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Abstract

Analogously to de Bruijn sequences, orientable sequences have applica-
tion in automatic position-location applications and, until recently, stud-
ies of these sequences focused on the binary case. In recent work by
Alhakim et al., recursive methods of construction were described for ori-
entable sequences over arbitrary finite alphabets, requiring ‘starter se-
quences’ with special properties. Some of these methods required as
input special orientable sequences, i.e. orientable sequences which were
simultaneously negative orientable. We exhibit methods for constructing
special orientable sequences with properties appropriate for use in two of
the recursive methods of Alhakim et al. As a result we are able to show
how to construct special orientable sequences for arbitrary sizes of alpha-
bet (larger than a small lower bound) and for all window sizes. These
sequences have periods asymptotic to the optimal as the alphabet size
increases.

1 Introduction

Orientable sequences, i.e. periodic sequences with elements drawn from a finite alpha-
bet with the property that any subsequence of n consecutive elements (an n-tuple)
occurs at most once in either direction, were introduced in 1992 [3, 4]. They are
of interest due to their application in certain position-resolution scenarios. For the
binary case, a construction and an upper bound on the period were established by
Dai et al. [4], and further constructions were established by Gabrić and Sawada [6]
and Mitchell and Wild [8]. A bound on the period and methods of construction for
q-ary alphabet sequences (for arbitrary q) were given by Alhakim et al. [2].

In this paper we examine a particular class of orientable sequences known as
special orientable sequences ; such sequences were defined by Alhakim et al. [2], who
described a series of recursive constructions for orientable sequences using special
orientable sequences as input. We give a bound on the length of special orientable
sequences and describe various methods of construction. We then show how certain of
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the constructed sequences can be used to obtain orientable sequences using methods
defined in [2].

1.1 Basic terminology

We first establish some simple notation, following [2]. For mathematical convenience
we consider the elements of a sequence to be elements of Zq for an arbitrary integer
q > 1.

For a sequence S = (si) we write sn(i) = (si, si+1, . . . , si+n−1). Since we are
interested in tuples occurring either forwards or backwards in a sequence we also
introduce the notion of a reversed tuple, so that if u = (u0, u1, . . . , un−1) is a q-
ary n-tuple (a string of symbols of length n) then uR = (un−1, un−2, . . . , u0) is its
reverse. The negative of a q-ary n-tuple u = (u0, u1, . . . , un−1) is the n-tuple −u =
(−u0,−u1, . . . ,−un−1).

We can then give the following.

Definition 1.1 ([2]). A q-ary n-window sequence S = (si) is a periodic sequence of
elements from Zq (q > 1, n > 1) with the property that no n-tuple appears more
than once in a period of the sequence, i.e. with the property that if sn(i) = sn(j) for
some i, j, then i ≡ j (mod m) where m is the period of the sequence.

Definition 1.2 ([2]). An n-window sequence S = (si) is said to be an orientable
sequence of order n (an OSq(n)) if sn(i) 6= sn(j)

R, for any i, j.

We also need two related definitions.

Definition 1.3 ([2]). An n-window sequence S = (si) is said to be a negative ori-
entable sequence of order n (a NOSq(n)) if sn(i) 6= −sn(j)

R, for any i, j.

Definition 1.4 ([2]). An orientable sequence S = (si) of order n is said to be a
special orientable sequence of order n (a SOSq(n)) if, for any i, j, sn(i) 6= −sn(j)

R,
i.e. it is also negative orientable.

As discussed in Alhalkim at al. [2], it turns out that negative and special orientable
sequences are of importance in constructing orientable sequences. Observe that a
sequence is orientable if and only if it is negative orientable for the case q = 2. Also
note that if S = (si) is orientable, negative orientable or special orientable then so
is its negative (−si).

Bounds on the period of, and methods of construction for, negative orientable
sequences were given by Mitchell and Wild [9]; they also showed how to use the con-
structed negative orientable sequences to construct families of orientable sequences
employing two approaches defined in [2]. By contrast, in this paper we focus on
special orientable sequences, giving a period bound and methods of construction.
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1.2 The de Bruijn graph and the Lempel Homomorphism

Following Alhakim et al. [2] we also introduce the de Bruijn graph. For positive
integers n and q greater than one, let Zn

q be the set of all qn vectors of length n with
entries from the group Zq of residues modulo q. A de Bruijn sequence of order n with
alphabet in Zq is a periodic sequence that includes every possible n-tuple precisely
once as a subsequence of consecutive symbols in one period of the sequence.

The order n de Bruijn digraph, Bn(q), is a directed graph with Z
n
q as its vertex set

and where, for any two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn), (x;y)
is an edge if and only if yi = xi+1 for every i (1 ≤ i < n). We then say that x is
a predecessor of y and y is a successor of x. Evidently, every vertex has exactly q
successors and q predecessors. Furthermore, two vertices are said to be conjugates if
they have the same set of successors.

A cycle in Bn(q) is a path that starts and ends at the same vertex. It is said to
be vertex disjoint if it does not visit any vertex more than once. Two cycles or two
paths in the digraph are vertex-disjoint if they do not have a common vertex. This
terminology departs somewhat from standard graph theoretic terminology where the
term closed path is typically used for what we call a cycle, and cycle is used where
we use vertex-disjoint cycle.

Following the notation of Lempel [7], a convenient representation of a vertex dis-
joint cycle (x(1); . . . ;x(l)) is the ring sequence [x1, . . . , xl] of symbols from Zq defined
such that the ith vertex in the cycle starts with the symbol xi. Corresponding to
the ring sequence [x1, . . . , xl] is an n-window sequence S = (si) where si+tl = xi+1

for i = 0, . . . , l − 1 and t ≥ 0. Conversely, an n-window sequence determines a ring
sequence of a vertex disjoint cycle. A translate of a word x = (x1, . . . , xn) is a word
x + λ = (x1 + λ, . . . , xn + λ) where λ is any nonzero element in Zq and addition is
performed in Zq. We also define a translate of a cycle as the cycle obtained by a
translate of the ring sequence that defines this cycle.

Finally, we need a well-established generalisation of the Lempel graph homomor-
phism [7] to non-binary alphabets — see, for example, Alhakim and Akinwande [1]
(in fact we use a simplified version of their definition).

Definition 1.5. Define a function D from Bn(q) to Bn−1(q) as follows. If a =
(a1, a2, . . . , an), then D(a) = (b1, b2, . . . , bn−1), where bi = ai+1 − ai mod q for i = 1
to n− 1.

We extend the notation to allow the Lempel morphismD to be applied to periodic
sequences in the natural way, as we now describe. That is, D is the map from the
set of periodic sequences to itself defined by

D((si)) = (ti) : tj = sj+1 − sj.

