms of the Narayana numbers
or the Catalan numbers.

For each refinement parameter, we first derive the corresponding bivariate (or
trivariate) generating function. The explicit integer sequences obtained from their
expansions, together with their OEIS identifications, are summarized in Table 1 at
the end of this section.

Recall that the series P (t, x) and V (t, x) used in this section are the same gener-
ating functions introduced in Lemma 3.1 and Lemma 3.2, respectively. In Section 3,
the notation Pn,k denotes the number of Dyck paths of semilength n with exactly
k peaks. To avoid confusion, in this section we use a different symbol for the cor-
responding quantities of Grand Dyck paths. In particular, we write Gn,k for the
number of Grand Dyck paths of semilength n ending with a down step and having
k descents and exactly one flaw, as stated in Theorem 4.1.

4.1 The Grand Dyck paths ending with a down step

Let B1(t, x, y) be the generating function for the class of Grand Dyck paths ending
with a down step with respect to semilength (marked by t), descents (marked by x)
and flaws (marked by y). Then, from the proof of Theorem 3.4, we obtain

B1(t, x, y) =
xtV (t, x)

(1 − xtV (t, x)) (1 − xytV (yt, x)) − xyt2V (t, x)V (yt, x)
.

Upon differentiating with respect to y and evaluating at y = 0, we obtain another
bivariate generating function in t and x,

[

∂B1(t, x, y)

∂y

]

y=0

=
1 − (2 + x)t + (1 − x)t2 − (1 − t)

√

(1 + t− xt)2 − 4t

2t

= (P (t, x) − 1 − xt) − t (P (t, x) − 1)

=
∞
∑

n=2

(Nn(x) −Nn−1(x)) tn.

The first few terms of the series expansion of
[

∂B1(t,x,y)
∂y

]

y=0
are

[

∂B1(t, x, y)

∂y

]

y=0

= x2t2 + (2x2 + x3)t3 + (3x2 + 5x3 + x4)t4

+(4x2 + 14x3 + 9x4 + x5)t5

+(5x2 + 30x3 + 40x4 + 14x5 + x6)t6 + · · · .

Hence, we can state the following result.
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Theorem 4.1. Let Gn,k be the number of the Grand Dyck paths of semilength n

ending with a down step and having k descents and exactly 1 flaw. Then, for 2 ≤
k ≤ n,

Gn,k =
1

n

(

n

k

)(

n

k − 1

)

− 1

n− 1

(

n− 1

k

)(

n− 1

k − 1

)

= Nn,k −Nn−1,k, (4.1)

and the generating function is given by
∑n

k=2 Gn,kx
k = Nn(x) −Nn−1(x).

Using (4.1) and (3.9), we have computed that

B1(t, x, 1) =
x− x(x− 1)t− x

√

(1 + t− xt)2 − 4t

2
√

(1 + t− xt)2 − 4t
= x

∂

∂x
P (t, x).

Therefore, we obtain [tn]B1(t, x, 1) = x d
dx
Nn(x) =

∑n

k=1
k
n

(

n

k

)(

n

k−1

)

xk and

[xktn]B1(t, x, 1) = k
n

(

n

k

)(

n

k−1

)

, for 1 ≤ k ≤ n. Hence, we obtain the following re-
sult.

Theorem 4.2. Let Dn,k be the total number of the Grand Dyck paths of semilength

n ending with a down step and having k descents. Then, for 1 ≤ k ≤ n,

Dn,k =
k

n

(

n

k

)(

n

k − 1

)

= kNn,k,

and the generating function is given by
∑n

k=1 Dn,kx
k = x d

dx
Nn(x).

Specifically, let P be a standard Dyck path enumerated by Nn,k (i.e., with m = 0).
By definition, P contains exactly k descents. These descents identify k distinct
positions in the sequence where a run of down steps concludes. Let us denote the
indices of the last steps of these k descents as t1, t2, . . . , tk. For each position ti, we
can decompose the path P into a prefix u (consisting of the first ti steps) and a
suffix v. Note that by this construction, u ends with a down step. We then form
a new path P ′ = vu by swapping the two parts. Since u ends with a down step,
the resulting path P ′ is guaranteed to belong to the set of Grand Dyck paths ending
with a down step. Since there are k distinct positions ti to perform this operation,
each single path in Nn,k generates exactly k unique paths in Dn,k.

Some initial terms of B1(t, x, 1) are

B1(t, x, 1) = xt + (x + 2x2)t2 + (x + 6x2 + 3x3)t3 + (x + 12x2 + 18x3 + 4x4)t4

+(x + 20x2 + 60x3 + 40x4 + 5x5)t5 + · · · .

