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Abstract

In this paper, we enumerate the set of cyclic permutations in &, that
classically avoid o € S5 in their one-line notation and avoid another pat-
tern 7 € S3 in their standard cycle notation. We find results for all pairs
of patterns (o,7) in terms of Fibonacci numbers, binomial coefficients,
and polynomial expressions.

1 Introduction

Pattern avoidance is a notion typically defined for the one-line notation of a permu-
tation. We say that a permutation m = w7y . .. 7, contains another permutation (or
pattern) o = 0105 . .. 0y, if there is some subsequence of elements in the one-line form
of m that is in the same relative order as the one-line form of o; we say 7 avoids o if
7 does not contain o.

It is still an open question to enumerate cyclic permutations that avoid a given
pattern in their one-line notation. Generally, it has proven difficult to answer ques-
tions about cycle type or other algebraic properties of pattern-avoiding permutations,

ISSN: 2202-3518 ©The author(s). Released under the CC BY 4.0 International License



K. ARCHER ET AL./ AUSTRALAS. J. COMBIN. 94 (1) (2026), 50-92 51

though some interesting results have been proven. These results include problems
related to strong avoidance (meaning that both a permutation and its square avoid
a given pattern) [10, (1], [I8], pattern avoidance and the group structure of S, [11],
pattern-avoiding permutations composed only of cycles of a certain size [4], 12, [16}, 19],
and cyclic permutations that avoid sets of patterns [I], 3, [5, @, [17] or consecutive pat-
terns [15, 20].

Pattern avoidance within the cycle notation itself has also been considered previ-
ously. In [I3] 22], the authors consider the notion of cyclic pattern avoidance, where
all cyclic rotations of a permutation must avoid a given pattern. In [0 [14], the
authors investigate the cycle type of almost-increasing permutations, characterizing
these permutations in terms of pattern avoidance. A related concept of Boolean per-
mutations (see for example, [21]) which avoid the pair 321 and 3412 in its one-line
notation are characterized each cycle in the cycle form (beginning with its smallest
element) avoiding the patterns 213 and 312. Interestingly, shallow permutations, i.e.
those permutations which have minimal displacement (defined to be >, |m; — ¢|) for
a given length and reflection length, have also been characterized as avoiding certain
vincular patterns in their cycle form [§].

In this paper, we also consider cyclic permutations 7 = mymy ... 7, = (1, ¢, 3, ...,
¢,) avoiding a pattern in its one-line form and its cycle form. In particular, we
enumerate the set of cyclic permutations that simultaneously avoid a given pattern
o € 83 in the one-line notation and avoid another pattern 7 € S3 in the standard
cycle notation. The nontrivial results are summarized by the chart in Figure [l

1.1 Definitions and Notation

Let [n] denote the set {1,2,...,n}, and for nonnegative integers n; < ns, let [nq, no
denote the set of consecutive integers {ni,ny + 1,...,n9 — 1,no}; if ny > ng, then
[n1, nol is the empty set.

We denote by S, the set of permutations on [n] and denote by C,, the set of cyclic
permutations in &, i.e those permutations composed of exactly one cycle. For any
7w € S, the one-line notation of 7 is m = mmy - - -, where m; := m(i). The standard
cyclic notation of a cyclic permutation 7 € C,,, denoted C'(7), is denoted in this paper
by C(m) = (¢1,¢2,...,¢,) where ¢; = 1 and ¢; = m,,_, for 2 < i < n. For example,
the permutation m = 46152837 is a cyclic permutation in Cg with C'(7) = (14526873).

For any permutation 7 = myms ... m, € S,, we say that 7w avoids a pattern o € S,
if there is no 4; < iy < --- < 4 with m 7, ... m, in the same relative order as
0109 ...0%. For example, the permutation 7 = 251683497 avoids the pattern 321
since there is no subsequence of 7 of length 3 that is in decreasing order. We will
also consider pattern avoidance within a cycle. If 7 is a cyclic permutation with
C(m) = (c1,¢a, ..., ¢n), then we say C(m) avoids a pattern o = 0109 .. 0, if there is
no 4y < i < --- <14 with ¢;,, ¢y, ..., ¢, in the same relative order as o.

Let us denote by A, (o;7) the set of cyclic permutations that avoid ¢ in their
one-line form and avoid 7 in their cycle form, and let a,(o;7) = |A,(0o;7)|. For
example, the permutation 7 = 7341256 = (1,7,6,5,2,3,4) avoids ¢ = 132 in the
one-line notation since the word 7341256 contains no subsequence m;, ;,m;, with
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o T an(o;T) Theorem OEIS
123 {g] 1 Theorem A004526
132 n—1 Theorem A000027
213 9213 F, Theorem [B.13] A000045
n—1
5] n—1-—k
231 Z < ok > Theorem A005251
k=0
312 1 Theorem [3.22] A000012
321 on—2 Theorem [3.24] A000079
n—l 2n—>5 A326725 ,
123 5<L 2 J) + " nevett, Theorem neven
2 n—2 n odd. A140066—2 n odd.
132 2F, — 2 Theorem A019274
2
213 MJ Theorem BT A002620
231
231 n Theorem [4.16) A000027
5] n—1-k
312 > ( o ) Theorem .19 A005251
k=0
321 n—1 Theorem [.20)] A000027
123 eventually 0 Theorem A000004
(n—2)?
132 s +1 Theorem A061925
n—2 ["7_2]
213 9 + 5 + 2 Theorem [6.12] A085787+2
231 | 321 eventually 0 Theorem A000004
1252 n—2—2k .
—2—k— 2k
312 3 <” J > ( , ) Theorem B8 A129847
‘ k J
k=0 7=0
nl 0 n even, A064999
321 1+2 <( 2 1) +< ap1 Theorem [6.24] Ve
3 ( 2 ) n odd. A056520 n odd.

Figure 1: Included in the table are the cases where 7 € {213,231,321}. The
cases where 7 € {123,132} are trivial and are summarized in Theorem 2.1l The
case where 7 = 312 is similar (by symmetry) to the case where 7 = 231 and is
summarized by Theorem [G.11
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T, < T, < T, and avoids the pattern 7 = 231 in the cycle notation since (1, 7,6, 5, 2,
3,4) contains no subsequence ¢;,, ¢;,, ¢y, With ¢, < ¢, < ¢;,. Thus, we would say
that 7 € A7(132;231).

1.2 Insertion and deletion

Within proofs throughout this paper, we will modify permutations by deleting or
inserting elements into specific positions and shifting the remaining elements accord-
ingly as seen in the definition and example below.

Definition 1.1. Let 7 = mymy - - - m, be a permutation on the set [n].

1. If 7’ is formed by deleting m; from m, then

! ! __/ /
i —7T17T2'7T

n—1
where
T if j <iand m; <m;
o m;—1 if j <iand 7 > m;
J Tj+1 1fj22and Tir1 < T

Tjp1— 1 ifj>dand > m

2. If 7’ is formed by inserting the element k € [1,n+ 1] into 7 in position 4, then

A B
T =TTy Ty

where )
j if j<iand m; <k
7Tj—|—1 1fj<Zand7T]Zk
=4k if j =i
Tj—1 1f]21and 7Tj<]€
\7Tj_1-|—1 if j >¢and m; > k.