The image of a sequence of period m will clearly have period dividing m. In the
usual way we can define D−1 to be the pre-image of D, i.e. if S is a periodic sequence
than D−1(S) is the set of all sequences T with the property that D(T ) = S.
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The weight w(S) of a sequence S is the weight of the ring sequence corresponding
to S (that is the sum of the terms s0, . . . , sm−1 treating si as an integer in the range
[0, q − 1]). Similarly we write wq(S) for w(S) mod q. The notion of weight is key to
the rest of the paper since, when applied to an n-window sequence of period m and
weight coprime to q, its pre-image under D−1 consists of q sequences of period qm
whose ring sequences are cyclic shifts of each other. This enables us to identify a
unique element of this set to be the inverse, e.g. the one starting with a zero.

1.3 Related work

This paper builds on the work of Alhakim et al. [2], in which recursive methods
of construction for non-binary orientable sequences are described. Alhakim et al.
described a range of methods of recursively generating orientable sequences using
sequences with special properties, notably negative orientable and special orientable
sequences. However, general methods for providing ‘starter’ sequences for these
constructions were not provided, and this paper is aimed at addressing this.

In a recent paper [5], Gabrić and Sawada showed how to construct non-binary
orientable sequences of asymptotically maximal period. Their approach involves
applying the inverse Lempel Homomorphism to an orientable sequence and then
demonstrating ways to join together the multiple sequences that result. In parallel
work, Mitchell and Wild [9] showed how to construct orientable sequences using a
rather different approach, namely first constructing negative orientable sequences and
then applying certain methods of Alhakim et al. to construct larger period orientable
sequences. This paper follows a similar path, except that we show how to construct
special orientable sequences, and then use these in other methods of Alhakim et al.
to construct larger period orientable sequences.

2 A simple period bound

By definition it follows automatically that the period of an SOSq(n) is bounded
above by the bounds on the period of an orientable sequence and that of a negative
orientable sequence established in [2, Theorem 4.11] and [9, Theorem 3.5]. We next
give a bound on the period of an SOSq(n) which is of the same order as these general
bounds.

Theorem 2.1. Suppose S is an SOSq(n). Then the period of S is at most:

qn − q(n+1)/2 − q(n−1)/2 + 1

2
if q and n are both odd;

qn − 2qn/2 + 1

2
if q is odd and n is even;

qn − q(n+1)/2 − 2q(n−1)/2 + 2(n+3)/2 − 2(n+1)/2

2
if q is even and n is odd;

qn − 2qn/2 + 2(n+2)/2 − 2n/2

2
if q and n are both even.
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Proof. First observe that if an n-tuple s satisfies s = sR or s = −sR then it cannot
occur in S since S is both orientable and negative orientable. Hence, since at most
one of s and sR can occur in S, the period of S is at most half the number of q-ary
n-tuples s such that s 6= sR and s 6= −sR. We examine the four cases separately.
Note that the q odd cases are simpler, since when q is odd there is only one n-tuple
satisfying s = −s, namely the all-zero n-tuple.

• Suppose q and n are both odd. Then there is one n-tuple s with s = −s =
sR = −sR; q(n+1)/2 − 1 tuples with s = sR 6= −s = −sR; q(n−1)/2 − 1 with
s = −sR 6= −s = sR; and hence there are h with s,−s, sR,−sR all distinct,
where h = qn−q(n+1)/2−q(n−1)/2+1. The bound is h/2, and the result follows.

• Suppose q is odd and n is even. Then there is one n-tuple s with s = −s =
sR = −sR; qn/2−1 with s = sR 6= −s = −sR; qn/2−1 with s = −sR 6= −s = sR;
and hence h = qn − 2qn/2 + 1 with s,−s, sR,−sR all distinct. The bound is
h/2, and the result follows.

• Suppose q is even and n is odd. Then there are 2(n+1)/2 n-tuples s with s =
−s = sR = −sR; N = 2n − 2(n+1)/2 n-tuples with s = −s 6= sR = −sR;
q(n+1)/2 − 2(n+1)/2 with s = sR 6= −s = −sR; 2q(n−1)/2 − 2(n+1)/2 with s =
−sR 6= −s = sR; and hence h = qn − q(n+1)/2 − 2q(n−1)/2 + 2(n+3)/2 − 2n with
s,−s, sR,−sR all distinct. The bound is (N + h)/2, and the result follows.

• Suppose q and n are both even. Then there are 2n/2 n-tuples s with s = −s =
sR = −sR; N = 2n − 2n/2 n-tuples with s = −s 6= sR = −sR; qn/2 − 2n/2

with s = sR 6= −s = −sR; qn/2 − 2n/2 with s = −sR 6= −s = sR; and
hence h = qn−2qn/2+2(n+2)/2−2n with s,−s, sR,−sR all distinct. The bound
is (N + h)/2, and the result follows.

3 Constructing special orientable sequences

3.1 A simple construction

We first show how to construct an SOSq(n) with period about one quarter the bound
given by Theorem 2.1 for every odd q ≥ 5 when n = 2.

Construction 3.1. Let q, q′ be integers with q′ > q > 1. For x ∈ Zq we write x for
the non-negative integer in {0, 1, . . . , q − 1} belonging to the residue class x, and x′

for the residue class of Zq′ that contains x. Let S = [s0, . . . , sm−1] be an OSq(n).
Let S ′ = [s′0, . . . , s

′
m−1] be the sequence over Zq′ obtained from S in the obvious

notational way.

Theorem 3.1. If S is an OSq(n), q′ ≥ 2q − 1 and S ′ is obtained from S using
Construction 3.1, then S ′ is an SOSq′(n).
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Proof. First observe that if x is a non-zero term of S ′ then −x 6= y for any term y
of S ′.

Suppose 0 ≤ i, j < m. We need to establish three properties.

• S ′ is an n-window sequence. Suppose s′n(i) = s′n(j). Then sn(i) = sn(j) and so
i ≡ j (mod m) (i.e. i = j).

• S ′ is orientable. Suppose s′n(i) = s′Rn (j). Then sn(i) = sRn (j). This is impossible
since S is an OSq(n).

• S ′ is negative orientable. Finally, suppose s′n(i) = −s′Rn (j). Then, by the
observation above, s′i = s′i+1 = · · · = s′i+n−1 = 0 so that si = si+1 = · · · =
si+n−1 = 0, contradicting the assumption that S is an OSq(n).

When n = 2, this allows us to give the following.

Corollary 3.2. There exists an SOSq(2) of period about one quarter of the maximum
period given in Theorem 2.1 for all q ≥ 5.

Proof. From [9, Lemma 2.1] there exists an OSq(2) with period either q(q − 1)/2 (q
odd) or q(q − 2)/2 (q even) for every q ≥ 3. From Construction 3.1, this implies the
existence of an SOS2q−1(2) and an SOS2q(2) with period either q(q − 1)/2 (q odd)
or q(q − 2)/2 (q even) for every q ≥ 3. The result follows, since (by Theorem 2.1)
the maximum period for an SOS2q−1(2) is (2q− 2)2/2 and the maximum period for
an SOS2q(2) is ((2q − 1)2 + 1)/2.

3.2 A second construction

We next modify the method given immediately above to double the period and so
enable the construction of special orientable sequences with period approximately
half the maximum when n = 2. We do so by means of a general result regarding the
relationship between a sequence and its negative.

Following Alhakim et al. [2] we make the following definition.