Differentiating with respect to x and evaluating at x = 1, we then obtain

[

∂B1(t, x, 1)

∂x

]

x=1

=
(1 − 2t)2 − (1 − 4t)

√
1 − 4t

2(1 − 4t)
√

1 − 4t

= t + 5t2 + 22t3 + 95t4 + 406t5 + 1722t6 + · · · ,
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where the coefficient of tn is equal to (n+1)
(

2n−2
n

)

+
(

2n−2
n−1

)

, which is the total number
of descents in all paths in Gn ending with a down step.

By setting x = 1 in B1(t, x, 1), we obtain the generating function of the number
of the Grand Dyck paths that end with a down step,

B1(t, 1, 1) = t + 3t2 + 10t3 + 35t4 + 126t5 + 462t6 + · · · .

By setting x = 1 in B1(t, x, y), we obtain

B1(t, 1, y) =
1 −

√
1 − 4t√

1 − 4t +
√

1 − 4ty
.

Some initial terms of B1(t, 1, y) are

B1(t, 1, y) = t + (2 + y)t2 + (5 + 3y + 2y2)t3 + (14 + 9y + 7y2 + 5y3)t4

+(42 + 28y + 23y2 + 19y3 + 14y4)t5 + · · · .

We let Qn(y) = [tn]B1(t, 1, y), n ≥ 1. Then

Qn(y) = [tn]B1(t, 1, y) = [tn]tC(t)B(t, 1, y)

= [tn]

(

∞
∑

n=1

Cn−1t
n

)(

∞
∑

n=0

CnSn(y)tn

)

=
n−1
∑

i=0

Cn−i−1CiSi(y),

where Si(y) =
∑i

j=0 y
j. Therefore, we have

[ym]Qn(y) =
n−1
∑

i=m

Cn−i−1Ci.

Hence we can state the following result.

Theorem 4.3. Let Qn,m be the number of the Grand Dyck paths of semilength n

ending with a down step and having m flaws. Then, for 0 ≤ m ≤ n− 1,

Qn,m =
n−1
∑

i=m

Cn−i−1Ci.

Differentiating with respect to y and evaluating at y = 1, we then obtain

[

∂B1(t, 1, y)

∂y

]

y=1

=

(

1 −
√

1 − 4t
)

t

2(1 − 4t)
√

1 − 4t

= t2 + 7t3 + 38t4 + 187t5 + 874t6 + 3958t7 + · · · ,

where the coefficient of tn is equal to 1
2

(

(2n− 1)
(

2n−2
n−1

)

− 4n−1
)

, which is the total
number of flaws in all paths in Gn ending with a down step.



H. XIN AND H. XIONG/AUSTRALAS. J. COMBIN. 94 (1) (2026), 177–194 190

4.2 The Grand Dyck paths ending with an up step

In this subsection, we enumerate Grand Dyck paths ending with an up step. Since
every Grand Dyck path of semilength n either ends with a down step or an up step,
the corresponding generating functions satisfy

B(t, x, y) = B1(t, x, y) + B2(t, x, y).

Consequently, most results in this subsection can be derived directly from the for-
mulas obtained in Subsection 3.2 and Subsection 4.1. In particular,

[xktn]B(t, x, 1) = (n + 1)Nn,k, [xktn]B1(t, x, 1) = kNn,k,

imply immediately that

[xktn]B2(t, x, 1) = (n− k + 1)Nn,k.

Hence we obtain the following result.

Theorem 4.4. Let D′
n,k be the number of the Grand Dyck paths of semilength n

ending with an up step and having k descents. Then, for 1 ≤ k ≤ n,

D′
n,k =

n− k + 1

n

(

n

k

)(

n

k − 1

)

= (n− k + 1)Nn,k.

Differentiating with respect to x and evaluating at x = 1, we then obtain

[

∂B2(t, x, 1)

∂x

]

x=1

=
(1 − 2t)t

(1 − 4t)
√

1 − 4t

= t + 4t2 + 18t3 + 80t4 + 350t5 + 1512t6 + · · · ,

where the coefficient of tn is equal to n
(

2n−2
n−1

)

, which is the total number of descents
in all paths in Gn ending with an up step.

By setting x = 1 in B2(t, x, y), we have

B2(t, 1, y) =
1 −√

1 − 4ty√
1 − 4t +

√
1 − 4ty

.

Some initial terms of B2(t, 1, y) are

B2(t, 1, y) = yt + (y + 2y2)t2 + (2y + 3y2 + 5y3)t3 + (5y + 7y2 + 9y3 + 14y4)t4

+(14y + 19y2 + 23y3 + 28y4 + 42y5)t5 + · · · .