For example, suppose m = 37561248. If 7’ is formed from 7 by inserting 3 in
position 4, we would get 7’ = 486371259. If n” is obtained by deleting 4 from m, we
would get 7" = 3645127.

1.3 Symmetries

There are a few interesting symmetries on the set of permutations S,, that we will
make use of in this paper.

Definition 1.2. Given a permutation m € S,,, we define:
e the reverse of 7, denoted 7", by taking 77 = m,_;+1 for each i € [n],

e the complement of 7, denoted 7¢, by taking 7 = n + 1 — m; for each i € [n],
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e the inverse of 7, denoted 7!, by taking m; ' = j where T =1,
e the reverse-complement of 7, denoted 7", by taking 7" = (7")¢,

e the reverse-complement-inverse of 7, denoted 77, by taking
7.‘.7‘Ci — ((7.‘.7‘)0)—1,

For a cyclic permutation, we can apply the reverse, complement, or reverse-com-
plement to the cycle notation C(7) to get a new cyclic permutation (which in turn
correspond to the inverse, reverse-complement, and reverse-complement-inverse of 7
itself).

Example 1.3. If we consider 7 = 4763125 € S;, then: 7! = 5641732, =" =
5213674, ¢ = 4125763, "¢ = 3675214, and 7" = 6517423. Notice that 7 is cyclic
and C(m) = (1,4,3,6,2,7,5). We can also consider C(7)" = (5,7,2,6,3,4,1) which
in one-line notation is 5641732. It is not a coincidence that this coincides with 7=!
as stated below in Lemma [[4l Similarly, we can write C'(7)¢ = (7,4,5,2,6,1,3)
which has one-line form 3675214 and is equal to 7"¢, and we can write C'(7)"™ =
(3,1,6,2,5,4,7) which has one-line form 6517423 and is equal to 7".

Lemma 1.4. For anyn > 1 and any cyclic m € C,, we have:
o C(m 1) =C(m)" (up to cyclic rotation),
o C(n"¢) = C(m)¢ (up to cyclic rotation),

o C(n"") = C(m)™ (up to cyclic rotation).

Proof. Let m = mymy -+ m, with C(7) = (1, ¢, ¢3,...,¢,) with ¢; = 7,,_, fori € [2,n].
Let k € [1,n]. We will consider the element after k in the cycle structure of each
permutation.

First consider 7! and choose j so 7T1;1 = j where m; = k. Thus, the element

after k in C'(7~ 1) is j. Notice C(m)" = (1, ¢p,Cp1,-..,C2). Choose i so k = ¢;. The
element after k£ in C'(7)" is then ¢;_y. Since ¢; = 7, , and k = 7;, the equation
k = ¢; is equivalent to m; = m., ,. Thus the subscripts are equal and ¢;_; = j and k
maps to j in C(m)" as desired.

Now consider 77 = (n+ 1 —m,)(n +2 — mp—1) -+ (n + 1 — m). Notice k maps
ton+ 1 — T in 7 so the element after k in C(7"¢) is n + 1 — 7,11, Now
Cm)f=mn+1l—coyn+1—cs...,n+1—¢,). Chooseisok=n+1-c¢. The
element after k in C'(7)¢ is then n 4+ 1 — ¢;41. Using the relationship ¢;; = 7., along
with £ = n+1—c¢;, we have the element after k in C(7)¢isn+1—7m. =n+1—7p1 4
as desired.

Finally, consider 77¢. By the previous two results, we have C(77) = C(7™)" =
(C(m)¢)". Because the complement and reverse operators commute, we have the
desired result. O
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2 Enumerating A, (0;123) and A, (c;132)

In this section, we enumerate A, (c;123) and A, (0; 132) for all patterns o of length
3. The results are trivial as there is only one cyclic permutation whose cycle form
avoids 123, namely 7 = n123--- (n—1), and only one cyclic permutation whose cycle
form avoids 132, namely 7 = 234 ---nl. We state the results for completeness in the
next theorems.

Theorem 2.1. Suppose n > 4. Then:

0 foro e {123,312}

® a,(0;123) =
(9123) {1 for o € {132,213, 231,321},

0 foro e {123,231}

® a,(0;132) =
( ) {1 for o € {132,213,312,321}.

3 Enumerating A,(c;213)

In this section, we enumerate A, (c;213) for all patterns o of length 3. The first
lemma in this section, Lemma[3.1], gives more information about permutations whose
cycle avoids 213. The remainder of the section is divided into subsections examining
each of the cases for 0 € S5 in more detail.

Lemma 3.1. Forn > 6, if 7 € A,(0;213) with o € {123,132,213,231, 312}, then
m € {2,n}.

Proof. Let m € A,(0;213) with C(7) = (1,¢9,c¢3,...,¢,), and suppose toward a
contradiction that m € [3,n — 1]. Since m # 2, there is some k € [3,n] with ¢, = 2.
Furthermore, since C(m) avoids the pattern 213, ¢; > ¢; for all ¢ € [2,k — 1] and
j € [k + 1,n]. In particular, n = ¢; for some i € [3,k — 1]. Therefore, C(7) can be
written as

C(m) = (1,¢9, 0oy Cim1y, My Cig 1y v o vy Cl15 2, Chgdy+ -+ Cn)-

Let us achieve our contradiction by finding the pattern o for each possible choice
of o in the one-line notation of 7. First, to see that there is a 132 pattern, we note
that 1,n, and 7, occur in positions ¢,, ¢;_1, and n, respectively. Since ¢, < ¢;_1 < n,
the pattern 1nm, is a 132 pattern. To find a a 213 pattern, consider the elements c,,
cr+1, and n, which occur in positions 1, 2, and ¢;_, respectively. Since ¢ < cg, the
pattern cacr1n is a 213 pattern. For a 312 pattern, we note the elements co, 1, and
2 occur in positions 1, ¢,, and ¢;_1, respectively. Since ¢, < ¢;_1, the pattern c312 is
a 312 pattern.

To see that 7 has a 123 pattern, we consider two cases. If i # k—1, or equivalently
ck—1 # n, then 127, is a 123 pattern occurring in positions ¢,, ¢;_1, and n. In the
case where ¢;_; = n, we note that C(m) = (1,¢a,...,¢C5-2,1,2,Cky1,...,Cn) Where
k # 3 since m # n. Since C(m) avoids 213, ¢x_2 = n — 1 otherwise (n — 1)cx_on
would be a 213 pattern. Thus 1(n — 1)n is a 123 pattern in 7 occurring in positions
Cns Ci—gz, and n — 1.



K. ARCHER ET AL./AUSTRALAS. J. COMBIN. 94 (1) (2026), 50-92 56

Finally, we will show that 7 contains a 231 pattern. Because C(m) avoids 213
and m = ¢ ¢ {2,n}, all elements greater than ¢, must appear in C(m) before all
elements smaller than 2. Formally, the elements in [c; + 1,n] must appear before
the elements [2, ¢y — 1] in C(7). Thus, taking r = n — ¢y + 2, we have ¢, > ¢y while
¢ri1 < Co. In one-line notation, the elements ¢, c3, and ¢, 1 occur in positions 1, co,
and ¢,, respectively, and thus cocsc,yq is a 231 pattern.

