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Abstract

The independent set sequence of trees has been well studied, with much
effort devoted to the (still open) question of Alavi, Malde, Schwenk and
Erdős on whether the independent set sequence of a tree is always unimodal.
Much less attention has been given to the independent set sequence of
hypertrees. Here we study some natural first questions in this realm. We
show that the strong independent set sequences of linear hyperpaths and
of linear hyperstars are unimodal (actually, log-concave). For uniform
linear hyperpaths we obtain explicit expressions for the number of strong
independent sets of each possible size, both via generating functions
and via combinatorial arguments. We also consider the uniform linear
hypercomb with n edges on the spine, and show that its strong independent
set sequence is unimodal except possibly for a portion of length o(n).

1 Introduction

In 1987 Alavi, Malde, Schwenk and Erdős considered the vertex independent set
sequence, or simply independent set sequence, of a graph. This is the sequence
(ik(G))k≥0 where ik(G) is the number of vertex independent sets (sets of pairwise
non-adjacent vertices) of size k in a graph G. (Note that all graphs and hypergraphs
in this paper are simple — all edges have multiplicity one — and undirected.)

The edge independent set sequence, better known as the matching sequence, is
the sequence (mk(G))k≥0 where mk(G) is the number of matchings (sets of pairwise
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disjoint edges) of size k in G. A corollary of a seminal result of Heilmann and Lieb
[18] is that the matching sequence is always unimodal, that is, that there is a mode k
such that

m0(G) ≤ m1(G) ≤ · · · ≤ mk(G) ≥ mk+1(G) ≥ · · · .

The notion of unimodality (and the related ideas of log-concavity and real-rootedness,
to be discussed later) are ubiquitous in combinatorics; see for example the surveys
[8, 9, 25].

Wilf asked the question “is the independent set sequence of every graph similarly
unimodal?”. In [1] it was reported that he was skeptical of an affirmative answer,
and it turned out that his skepticism was justified. Alavi, Malde, Schwenk and Erdős
[1] showed that the independent set sequence of a graph can fail spectacularly to
be unimodal. Specifically they showed that for every m and every permutation π of
{1, . . . ,m} there is a graph G whose largest independent set has size m and for which

iπ(1)(G) < iπ(2)(G) < · · · < iπ(m)(G).

In other words, the independent set sequence can exhibit arbitrary rises and falls.
(Note that we do not consider i0(G) here as it always takes the smallest possible
non-zero value, 1).

This “roller coaster” observation naturally led Alavi, Malde, Schwenk and Erdős
to consider whether there are infinite families of graphs for which the independent set
sequence is unimodal. Since the matching sequence of a graph is the independent set
sequence of its line graph, it follows from Heilmann and Lieb’s result that line graphs
have unimodal independent set sequences. This was generalized by Hamidoune [16]:
claw-free graphs (graphs without an induced K1,3) have unimodal independent set
sequences.

Alavi, Malde, Schwenk and Erdős asked about another very basic family of graphs.
It is easy to check that the independent set sequence of a path is unimodal, and even
easier to check that the same is true of a star. That unimodality holds for these two
most extreme trees provides some reason to expect that it holds for all trees.

Question 1.1. ([1]) Do all trees have unimodal independent set sequence? What
about all forests?

The independent set polynomial pG(x) is the generating polynomial
∑
k≥0

ik(G)xk. It

is an easy check that if G has components G1, . . . , Gm then pG(x) = pG1(x) · · · pGm(x).
Since the product of polynomials with unimodal coefficient sequences need not have
a unimodal coefficient sequence, an affirmative answer to Question 1.1 for trees does
not immediately imply an affirmative answer for forests. As an example of this
phenomenon of unimodality not behaving well under multiplication, consider the
graphs G1 = K100 + 3K7 (the join of a clique on 100 vertices and a disjoint union of
three cliques each on 7 vertices) and G2 = K90 + 3K7. We have

pG1(x) = 1 + 121x+ 147x2 + 343x3, pG2(x) = 1 + 111x+ 147x2 + 343x3,
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which are both unimodal, but

pG1∪G2(x) = pG1(x)pG2(x)

= 1 + 232x+ 13725x2 + 34790x3 + 101185x4 + 100842x5 + 117649x6,

which is not. (This example is due to Levit and Mandrescu [21].)

Remarkably, Question 1.1 remains fairly wide open. It has been verified for some
infinite, mostly recursively defined, families of trees (see e.g. [14] and the references
therein). It has also been verified for all trees on 26 or fewer vertices [20]. Notably,
although all trees on 25 or fewer vertices satisfy the stronger property that their
independence polynomials are log-concave (i.e., satisfy a2k ≥ ak−1ak+1 for all k ≥ 1),
two trees on 26 vertices are found in [20] to have unimodal but not log-concave
independent set sequences, and in [4, 13, 19, 24] infinite families of trees with non-log-
concave (though still unimodal) independent set sequences are found. This perhaps
explains why Question 1.1 has proven to be so thorny — typically it is easier to
demonstrate log-concavity than unimodality.

Even answering Question 1.1 for the uniform random labelled tree (i.e., showing
that at least a proportion 1− o(1) of all labelled trees on n vertices have unimodal
independent set sequences) has proven to be a difficult problem. See [3, 17] where
this question is addressed and only partial results are obtained.

1.1 Hypertrees

The goal of this paper is to begin the project of considering Alavi, Malde, Schwenk
and Erdős’ question for hypertrees. A hypergraph is a pair (V,E) where V is a set
of vertices and E is a set of edges, which are subsets of V . If all subsets have size
2 then a hypergraph is simply a graph. A hypergraph H is a hypertree if there is
a tree tree(H) on vertex set V (H) with the property that for each e ∈ E(H) the
subgraph of tree(H) induced by e is connected. Every tree T is a hypertree — just
take tree(T ) = T .

Before asking any question about independent sets in hypertrees, we need to
clarify what we mean, since as is almost always the case when moving from graphs to
hypergraphs there are competing definitions. A weak independent set in a hypergraph
is a subset of vertices that does not contain all the vertices of any edge of the
hypergraph, while a strong independent set is one that contains at most one vertex
from each edge. Note that these two notions coincide for a graph.

Convention 1.2. In this paper we work exclusively with strong independent sets,
and will simply refer to them as independent sets from here on.

It is not the case that every hypertree has unimodal independent set sequence.
Indeed, consider the hypergraph on vertex set {v1, . . . , v10, w1, . . . , w6} with {v1, . . . ,
v10, wi} an edge for each i. Independent sets of size 2 or greater in this hypergraph
cannot include any vertices from among {v1, . . . , v10} but can include vertices from
{w1, . . . , w6} without restriction. It follows that the independent set sequence of the
hypergraph is (1, 16, 15, 20, 15, 6, 1), which is not unimodal.
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To remove from consideration examples like this, our focus in this paper will be
on linear hypertrees. A hypergraph is linear if any two edges intersect in at most one
vertex. We begin by considering two infinite families of linear hypertrees, namely the
linear hyperpaths and the linear hyperstars. Let integers n ≥ 1 and s1, s2, . . . , sn ≥ 2
be given.

• The linear hyperpath P (s1, . . . , sn) is the hypergraph with n edges e1, . . . , en,
with |ei| = si for each i, with ei and ei+1 sharing a single vertex for each i < n,
and with no other pairs of edges sharing a vertex.

• If all si = ` for some ` ≥ 2 then we use the notation Pn,`, and refer to this
hypergraph as the `-uniform, n-edge, linear hyperpath (see Figure 1, which also
shows an auxiliary hypergraph that will be defined later).

• The linear hyperstar S(s1, . . . , sn) is the hypergraph with n edges e1, . . . , en,
with |ei| = si for each i, and with a single vertex (the center of the star) in
common to all of the edges.

Figure 1: The first 5 edges of the linear hyperpaths Pn,5 (top) and Qn,5 (bottom).
Note that the first edge of Qn,5 has one vertex fewer than the first edge of Pn,5.

Note that Pn,2 is just the (graph) path on n-edges, while S(2, 2, . . . , 2) is the
(graph) star on n-edges. Note also that we use slightly non-standard notation here,
with Pn,2 being the path on n edges (and so n+ 1 vertices) rather than on n vertices
(and so n − 1 edges). We adopt this convention because it is better suited to the
uniform hypergraph (` ≥ 3) setting.