Definition 3.1. Suppose S = (si) and T = (ti) are n-window sequences. They are
said to be special-orientable-disjoint (s-disjoint) if:

1. they are n-tuple disjoint, i.e. sn(i) 6= tn(j) for any i, j;

2. they are orientable disjoint (o-disjoint), i.e. sn(i) 6= tn(j)
R for any i, j; and

3. they are negative orientable disjoint (n-disjoint), i.e. sn(i) 6= −tn(j)
R for any

i, j.

We can now state the following result.
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Theorem 3.3. Suppose S is an SOSq(n) with the property that, for any n-tuple s,
at most one of s and −s is contained in S. Then S and −S are s-disjoint.

Proof. S and −S are clearly n-tuple disjoint since we assumed that at most one of
s and −s is contained in S for any s. Now sn(i) 6= −sn(j)

R for all i, j since S is an
NOSq(n), and hence S and −S are o-disjoint. Finally, sn(i) 6= −(−sn(j)

R) = sn(j)
R

for all i, j since S is an OSq(n), and hence S and −S are n-disjoint.

Remark 3.1. It follows immediately from Theorem 3.3 that if S is an SOSq(n) of
period m with the property that, for any n-tuple s, at most one of s and −s is
contained in S, and if in addition S and −S share an (n − 1)-tuple, then S and
−S can be joined to form an SOSq(n) with period 2m. This follows since, when
concatenating s-disjoint sequences, the only possible problem arises for n-tuples that
‘cross the join’, and by joining them on a common n− 1 tuple we can avoid creating
any new n-tuples.

Next observe that any sequence S obtained from Construction 3.1 has the prop-
erty that, for any n-tuple s, at most one of s and −s is contained in S. This
immediately motivates the following construction.

Construction 3.2. Let q, q′ be integers with q′ ≥ 2q − 1 > 2. For x ∈ Zq we write
x for the non-negative integer in {0, 1, . . . , q − 1} belonging to the residue class x
and x′ for the residue class of Zq′ that contains x. Let S = [s0, s1, . . . , sm−1] be an
OSq(n). Let S

′ = [s′0, s
′
1, . . . , s

′
m−1] be the sequence over Zq′ obtained from S in the

obvious notational way. Let S ′′ = [s′′0, s
′′
1, . . . , s

′′
2m−1] be the periodic sequence whose

ring sequence is the concatenation of the ring sequences of S ′ and −S ′.

We next introduce some notation. Let q, q′ be integers with q′ ≥ 2q − 1 > 2.
As in Construction 3.2, given x ∈ Zq, we write x for the integer in {0, 1, . . . , q − 1}
belonging to the residue class x, and x′ for the residue class of Zq′ that contains x.
Similarly, for y ∈ Zq′ we write y for the integer in {0, 1, . . . , q′ − 1} belonging to the
residue class y. Let Eq,q′ : Zq → Zq′ be the mapping given by Eq,q′(x) = x′ for all
x ∈ Zq.

Let Mq,q′ : Zq′ → Zq be the mapping given by

Mq,q′(y) =











x when 0 ≤ y = x ≤ q − 1 (so that x′ = y),

0 when q ≤ y ≤ q′ − q, and

x when q′ − q + 1 ≤ y ≤ q′ − 1 and x = q′ − y (so that x′ = −y).

When q and q′ are understood we simply write E and M for Eq,q′ and Mq,q′

respectively.

Note that it follows immediately from the definitions of E and M that M(−y) =
M(y) for all y ∈ Zq′ , in particular M(E(x)) = M(−E(x)) = x for all x ∈ Zq. We
extend the application of E and M to n-tuples and sequences in the natural way,
that is by applying them to each term. So, in Construction 3.5, S ′ = E(S) and
M(s′′n(i)) = sn(i), M(s′′Rn (i)) = sRn (i) and M(−s′′n(i)) = sn(i) for all i.
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Theorem 3.4. If S is an OSq(n) and S ′′ is obtained from S using Construction 3.2
then S ′′ is an SOSq′(n) with wq′(S

′′) = 0.

Proof. We establish three properties.

• S ′′ is an n-window sequence. Suppose s′′n(i) = s′′n(j). Then M(s′′n(i)) =
M(s′′n(j)), that is sn(i) = sn(j) and so i ≡ j (mod m) as S is an n-window
sequence of period m. Since s′′n(i +m) = −s′′n(i) and sn(i) cannot have every
term equal to 0, we deduce that i ≡ j (mod 2m).

• S ′′ is orientable. Suppose s′′n(i) = s′′Rn (j). Then M(s′′n(i)) = M(s′′Rn (j)), that is
sn(i) = sRn (j) which is impossible as S is an orientable sequence.

• S ′′ is negative orientable. Finally, suppose s′′n(i) = −s′′Rn (j). Then M(s′′n(i)) =
M(−s′′Rn (j)), that is sn(i) = sRn (j) which is impossible as S is an orientable
sequence.

The result follows, observing that wq′(S
′′) = wq′(S

′) + wq′(−S ′) = wq′(S
′)− wq′(S

′)
= 0.

The following simple example demonstrates Construction 3.2.

Example 3.1. First observe that S = [01234 02413] is an OS5(2) (obtained using
Construction 5.3 of [2])1.

If we put q′ = 9, then S ′ = [01234 02413] and

S ′′ = S ′||(−S ′) = [01234 02413 08765 07586]

(where || denotes sequence concatenation). It follows from Theorem 3.4 that S ′′ is
an SOS9(2).

We can also perform the same construction with q′ = 10. In this case

S ′′ = S ′||(−S ′) = [01234 02413 09876 08697]

and S ′′ is an SOS10(2).

Corollary 3.5. There exists an SOSq(2), of period

q(q − 4)

4
if q ≡ 0 (mod 4),

(q + 1)(q − 1)

4
if q ≡ 1 (mod 4),

q(q − 2)

4
if q ≡ 2 (mod 4),

(q + 1)(q − 3)

4
if q ≡ 3 (mod 4),

for all q ≥ 5.
1Here and in other examples the spaces are included simply to make reading easier.
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Proof. Suppose q ≥ 5. If q ≡ 0 (mod 4) then q
2
is even and by [9, Lemma 2.1]

there exists an OS q

2
(2) with period q

2
( q
2
− 2)/2; hence by Theorem 3.4 there exists

an SOSq(2) of period
q(q−4)

4
.

If q ≡ 1 (mod 4) then q+1
2

is odd and by [9, Lemma 2.1] there exists an OS q+1

2

(2)

with period q+1
2
( q+1

2
− 1)/2; hence by Theorem 3.4 there exists an SOSq(2) of period

(q+1)(q−1)
4

.

If q ≡ 2 (mod 4) then q
2
is odd and by [9, Lemma 2.1] there exists an OS q

2
(2)

with period q
2
( q
2
− 1)/2; hence by Theorem 3.4 there exists an SOSq(2) of period

q(q−2)
4

.