We have shown that when m € [3,n — 1], there is always a ¢ pattern in the
one-line notation for 7 for all ¢ € {123,132,213,231,312}. Thus m € {2,n} as
desired. ]

3.1 A,(123;213)

Permutations in .4,(123;213) are enumerated based on the value of 7, and by
Lemma Bl m; € {2,n}. The next lemma shows that there is only one cyclic per-
mutation that avoids 123 with m; = 2. Because the proof does not depend on the
condition that C(m) avoids 213, we remove that condition from the hypotheses so
that this lemma can also be used in later sections.

Lemma 3.2. Suppose that n > 2 and that © € C,, avoids the pattern 123. If 71 = 2,

then 3
CMJ:<LZm&n—L&“W{n;J>.

Proof. Since m; = 2 and 7w avoids 123, the remaining elements in 7, excepting 1,
must be decreasing. Suppose m, = 1 for some k € [2,n]. Thus m; = n+ 2 — i for
i€[2,k—1]and m; =n+3 —ifor i € [k+ 1,n]. In cycle form, C(7) then contains
the cycle (1,2,n,3,n — 1,4,... k). Since 7 is cyclic, this cycle must have length n.
Thus k = [2£2]. O

We now turn our attention to the permutations in A, (123;213) where m = n.
In this case, we must also have m, = 2 as demonstrated in the lemma below.

Lemma 3.3. Suppose n > 3 and w € A,(123;213) with 7y = n. Then m, = 2.

Proof. Suppose 7 is a cyclic permutation with 7 = ¢; = n, and suppose toward a
contradiction that ¢; = 2 for some k € [3,n — 1]. Then we can write

C(m) = (1,n,¢3,Ca, -y Clo1, 2, Cht1y Cht2s - - - 5 Cn)-

Since C'(7) avoids 213, the elements in C'(7) before 2 must be larger than the elements
in C(m) after 2. In particular, ¢, < ¢x_1. In one-line notation, 1 is in position ¢,
and 2 is in position ¢;_1, and thus 127, is a 123 pattern. Therefore, we must have
T, = 2. ]

Given a permutation m € A, (123;213) with the additional conditions that m; = n
and 7w, = 2, we can simply delete n and 2 from 7 to obtain a permutation n’ €
A, 2(123;213). This map is in fact a bijection, and can be generalized to other
patterns as shown in the next lemma.
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Lemma 3.4. Suppose n > 3, o € {123,213}, and 7 € {213,231}. Then the number
of permutations m € A, (o;T) with m =n and 7, = 2 is equal to a,—2(0;T).

Proof. Let m € A, (0;7) so that m = n and 7, = 2. Then C(7) = (1,n,2,¢c4,¢5, . . .,
¢n). Let @’ be the permutation formed by deleting both n and 2 from 7. Then 7’
clearly still avoids o. Also, C(7') = (1,¢4 — 1,¢5 —1...,¢, — 1) and thus 7’ remains
cyclic and C'(n’) avoids 7. To see that we obtain every permutation in A,,_5(o;7),
we consider the process in reverse. Let 7’ € A, _2(o; 7). Form 7 by inserting a 2 at
the end followed by an n in the front. This cannot create a new 123 or a 213 pattern
and thus 7 still avoids o. In cycle notation, this process is equivalent to inserting an
n followed by a 2 after the 1 in C'(7’). This insertion cannot create a new 213 or 231
pattern in C'(7), and thus the result follows. O

With these results in hand, we can now enumerate 4,,(123;213).
Theorem 3.5. Forn >4, a,(123;213) = [§] + 1.

Proof. Let n > 6 and suppose 7 € A,(123;213). By Lemma Bl either m; = 2 or
m = n. By Lemma[2] there is exactly one permutation in 4,,(123; 213) with m; = 2.
If 71 = n, then by Lemma B3] we must have 7, = 2 and by Lemma B4 there are
exactly a,_o(123;213) such permutations. Thus for n > 6, we have a,(123;213) =
14 a,-2(123;213). As a4(123;213) = 3 and a5(123;213) = 4, solving this recurrence
yields the desired results. O

We note that of the total permutations in .A4,(123;213), all but one of these
permutations begin with n. Because this result will be referenced later in Section .11,
we state the result as a corollary here.

Corollary 3.6. For n > 4, the number of permutations © € A,(123;213) with
T =nis [§].

Example 3.7. Consider Ag(123;213). Lemma yields the only permutation in
Ag(123;213) with m; = 2. Namely C(7) = (1,2,9,3,8,4,7,5,6) or m = 298761543.
The remainder of the permutations can be found recursively. We note that

A7(123;213) = {2765143, 7365142, 7541632, 7645132, 7651432} .

The proof of Lemma [3.4] shows that we can get 5 new permutations in A4(123;213)
by inserting a 2 at the end and a 9 in the front of all of these permutations. Thus
we have the following additional permutations in Ag(123;213):

938761542,984761532, 986517432, 987561432, 987615432.

In total, this gives us [5] 4+ 1 = 6 permutations in Ag(123;213).
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3.2 A,(132;213)

Permutations in 4,,(132;213) can be listed explicitly, and there are exactly n — 1
permutations in this set.

Theorem 3.8. Forn > 2, a,(132;213) =n — 1.

Proof. Let n > 3 and suppose 7 € A,(132;213). By Lemma Bl either m = 2 or
m = n, and we examine both of those cases now.

First, we claim that if 7 € A,,(132;213) with m = 2, then 7 = 23---nl. Clearly,
if 7 avoids 132, we must have the elements in [3, n] appear in increasing order, while
1 can appear anywhere. However, if 7, = 1 for any k, then the cycle (1,2,... k) will
be part of the cycle decomposition of 7. Since 7 is cyclic, k = n.

Now suppose that 7 € A,(132;213) with m; = n, and let £ € [3,n] such
¢, = 2. We claim that each k£ induces a unique permutation thus providing ex-
actly n — 2 more permutations in A,,(132;213). Since C(7) avoids 213 and C(7) =

(1,n,¢3,¢4, .- Ck—1,2,Chy1,, - - -, Cn), we must have that all ¢;’s appearing before 2
are greater than all elements appearing after 2. More formally, {cs3,c4,...,cp1} =
[n—k+3,n—1] and {cgy1, Ckt2, .-, n} = [3,n—k+2]. Now in one-line notation, the

element 1 is in position ¢, and the element 2 is in position cx_1 > ¢,. Since 7 avoids
132, there cannot be any elements between 1 and 2 in 7, and thus ¢;_1 = ¢, + 1.
This implies ¢,_1 = n—k+3 and ¢, = n— k+ 2. Furthermore, since ¢, is the largest
element in {cgy1,..., ¢} and C(7) avoids 213, we must have that the elements after
2 in C(m) are increasing, and thus:

C(m)=(1,n,c3,¢4,. ., Cla,n—k+3,2,3,4,....n—k+2),

or equivalently, 7 = n34 - -- (n—k+2)127,_g44 - - - T,. Since w avoids 132, all elements
in 7 after 1 must be increasing and we have

m=n34---(n—k+2)12(n—k+3)(n—k+4)---(n—1), (1)
or equivalently,
Cm)=0,nn—-1,....,n—k+3,2,3,4,...,n—k+1,n—k+2),
Since C'(m) avoids 213, we see 7 € A,,(132;213), and all n — 2 possible choices for k

yield a unique permutation, our claim holds. [l

We note that of the total permutations in .A,(132;213), all but one of these
permutations begin with n. Because this result will be referenced later in Section [2.3]
we state the result as a corollary here.