Just as with trees, the unimodality of independent set sequences of linear hyper-
paths and linear hyperstars is fairly straightforward. Before stating the result, we
introduce some further concepts. A sequence (ak)

n
k=0 of real numbers is log-concave if

for all 1 ≤ k ≤ n− 1 it holds that a2k ≥ ak−1ak+1. If a log-concave sequence is non-
negative and has no internal zeroes (meaning that there is no triple 0 ≤ i ≤ j ≤ k ≤ n
with ai > 0, aj = 0 and ak > 0) then it is easy to check that the sequence is unimodal.
Often log-concavity of a sequence is easier to establish than unimodality, since to
verify unimodality one must identify the location of the mode, but there is no such
difficulty when establishing log-concavity.
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There is a stronger property of finite real sequences than log-concavity. A sequence

(ak)
n
k=0 is real-rooted if the polynomial

n∑
k=0

akx
k has only real roots. A result that

ultimately goes back to Newton is that if a non-negative sequence is real-rooted, then
it is log-concave, and in fact satisfies the stronger inequalities

a2k ≥
(

1 +
1

k

)(
1 +

1

n− k

)
ak−1ak+1 (1)

for all 1 ≤ k ≤ n − 1 (see e.g. [6, Section 9.3]). We note incidentally that for a
non-negative sequence with no internal zeros neither of the implications in the chain

real-rooted ⇒ log-concave ⇒ unimodal

can be reversed.

We now return to hyperstars and hyperpaths. Since the independent set sequences
of P (s1, . . . , sn) and S(s1, . . . , sn) have no internal zeroes, our first result — Theorem
1.3 below — implies that these sequences are unimodal. The proof of Theorem 1.3 is
given in Section 2.1.

Theorem 1.3. For n ≥ 1 and s1, s2, . . . , sn ≥ 2

• the independent set sequence of P (s1, . . . , sn) is real-rooted, and

• the independent set sequence of S(s1, . . . , sn) is log-concave.

Note 1.4. In a draft of this paper [15, version 1] we deduced the real-rootedness of
the independent set sequence of Pn,` using an interlacing argument. After we posted
the draft on the arXiv preprint server, Ferenc Bencs pointed out to us that we could
use results of Chudnovsky and Seymour [11] and Hamidoune [16] obtain the more
general result presented here.

Just as the unimodality of the independent set sequences of paths and stars (the
trees with the largest and smallest diameters, respectively) lends credence to Alavi,
Malde, Schwenk and Erdős’ speculation that all trees have unimodal independent
set sequence, Theorem 1.3 makes it plausible to speculate that maybe the (strong)
independent set sequence of every linear hypertree is unimodal. We will return to
this briefly at the end of the introduction.

The bulk of this paper is concerned with Pn,`, the linear uniform hyperpath. While
the unimodality of the independent set sequence of Pn,` follows from Theorem 1.3,
there is much interesting combinatorics to explore related to explicit formulae and
recurrence relations for the terms of the sequence. For ` = 2 (graph paths) all is
quite straightforward. Let pkn,2 be the number of independent sets of size k in Pn,2. It

is easy to generate a recurrence relation that expresses pkn,2 in terms of pk
′

n′,2’s with
n′ + k′ < n + k. It is also easy to solve these recurrences (both inductively and
combinatorially) to show that (modulo some initial conditions)

pkn,2 =

(
n− k + 2

k

)
. (2)
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Things get more involved when ` ≥ 3. Let pkn,` be the number of independent sets
of size k in Pn,`. As we will see in the sequel, the natural recurrence relation to
calculate pkn,` requires introducing an auxiliary (non-uniform) hyperpath, and is in
fact a pair of coupled recurrence relations. From these recurrences it is possible to
conjecture an explicit but non-obvious formula for pkn,`, which turns out to be a sum
of products of binomial coefficients. It is fairly straightforward (if a little messy) to
prove this explicit formula by induction, but it is much less straightforward to give a
direct combinatorial argument. Finally, it is easy to decouple the pair of recurrence
relations to produce an expression for pkn,` in terms of pk

′

n′,`’s with n′ + k′ < n+ k, but
it is by no means obvious how to directly (combinatorially) verify this expression.

In Sections 2.2, 2.3 and 2.4 we give the proof of the following result, that makes
precise what was alluded to in the previous paragraph.

Theorem 1.5. For all ` ≥ 2, we have

• pk0,` = 1 if k = 0 and pk0,` = 0 if k > 0,

• p01,` = 1, p11,` = ` and pk1,` = 0 for k ≥ 2,

• p0n,` = 1 for n ≥ 0,

• p1n,` = 0 for n = 0 and p1n,` = n`− (n− 1) for n > 0, and

• for n ≥ 2 and k ≥ 2

pkn,` = (`− 1)2
k−2∑
j=0

(`− 2)k−j−2
(
k − 2

j

)(
n− j
k

)
. (3)

We also have, for n ≥ 3, k ≥ 1 and ` ≥ 2, the recurrence

pkn,` = pkn−1,` + pk−1n−2,` + (`− 2)pk−1n−1,`. (4)

Notice that when ` = 2 (3) reduces to (2) (as long as we interpret 00 = 1), and
that (4) reduces to the familiar (and easy to derive) recurrence pkn,2 = pkn−1,2 + pk−1n−2,2.

In Section 2.2 we begin with the easy algebraic derivation of (4), and then describe
how (3) may be conjectured heuristically. Once the correct formula has been obtained,
it is fairly straightforward (if a little messy) to prove it by induction. In Section 2.3
we give a more satisfying combinatorial explanation for (3). In Section 2.4 we give a
combinatorial explanation for (4).

The algebraic derivation of (4) will be through the independence polynomial of
Pn,`, that is, through

Pn,`(x) =
n∑
k=0

pkn,`x
k.

(Note that Pn,` has n edges, so pkn,` = 0 for k > n.) We will establish the recurrence

Pn,`(x) = (1 + (`− 2)x)Pn−1,`(x) + xPn−2,`(x) (5)
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for n ≥ 3 (with initial conditions P0,`(x) = 1, P1,`(x) = 1 + `x and P2,`(x) =
1+(2`−1)x+(`−1)2x2) from which (4) follows immediately by equating coefficients of
xk on both sides. Observe that we could have chosen instead to declare P0,`(x) = 1+x.
This would extend the validity of (5) to n ≥ 2, but at the cost of introducing a
very unnatural initial condition (there is no `-uniform hypergraph for ` ≥ 3 with
independence polynomial 1 + x).

Note 1.6. In a draft of this paper [15, version 1] we derived (4) algebraically but
left a combinatorial explanation as a problem, since we had been unable to find one.
After we posted the draft on the arXiv preprint server Ferenc Bencs communicated
to us the combinatorial proof that we present in Section 2.4.

Towards the goal of making plausible the speculation that linear hypertrees have
unimodal independent set sequences, we also consider another infinite family of
hypertrees, one for which the results of Chudnovsky and Seymour and of Hamidoune
alluded to in Note 1.4 cannot be applied. This is the family of uniform linear
hypercombs. For n ≥ 1 the uniform linear hypercomb Cn,` is the hypergraph obtained
from Pn,` by adding,

• for each vertex v that is in two edges of Pn,`, an edge of size ` that includes v
and `− 1 new vertices, and also

• for one vertex w in the first edge of Pn,` but not in any other edges, and for
one vertex w′ in the last edge of Pn,` but not in any other edges, adding an
edge of size ` that includes w and `− 1 new vertices, and an edge of size ` that
includes w′ and `− 1 new vertices. If n ≥ 2 then necessarily w 6= w′; if n = 1
then we enforce that w 6= w′.

See Figure 2, which also shows an auxiliary hypergraph that will be defined later.
When ` = 2 this graph is referred to as a centipede or a comb. That the centipede
has unimodal independent set sequence was first established by Levit and Mandrescu
in [22], and later Zhu [27] showed that the sequence is real-rooted.