Differentiating with respect to y and evaluating at y = 1, we then obtain

[

∂B2(t, 1, y)

∂y

]

y=1

=
(1 +

√
1 − 4t)t

2(1 − 4t)
√

1 − 4t

= t + 5t2 + 23t3 + 102t4 + 443t5 + 1898t6 + 8054t7 + · · · ,
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where the coefficient of tn is equal to 1
2

(

(2n− 1)
(

2n−2
n−1

)

+ 4n−1
)

, which is the total
number of flaws in all paths in Gn ending with an up step.

We let Q′
n(y) = [tn]B2(t, 1, y), n ≥ 1. Then

Q′
n(y) = [tn]B2(t, 1, y) = [tn]tyC(ty)B(t, 1, y)

= [tn]

(

∞
∑

n=1

Cn−1y
ntn

)(

∞
∑

n=0

Cn

(

n
∑

j=0

yj

)

tn

)

=
n−1
∑

i=0

Cn−i−1Ciy
n−i

(

i
∑

j=0

yj

)

=
n−1
∑

i=0

Cn−i−1Ci

i
∑

j=0

yn−i+j =
n−1
∑

j=0

n+j
∑

i=0

Cn−i−1Ciy
n−i+j

=
n
∑

m=1

m−1
∑

i=0

Cn−i−1Ciy
m.

Therefore, we have

[ym]Q′
n(y) =

m−1
∑

i=0

Cn−i−1Ci.

Hence we can state the following result.

Theorem 4.5. Let Q′
n,m be the number of the Grand Dyck paths of semilength n

ending with an up step and having m flaws. Then, for 1 ≤ m ≤ n,

Q′
n,m =

m−1
∑

i=0

Cn−i−1Ci.

5 Conclusion

In this work, we proved a refined Chung-Feller theorem for Grand Dyck paths by
showing that the joint enumeration by flaws and descents is given by the Narayana
numbers Nn,k and, remarkably, is independent of the number of flaws. This refined
independence phenomenon appears to be new and highlights the robustness of the
Chung-Feller property under additional statistics.

We also obtained explicit enumerations for certain natural subclasses of Grand
Dyck paths, illustrating further structural consequences of the refinement.

Several directions naturally follow from our results. One is to investigate whether
analogous refined Chung-Feller phenomena occur in other families of lattice paths,
such as Motzkin or Schröder paths. Another is to study q-analogues or additional
statistics (e.g., peaks or valleys) to see whether similar independence properties per-
sist.
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Table 1: Integer sequences for Grand Dyck paths with their OEIS identifications
Sequence Description OEIS Initial Terms

(Gn,k)2≤k≤n

Number of paths in Gn ending
with a down step, with k de-
scents and exactly 1 flaw

A119308[20, 30]1, 2, 1, 3, 5, 1, 4, 14, . . .

(Dn,k)n≥1,k≥1

Number of paths in Gn ending
with a down step and having
k descents

A132813[20] 1, 1, 2, 1, 6, 3, 1, 12, . . .

[

∂B1(t,x,1)
∂x

]

x=1

Total number of descents in
all paths in Gn ending with a
down step

A141222[20]
1, 5, 22, 95, 406, 1722,
7260, 30459, . . .

B1(t, 1, 1)
Number of paths in Gn ending
with a down step

A001700[20]
1, 3, 10, 35, 126, 462,
1716, 6435, . . .

(Qn,m)n≥1,m≥0

Number of paths in Gn ending
with a down step and having
m flaws

A067323[20] 1, 2, 1, 5, 3, 2, 14, 9, . . .

[

∂B1(t,1,y)
∂y

]

y=1

Total number of flaws in all
paths in Gn ending with a
down step

A000531[20]
1, 7, 38, 187, 874, 3958,
17548, 76627, . . .

(D′
n,k)n≥1,k≥1

Number of paths in Gn ending
with an up step and having k

descents
A103371[20] 1, 2, 1, 3, 6, 1, 4, 18, . . .

[

∂B2(t,x,1)
∂x

]

x=1

Total number of descents in
all paths in Gn ending with an
up step

A037965[20]
0, 1, 4, 18, 80, 350,
1512, 6468, . . .

[

∂B2(t,1,y)
∂y

]

y=1

Total number of flaws in all
paths in Gn ending with an up
step

A258431[20]
0, 1, 5, 23, 102, 443,
1898, 8054, . . .

(Q′
n,m)n≥1,m≥1

Number of paths in Gn ending
with an up step and having m

flaws
A028364[20] 1, 1, 2, 2, 3, 5, 5, 7, . . .
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