Corollary 3.9. For n > 3, the number of permutations © € A,(132;213) with
T =nisn—2.

Example 3.10. Consider 4;7(132;213). Following the proof of Theorem[3.8] the only
permutation in A7(132;213) with m = 2 is 2345671. There are five permutations
with 71 = n based on the position of 2 in the cycle notation. These permutations
are given by Equation () for k € [3,7] and thus:

A7(132;213) = {2345671, 7345612, 7345126, 7341256, 7312456, 7123456} .
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3.3 A,(213;213)

In this subsection, we consider the case where o0 = 7 = 213. If 7 € A,,(213;213), the
first lemma, Lemma B.11], gives additional structural information about .

Lemma 3.11. Suppose n > 6 and 7 € A, (213;213).
o [fm =2, thenm=23---nl; and
e [f T =n, then either my =1 or m, = 2.

Proof. Let m € A(213;312) and suppose first that m; = 2. Note that 7, = 1 be-
cause if 7, # 1, then 217, is a 213-pattern in one-line notation. Thus C(7) =
(1,2,¢3,¢4, ..., Cn1,n). Suppose toward a contradiction that m # 23 ---nl, or equiv-
alently that C'(m) # (1,2,...,n). Then there is a smallest k € [3,n—2] where ¢, > k,
and ¢; =i for i < k. Note that k # n — 1 because ¢, _1 < n — 1. But then, ¢ kn is a
213 pattern in C'(7).Therefore ¢; = i for all i and 7 = 23...nl.

Now consider the case where m; = n. Thus C(7) = (1,n,c3,¢4,...,¢,). We want
to show that either ¢, = 2 or ¢3 = 2. Suppose toward a contradiction that ¢, = 2 for
k € [4,n — 1]. Thus

C(m)=(1,n,¢3, ..., Ck—1,2,Cxs1,-.-Cpn)

and
T = NC1T3T4 "« * Tp—1C3.

Since C(m) avoids 213, we must have ¢z > cg1. But then in one-line notation,
cr+12c3 is a 213 pattern which is a contradiction. Thus either c3 = 2 or ¢, = 2 which
implies 7,, = 2 or my = 1 as desired. O]

All permutations in A,(213;213) that begin with nl can be enumerated recur-
sively as shown in the lemma below.

Lemma 3.12. Suppose n > 3. Then the number of permutations m € A, (213;213)
with m = n and 79 = 1 is equal to a,_1(213;213) — 1.

Proof. We will find a bijective correspondence between permutations in A4,,(213;213)
that begin with nl and permutations in A,,_1(213;213) that begin with n — 1. Let
m € A,(213;213) so that m; = n and my = 1. Then C(7) = (1,n,¢3,¢4,...,Cn1,2).
Let 7’ be the permutation formed by deleting 1 from 7. Then n’ clearly avoids 213.
Also, C(n') = (I,n —1,c3 — 1,¢4 — 1,...,¢,—1 — 1) and thus 7’ remains cyclic and
C(7') avoids 213 as well. To see that we obtain every permutation in A4,,_;(213;213)
that begins with n — 1, we consider the process in reverse. Let 7’ € A,,_;(213;213)
with 77 = n — 1. Form 7 by inserting a 1 in position 2 of 7’ which is equivalent to
inserting a 2 at the end of the cycle notation of C' (7). Because 7 remains cyclic and
avoids 213 in both one-line and cycle notation, 7 € A,,(213;213). Thus our bijective
correspondence holds.

By Lemma BT, all permutations in A,,_1(213;213) either begin with 2 or n — 1,
and Lemma BTl states there is only one permutation in .4,,_1(213;231) that does not
begin with n — 1. Thus there are a,,_1(213;213) — 1 permutations 7 € A,,(213;213)
with 7 = n and m = 1. O
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In the final case where m € A,(213;213) with m; = n and 7, = 2, Lemma [3.4]
from Section Bl states that we can can count the permutations recursively. Thus
we are now ready to enumerate A,,(213;213).

Theorem 3.13. Forn > 1, a,(213;213) = F,, where F,, denotes the n-th Fibonacci
number.

Proof. This is easily checked for n € [1,5], so let n > 6. We will count the number of
permutations in 4,,(213; 213) by looking at three disjoint sets based on Lemma B.111
First, we note that there is exactly one permutation 7 € A,,(213;213) with 7 = 2 by
the first part of Lemma B.IIl In the second case, we consider the permutations 7 €
A, (213;213) where m; = n and m = 1. By Lemma BI2] there are a,_1(213;213) — 1
such permutations. For the third case, LemmaBdstates that there are a,,_5(213;213)
permutations 7 € A,,(213;213) with 7 = n and 7, = 2. Thus we have

an(213;213) = 1+ (an_1(213;213) — 1) + a,_2(213: 213)
= ap_1(213;213) + a,_2(213; 213)

which satisfies the Fibonacci recurrence and the result follows. O

We note that of the total permutations in 4,(213;213), all but one of these
permutations begin with n. Because this result will be referenced later in Section .2],
we state the result as a corollary here.

Corollary 3.14. For n > 2, the number of permutations m € A,(213;213) with
T =n is F,, — 1 where F,, denotes the n-th Fibonacci number.

Example 3.15. Consider A7(213;213). The first part of Lemma B.11] gives us the
permutation 2345671 in A,(213;213) as the only permutation beginning with 2.
Next, we note that the permutations in Ag(213;213) that begin with 6 are 634512,
654132,651342, 614523, 615243, 612345, and 612534. The proof of LemmaB.12/shows
that we can insert the element 1 into position 2 of all the permutations in this list to
get permutations in 4;(213;213) that begin with 71. These seven permutations are:

7145623, 7165243, 7162453, 7125634, 7126354, 7123456, 7123645.

Finally, to find the remainder of the permutations in A;(213;213), we list all five
permutations in A5(213;213) which are 23451, 53412, 54132, 51234, and 51423. The
proof of Lemma [B.4] shows that inserting a 2 at the end and a 7 at the beginning
of these permutations will yield permutations in .A7(213;213) that begin with 7 and
end in two; these five permutations are:

7345612, 7645132, 7651432, 7613452, 7615342.

Thus there are F7; = 13 permutations in 47(213;213).
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3.4  A,(231;213)

This is the most complicated case for 7 = 213. Permutations in .4,(231;213) can
be enumerated via a recurrence based on the last element of the permutation. The
lemmas below give additional constraints on 71, and consider different cases for 7.

Lemma 3.16. Suppose n > 1 and w € A,(231;213). Then m = n.