We have observed computationally that the independent set sequence of Cn,` is
unimodal for all n ≤ 500 and ` ≤ 12. Here we establish that for all n and ` the
sequence is unimodal expect (possibly) for an O(

√
n) portion. In Theorem 1.7 and

Corollary 1.8 below we denote by ckn,` the number of independent sets in Cn,` of size k.

Theorem 1.7. For ` ≥ 3, the independence polynomial Cn,`(x) of Cn,` satisfies the
recurrence

• C0,`(x) = 1 + `x (an initial condition),

• C1,`(x) = 1+(3`−2)x+(2(`−1)(`−2)+(`−1)2+2(`−1))x2+(`−1)2(`−2)x3,
and

• for n ≥ 2

Cn,`(x) = (1 + (`− 1)x) ((1 + (`− 2)x)Cn−1,`(x) + xCn−2,`(x)) . (6)
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Figure 2: The linear uniform hypercomb C6,5 (top) and the auxiliary hypercomb
D6,5 (bottom).

The proof of Theorem 1.7, and of Corollary 1.8 below, are given in Section 2.5.

Corollary 1.8. For each ` ≥ 3 there are constants K`, L` > 0 such that the inde-
pendent set sequence (ckn,`)

2n+1
k=0 of Cn,` is weakly increasing up to K`n− L`

√
n (i.e.,

ck−1n,` ≤ ckn,` for k ≤ K`n − L`
√
n) and is weakly decreasing from K`n + L`

√
n (i.e.,

ckn,` ≥ ck+1
n,` for k ≥ K`n+ L`

√
n).

Note 1.9. In a draft of this paper [15, version 3] we claimed that the independent
set sequence of Cn,` is unimodal (in fact, log concave) for all n and `. During the
refereeing process we discovered an error in our proof, which has led us to the weaker
statement. Our approach to Corollary 1.8 was partly inspired by ideas presented
in [26], one of the references in [5]; we thank Ferenc Bencs for bringing [5] to our
attention.

In proving Theorem 1.7 and Corollary 1.8 we work in a more general setting,
attaching a copy of the same fixed hypergraph G to the first vertex of Pn,`, the last
vertex of Pn,`, and all vertices that are in two edges of Pn,` (for Cn,`, G is a single
edge of order `). Our approach to studying the independent set sequence of this
family of hypergraphs is very much in the spirit of [26, Theorem 3.1 and subsequent
applications]. We defer the details to Section 2.5.

We end with some questions for further consideration.

Question 1.10. X

1. Is the strong independent set sequence of a linear hypertree unimodal?

2. If not, then what about a linear uniform hypertree?

3. What if “strong independent set” is replaced by “weak independent set”?

4. Can the gap of length O(
√
n) in Corollary 1.8 be shortened or eliminated?
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Much of the progress to date on Alavi, Malde, Schwenk and Erdős’ tree question
has consisted of establishing unimodality of the independent set sequence of trees
that lie in particular (often recursively defined) families. One might tackle analogous
families in the hypertree setting, although the fact that (as seen in this paper) some
complexity arises even in the simple families of linear uniform hyperpaths and linear
uniform hypercombs suggests that the results in the hypertree setting maybe be
harder than their counterparts in the tree setting.

Returning to one of the main focuses of this note, the linear uniform hyperpath:
our combinatorial derivation of the identity (3) does not make it obvious that pkn,`
is a multiple of (` − 1)2 when n, k, ` ≥ 2. Is there a simple explanation for this
phenomenon?

2 Proofs

2.1 Proof of Theorem 1.3

We begin with the hyperpath P (s1, . . . , sn). Let GP (s1, . . . , sn) be the graph obtained
from P (s1, . . . , sn) by replacing each edge ei with a complete graph on the same set
of vertices. Independent sets in GP (s1, . . . , sn) are exactly (strong) independent sets
in P (s1, . . . , sn). Since GP (s1, . . . , sn) is claw-free (has no induced copy of K1,3), it
follows from Hamidoune’s result [16] cited earlier that the independent set sequence
of P (s1, . . . , sn) is log-concave. Hamidoune’s result was extended by Chudnovsky and
Seymour [11] who showed that the independent set sequence of a claw-free graph is
real-rooted, and so in fact the independent set sequence of P (s1, . . . , sn) is real-rooted.

We now move on to the linear hyperstar. Noting that other than the independent
set of size 1 that consists of the center of the star (vertex v, say), an independent set
in S(s1, s2, . . . , sn) is the union of arbitrary subsets of size 0 or 1 of ei \ {v} as i runs
between 1 and n, we see that the independence polynomial of S(s1, s2, . . . , sn) is

x+
n∏
i=1

(1 + (si − 1)x).

For n = 1, 2 this polynomial is easy seen to be real-rooted and so has log-concave
coefficient sequence. For n ≥ 3 the independence polynomial of S(s1, . . . , sn) is not
always real-rooted (consider n = 3 and s1 = s2 = s3 = 2, for example), but we can
still establish log-concavity of the coefficient sequence.

Let a0, . . . , an be defined by

n∏
i=1

(1 + (si − 1)x) =
n∑
j=0

ajx
j,

so that the independent set sequence of S(s1, . . . , sn) is (a0, 1+a1, a2, . . . , an). Because
n∏
i=1

(1 + (si − 1)x) is real-rooted its coefficient sequence is log-concave, and this
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automatically gives us all of the log-concavity relations for the independent set
sequence of S(s1, . . . , sn), except

a22 ≥ (a1 + 1)a3 and (a1 + 1)2 ≥ a0a3.

The second of these follows immediately from a21 ≥ a0a3. For the first we use that in

fact the coefficient sequence of
n∏
i=1

(1 + (si − 1)x) satisfies the Newton inequalities (1),

so that

a22 ≥
(

3n− 3

2n− 4

)
a1a3.

The relation a22 ≥ (a1 + 1)a3 would thus follow from(
3n− 3

2n− 4

)
a1a3 ≥ (a1 + 1)a3

or equivalently a1 ≥ (2n − 4)/(n + 1). Since all si ≥ 2 and n ≥ 3 we have a1 ≥ 3,
and since 3 ≥ (2n− 4)/(n+ 1) for all n ≥ 3 we indeed get a1 ≥ (2n− 4)/(n+ 1). We
conclude that the independent set sequence of S(s1, . . . , sn) is log-concave.

2.2 Deriving a formula for pkn,`

For ordinary paths there is a very simple recurrence for calculating pkn,2 (once suitable
initial conditions have been established), namely

pkn,2 = pkn−1,2 + pk−1n−2,2,

obtained by considering whether or not the first vertex of the path is in the independent
set. For ` ≥ 3 we need to introduce an auxiliary hypergraph, which we denote by
Qn,`, that is obtained from the hyperpath Pn,` by removing the vertex v1 (so Qn,` has
one edge of size `− 1, with the rest having size `; see Figure 1). Let the edges of Qn,`

be e′1, e2, . . . , en, and denote by qkn,` the number of independent sets of size k in Qn,`.

There are a pair of coupled recurrences for pkn,` and qkn,`, obtained by considering
whether or not the independent set includes a vertex from e1 \ {v`} or e′1 \ {v`}.
Indeed, for n, k ≥ 2 we have

pkn,` = pkn−1,` + (`− 1)qk−1n−1,`
and

qkn,` = pkn−1,` + (`− 2)qk−1n−1,`.
(7)

Observe that when ` = 2 the second relation above reduces to qkn,` = pkn−1,`, and the

system above is easily seen to reduce to the standard recurrence for pkn,2.

The initial conditions for the recurrences for pkn,` and qkn,` are:

• For n = 0: p00,` = q00,` = 1 (due to the empty set) and pk0,` = qk0,` = 0 for k ≥ 1.
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• For n = 1: p01,` = q01,` = 1, p11,` = `, q11,` = `− 1, and pk1,` = qk1,` = 0 for k ≥ 2.

• For k = 0: p0n,` = q0n,` = 1.

• For k = 1: p1n,` = n`− (n− 1) and q1n,` = n`− n for n ≥ 2.