If q ≡ 3 (mod 4) then q+1
2

is even and by [9, Lemma 2.1] there exists an OS q+1

2

(2)

with period q+1
2
( q+1

2
− 2)/2; hence by Theorem 3.4 there exists an SOSq(2) of period

(q+1)(q−3)
4

.

We remark that the period of these Special Orientable Sequences of order 2 is
approximately half that of the maximum period given by Theorem 2.1.

3.3 Extending the construction

We now further modify the previous constructions, doubling the period again, to
enable us to obtain special orientable sequences which have period of the same order
as the bound of Theorem 2.1 when n = 2.

Construction 3.3. Let q, q′ be integers with q′ ≥ 2q > 3. Let S = [s0, . . . , sm−1] be
an OSq(n) and let S ′ = [s′0, . . . , s

′
m−1] be the OSq′(n) constructed as in Construc-

tion 3.2. Let T = [t0, t1, . . . , tm−1] be the sequence over Zq′ such that ti = (−1)i+m−1s′i
for i = 0, . . . ,m− 1 unless s′i = 0 in which case ti = (−1)i+m−1q.

Lemma 3.6. The sequence T of Construction 3.3 is an SOSn(q
′).

Proof. We establish three properties.

• T is an n-window sequence. Suppose tn(i) = tn(j). Then M(tn(i))=M(tn(j)),
so that sn(i) = sn(j) since M(q) = M(−q) = 0. Hence i = j (mod m) as S is
an n-window sequence of period m.

• T is orientable. Suppose tn(i) = tRn (j). Then M(tn(i)) = M(tRn (j)), so that
sn(i) = sRn (j), which is impossible as S is an orientable sequence.

• T is negative orientable. Finally, suppose tn(i) = −tRn (j). Then M(tn(i)) =
M(−tRn (j)), that is sn(i) = sRn (j), which is impossible as S is an orientable
sequence.

The result follows.
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An example of Construction 3.3 follows.

Example 3.2. As in Example 3.1, let S = [01234 02413] be the OS5(2) obtained
using Construction 5.3 of [2].

If we put q′ = 10, then, as m = 10, (−1)m−1 = −1 and

T = [51836 58493].

It follows from Lemma 3.6 that T is an SOS10(2).

We next show that we can adjoin −T to T to obtain an SOS with twice the
period, just as was the case with S ′.

Construction 3.4. Let q, q′, n be integers with q′ ≥ 2q > 3 and n > 1. Let
S = [s0, . . . , sm−1] be an OSq(n). Let T = [t0, t1, . . . , tm−1] be as in Construction 3.3.
Let T ′ be the sequence whose ring sequence is the concatenation of the ring sequences
of T and −T .

Theorem 3.7. If S is an OSq(n) and T ′ is obtained from S using Construction 3.4
then T ′ is an SOSq′(n) with wq′(T

′) = 0.

Proof. We establish three properties.

• T ′ is an n-window sequence. Suppose t′n(i)=t′n(j). Then M(t′n(i))=M(t′n(j)),
so that sn(i) = sn(j) since M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is
an n-window sequence of period m. Since t′n(i+m) = −t′n(i) 6= t′n(i), as sn(i)
is not the all 0 tuple, we must have j = i (mod 2m).

• T ′ is orientable. Suppose t′n(i) = t
′R
n (j). Then M(t′n(i)) = M(t

′R
n (j)), so that

sn(i) = sRn (j), which is impossible as S is an orientable sequence.

• T ′ is negative orientable. Finally, suppose t′n(i) = −t
′R
n (j). Then M(t′n(i)) =

M(−t
′R
n (j)), that is sn(i) = sRn (j), which is impossible as S is an orientable

sequence.

The result follows, observing that wq′(T
′) = wq′(T ) + wq′(−T ) = wq′(T ) − wq′(T )

= 0.

We extend our previous example to give an example of Construction 3.4.

Example 3.3. As in Examples 3.1 and 3.2, let S = [01234 02413] be the OS5(2)
obtained using Construction 5.3 of [2].

If we put q′ = 10, then, as in Example 3.2

T = [51836 58493].

We then have that

T ′ = T ||(−T ) = [51836 58493 59274 52617].

It follows from Theorem 3.7 that T ′ is an SOS10(2).
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We complete the extended construction by combining the sequence T ′ generated
using Construction 3.4 with the sequence S ′′ generated using Construction 3.2.

Corollary 3.8. Let q, q′ be integers with q′ ≥ 2q + 1 > 4. Let S = [s0, . . . , sm−1] be
an OSq(n) of period m with s0 = 0. Let S ′′ be obtained from S as in Construction 3.2
and let T ′ be obtained from S as in Construction 3.4. Then S

′′

and T ′ are s-disjoint.

Proof. We consider three cases.

• Suppose s′′n(i) = t′n(j). Then M(s′′n(i)) = M(t′n(j)), so that sn(i) = sn(j) since
M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is an n-window sequence of
periodm. Suppose 0 ≤ i ≤ 2m−1. Then for some k with 0 ≤ k ≤ n−1, we have
that s′′i+ℓ for ℓ = 0, . . . , k all lie in {0, 1, . . . , q−1} or in {0,−1, . . . ,−(q−1)} and
s′′i+ℓ for ℓ = k+1, . . . , n− 1 all lie in {0,−1, . . . ,−(q−1)} or in {0, 1, . . . , (q−1)}
respectively while the terms of t′n(j) alternate between the two sets {1, . . . , q}
and {−1, . . . ,−q} unless m is even and t′n(j) contains t

′
αm−1 and t′αm for some

α ≥ 1. Since n > 1 and s′′αm = 0 so that t′αm = ±q this is not possible. It
follows that S

′′

and T ′ are n-window disjoint.

• Suppose s′′n(i) = t′Rn (j). Then M(s′′n(i)) = M(t′Rn (j)), so that sn(i) = sRn (j)
since M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is an orientable sequence
of period m. Now a similar argument as above about where the terms of s′′n(i)
and t′Rn (j) lie shows that the supposition is impossible and it follows that S ′′

and T ′ are o-disjoint.

• Finally, suppose s′′n(i) = −t′Rn (j). Then M(s′′n(i)) = M(−t′Rn (j)), so that
sn(i) = sRn (j) since M(q) = M(−q) = 0. Hence i ≡ j (mod m) as S is
an orientable sequence of period m. Now a similar argument as above about
where the terms of s′′n(i) and t′Rn (j) lie shows that the supposition is impossible
and it follows that S ′′ and T ′ are n-disjoint.

The result follows.

Corollary 3.9. Suppose q, q′, n are integers satisfying q′ ≥ 2q+1, q > 1 and n > 1.
If S is an OSq(n) of period m with s0 = 0, and S ′′ and T ′ are obtained from S using
Constructions 3.2 and 3.4, then the ring sequences of S ′′ and T ′ may be concatenated
to obtain the ring sequence of an SOSq′(n) U of period 4m, where wq′(U) = 0.