Proof. We can easily check this for n € {1,2}, so suppose n > 3 and let 7 €
A, (231;213). By Lemma Bl we know that m; € {2,n}. However, if m; = 2, then
to avoid 231 in the one-line form, we would have w5 = 1, which contradicts the fact
that 7 is cyclic. Thus m = n. O]

The next lemma shows that there is only one permutation in A,,(231;213) with
7, = 2. Because the proof does not depend on the condition that C'(7) avoids 213,
we remove that condition from the hypotheses so that the lemma can be used in
future sections.

Lemma 3.17. Suppose that n > 2 and that © € C,, avoids 231. If w,, = 2, then

2
Cﬁj:<LmZn—L&n—Z“WLn;J>.

Proof. Suppose 7 is as stated and m, = 2. Because 7 avoids 231, the remaining
elements in 7, excepting 1, must be decreasing. Suppose 7, = 1 for some r € [2,n—1].
Then the remaining elements must be m; = n+1—ifori € [2,r—1] and m; = n+2—1
fori € [r+1,n—1]. In cycle form, C'(7) contains the cycle (1,n,2,n—1,3,n—2,... 7).
Since 7 is cyclic, this cycle must have length n and thus r = L”T“J O]

In fact, the last lemma, Lemma[B.17], can be generalized to the case where 7, = k
for any k € [2,n—2] when m € A,,(231;213). In this case, the first n —k+ 3 elements
of C(r) are forced.

Lemma 3.18. Suppose n > 4 and © € A,(231;213) with 7, = k for some k €
[2,n —2|. Then

n+k

C(m) = (1,n,k,n—1,k+1,...,\‘ J,k—l,cnk+4,cnk+5,...,cn>.

Proof. By Lemma [B.T6, we have m; = n. Since C'(7) avoids 213, we can write

C(ﬂ-) = (]-7 n, kv C4,C5y vy Cn—k+2,Cn—k+3, -+ - 7cn)

where {c4,...,¢chpiot =k +1,n—1] and {¢;_g13,-..,¢} = [2,k — 1]. In one-line
notation, we have

T =Ny Tp1C4Tpg1 " Tp_1k
where {mo,...,me—1} = [Lk — 1]\ {cn-gss} and {ms,...,mp1} = [k +1L,n—1U
{Cn—k+3}-
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We first claim that ¢4 = n — 1 and that ¢, .3 = k — 1. Since 7 avoids 231, all
elements in 7 that are greater than k£ must appear in decreasing order. In particular,
since m = ¢4, we have ¢4 € {n—1,¢,_g13}. However, k #n—1,s0 ¢y =n—1. Also,
if ¢ppi3 # k—1, then (k—1)cscppr3 = (K —1)(n — 1)cp_grs is a 231 pattern in 7.
Thus ¢, 13 =k — 1 as well.

Recall from the one-line notation of 7 the elements in {7, ..., 7, 1} = [k+1,n—
1JU{k—1}, excepting k—1, must appear in decreasing order. Choose r € [k+1,n—1]
so that m, = k — 1. Then C(m) contains the cycle (1,n,k,n — 1,k +1,...,7k —
1, Cpoppta, - - -, Cp). Since 7 is cyclic, we must have r = |t ] as desired. O

Because the value of 7, forces other parts of the permutation, we now recursively
enumerate permutations in A,(231; 213) based on specific values of .

Lemma 3.19. Suppose n > 4. There are
e a, 1(231;213) permutations in A, (231;213) with 7, =n — 1;
o a, 3(231;213) permutations in A, (231;213) with 7, =n — 2; and

e a, 1(231;213) — a,_2(231;213) permutations in A, (231;213) with 7, € [2,n —
3].

Proof. Let m € A,(231;213), and suppose first that 7, = n — 1. Then C(7) =
(I,n,n —1,¢4,...,¢,) and m = nmy...mp_1(n — 1). By deleting n — 1 from 7, we
get 7’ so that C(n') = (1,n — 1,¢4,...,¢,) and @ = (n — 1)mems ... m,_1. Clearly,
this process is reversible since inserting an n — 1 at the end of the one-line notation
cannot introduce a 231 pattern and inserting n — 1 after the current n — 1 in C'(7')
cannot introduce a 213 pattern.

Next suppose 7, = n — 2. Then by Lemma BI8, C(7) = (I,n,n —2,n—1,n —
3,C6,--,Cn) and ™ =nmy...mp_3(n—1)(n—3)(n—2). By deleting n —1,n — 2, and
n — 3, we get 7’ so that C(7') = (1,n — 3,¢6,...,¢,) and ©’ = (n — 3)mam3 ... Tp_3.
Again, this process is reversible since inserting an (n —1)(n —3)(n — 2) at the end of
the one-line notation cannot introduce a 231 pattern and inserting n —2,n—1,n— 3,
after the n — 3 in C'(7’) cannot introduce a 213 pattern.

Finally, suppose 7, = k for some k € [2,n — 3]. Then by Lemma BI8 C(r) =
(Lnk,n—1,k+1,n—2,k+2,..., [ 2% k—1,¢o pya,...,¢,). By letting C(’) be
the permutation formed by deleting | “+* | from C(r), we get C(n) still satisfies the
conditions of Lemma BI8l Since ¢,_j2 = [“5*] £ 1, this is equivalent to deleting
L”T”“J from the one-line notation. In particular, we note that 7’ does not end in n—2
because 7 did not end in n — 1; there are a,_1(231;213) — a,,_2(231;213) such per-
mutations. Again, we reverse this process by first starting with 7’ € A,,_1(231;213)
where 7/ does not end with n — 2. In this case, insert [“t*| into position n+2 — k
of C(). O

Theorem 3.20. For n > 4, the number of permutations in A, (231;213) satisfies
the recurrence

(2315 213) = 2a,_1(231; 213) — a,_2(231; 213) + a,_5(231; 213).
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with a1(231;213) = ay(231;213) = a3(231;213) = 1. In closed form,

a,(231;213) = (" _2115_ k)

for alln > 1.

Proof. We can easily check that a;(231;213) = a2(231;213) = a3(231;213) = 1.
Suppose n > 4 and let 7 € A,(231;213). By Lemma BI0, m = ¢ = n. By
Lemma [3.19, we have

,(231;213) = 2a,1(231;213) — a,_2(231: 213) + a,_3(231; 213).

Since the formula in the statement of the theorem satisfies this recurrence and the
initial conditions, the theorem holds. [l

Example 3.21. Consider A7(231;213). Because we build this set of permutations
recursively, we begin by listing A4(231;213) and .44(231;213):

A4(231;213) = {4312, 4123}
Ag(231:213) = {631245, 612345, 614235, 641325, 612534, 615243, 654132}

To create those permutations in 47(231;213) ending in 6, we start with the permu-
tations in Ag(231;213) and insert a 6 at the end yielding the following permutations
in A7(231;213):

7312456, 7123456, 7142356, 7413256, 7125346, 7152436, 7541326.

To create those permutations in 47(231;213) ending in 5, we start with the permu-
tations in A4(231;213) and insert a 645 at the end giving us the permutations

7312645, 7123645.