The recurrences (7) for pkn,` and qkn,` can be decoupled to allow pkn,` to be expressed

in terms of pk
′

n′,` with k′ + n′ < k + n and with no reference to qk
′

n′,`’s. To achieve this
decoupling it is easiest to work with the independence polynomials of Pn,` and Qn,`.
Setting

Pn,`(x) =
∑
k≥0

pkn,`x
k and Qn,`(x) =

∑
k≥0

qkn,`x
k

we have (as before by first considering those independent sets in which none of the
vertices unique to the first edge are in the independent set, and then considering
those in which one such vertex is in the independent set)

Pn,`(x) = Pn−1,`(x) + (`− 1)xQn−1,`(x) (8)

and
Qn,`(x) = Pn−1,`(x) + (`− 2)xQn−1,`(x) (9)

for n ≥ 2, with initial conditions

P0,`(x) = Q0,`(x) = 1, P1,`(x) = 1 + `x and Q1,`(x) = 1 + (`− 1)x.

From (8) we have

Qn−1,`(x) =
Pn,`(x)− Pn−1,`(x)

(`− 1)x
and Qn,`(x) =

Pn+1,`(x)− Pn,`(x)

(`− 1)x
.

Inserting these into (9) yields

Pn+1,`(x)− Pn,`(x)

(`− 1)x
= Pn−1,`(x) +

(`− 2)x (Pn,`(x)− Pn−1,`(x))

(`− 1)x
.

After rearranging terms and shifting indices we get that for n ≥ 3,

Pn,`(x) = (1 + (`− 2)x)Pn−1,`(x) + xPn−2,`(x).

Combining this with the initial conditions P0,`(x) = 1 and P1,`(x) = 1 + `x (as
introduced above) and

P2,`(x) = 1 + (2`− 1)x+ (`− 1)2x2

(an easy direct count) we have completely decoupled Pn,`(x) from Qn,`(x). Extracting
the coefficient of xn from both sides of (5) we obtain (4).

To conjecture an explicit formula for pkn,` for n, k ≥ 2, we generate values using
the recurrence relation, and consult the On-Line Encyclopedia of Integer Sequences

https://oeis.org
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pkn,3 k = 0 1 2 3 4 5 6 · · ·
n = 0 1

1 1 3
2 1 5 4
3 1 7 12 4
4 1 9 24 20 4
5 1 11 40 56 28 4
6 1 13 60 120 104 36 4
...

...
...

...
...

...
...

...
. . .

Table 1: The count of independent sets of size k in P k
n,3.

k Sequence Likely OEIS match Generating Function

2 (1, 3, 6, 10, ...) A000217
x

(1− x)3

3 (1, 5, 14, 30, ...) A000330
x(1 + x)

(1− x)4

4 (1, 7, 26, 70, ...) A006325
−x2(x+ 1)2

(x− 1)5

5 (1, 9, 42, 138, ...) A061927
x(1 + x)3

(−1 + x)6
...

...
...

...

Table 2: The generating functions of each column sequence from Table 1, for Pn,3.

(OEIS) [23]. For ` = 3, the initial part of the array (pkn,`)n,k≥0 is shown in Table 1
(blank entries are 0).

All entries from the k = 2 column on appear to be multiples of 4. Table 2 shows
the most likely contender from OEIS for the kth column of the array in Table 1
(k ≥ 2) once this factor of 4 is pulled out. Table 2 also shows each sequence’s ordinary
generating function (as given at OEIS).

Adjusting each generating function by multiplying by an appropriate power of x
(to make sure that the non-zero terms of the associated sequence begin at the correct
place), we are led to conjecture that for k ≥ 2 we have∑

n≥k

pkn,3x
n =

4xk(1 + x)k−2

(1− x)k+1
.

This process can be repeated for larger values of `; the results for ` ≤ 6 are shown in
Table 3.

All of these data motivate the conjecture that for each k ≥ 2 and ` ≥ 3, we have∑
n≥k

pkn,`x
n =

(`− 1)2xk((`− 2) + x)k−2

(1− x)k+1
. (10)

https://oeis.org/A000217
https://oeis.org/A000330
https://oeis.org/A006325
https://oeis.org/A061927
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` Conjectured Generating Function

3
∑
n≥k

pkn,3x
n =

4xk(1 + x)k−2

(1− x)k+1

4
∑
n≥k

pkn,4x
n =

9xk(2 + x)k−2

(1− x)k+1

5
∑
n≥k

pkn,5x
n =

25xk(3 + x)k−2

(1− x)k+1

6
∑
n≥k

pkn,6x
n =

36xk(4 + x)k−2

(1− x)k+1

...
...

Table 3: The conjectured generating functions for each Pn,`, found in patterns
from `-triangle arrays.

Using the generating function identity

1

(1− x)k+1
=

(
k

k

)
+

(
k + 1

k

)
x+

(
k + 2

k

)
x2 +

(
k + 3

k

)
x3 + · · ·

for the denominator above, and the binomial theorem for the numerator, we can
extract the coefficient of xn from the right-hand side of (10), heuristically leading us
to (3).

We now proceed to verify the correctness of (3) by induction on n+ k, utilizing
the recurrence (4). Since we are claiming validity of (3) for n, k ≥ 2, there is nothing
to do for k ≤ 1 (and any n ≥ 0) or n ≤ 1 (and any k ≥ 0). It will turn out to be
useful to dispense with the case k = 2 (and n ≥ 2), as well as n = 2, 3 (and k ≥ 3),
before beginning the induction on n+ k.

First we consider k = 2. For an independent set of size 2 drawn from Pn,` let
i be the smallest index such that ei contains a vertex of the independent set, and
let v be that vertex. If v ∈ e1 but v is not the unique vertex of e1 that is also in e2
(` − 1 options for v) then there are (` − 1)(n − 1) options for the second vertex of
the independent set. If v ∈ e2 \ e3 (again `− 1 options) then there are (`− 1)(n− 2)
options for the second vertex. Continuing the count in this manner we see that

p2n,` = (`− 1)
n−1∑
j=1

(`− 1)(n− j) = (`− 1)2
(
n

2

)
,

as predicted by (3).

Next we consider n = 2. For k ≥ 3 we have that pk2,` = 0 (since a 2-edge
hypergraph cannot support an independent set of size greater than 2), and this is

exactly what (3) predicts, owing to the factor of

(
2− j

3

)
(that evaluates to 0) in

every summand.
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Similarly for n = 3 and k ≥ 4, (3) gives the correct value (namely 0) for pk3,`, while

it is easy to see that p33,` = (`− 1)2(`− 2), as predicted by (3).

We can now begin the induction argument. All pairs (n, k) with n ≤ 3 and k ≤ 2
have already been considered, so we assume n + k ≥ 7, n ≥ 4 and k ≥ 3. In this
range not only is (4) valid, but also we may use (3) on all terms on the right-hand
side of (4) (recall that we are inducting on n+ k). So we have

pkn,` = pkn−1,` + pk−1n−2,` + (`− 2)pk−1n−1,`

= (`− 1)2
∑
j

(`− 2)k−j−2
(
k − 2

j

)(
n− 1− j

k

)
(11)

+(`− 1)2
∑
j

(`− 2)k−j−3
(
k − 3

j

)(
n− 2− j
k − 1

)
(12)

+(`− 2)(`− 1)2
∑
j

(`− 2)k−j−3
(
k − 3

j

)(
n− 1− j
k − 1

)
. (13)

In (11), (12) and (13) we have extended the summations to all integers, noting that
in each case the summands are 0 outside the ranges given by (4).

Bringing the (`− 2) from outside to inside the summation in (13), shifting index
from j to j − 1 in (12), and then combining (12) and (13), an application of Pascal’s
identity shows that (12) and (13) sum to

(`− 1)2
∑
j

(`− 2)k−j−2
(
k − 2

j

)(
n− 1− j
k − 1

)
. (14)

Combining (11) and (14), another application of Pascal’s identity shows that

pkn,` = (`−1)2
∑
j

(`−2)k−j−2
(
k−2

j

)(
n−j
k

)
= (`−1)2

k−2∑
j=0

(`−2)k−j−2
(
k−2

j

)(
n−j
k

)
,

completing the inductive verification of (3).

2.3 Combinatorial proof of the formula for pkn,`

In Section 2.2 we established (3) inductively. Here we give a combinatorial proof of
this formula. Let Pkn,` be the set of independent sets of size k in the hypergraph Pn,`.