Proof. As S
′′

and T ′ are s-disjoint SOSq′(n) we need only check that the n-tuples
un(i), i = 2m − n + 1, . . . , 2m − 1 and i = 4m − n + 1, . . . , 4m − 1 do not appear
as un(j) for any j 6≡ i (mod 4m), nor as uR

n (j) for any j, nor as −uR
n (j) for any

j. Suppose un(i), with i ∈ {2m − n + 1, . . . , 2m − 1} or with i ∈ {4m − n +
1, . . . , 4m − 1} equals un(j) for some j. Then M(un(i)) = M(un(j)) are n-tuples
of S so that j ≡ i (mod m). We now need only check that for ℓ = 1, . . . n − 1
the four n-tuples um−ℓ,u2m−ℓ,u3m−ℓ,u4m−ℓ are distinct. This follows if the four
2-tuples (um−1, um), (u2m−1, u2m), (u3m−1, u3m), (u4m−1, u4m) are distinct. That is
(s′m−1, 0), (−s′m−1, (−1)m−1q), (tm−1, (−1)mq), (−tm−1, 0) are distinct. This is easily
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checked, knowing that tm−1 = (−1)2m−2s′m−1 6= −s′m−1 unless s
′
m−1 = 0 in which case

tm−1 = (−1)2m−2q. It follows that j = i (mod 4m) and U is an n-window sequence.

Similar arguments as before, using the mapping M , show that un(i) does not
equal uR

n (j) or −uR
n (j) for any j, so U is both orientable and negative orientable.

Thus U is an SOSq′(n). The result follows, observing that wq′(U) = wq′(S
′′

) +
wq′(−S

′′

) + wq′(T
′) + wq′(−T ′) = wq′(S

′′

)− wq′(−S
′′

) + wq′(T
′)− wq′(−T ′) = 0.

A simple example of Corollary 3.9 is as follows.

Example 3.4. Suppose q = 5, q′ = 11 and n = 2. As previously, we build upon the
OS5(2) with ring sequence S = [01234 02413]. Analogously to the second part of
Example 3.1 we have

S ′′ = [0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 10, 9, 8, 7, 0, 9, 7, 10, 8].

Analogously to Example 3.3 we have

T ′ = [6, 1, 9, 3, 7, 5, 9, 4, 10, 3, 5, 10, 2, 8, 4, 6, 2, 7, 1, 8].

We simply concatenate them to obtain

U =[0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 10, 9, 8, 7, 0, 9, 7, 10, 8,

6, 1, 9, 3, 7, 5, 9, 4, 10, 3, 5, 10, 2, 8, 4, 6, 2, 7, 1, 8]

which by Corollary 3.9 is an SOS11(2).

Corollary 3.10. There exists an SOSq(2) of period:

(q − 2)(q − 4)

2
if q ≡ 0 (mod 4),

(q − 1)(q − 5)

2
if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
if q ≡ 2 (mod 4),

(q − 1)(q − 3)

2
if q ≡ 3 (mod 4),

for all q ≥ 6.

Proof. Suppose q ≥ 6.

• If q ≡ 0 (mod 4) then q−2
2

is odd, and by [9, Lemma 2.2] there exists an

OS q−2

2

(2) with period q−2
2
( q−2

2
− 1)/2. So by Corollary 3.9 there exists an

SOSq(2) of period 4 q−2
2
( q−2

2
− 1)/2 = (q−2)(q−4)

2
.

• If q ≡ 1 (mod 4) then q−1
2

is even, and by [9, Lemma 2.2] there exists an

OS q−1

2

(2) with period q−1
2
( q−1

2
− 2)/2. So by Corollary 3.9 there exists an

SOSq(2) of period 4 q−1
2
( q−1

2
− 2)/2 = (q−1)(q−5)

2
.
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• If q ≡ 2 (mod 4) then q−2
2

is even, and by [9, Lemma 2.2] there exists an

OS q−2

2

(2) with period q−2
2
( q−2

2
− 2)/2. So by Corollary 3.9 there exists an

SOSq(2) of period 4 q−2
2
( q−2

2
− 2)/2 = (q−2)(q−6)

2
.

• If q ≡ 3 (mod 4) then q−1
2

is odd, and by [9, Lemma 2.2] there exists an

OS q−1

2

(2) with period q−1
2
( q−1

2
− 1)/2. So by Corollary 3.9 there exists an

SOSq(2) of period 4 q−1
2
( q−1

2
− 1)/2 = (q−1)(q−3)

2
.

Observe that all the constructed sequences have q′-ary weight zero.

3.4 Adjusting the weight

Our main objective in giving the above constructions is to provide ‘starter sequences’
for certain constructions of Alhakim et al. [2]. However, all the sequences constructed
here have weight zero; in particular, the sequence U obtained in Corollary 3.9 satisfies
wq′(U) = 0. We would ideally like to construct sequences U∗ such that wq′(U

∗)
is coprime to q′. Therefore we next describe how to modify the sequences U of
Corollary 3.9 in the case n = 2 to obtain sequences with precisely this property.

We first need the following simple result.

Lemma 3.11. Suppose q > 4. Then, for any distinct x, y, z in Zq, there exists an
OSq(2) of maximal period, i.e. of period q(q − 1)/2 (q odd) or q(q − 2)/2 (q even),
such that its ring sequence has the form [xyzx . . .]. Moreover, if x, y, z 6= 0 then
there exists an OSq(2) of maximal period such that its ring sequence has the form
[0xyzx . . .].

Proof. If q is odd then, from Lemma 2.1 of [9], there exists an OSq(2) of period
q(q − 1)/2 corresponding to an Eulerian circuit in Kq, the complete graph on q
vertices. Every vertex has degree q − 1, which is at least 4 since q ≥ 5, and hence
there exists an Eulerian circuit in Kq starting with the edges (x, y), (y, z), (z, x),
and, should x, y, z 6= 0, an Eulerian circuit starting with the edges (0, x), (x, y),
(y, z), (z, x). The result follows.

If q is even, then (again from Lemma 2.1 of [9]), there exists an OSq(2) of period
q(q − 2)/2 corresponding to an Eulerian circuit in K∗

q , where K∗
q is Kq with an

arbitrary one-factor removed. Since q ≥ 6, it is simple to choose a one-factor which
avoids the edges (x, y), (y, z), and (z, x) or, should x, y, z 6= 0, the edges (0, x),
(x, y), (y, z), and (z, x); moreover the vertices in K∗

q will have degree at least 4. As a
result there will exist an Eulerian circuit in K∗

q starting with the edges (x, y), (y, z),
(z, x) and, should x, y, z 6= 0, with edges (0, x), (x, y), (y, z), and (z, x). The result
follows.

Construction 3.5. Suppose q > 2 and q′ = 2q + 1 or q′ = 2q + 2. If q ≥ 5 and
q′ = 2q + 1, set x = 2, y = q − 2 and z = q − 1 (and so x+ y + z = 2q − 1). If q ≥ 7
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and q′ = 2q + 2, set x = 4, y = q − 2 and z = q − 1 (and so x + y + z = 2q + 1).
Otherwise set x, y and z according to Table 1.

Table 1: Choosing x, y and z

q q′ x y z x+ y + z

5 12 0 1 4 5
6 14 0 1 2 3

First observe that, in all cases x, y and z are distinct and y, z 6= 0. By inspection
it also holds that x+ y + z is coprime to q′ for all possible choices of q and q′.