Finally, to create those permutations in .47(231;213) ending in k for k < 6, we need
the permutations in A4g(231;213) that do not end in 5. There are ag(231;213) —
as5(231;213) = 7 — 4 = 3 such permutations: (1,6,4,5,3,2), (1,6,3,5,4,2), and
(1,6,2,5,3,4). For each of these, let k£ be the element after 6 in cycle form, and insert
L#J into position 9—k of the cycle form. For the permutation (1,6,4,5,3,2), k = 2,
so we insert 5 in position 5 of the cycle form giving the permutation (1,7,4,6,5, 3, 2)
in A7(231;213). For the permutation (1,6, 3,5,4,2), k = 3, so we insert 5 in position
6 of the cycle yielding the permutation (1,7,3,6,4,5,2). Finally, for the permutation
(1,6,2,5,3,4), k = 2, and we insert 4 in position 7 of the cycle form to get the
permutation (1,7,2,6,3,5,4). In one-line form, these three permutations are

7126354, 7165243, 7651432.

Thus there are 7+ 2 4 (7 — 4) = 12 permutations in .4;(231;213). In closed form,

notice (g) + (g) + (j) = 12 as well.
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3.5 A,(312;213)

When ¢ = 312 and 7 = 213, there is only one permutation in .4,(312;213), namely
the permutation 7 = 23...nl so that C'(7) = (1,2,3,...,n).

Theorem 3.22. Forn > 1, a,(312;213) = 1.

Proof. Let n > 3 and 7 € A,,(312;213). By Lemma B.1], either m; = n or m = 2.
If 7y = n, then m = nmems - - - m, must have m, = 1 in order to avoid 312. But this
permutation is not cyclic for n > 3 since m; = n and 7, = 1 yields a transposition.
Thus m = 2.

We claim that the permutation 7 = 23...nl1 is the only permutation in
A, (312;213). To this end, let C(7) = (1,2, ¢3,...,¢,) and suppose toward a contra-
diction that there exists a k so that ¢; =i for i« < k and ¢, > k. Thus ¢, = k for
some ¢ > k and

C(r)=(1,2,3,...,k =1, ¢k, Cry1y- -y Co1, Ky Cox1y ooy Cn)e
If ¢ = n, or equivalently ¢, = k, then
T=23-(k—1)cplmps1Than - T

Since ¢, > k, we have ¢;x1k is a 312 pattern which is a contradiction. Thus ¢ # n
and it must be that ¢,—; > ¢, since C(7) avoids 213. But then the pattern c;l1k,
occurring in positions k — 1, ¢,, and ¢, of 7, is a 312 pattern. O

3.6 A,(321;213)

In this section, we enumerate the permutations in A,,(321;213). We begin by giving
conditions on the position of 2 in cycle notation.

Lemma 3.23. Suppose n > 2 and 7 € A, (321;213). Then either m = 2 or my = 1.

Proof. 1f n € {2,3}, the only permutations in A4, (321;213) are 21, 231, and 312 all
of which satisfy the statement of the lemma. So assume n > 4, and suppose toward
a contradiction that m # 2 and 7y # 1. In C(m), we thus have ¢, = 2 for some
3 <k <n—1 and for reference write

C(m) =(1,¢9, ..y Ch1,2,Chsly -+ Cn)-

Since C(m) avoids 213, we must have ¢y > cg1. But then in one-line notation,
cock112 is a 321 pattern which is a contradiction. O

For any permutation in .4,(321;213), we can insert either a 2 at the beginning
or a 1 in the second position to get a permutation in A, 1(321;213). In fact, this
process yields all possible permutations and we have the following theorem.

Theorem 3.24. Forn > 2, a,(321;213) = 2" 2.



K. ARCHER ET AL./AUSTRALAS. J. COMBIN. 94 (1) (2026), 50-92 65

Proof. We begin by showing that every permutation in .A,(321;213) corresponds
to exactly two permutations in A,41(321;213). Let 7 € A,(321;213), and let 7’
be the permutation formed by inserting the element 2 in position 1 of 7. Thus
' = 2mimy---m, where 7, = 1if m; = 1 and 7, = m; + 1 if m; # 1. Notice that
7’ avoids 321 in one-line notation. Furthermore, in cycle notation, this process is
equivalent to inserting the element 2 after 1 and thus C'(7’) avoids 213 as well. Thus
€ A,41(321;213).

Similarly, let 7” be the permutation formed by inserting the element 1 in position
2 of w. Thus " = n{1xy--- 7! where 7/ = m; + 1 and thus 7" avoids 321. Notice
this process in equivalent to inserting 2 at the end of the cycle notation of C'(7) and
thus C'(7”) also avoids 213, and 7" € A,,+1(321;213). Furthermore, the only way for
' = 7" is if m; = 1 which is not true if n > 2. Thus a,1(321;213) > 2a,,(321;213).

To show equality, we note that this process is reversible. If 7 = mymo -+ 7,11 €
A, +1(321;213), then by Lemma B23] either m = 2 or my = 1. In the case where
m = 2, deleting 2 from 7 yields a permutation cyclic permutation 7’ (whose cycle
form is obtained by deleting 2 in C'(7)) in A,,(321; 213). Indeed, 7’ clearly avoids 321
since 7’ does and C'(7’) avoids 213 since C'(7) does. Similarly, in the case where my =
1, deleting 1 from 7 yields a permutation in 4,(321;213). Thus a,4+1(321;213) =
2a,(321;213). Since ay(321;213) = 1, we have a,(321;213) = 2”2 as desired. O

Example 3.25. Consider A5(321;213). To find the permutations in this set, we first
list the four permutations in 44(321;213) and insert the element 2 in position 1 to
obtain four of the permutations in A5(321;213) and insert the element 1 in position
2 to obtain the other four permutations in A5(321;213). Recall that when inserting
a value, all other values are adjusted accordingly so the result is still a permutation.
The four permutations in A4(321;213) are 2341, 3142, 2413, and 4123. Thus, the
eight permutations in A5(321;213) are

As5(321;213) = {23514, 25134, 24153, 23451, 31524, 51234, 41253, 31452}

4 Enumerating A, (c;231)

In this section we consider the cases where 7 = 231. Similar to the previous section,
we begin with a lemma to give more information about permutations in 4, (o;231)
for certain patterns o. The remainder of the section is divided into subsections
examining each of the cases for ¢ € S5 in more detail.

Lemma 4.1. For anyn > 1, if 7 € A,(0;231) with o € {132,213,231, 312}, then
either m;y =n or m, = 1.

Proof. 1t is straightfoward to check this is true for n < 6, so let us assume n > 6.
Let m € A, (0;213), and suppose toward a contradiction that m; # n and m, # 1. In
cycle notation, this implies there is a k € [3,n — 1] so that ¢, = n. Since C(7) avoids
231, we must have {co,c3,...cx_1} = [2,k — 1] and {cpi1, Chro, ..., 0} = [k,n —1].
Let us achieve our contradiction by finding the pattern o € {132,213, 231,312} in
the one-line notation of 7. First, to see there is a 132 pattern, we note that ¢y, n, and
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Cr+1 occur in positions 1,c¢,_1, and n, respectively, thus forming a 132 pattern. For
the 213 pattern, ¢, is in position 1, 1 is in position ¢, and ciy; is in position n. Since
co < Cky1, this is a 213 pattern. Next, we have the pattern conl in 7 which is a 231
pattern. And finally, nlcyq is a 312 pattern. Therefore, for o € {132,213,231, 312},
we have either m; = n or m,, = 1 as desired. O

4.1 A,(123;231)

We begin by considering the position of n in the cycle notation of a permutation in
A, (123;231).