We will partition Pkn,` into k− 1 blocks, Pk,0n,` ,P
k,1
n,` , . . . ,P

k,k−2
n,` , with the property that

for each j ∣∣∣Pk,jn,` ∣∣∣ = (`− 1)2(`− 2)k−2−j
(
k − 2

j

)(
n− j
k

)
. (15)

The partitioning will be done by identifying a statistic associated with an independent
set (ranging from 0 to k− 2); Pk,jn,` will be those independent sets with statistic j. We
will then establish (15) by a direct count.
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Let I = {v1, . . . , vk} be an independent set in Pn,` of size k, with v1 < v2 < · · · < vk
in the natural linear order on the vertices of Pn,`. To vi we associate a marked edge
ei of Pn,` via the following rule:

• if there is a unique edge that contains vi, then that unique edge is the marked
edge; and

• if vi is in two edges of Pn,`, then the later (rightmost) edge of the two is the
marked edge.

Note that the number of marked edges is |I|. We refer to the collection of marked
edges as the skeleton of I. (See Figure 3.)

Figure 3: An independent set of size 4 in the hyperpath P6,5. The marked edges
(e1, e2, e3 and e4) are shaded in teal. The vertex v2 is forced and the vertex v3 is
free.

For i = 2, . . . , k − 1, say that vi is forced if vi is the leftmost vertex of ei (so, the
vertex that ei has in common with the edge of Pn,` that comes immediately to its
left), and free otherwise. (Again see Figure 3.) Note that for i = 1 and i = k we do
not define forced or free.

We are now ready to define the statistic j:

For j = 0, . . . , k − 2, let Pk,jn,` be the set of independent sets in Pkn,` that
have exactly j forced vertices.

Claim 2.1. For each n ≥ 2, k ≥ 2, ` ≥ 3 and 0 ≤ j ≤ k − 2, (15) holds.

This claim furnishes a combinatorial proof of (3).

Proof. (Claim 2.1.) We will make extensive use of the following observation, which
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follows from a simple stars-and-bars argument:

The number of solutions to the equation x1 + x2 + · · ·+ xt = m, with all xi’s
non-negative integers (and m a non-negative integer), in which exactly s of
the xi’s are constrained to be at least 1, exactly r of them are constrained

to be equal to 0, and the rest are constrained to be at least 0, is(
t− r − 1 +m− s

t− r − 1

)
.

(16)

The relevance of this observation stems from the fact that the k edges in the skeleton
give rise to a collection of k + 1 intervals of consecutive unmarked edges among the
n− k unmarked edges. Specifically, the first interval is the collection of unmarked
edges to the left of the first marked edge (this collection may be empty). The second
interval is the collection of unmarked edges between the first marked edge and the
second marked edge, not including the marked edges, and so on, up to the (k + 1)st
interval, which is the collection of unmarked edges to the right of the last marked edge.
Letting ai be the number of unmarked edges in the ith interval (so ai is the number
unmarked edges between ei−1 and ei for i = 2, . . . , k) we get that each skeleton gives
rise to an equation a1 + a2 + · · ·+ ak+1 = n− k, with all the ai’s integers greater than
or equal to 0.

We further partition Pk,jn,` into four blocks:

Pk,jn,` (0,≥ 1) is the set of independent sets in Pk,jn,` in which ak = 0 and ak+1 ≥ 1.

Pk,jn,` (0, 0) is the set of independent sets in Pk,jn,` in which ak = ak+1 = 0.

Pk,jn,` (≥ 1,≥ 1) is the set of independent sets in Pk,jn,` in which ak, ak+1 ≥ 1.

Pk,jn,` (≥ 1, 0) is the set of independent sets in Pk,jn,` in which ak ≥ 1 and ak+1 = 0.

We start by enumerating Pk,jn,` (0,≥ 1). As described earlier, the skeleton induces
a composition a1 + a2 + · · ·+ ak+1 = n− k with all the ai’s integers greater than or
equal to 0. We have the specific restriction ak = 0.

Additionally, we have j forced vertices. When we force a vertex (say the first
vertex of ei), the edge to the left of ei cannot be marked. Thus the interval of
unmarked edges to the left of an edge that has a forced vertex must be non-empty,
which means that j of the ai’s must be at least 1. But we also in this case have
unmarked edges following the last marked edge, leading to one more ai that must be
at least 1 (specifically ak+1). Notice the rest of the intervals have no constraints on
their lengths — they may be empty or non-empty.

We may thus apply (16) with m = n − k, t = k + 1, s = j + 1 and r = 1 to

conclude that the number of skeletons in this case is given by

(
n− j − 2

k − 1

)
.
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We must further decide where among the k− 2 middle edges of the skeleton the j
edges that are forced occur, or, equivalently, where the k − 2 − j free edges occur.

This is accounted for by a factor

(
k − 2

k − 2− j

)
.

Inside each of the k− 2− j free edges in the skeleton we must choose which vertex
from the edge is actually in the independent set. That vertex must be one of the
`− 2 vertices in the center of the edge (since the edge is free, we cannot choose the
first vertex, and we also cannot choose the last overlapping vertex, as that would be
the marked vertex in the next edge). This leads to a factor of (`− 2)k−2−j.

Considering the first edge e1, we must choose one of the vertices in that edge to
be in the independent set. We cannot choose the final vertex of the edge; that would
cause the edge immediately to the right of e1 to be marked, and e1 not to be marked.
So we have `− 1 options.

The analysis of the previous three paragraphs will be common to all four cases,
so it is convenient to set

A := (`− 1)(`− 2)k−2−j
(

k − 2

k − 2− j

)
. (17)

Finally looking at edge ek, the last marked edge: we cannot choose the first vertex
of ek to be in the independent set, or else the previous edge (immediately to the left
of ek) could not have been marked. Since the hypergraph has edges after ek, we also
cannot choose the last vertex of ek to be in the independent set (if we did, that vertex
would have caused the edge immediately to the right of ek to have been the marked
edge associated with that vertex). Thus we are left with (`− 2) options to choose
from for the vertex of the independent set that is in ek.

It follows that ∣∣∣Pk,jn,` (0,≥ 1)
∣∣∣ = A(`− 2)

(
n− j − 2

k − 1

)
. (18)

We now move on to enumerating Pk,jn,` (0, 0). Again the skeleton induces a compo-
sition a1 + a2 + · · ·+ ak+1 = n− k with all the ai’s integers greater than or equal to
0, and with the specific restriction ak = 0.

As before each of the j forced vertices gives rise to a restriction ai ≥ 1, and in this
case there is no further such restriction. We may thus apply (16) with m = n− k,
t = k + 1, s = j and r = 1 to conclude that the number of skeletons in this case is

given by

(
n− j − 2

k − 2

)
.

Deciding where among the k − 2 middle edges of the skeleton the j edges that
are forced occur, choosing a vertex from inside each of the k − 2− j free edges to be
in the independent set, and choosing a vertex from e1 to be in the independent set,

together give a contribution of (`− 1)(`− 2)k−2−j
(

k − 2

k − 2− j

)
, as before.

To finish this case, again we look at the last marked edge ek. Again we cannot
choose the first vertex to be a part of the independent set, or else the previous edge
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could not be marked (contradicting ak = 0). Since the last vertex of ek is not the first
vertex of a later edge, we can choose the final vertex of ek to be the vertex of the
independent set from ek. Thus in this case we have (`− 1) options to choose from for
the vertex of the independent set that is in ek.

It follows that ∣∣∣Pk,jn,` (0, 0)
∣∣∣ = A(`− 1)

(
n− j − 2

k − 2

)
. (19)

To enumerate Pk,jn,`(≥ 1,≥ 1), note that here we have ak ≥ 1 instead of ak = 0,

but otherwise our considerations of r and s are the same as in the case of Pk,jn,` (0,≥ 1).

Thus s = j + 2 and r = 0 and this leads to a count of

(
n− j − 2

k

)
for the number of

skeletons.

Deciding where among the k − 2 middle edges of the skeleton the j edges that
are forced occur, choosing a vertex from inside each of the k − 2− j free edges to be
in the independent set, and choosing a vertex from e1 to be in the independent set,

together give a contribution of (`− 1)(`− 2)k−2−j
(

k − 2

k − 2− j

)
, as before.