Suppose S is an OSq(2) of maximal period m (i.e. of period q(q − 1)/2 (q odd)
or q(q− 2)/2 (q even)), such that its ring sequence has the form [xyzx . . .] or, should
x, y, z 6= 0, the form [0xyzx . . .], which exists from Lemma 3.11. Construct U from S
using the method of Corollary 3.9. Observe that, from the method of construction,
the ring sequence for U has the form [xyzx . . .] or, should x 6= 0, the form [0xyzx . . .].
Finally, construct U∗ from U by deleting the cycle [xyz] from its ring sequence.

Theorem 3.12. Suppose q > 4 and q′ = 2q + 1 or q′ = 2q + 2. If U∗ is constructed
according to the method of Construction 3.5 then it is an SOSq′(2) of period 2q(q−
1)− 3 (q odd) or 2q(q− 2)− 3 (q even) where in every case wq′(U

∗) is coprime to q′.

Proof. By Corollary 3.9, the sequence U is an SOSq′(2) of period 2q(q − 1) (q odd)
or 2q(q − 1) (q odd) where wq′(U) = 0. The result now follows immediately by
observing that constructing U∗ from U does not add any new 2-tuples, that wq′(U

∗) =
q′ − (x+ y + z), and, as noted above, x+ y + z is coprime to q′.

The following brief example shows the operation of this construction.

Example 3.5. Suppose q = 5 and q′ = 11. In this case x = 2, y = 3 and z = 4, and
so we need an OS2(q) of maximal period with ring sequence of the form [02342 . . .].
An example of such a sequence is S = [02342 10314]. Then S = [02342 10314] and

S ′′ = S ′||(−S ′) = [0, 2, 3, 4, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7]

(where || denotes sequence concatenation). It follows from Theorem 3.4 that S ′′ is
an SOS11(2). We next have

T = [6, 2, 8, 4, 9, 1, 6, 3, 10, 4],

where, from Lemma 3.6, T is an SOS11(2). Then

T ′ = T ||(−T ) = [6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].

We next concatenate S ′′ and T ′ to obtain

U =[0, 2, 3, 4, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7

6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].



C.J. MITCHELL AND P.R. WILD/AUSTRALAS. J. COMBIN. 94 (1) (2026), 122–144 136

which by Corollary 3.9 is an SOS11(2). Finally we simply delete the cycle [234] from
U to obtain

U∗ =[0, 2, 1, 0, 3, 1, 4, 0, 9, 8, 7, 9, 10, 0, 8, 10, 7

6, 2, 8, 4, 9, 1, 6, 3, 10, 4, 5, 9, 3, 7, 2, 10, 5, 8, 1, 7].

which is an SOS11(2) of period 37 with w11(U
∗) = 2.

We also have the following simple corollary, which follows immediately from
Corollary 3.10.

Corollary 3.13. There exists an SOSq(2) U
∗ of period:

(q − 2)(q − 4)

2
− 3 if q ≡ 0 (mod 4),

(q − 1)(q − 5)

2
− 3 if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
− 3 if q ≡ 2 (mod 4),

(q − 1)(q − 3)

2
− 3 if q ≡ 3 (mod 4),

for all q ≥ 11, where wq(U
∗) is coprime to q.

4 Good special orientable sequences

We next consider how to construct good special orientable sequences, given that this
additional property enables us to apply certain recursive constructions from Alhakim
at al. [2]. We first need the following.

Definition 4.1 ([2]). An orientable (respectively negative orientable) sequence with
the property that any run of 0 has length at most n− 2 is said to be good.

4.1 An initial observation

We immediately have the following, although the sequences have period only of the
order of half the bound of Theorem 2.1.

Theorem 4.1. There exists a good SOSq(2), of period

q(q − 4)

4
if q ≡ 0 (mod 4),

(q + 1)(q − 1)

4
if q ≡ 1 (mod 4),

q(q − 2)

4
if q ≡ 2 (mod 4),

(q + 1)(q − 3)

4
if q ≡ 3 (mod 4),

for all q ≥ 5.
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Proof. The OSq′(n) T ′ of Theorem 3.7 is good by construction. The result follows
using the same argument as in Corollary 3.5.

In the remainder of this section we show how we can do considerably better than
this.

4.2 A simple modification

A simple method of constructing a good special orientable sequence arises from
the observation that an SOSq(n) that possesses no zeros is automatically a good
SOSq(n). With this is mind we modify the sequences U of Corollary 3.9. Note that
such a sequence U will always contain an even number of zeros, since in the sequences
S ′ and −S ′ that are concatenated to construct U , every zero in S ′ will give rise to a
zero in −S ′.

Construction 4.1. Suppose q, q′, n are integers satisfying q′ ≥ 2q + 2, q > 1 and
n > 1. Suppose U is an SOSq′(n) constructed according to Corollary 3.9. Then let
U ′ be derived from U by replacing half of the zeros with q + 1 and the other half
with q′ − q − 1.

Theorem 4.2. Suppose q, q′, n are integers satisfying q′ ≥ 2q + 2, q > 1 and n > 1.
Suppose U is an SOSq′(n) constructed according to Corollary 3.9. If U ′ is derived
from U using Construction 4.1, then U ′ is a good SOSq′(n) of the same period as
U , and wq′(U

′) = 0.

Proof. If we can show that U does not contain any occurrences of q+1 or q′ − q− 1
then the main result will follow immediately. Now U is constructed by concatenating
sequences S ′′ and T ′, obtained using Constructions 3.2 and 3.4, so we next examine
these two sequences.

S ′′ is obtained by concatenating sequences S ′ and −S ′, where S is an OSq(n).
Now S ′ contains only elements between 0 and q− 1 inclusive, and −S ′ contains only
0 or elements between q′ − q + 1 and q′ − 1. Since q′ ≥ 2q + 2, q′ − q + 1 ≥ q + 2.
Hence S ′′ does not contain any occurrences of q + 1 or q′ − q − 1.

T ′ is constructed as the concatenation of sequences T and −T , where an element
of T is in one of the ranges [1, q] and [q′− q, q′− 1]. Also, as before, since q′ ≥ 2q+2
we have q′−q ≥ q+2. Hence T does not contain any occurrences of q+1 or q′−q−1.
Now consider −T . It follows immediately that the elements of −T are in the same
ranges as T . Hence T ′ will not contain any instances of q + 1 or q′ − q − 1.

It remains to show that wq′(U
′) = 0. From Corollary 3.9 we know that wq′(U) = 0.

The only changes made to U are to add q+1 to half of the zeros and q′− q−1 to the
other half. Thus, if U contains 2s zeros, w(U ′) ≡ w(U) ≡ 0+s(q+1+q′−q−1) ≡ 0
(mod q′), and the result follows.

Remark 4.1. A good SOSq′(n) with identical parameters could be constructed by
taking an SOSq′−1(n) constructed according to Corollary 3.9, and ‘adding one’ to
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every element. More formally, since each element of U is in Zq′−1, we treat every
element of U as an integer, add one, and then treat the result as an element of Zq′ .