Lemma 4.2. Suppose n > 4 and let 7 € A, (123;231) with C(7) = (1,¢a,¢3,...,¢p).
If ey =n for k € [3,n — 1], then

kE+1 k
ctm = <1’k_1727k_2’3’k_3""’ \\%J nkn—1LE+1,.. ., \‘n; J)

Proof. Since C(m) avoids 231, elements in C'(7) that come before n must be smaller
than those that come after n. Thus, {ca,c3,...,cx—1} = [2,k—1], and {cx11, Chi2y - -,
¢n} = [k,n —1]. In one-line notation, note that 7, = c¢x,1. Since the elements in the
set [2,k — 1] are all less than ¢,y and 7 avoids 123, these elements must appear in
7 in decreasing order. These elements occur in positions [1,k — 1]\ {¢x_1} of 7, and

thus we have
k—i ifie[l,cp g — 1]
T, —
k+1—1d ifi€ gy +1,k—1].

On the other hand, we note that in one-line notation, m; = ¢y, and thus all
elements in 7 greater than c; must be decreasing. Since the elements in the set
[k,n — 1] must occur in positions [k, n] \ {¢,}, we have

n+k—1—1i ifie k¢ —1]
T, =
n+k—1 if i € [c, +1,n].

Then 7 contains the cycle (1, k—1,2,k—2,3,...,ck_1,n,k,n—1,k+1,...,¢,). Since
7 is cyclic, ¢,—1 = |(k+1)/2] and ¢, = [(n+ k) /2] as desired. O

The remaining cases occur when n is either the second position in cycle notation
or at the end. Lemma [B.4] deals with the case where ¢co = n and ¢3 = 2, and the
following lemma examines the case where ¢ = n and c¢3 # 2. In this case, we
have a similar result to Theorem B.8; the element 7w, = k uniquely determines the
permutation if k € [4,n — 2].

Lemma 4.3. Suppose n > 8. Then there are n—3 permutations in m € A, (123;231)
with my = n and 7, # 2.

Proof. Let m € A,(123;231) with m; = n. We first show that m, # n — 1. If
7, = n — 1, then the remaining elements of ©# would need to be decreasing since
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7 avoids 123. Then 7,1 = 1 and 7 contains the cycle (1,n,n — 1) which is a
contradiction.

We now suppose 7, = k for k € [4,n — 2] and show that there is exactly one such
permutation. Write

C(W) = (L N, k,Ca,C5,. .., Cht1,Cht2, Chit3, - - - 7Cn)-

Since C() avoids 231, we have {cy, ¢5, ..., cpr1} = [2,k—1] and {12, Chrs, -+, Cn} =
[k+1,n—1]. In one-line notation, note that 7, = k so the elements in [2, k—1], which
occur in positions [2, k] \ {cx+1} must occur in decreasing order. In cycle notation, we
then have C () = (1,n,k,2,k—1,3,k—2,..., Cpy1, Ckr2, - - -, Cy). In order for C(7) to
contain all elements in [1, k — 1], we must have ¢;_1 = |(k+2)/2]. Similarly, since 2
comes before the elements in [k+1,n—1]\{cg12} in one-line notation, these elements
must also be in decreasing order, and they appear in positions [k + 1,n — 1]\ {¢,}.
Again, in order for C(m) to contain all of the elements, we need ¢, = [(n + k)/2].
Thus, in cycle notation,

k+2 i
o) = (k2 k- 1ako [ ks kee | 1ER]).

Finally, we show that if m, = 3, there are exactly two possible permutations.
Since C'(7) avoids 231, ¢4 = 2 otherwise 3¢42 would be a 231 pattern in C(m). For
reference, note that in this case C(7) = (1,n,3,2,¢s5, ¢, - - ., ). We now claim that
cs € {4,n — 1} each producing a unique permutation with n > 8. Suppose toward
a contradiction that cs = k for k € [5,n — 2]. Since C(7) avoids 231, we must have
{ce,¢7,...,cpr1} = [4,k — 1] and {cki2,Chs3,---,cn} = [k + 1,n — 1]. In one-line
notation, consider the pattern 2mm, 1. Since mp = ¢g < k, we must have 7,1 = 1
to avoid 123. But then k& = n — 2 since otherwise 2m,c,_1 is a 123 pattern in w. If
k = mn—2, we have that mymom3 = n(n—2)2 and 7, _1m, = 13. Since m avoids 123, the
remaining elements in 7 must be decreasing and thus 7y =n—1and m; =n+2 —1
for i € [4,n — 2]. But then C'(7) contains the cycle (1,n,3,2,n — 2,4,n — 1) which
is a contradiction. Thus ¢; ¢ [5,n — 2].

Suppose that ¢; = 4. In this case C(7) = (1,n,3,2,4,¢,¢7,...,Cn). In one-line
notation, mmoms = n42 and 7, = 3. The remaining elements in 7, excluding 1, must
be decreasing since 7 avoids 123. Thus, m; = n+3—i fori € [4,¢,] and m; = n+4—i for
i € [ep+1,n—1]. In cycle form, we have the cycle (1,n,3,2,4,n—1,5,n—2,6,...,¢,).
Since 7 is cyclic, this cycle must contain all n elements and thus ¢, = |(n + 4)/2]
and a unique permutation in A4,,(123;231) exists in this case, namely,

4
C(W):(1,71,3,2,4,71—1,5,n_2,6"“’{n—;— J) 3

A very similar argument shows that if ¢ = n — 1, the unique permutation in
A, (123;231) is

C(?T):<1,n,3,2,n—1,4,n—2,5,...,VL;BJ>. (4)

O
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The final lemma for this case counts the permutations in .A,(123;231) where n
is the last element in cycle form. We enumerate these by making use of symmetries
of permutations and the results in Section [3l The following lemma states a general
result about enumerating permutations based on symmetries and will be used in
future sections as well.

Lemma 4.4. The number of permutations © € Ay(0;231) with m, = 1 is equal to
the number of permutations ' € A,,(0"¢; 213) with 7] = n.

Proof. Suppose m € A,(0;231) with 7, = 1. Then C(7) = (1,co,...,Cn_1,n).
Furthermore, we note that C'(7)° = (n,n+1—c¢y,...,n+1—¢,_1,1) which we can
cyclicly rotate to see C(m)¢ = (1,n,n+1—cy,...,n+ 1 —¢,_1). Notice that since
C(m) avoids 231, C(m)¢ avoids 213.