Now looking at ek, we find that, unlike the first two cases, we can include the first
vertex as the vertex from ek that causes it to be marked, since the edge immediately
to the left of ek is unmarked. And since there are edges in the hyperpath after (to
the right of) ek in this case, similar to our consideration of Pk,jn,`(0,≥ 1) we cannot
chose the final vertex of ek to be the vertex of ek that is in the independent set. Thus
we have (`− 1) options for the vertex of the independent set coming from ek.

It follows that ∣∣∣Pk,jn,` (≥ 1,≥ 1)
∣∣∣ = A(`− 1)

(
n− j − 2

k

)
. (20)

Finally, we consider Pk,jn,` (≥ 1, 0). Similar to arguments in the previous cases, we

have here r = 1 and s = j + 1, so we have

(
n− j − 2

k − 1

)
as the count of the number

of skeletons.

As in all previous cases, deciding where among the k − 2 middle edges of the
skeleton the j edges that are forced occur, choosing a vertex from inside each of the
k− 2− j free edges to be in the independent set, and choosing a vertex from e1 to be

in the independent set, together give a contribution of (`−1)(`−2)k−2−j
(

k − 2

k − 2− j

)
.

Finally we look again to edge ek. Similarly to our consideration of Pk,jn,` (≥ 1,≥ 1)
we can choose the first vertex of ek to be the vertex from ek that is in the independent
set, and similarly to Pk,jn,`(0, 0) we can also choose the final vertex. Thus we have `
options in this case for the final vertex of the independent set.

It follows that ∣∣∣Pk,jn,` (≥ 1,≥ 1)
∣∣∣ = A`

(
n− j − 2

k − 1

)
. (21)
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Combining (18), (19), (20) and (21) we have∣∣∣Pk,jn,` ∣∣∣
A

= (`− 2)

(
n− j − 2

k − 1

)
+ (`− 1)

(
n− j − 2

k − 2

)
+

(`− 1)

(
n− j − 2

k

)
+ `

(
n− j − 2

k − 1

)
= (`− 1)

((
n−j−2

k − 1

)
+

(
n−j−2

k − 2

)
+

(
n−j−2

k

)
+

(
n−j−2

k − 1

))
(22)

= (`− 1)

((
n− j − 1

k − 1

)
+

(
n− j − 1

k

))
(23)

= (`− 1)

(
n− j
k

)
. (24)

Here (22) comes from a simple rearrangement of summands. Specifically we

take one of the

(
n− j − 2

k − 1

)
’s from the `

(
n− j − 2

k − 1

)
term and move it over to the

(` − 2)

(
n− j − 2

k − 1

)
term. We also use Pascal’s identity twice in (23) on adjacent

binomial coefficients and again in (24). Recalling the definition of A from (17) we
obtain ∣∣∣Pk,jn,` ∣∣∣ = (`− 1)(`− 2)k−2−j

(
n− j
k

)(
k − 2

k − 2− j

)
,

which is (15).

2.4 Proofs of (4) and (5)

In Section 2.2 we derived (4) by algebraic manipulation. Such a simple formula should
admit a combinatorial explanation (and indeed, as we have observed, there is a very
simple combinatorial explanation in the case ` = 2).

Here we present a bijection, due to Ferenc Bencs (see Note 1.6), that directly
explains (4). Recall that Pn,` has consecutive edges e1, . . . , en. Let

• v be the unique vertex in common to en−1 and en,

• v1, . . . , v`−2 be the vertices of en−1 that are only in en−1,

• w be a vertex chosen arbitrarily from en \ {v}, and

• w1, . . . , w`−2 be the vertices of en \ {v, w}.

Let Ikn,` be the set of independent sets in Pn,` of size k. We partition In,` into
2`− 2 blocks, falling into four categories (the first two consisting of one block each,
the third and fourth consisting of `− 2 blocks each):

1. Akn,` consists of those independent sets in Ikn,` that include w (and so necessarily
do not include any of w1, . . . , w`−2 or v) and include none of v1, . . . , v`−2. There
is a simple bijection from Akn,` to Ik−1n−2,`, obtained by deleting w from an

independent set in Akn,`. It follows that |Akn,`| = pk−1n−2,`.
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2. Bkn,` consists of those independent sets in Ikn,` that include none of w or

w1, . . . , w`−2. The identity map is a bijection from Bkn,` to Ikn−1,`, so |Bkn,`| =

pkn−1,`.

3. For each i = 1, . . . , `− 2, Ckn,`(i) consists of those independent sets in Ikn,` that
include wi (and so necessarily do not include any of v, w or wj, j 6= i. The
identity map is a bijection from Ckn,`(i) to

{I ∈ Ik−1n−1,` : v 6∈ I}.

4. For each i = 1, . . . , `− 2, Dkn,`(i) consists of those independent sets in Ikn,` that
include both w and vi (and so necessarily do not include any of v, w1, . . . , w`−2,
or vj, j 6= i. There is a simple bijection from Dkn,`(i) to

{I ∈ Ik−1n−1,` : v ∈ I},

obtained by deleting w and vi from an independent set in Dkn,`(i), and adding v.

Combining the observations in points 3 and 4 above we obtain∣∣∪`−2i=1

(
Ckn,`(i) ∪ Dkn,`(i)

)∣∣ = (`− 2)pk−1n−1,`.

Combining this with the observations in the points 1 and 2 above we obtain

pkn,` = pkn−1,` + pk−1n−2,` + (`− 2)pk−1n−1,`.

2.5 The independent set sequence of hypercombs and related hyper-
graphs

We begin by describing the more general setting in which we will work, alluded to
just after Note 1.9. Let G be a hypergraph (not necessarily uniform, not necessarily
a hypertree) with distinguished vertex v. For ` ≥ 3, let a sequence (Hn,`)n≥0 of
hypergraphs be defined as follows:

• H0,` consists of a single copy of G.

• H1,` consists of an edge of size `, together with two disjoint copies of G; in the
first of these copies, the distinguished vertex v is identified with some (arbitrary)
vertex of the initial edge, and in the second, it is identified with some other
(arbitrary) vertex of the initial edge.

• For n ≥ 2, Hn,` starts with a copy of Pn,`. Let w0 be a vertex in e1 \ e2. For
i = 1, . . . , n − 1 let wi be the vertex in common to ei and ei+1. Finally let
wn be a vertex in en \ en−1. Augment Pn,` by adding n + 1 disjoint copies of
G, say G0, . . . , Gn, with the distinguished vertex in Gi identified with wi for
i = 0, . . . , n.
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Notice that when G is a single edge of order `, Hn,` coincides with Cn,` for n ≥ 1.
Note also that in this case the independence polynomial of H0,` is 1 + `x, exactly
what C0,`(x) was declared to be in Theorem 1.7.

Let also a sequence (Dn,`)n≥0 of auxiliary hypergraphs be defined as follows:

• Dn,` is obtained from Hn,` by removing the first (left-most) copy of G from Hn,`

(including the vertex at which the copy of G meets the underlying copy of Pn,`).

In particular this means that D0,` is empty (so D0,`(x) = 1). An illustration of Dn,`

when G is a single edge of order ` is given in Figure 2.

Let Hn,`(x) and Dn,`(x) denote the independence polynomials of Hn,` and Dn,`

respectively. Let also

• G0(x) be the independence polynomial of G,

• G1(x) be the independence polynomial of the hypergraph obtained from G by
deleting the vertex v (which reduces by 1 the order of every edge in G that
includes v), and

• G2(x) be the independence polynomial of the hypergraph obtained from G by
deleting the vertex v and all edges in G that include v.