The following example is similar to Examples 3.1 and 3.4.

Example 4.1. Suppose q = 5, q′ = 12 and n = 2. As previously, we build upon the
OS5(2) with ring sequence S = [01234 02413]. Analogously to the second part of
Example 3.1 we have

S ′′ = [0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 11, 10, 9, 8, 0, 10, 8, 11, 9].

Analogously to Example 3.3 we have

T ′ = [7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9].

We simply concatenate them to obtain

U =[0, 1, 2, 3, 4, 0, 2, 4, 1, 3, 0, 11, 10, 9, 8, 0, 10, 8, 11, 9,

7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9]

which by Corollary 3.9 is an SOS12(2) (and we can observe it contains no occurrences
of q + 1 = 6).

Finally, we replace every 0 with q + 1 = 6 (since in this case q′ − q − 1 = q + 1)
to obtain

U ′ =[6, 1, 2, 3, 4, 6, 2, 4, 1, 3, 6, 11, 10, 9, 8, 6, 10, 8, 11, 9,

7, 1, 10, 3, 8, 5, 10, 4, 11, 3, 5, 11, 2, 9, 4, 7, 2, 8, 1, 9]

which by Theorem 4.2 is a good SOS12(2) with w12(U
′) = 0.

Corollary 4.3. There exists a good SOSq(2) of period:

(q − 2)(q − 4)

2
if q ≡ 0 (mod 4),

(q − 3)(q − 5)

2
if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
if q ≡ 2 (mod 4),

(q − 3)(q − 7)

2
if q ≡ 3 (mod 4),

for all q ≥ 6.

Proof. Suppose q ≥ 6.

• If q ≡ 0 (mod 4) then q−2
2

is odd, and by [9, Lemma 2.2] there exists an

OS q−2

2

(2) with period q−2
2
( q−2

2
− 1)/2. So by Theorem 4.2 there exists a good

SOSq(2) of period 4 q−2
2
( q−2

2
− 1)/2 = (q−2)(q−4)

2
.
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• If q ≡ 1 (mod 4) then q−3
2

is odd, and by [9, Lemma 2.2] there exists an

OS q−3

2

(2) with period q−3
2
( q−3

2
− 1)/2. So by Theorem 4.2 there exists a good

SOSq(2) of period 4 q−3
2
( q−3

2
− 1)/2 = (q−3)(q−5)

2
.

• If q ≡ 2 (mod 4) then q−2
2

is even, and by [9, Lemma 2.2] there exists an

OS q−2

2

(2) with period q−2
2
( q−2

2
− 2)/2. So by Theorem 4.2 there exists a good

SOSq(2) of period 4 q−2
2
( q−2

2
− 2)/2 = (q−2)(q−6)

2
.

• If q ≡ 3 (mod 4) then q−3
2

is even, and by [9, Lemma 2.2] there exists an

OS q−3

2

(2) with period q−3
2
( q−3

2
− 2)/2. So by Theorem 4.2 there exists a good

SOSq(2) of period 4 q−3
2
( q−3

2
− 2)/2 = (q−3)(q−7)

2
.

4.3 Adjusting the weight

Just as was the case in the previous section, we need to modify the sequences we
have just constructed to ensure the result has weight coprime to q′. We can employ
an identical strategy to that described in Section 3.4.

Construction 4.2. Suppose q > 4 and q′ = 2q + 2 or q′ = 2q + 3. Set x = 0, y = 1
and z = q − 1 (which are distinct since q > 2). By inspection it also holds that
(x+ q + 1) + y + z = 2q + 1 is coprime to q′ for all possible choices of q and q′.

Suppose S is an OSq(2) of maximal period m (i.e. of period q(q−1)/2 (q odd) or
q(q− 2)/2 (q even)), such that its ring sequence has the form [xyzx . . .], which exists
from Lemma 3.11 — also observing that since q > 4 the sequence will contain at
least two occurrences of x. Construct U from S using the method of Corollary 3.9,
and U ′ from U using Construction 4.1, ensuring that the first two zeros in U are
changed to q + 1. Observe that, from the method of construction, the ring sequence
for U ′ has the form [q + 1, 1, q − 1, q + 1, . . .]. Finally, construct U∗∗ from U ′ by
deleting the first three elements of its ring sequence.

Theorem 4.4. Suppose q > 4 and q′ = 2q + 2 or q′ = 2q + 3. If U∗∗ is constructed
according to the method of Construction 4.2 then it is a good SOSq′(2) of period
2q(q − 1) − 3 (q odd) or 2q(q − 2) − 3 (q even) where in every case wq′(U

∗∗) is
coprime to q′.

Proof. By Theorem 4.2, the sequence U ′ is an SOSq′(2) of period 2q(q − 1) (q
odd) or 2q(q − 1) (q odd) where wq′(U) = 0. The result now follows immediately
by observing that constructing U∗∗ from U ′ does not add any new 2-tuples, that
wq′(U

∗∗) = q′ − (2q + 1), and, q′ − (2q + 1) is coprime to q′.

The following brief example shows the operation of this construction.
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Example 4.2. Suppose q = 5, q′ = 12 and n = 2. We need an OS5(2) with ring
sequence starting [0140 . . .]. One possibility is [01402 13423]. As in the previous
examples we have

S ′′ = S ′|| − S ′ = [0, 1, 4, 0, 2, 1, 3, 4, 2, 3, 0, 11, 8, 0, 10, 11, 9, 8, 10, 9].

Analogously to Example 3.3 we have

T ′ = [7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9].

We simply concatenate them to obtain

U =[0, 1, 4, 0, 2, 1, 3, 4, 2, 3, 0, 11, 8, 0, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9]

which by Corollary 3.9 is an SOS12(2) (and we can observe it contains no occurrences
of q + 1 = q′ − q − 1 = 6).

Next, we replace every 0 with q + 1 = 6 (since in this case q′ − q − 1 = q + 1) to
obtain

U ′ =[6, 1, 4, 6, 2, 1, 3, 4, 2, 3, 6, 11, 8, 6, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9]

which by Theorem 4.2 is a good SOS12(2) with w12(U
′) = 0.

Finally we simply delete the first three terms of U ′ to obtain

U∗∗ =[6, 2, 1, 3, 4, 2, 3, 6, 11, 8, 6, 10, 11, 9, 8, 10, 9,

7, 1, 8, 5, 10, 1, 9, 4, 10, 3, 5, 11, 4, 7, 2, 11, 3, 8, 2, 9].

which is a good SOS12(2) of period 37 with w12(U
∗∗) = 1.

The following result follows immediately from Corollary 4.3 and Theorem 4.4.