We now observe that there are coupled recurrence relations for Hn,`(x) and Dn,`(x)
valid for n ≥ 1. For Hn,`(x) we have

Hn,`(x) = G1(x)Dn,`(x) + xG1(x)G2(x)Dn−1,`(x)

= G1(x) (Dn,`(x) + xG2(x)Dn−1,`(x)) (25)

(consider first not occupying the first vertex along the spine of Hn,`(x) that has a
copy of G dropped from it, and then occupying it), and for Dn,`(x) we have

Dn,`(x) = Hn−1,`(x) + x(`− 2)G1(x)Dn−1,`(x) (26)

(consider first not occupying any of the initial `− 2 vertices along the spine that do
not have a copy of G dropped from them, then occupying one of them). Applying
(26) twice (once with index n and once with index n− 1) and rearranging terms we
get

Dn,`(x) + xG2(x)Dn−1,`(x) = Hn−1,`(x) + x(`− 2)G1(x)Dn−1,`(x)

+xG2(x)Hn−2,`(x) + x2(`− 2)G1(x)G2(x)Dn−2,`(x)

= (1 + (`− 2)x)Hn−1,`(x) + xG2(x)Hn−2,`(x).

In the second equality above we use (25) to combine the second and fourth terms on
the right-hand side. It follows (using (25) again) that

Hn,`(x) = G1(x) ((1 + (`− 2)x)Hn−1,`(x) + xG2(x)Hn−2,`(x)) . (27)
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Noting that when G is a single edge of order ` we have G1(x) = 1 + (` − 1)x and
G2(x) = 1 (since G2 is empty in this case), we obtain (6) as a special case of (27).

The initial conditions for the recurrence (27) are

H0,`(x) = G0(x) and H1,`(x) = G0(x)2 − x2G2(x)2 + (`− 2)xG1(x)2.

For the second of these initial conditions, consider first those independent sets in H1,`

that only use vertices from the two copies of G in H1,`. The factor G0(x)2 comes from
choosing an arbitrary independent set from each copy of G. The factor of −x2G2(x)2

comes from the fact that we have over-counted by including all pairs that have the
property that each independent set in the pair includes a vertex from the spine. Then
consider those independent sets in H1,` that include one vertex from among the `− 2
vertices that are not part of a copy of G. These sets contribute (` − 2)xG1(x)2 to
the independence polynomial. When G is a single edge of order ` these formulae are
easily seen to give the initial conditions posited in Theorem 1.7 for the hypercomb,
completing the proof of that theorem.

We now move on to Corollary 1.8, the partial unimodality of the independent set
sequence of Cn,`. Note that the graph obtained from Cn,` by replacing each edge with
a clique is not claw-free for n ≥ 2, so we cannot apply the results of Hamidoune and
of Chudnovsky and Seymour that we used for the linear hyperpath.

We work in the general setting of a sequence (zn(x))n≥0 of polynomials with
non-negative coefficients defined by the recurrence

zn(x) = a(x)zn−1(x) + b(x)zn−2(x)

for n ≥ 2, where a(x), b(x) are non-negative and non-zero polynomials. Our goal
is to establish easy-to-check conditions on a(x), b(x), z0(x) and z1(x) that imply
unimodality of all but a vanishing proportion of the coefficient sequence of zn(x). We
briefly sketch the approach here.

• First we explicitly solve the recurrence, to express zn(x) as the sum of two
polynomials, Wn(x) and Yn(x), each of which can be explicitly factored into a
product of low-degree polynomials.

• Assuming that each of these factors is log-concave we conclude that Wn(x) and
Yn(x) are log-concave and so unimodal.

• Viewing Wn and Yn as probability generating functions of discrete distributions
we explicitly compute the expectations of Wn and Yn and find that they are
(asymptotically) the same.

• We then appeal to a result of Bottomley, that shows that the expectation and
the mode of a unimodal polynomial are (quantifiably) close to each other. We
conclude that the modes of Wn and Yn are close to each other.

• Since the sum of two unimodal polynomials is increasing at least up to the
smaller of the two modes, and is decreasing at least from the larger of the



D. GALVIN AND C. SHARPE/AUSTRALAS. J. COMBIN. 94 (1) (2026), 93–121 115

two modes on, we conclude that zn(x) = Wn(x) + Zn(x) is mostly unimodal
(specifically, unimodal except possibly between the modes of Wn(x) and Yn(x)).

This scheme leads to a general statement (Theorem 2.3 below) to the effect that if a
particular collection of low-degree polynomials is log-concave, then zn(x) is mostly
unimodal for all n. We then apply this general result to the linear uniform hypercomb.

Let us now begin executing the above-described scheme. In the initial part of
what follows we draw on the presentation given in [26]. First note that using standard
recurrence relation techniques we have that for n ≥ 2

zn(x) =
(z1(x)− z0(x)µ)λ(x)n + (z0(x)λ(x)− z1(x))µ(x)n

λ(x)− µ(x)

= z1(x)

(
λ(x)n − µ(x)n

λ(x)− µ(x)

)
− z0(x)λ(x)µ(x)

(
λ(x)n−1 − µ(x)n−1

λ(x)− µ(x)

)
(28)

where

λ(x) =
a(x) +

√
a2(x) + 4b(x)

2
and µ(x) =

a(x)−
√
a2(x) + 4b(x)

2

or equivalently

λ(x) + µ(x) = a(x) and λ(x)µ(x) = −b(x).

(See e.g. [10, Chapter 7].) Note that since a(x), b(x) are non-negative and non-zero
we have a2(x) + 4b(x) > 0 for x > 0 and so λ(x) 6= µ(x).

Next (see e.g. [2, Chapter V.19]), we have the following factorizations for arbitrary
p, q with p 6= q:

pn − qn

p− q
=



(n−1)/2∏
s=1

(
(p+ q)2 − 4pq cos2

(sπ
n

))
if n ≥ 1 is odd,

(p+ q)

(n−2)/2∏
s=1

(
(p+ q)2 − 4pq cos2

(sπ
n

))
if n ≥ 2 is even

(here interpreting the empty product to be 1, as usual). Combining this with (28) we
get that

zn(x) = Wn(x) + Yn(x)

for n ≥ 2, where

Wn(x) =


z1(x)a(x)

(n−2)/2∏
s=1

(
a2(x) + 4b(x) cos2

(sπ
n

))
if n is even,

z1(x)

(n−1)/2∏
s=1

(
a2(x) + 4b(x) cos2

(sπ
n

))
if n is odd

(29)
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and

Yn(x) =


z0(x)b(x)

(n−2)/2∏
s=1

(
a2(x) + 4b(x) cos2

(
sπ

n− 1

))
if n is even,

z0(x)a(x)b(x)

(n−3)/2∏
s=1

(
a2(x) + 4b(x) cos2

(
sπ

n− 1

))
if n is odd.

(30)

Let us now assume that each of the following polynomials:

z0(x), z1(x), a(x), b(x) and a2(x) + 4b(x)y (y ∈ [0, 1])

have log-concave coefficient sequences. Using the standard fact that the log-concavity
of coefficient sequences of polynomials is preserved under multiplication (see e.g.
[6, Theorem 9.9]), it follows that each of Wn(x) and Yn(x) have log-concave and so
unimodal coefficient sequences.

Let mwn be a mode of Wn(x). That is, let mwn be an integer satisfying that the
coefficient sequence of Wn(x) is weakly increasing up to (and including) the coefficient
of xmwn and is weakly decreasing starting from the coefficient of xmwn . Let myn be a
mode of Yn(x). Evidently the coefficient sequence of zn(x) is weakly increasing at
least up to the coefficient of xmin{mwn,myn}, and it is weakly decreasing at least from
the coefficient of xmax{mwn,myn} on. So the smaller we can make |mwn −myn|, the
closer we get to concluding unimodality of the coefficient sequence of zn(x).

Let us focus first on estimating mwn in the case where n is even. Because Wn(x) is
a non-negative and non-zero polynomial we may view Wn(x)/Wn(1) as the probability
generating function of a discrete probability distribution Xn, supported on a finite
subset of the natural numbers. In light of the factorization we have found for Wn(x)
we see that

Xn = X0
n +

(n−2)/2∑
s=1

Xs
n

where X0
n has probability generating function z1(x)a(x)/(z1(1)a(1)), Xs

n has proba-
bility generating function (a2(x) + 4b(x) cos2(sπ/n))/((a2(1) + 4b(1) cos2(sπ/n))) for
each s, and the X i

n’s are independent.