Corollary 4.5. There exists a good SOSq(2) of period:

(q − 2)(q − 4)

2
− 3 if q ≡ 0 (mod 4),

(q − 3)(q − 5)

2
− 3 if q ≡ 1 (mod 4),

(q − 2)(q − 6)

2
− 3 if q ≡ 2 (mod 4),

(q − 3)(q − 7)

2
− 3 if q ≡ 3 (mod 4),

for all q ≥ 12, where in every case the weight of the sequence is a unit modulo q.
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5 Constructing orientable sequences

We now consider how to obtain large-period orientable sequences using the special
orientable sequences we have constructed earlier in this paper. We follow two different
approaches, both employing recursive construction methods described in Alhakim et
al. [2].

5.1 Special orientable sequences for n = 3

We first show how to generate an SOSq(3) with large period for arbitrary q > 2. We
do so using the following result2. In this case we do not require the input sequences
to be good.

Theorem 5.1 ([2], Theorem 6.11). Suppose S = (si) is an SOSq(n) of period m
and q > 2. If wq(S) is coprime to q then the set D−1(S) contains cyclic shifts of a
single SOSq(n+ 1) of period qm (where D is as defined in Section 1.2).

Combining this with Construction 3.5 and Theorem 3.12 we get the following
corollary.

Corollary 5.2. Suppose q ≥ 5 and let S be an OSq(2) of maximal period m (i.e. of
period q(q− 1)/2 (q odd) or q(q− 2)/2 (q even)), such that its ring sequence has the
form [xyzx . . .] or, should x 6= 0, the form [0xyzx . . .], which exists from Lemma 3.11,
where x, y and z are as specified in Construction 3.5. Suppose U∗ is constructed from
S using the method of Construction 3.5, where q′ = 2q + 1 or q′ = 2q + 2. Then
D−1(U∗) is a SOSq′(3) of period 2q3 − 2q2 − 3q (q odd) or 2q3 − 4q2 − 3q (q even).

Proof. By Theorem 3.12, U∗ is a SOSq′(2) of period 2q(q− 1)− 3 (q odd) or 2q(q−
2)− 3 (q even) where wq′ is coprime to q′. The result follows from Theorem 5.1.

We also have the following, which is immediate from Corollary 3.13.

Corollary 5.3. There exists an SOSq(3) of period:

q3 − 6q2 + 2q

2
if q ≡ 0 (mod 4),

q3 − 6q2 − q

2
if q ≡ 1 (mod 4),

q3 − 8q2 + 6q

2
if q ≡ 2 (mod 4),

q3 − 4q2 − 3q

2
if q ≡ 3 (mod 4),

for all q ≥ 11.

2Note that this is actually a special case of the result from [2].
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Observe that these sequences have period a little less than the OSq(3) sequences
constructed in [9]. However, the sequences constructed here have the additional
property of being both orientable and negative orientable, which may be of use in
some applications.

5.2 Special orientable sequences for general n

We next show how to construct SOSq(n) with large period for arbitrary q > 3 and
arbitrary n > 2. We employ the following result3. Note that in this case we do
require our input sequences to be good. We first need the following notation from
[2]. Suppose that the ring sequence of a periodic sequence S is [s0, s1, · · · , sm−1] and
that r is the smallest non-negative integer such that at = sr, sr+1, · · · , sr+t−1 is a
maximal run for a ∈ Zq, where at denotes a string of t consecutive terms a. Define
the sequence Ea(S) to be the sequence with ring sequence

[s0, s1, · · · , sr−1, a, sr, sr+1, · · · , sm−1]

i.e. where the occurrence of at is replaced with at+1.

Theorem 5.4 ([2], Corollary 6.22). Suppose Sn is a good SOSq(n) of period mn,
where wq(Sn) is coprime to q. Recursively define the sequences Si+1 = Ea(D

−1(Si)),
where a = 1− wq(D

−1(Si)), for i ≥ n, and suppose Si has period mi (i > n). Then,
Si is an SOSq(i) for every i ≥ n, and mn+j = qmn+j−1 + 1 for every j ≥ 1 (and

hence mn+j = qjmn +
qj−1
q−1

for every j ≥ 1).

Combining this theorem with Construction 4.2 and Theorem 4.4 we get the fol-
lowing corollary.

Corollary 5.5. Suppose q ≥ 5 and let S be an OSq(2) of maximal period m (i.e.
of period q(q − 1)/2 (q odd) or q(q − 2)/2 (q even)), such that its ring sequence
has the form [xyzx . . .] or, should x 6= 0, the form [0xyzx . . .], which exists from
Lemma 3.11, where x, y and z are as specified in Construction 4.2. Suppose U∗∗

is constructed from S using the method of Construction 4.2, where q′ = 2q + 2 or
q′ = 2q + 3. Setting S2 = U∗∗ in Theorem 5.4, Sn is a good SOSq′(n) of period

2q′n−2(q(q − 1)− 3) +
q′n−2 − 1

q′ − 1
(q odd), or

2q′n−2(q(q − 2)− 3) +
q′n−2 − 1

q′ − 1
(q even)

for every i ≥ 2.

Proof. By Theorem 4.4, U∗∗ is a good SOSq′(2) of period 2q(q − 1) − 3 (q odd) or
2q(q−2)−3 (q even), where wq′ is coprime to q′. The result follows from Theorem 5.4.

3As above, this is actually a special case of the result from [2].
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Corollary 5.6. There exists an SOSq(n) of period:

qn − 6qn−1 + 2qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 0 (mod 4),

qn − 8qn−1 + 9qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 1 (mod 4),

qn − 8qn−1 + 6qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 2 (mod 4),

qn − 10qn−1 + 15qn−2

2
+

qn−2 − 1

q − 1
if q ≡ 3 (mod 4),

for all q ≥ 12, and n ≥ 2.

Proof. Suppose q ≥ 12 and n ≥ 2.

• If q ≡ 0 (mod 4) then r = q−2
2

is odd, and by Corollary 5.5 there exists a good

SOSq(n) with period 2qn−2(r(r−1)−3)+ qn−2−1
q−1

. Substituting in r = (q−2)/2
the result follows.

• If q ≡ 1 (mod 4) then r = q−3
2

is odd, and by Corollary 5.5 there exists a good

SOSq(n) with period 2qn−2(r(r−1)−3)+ qn−2−1
q−1

. Substituting in r = (q−3)/2
the result follows.

• If q ≡ 2 (mod 4) then r = q−2
2

is even, and by Corollary 5.5 there exists a good

SOSq(n) with period 2qn−2(r(r−2)−3)+ qn−2−1
q−1

. Substituting in r = (q−2)/2
the result follows.

• If q ≡ 3 (mod 4) then r = q−3
2

is even, and by Corollary 5.5 there exists a good

SOSq(n) with period 2qn−2(r(r−2)−3)+ qn−2−1
q−1

. Substituting in r = (q−3)/2
the result follows.

6 Concluding remarks

In this paper we have constructed orientable sequences with the additional property
that they are also negative orientable. We used an approach proposed in [2] to
generate orientable sequences with large period of any order over an alphabet of
any size using ‘starter’ sequences with this additional property. Whilst this yields
sequences with shorter periods than general orientable sequences, the periods remain
asymptotic to the optimal as the alphabet size increases and the additional property
could be a benefit in some applications.

It remains an open problem to find constructions of orientable sequences with
optimal periods.
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