We now use that if a distribution X has probability generating function PX(x)
then its expectation is given by E(X) = P ′X(x)|x=1, where ′ indicates derivative with
respect to x. So

E(X0
n) =

(z1(x)a(x))′|x=1

z1(1)a(1)
:= c0

and for s ≥ 1

E(Xs
n) =

c1 + c2 cos2(sπ/n)

c3 + c4 cos2(sπ/n)

where the ci’s are constants that can be explicitly calculated from a(x), b(x) and (in
the case of c0) z1(x), with c3, c4 6= 0. It follows that

E(Xn) = c0 +

(n−2)/2∑
s=1

c1 + c2 cos2(sπ/n)

c3 + c4 cos2(sπ/n)
. (31)
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We estimate the sum in (31) using an integral. Setting m = (n− 2)/2 we have

(n−2)/2∑
s=1

c1 + c2 cos2(sπ/n)

c3 + c4 cos2(sπ/n)
= m

m∑
s=1

1

m

(
c1 + c2 cos2((2s/(2m+ 2))(π/2))

c3 + c4 cos2((2s/(2m+ 2))(π/2))

)
. (32)

Observing that
s− 1

m
≤ 2s

2m+ 2
≤ s

m
(33)

(the latter is always true, the former is true for s ≤ m+ 1) we see that the summation

on the right-hand side of (32) is a Riemann sum estimate for

∫ 1

0

f(t) dt where

f(t) =
c1 + c2 cos2(tπ/2)

c3 + c4 cos2(tπ/2)
.

Since f ′(t) is bounded above and below on the interval [0, 1] by a constant depending
on c1, c2, c3 and c4, using standard Riemann sum error estimates we get

m∑
s=1

1

m

(
c1 + c2 cos2((2s/(2m+ 2))(π/2))

c3 + c4 cos2((2s/(2m+ 2))(π/2))

)
=

∫ 1

0

f(t) dt± c5
m

where c5 is a constant depending c1, c2, c3 and c4. (Here we use the notation A = B±C
as shorthand for |A− B| ≤ C.) Returning to (31) and using that m = n/2 + O(1)
we conclude that (for even n) there is a constant K (depending only on a(x), b(x))
such that

E(Xn) = Kn+O(1),

where the implicit constant in the O(1) depends on a(x), b(x) and z1(x). Specifically
we have

K =
1

2

∫ 1

0

(
c1 + c2 cos2(tπ/2)

c3 + c4 cos2(tπ/2)

)
dt.

Next we estimate the variance of Xn. By independence of the X i
n’s we have

Var(Xn) = Var(X0
n) +

(n−2)/2∑
s=1

Var(Xs
n).

We now use that if a distribution X has probability generating function PX(x) then

Var(X) = P ′′X(x)|x=1 + P ′X(x)|x=1 − (P ′X(x)|x=1)
2.

From this it is immediate that Var(X0
n) is a constant (depending on a(x), b(x) and

z1(x)), and that for s ≥ 1 Var(Xs
n) can be bounded above and below by constants

independent of s (depending only on a(x) and b(x)). It follows that σ(Xn), the
standard deviation of Xn, satisfies

σ(Xn) ≤ O(
√
n)

where the implicit constant in the O(
√
n) depends only on a(x) and b(x).

We now appeal to a result of Bottomley [7].
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Theorem 2.2. Let X be a discrete probability distribution supported on the integers,
that is unimodal in the sense that there is an integer m(X) (not necessarily unique)
with P (X = i− 1) ≤ P (X = i) for all i ≤ m(X) and P (X = i) ≥ P (X = i+ 1) for
all i ≥ m(X). If X has finite expectation E(X) and finite standard deviation σ(X)
then

|E(X)−m(X)| ≤
√

3σ(X).

This may be viewed as an extension to arbitrary polynomials of a weak form
of Darroch’s theorem [12], which recall says that if X is finitely supported on the
natural numbers and if furthermore the probability generating polynomial of X has
all real roots (a stronger condition than unimodality) then |E(X)−m(X)| ≤ 1.

Applying Theorem 2.2 to Xn (when n is even) we conclude that

|mwn −Kn| ≤ O(
√
n), (34)

where the implicit constant in the O(
√
n) depends only on a(x) and b(x).

We can do an almost identical analysis for Yn when n is even. In this case we still
set m = (n− 2)/2 to get the analog of (32). To confirm that the summation on the

right-hand side of the analog of (32) is still a Riemann sum estimate for

∫ 1

0

f(t) dt,

we need to check an analog of (33), namely

s− 1

m
≤ 2s

2m+ 1
≤ s

m
.

We conclude (routine analysis, very similar to that used in the derivation of (34),
omitted) that

|myn −Kn| ≤ O(
√
n) (35)

for (crucially) the same constant K as in (34); and running through the analysis for
n odd we find that (34) and (35) both hold for odd n, again with the same constant
K. We conclude that the modes of Yn and Wn differ by at most O(

√
n), and so

the coefficient sequence of zn(x) is unimodal except (possibly) for a O(
√
n) portion

around the [Kn]th term.

We summarize all of this in a theorem.

Theorem 2.3. Let a(x) and b(x) be polynomials with non-negative coefficients, each
with at least one positive coefficient. Let z0(x) and z1(x) be polynomials with non-
negative coefficients. For n ≥ 2 let the polynomial zn(x) be defined by the recurrence

zn(x) = a(x)zn−1(x) + b(x)zn−2(x).

Suppose that the coefficient sequences of each of a(x), b(x), z0(x) and z1(x) are
log-concave, and also that the coefficient sequence of a2(x) + 4b(x)y is log-concave for
all choices of y ∈ [0, 1]. Then there are constants K > 0 and L > 0, both depending
only the coefficients of a(x) and b(x), such that for all n the coefficient sequence of
zn(x) is
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• weakly increasing up to the coefficient of x[Kn−L
√
n] and

• weakly decreasing from the coefficient of x[Kn+L
√
n] on.

Note 2.4. We can strengthen Theorem 2.3 very slightly by observing that we do not
need Wn(x) and Yn(x) to be log-concave, just unimodal, and then using the fact that
the product of a unimodal polynomial and a log-concave polynomial is unimodal. So
we can allow up to one of the factors in each of the four factorizations in (29), (30)
to be unimodal but not necessarily log-concave, without changing the conclusion of
the theorem.

We now apply Theorem 2.3 to the independent set sequence of the family of linear
hypercombs, in order to prove Corollary 1.8. In this case we have

a(x) = (1 + (`− 1)x)(1 + (`− 2)x),

b(x) = x(1 + (`− 1)x)

and
z0(x) = C0,`(x) = 1 + `x,

all three of which are easily seen to have log-concave independent set sequences for all
` (for a(x) and b(x) we can use that log-concavity is preserved under multiplication,
and that linear polynomials are trivially log-concave; for z0(x) we need only use this
second fact). We have

z1(x) = C0,`(x) = 1+(3`−2)x+(2(`−1)(`−2)+(`−1)2+2(`−1))x2+(`−1)2(`−2)x3.

The two log-concavity relations that need to be checked here reduce to

6`2 − 6`+ 1 ≥ 0

and
6`4 − 22`3 + 31`2 − 20`+ 5 ≥ 0,

both of which are easily checked to hold for ` ≥ 3. Finally we have

a2(x)+4b(x)y = (1+(`−1)x)(1+(3`−5+4y)x+(3`2−10`+8)x2+(`3−5`2+8`−4)x3).

The first factor trivially has log-concave coefficient sequence. There are two relations
that need to be checked to verify that the second factor has log-concave coefficient
sequence, and these simplify to

6`2 − (20− 24y)`+ +(17− 40y) ≥ 0

and
6`4 − (40 + 4y)`3 + (99 + 20y)`2 − (108 + 32y)`+ (44 + 16y) ≥ 0.

We appeal to Mathematica to minimize the left-hand side of both inequalities over
` ∈ [3,∞] and y ∈ [0, 1] and see that the minima are both positive, but this could in
principle also be done by hand.

The conditions of Theorem 2.3 having been verified, we conclude that for each
` ≥ 3 there are constants K`, L` > 0 such that the independent set sequence of
the `-uniform linear hypercomb built on an n-edge spine is weakly increasing up to
K`n− L`

√
n and weakly decreasing from K`n+ L`

√
n, as asserted in Corollary 1.8.
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