Let 7’ = 7"¢. We claim that 7’ € A,,(0"¢; 213) with 7] = n. Since 7 avoids o, we
see that 77 avoids ™. Also, by Lemma [[L4 we have C(7") = C(m)¢ which avoids
213. Thus 7" € A, (07 213). Furthermore, this process works in reverse and thus
the equality holds. O

Since 123" = 123, the number of permutations © € 4,,(123;231) where 7, = 1
can thus be enumerated using Corollary 3.6l We can now enumerate all of
A, (123;231).

Theorem 4.5. For n > 8, the number of permutations in A, (123;231) satisfies the
recurrence

,(123;231) = a,_»(123;231) + 2n — 6 + {g}

where ag(123;231) = 12 and a7(123;231) = 20. In closed form,

a,(123;231) = 5(L 2 J) n n—>5 zfn z's even,
2 n—2 ifn is odd.

Proof. 1t is not hard to verify that a;(123;231) satisfies the results in the theorem for
k € {6,7}. Thus, we assume n > 8 and we enumerate permutations in .4,,(123; 231)
based on the position of n in cycle form. By Lemma 2] for each k € [3,n — 1],
there is exactly one permutation with ¢ = n. Thus there are n — 3 permutations
in A,,(123;231) with ¢, = k for some k € [3,n — 1]. By Lemma [B.4] from Section [
there are a,_2(123;231) permutations in A,,(123; 231) with co = n and ¢5 = 2. In the
case where ¢ = n and c3 # 2, Lemma [.3] states that there are n — 3 permutations.
Finally, Lemma (4] says the number of permutations in A,(123;231) with ¢, = n
is equal to the number of permutations in A4,,(123;213) where 1 maps to n. By

Corollary 3.6], there are [§] permutations with ¢, = n. Thus we have

,(123;231) = 1 — 3 + a,_5(123;231) +n — 3+ {g}

and the desired recurrence relation is satisfied. ]
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Example 4.6. Consider Ag(123;231). By Lemma [4.2] there are five permutations
where 8 is in position 3 through 7 in cycle notation, namely,

(1,2,8,3,7,4,6,5), (1,3,2,8,4,7,5,6), (1,4,2,3,8,5,7,6),
(1,5,2,4,3,8,6,7), (1,6,2,5,3,4,8,7)
which in one-line notation is:

28761543, 38276154, 45827165, 54832716, 65483217

Using Lemma [£.3] we can list those permutations where 8 is in the second position
of cycle notation and the third position is k € {4, 5,6} according to Equation (2):

(1,8,4,2,3,7,5,6),(1,8,5,2,4,3,7,6),(1,8,6,2,5,3,4,7),
which in one-line notation is
83726154, 84732165, 85473216.

Lemma also gives those permutations where 8 is in the second position and the
third position is 3 in Equations () and (4)):

(1,8,3,2,4,7,5,6), (1,8,3,2,7,4,6,5) or equivalently 8426153, 87261543

The permutations in Ag(123;231) where 8 is in the last position in cycle no-
tation are the reverse complements of the permutations in Ag(123;213) that be-
gin with 8. There are 4 such permutations: (1,8,2,7,3,6,4,5), (1,8,2,7,3,5,6,4),
(1,8,2,7,3,4,6,5), and (1,8,2,3,7,4,6,5). Taking the reverse complement of each
of these (or equivalently taking the complement of the cycle and cyclicly shifting),
we have the following corresponding permutations in Ag(123;231):

(1,7,2,6,3,5,4,8),(1,7,2,6,4,3,5,8),(1,7,2,6,5,3,4,8),(1,7,6,2,5,3,4,8),
which in one-line notation is
76584321, 76538421, 76483521, 75483261.
Finally, Lemma [B.4] from Section B, shows that there are ag(123;231) = 12 per-

mutations in Ag(123;231) with ¢ = 8 and ¢3 = 2. The twelve permutations in
Ag(123;231) are
Ag(123:231) = {(1,6,2,5,3,4), (1,6,3,2,5,4), (1,6,2,4,3,5), (1,6,3,2,4,5),
(1,6,2,3,5,4),(1,6,4,2,3,5),(1,5,2,4, 3,6), (1,5, 4, 2,3,6),
(1,5,3,2,4,6), (1,4,2,3.6,5), (1,3,2,6,4,5), (1,2,6,3,5,4)}

We obtain the additional twelve permutations in Ag(123;231) by inserting an 8
followed by a 2 after the 1 in cycle notation:

(1,8,2,7,3,6,4,5),(1,8,2,7,4,3,6,5),(1,8,2,7,3,5,4,6), (1,8,2,7,4, 3,5,6),
(1,8,2,7,3,4,6,5),(1,8,2,7,5,3,4,6),(1,8,2,6,3,5,4,7),(1,8,2,6,5,3,4,7),
(1,8,2,6,4,3,5,7),(1,8,2,5,3,4,7,6),(1,8,2,4,3,7,5,6),(1,8,2,3,7,4,6,5),
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or equivalently, in one-line notation,

87651432, 87631542, 87564132, 87536142,
87461532, 87463152, 86574312, 86473512,
86537412, 85473162, 84736152, 83761542.

4.2 A,(132;231)

In this section we enumerate permutations in .4,(123;231). We begin by showing
that for permutations in .A4,,(123;231), either 1 maps to n, or n maps to 1.

Lemma 4.7. If 7 € A,(132;231), then either m; = n or m, = 1.

Proof. This is true for n € {1,2,3}, so suppose n > 4 and = € A, (132;231). For the
sake of contradiction, suppose m # n and 7, # 1. Then there is some k € [3,n — 1]
with ¢, = n and we can write:

C(m) = (1,62, .., Ch1,M Chi1ys---Cn)

with each element in {co, ..., c,_1} less than each element in {cj41, ..., ¢, }. But now
in one-line notation, we have that conci, 1 in positions 1, cx_1, and n, respectively, is
a 132 pattern. Therefore, we must have n € {¢y, ¢, }, and the result follows. O

We proceed by considering the two possible positions of n in cycle notation.
For the case where 7, = 1, we can make use of permutation symmetries and use
the results in Section Bl The following lemma considers the remaining case where
™ = nN.

Lemma 4.8. For n > 3, the number of permutations m € A,,(132;231) with m =n
1 equal to F,, — 1 where F,, denotes the n-th Fibonacci number.

Proof. Let b, denote the number of permutations 7 € A,,(132;231) with 7, = n. We
have b3 = 1 since the only such permutation is 312, and we have by = 2 since the
only permutations of length 4 satisfying these requirements are 4123 and 4312. Now,
let n > 5. Since F,, — 1 satisfies the recurrence:

F,—-1=(F,1—-1)+(F,2o—1)+1,

it is enough to show that b, = b,_1 + b,_o + 1.
Let us first show that if m; = n, then we must have either 7,, =n—1or m,_; = 1.
By contradiction, let’s suppose not and write

C(m)=(1,n,c3,. .., 1, — 1, Cha1y -5 Cn)
for some k € [4,n — 1] with each element in {cs,...,cx_1} less than each element
in {cxy1,...,¢,}. Then legiies in positions ¢,,n — 1, and n, respectively, is an

occurrence of 132 in the one-line notation of m. Therefore we must have n — 1 €

{e3,cn}-
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In the case where n — 1 = ¢3, we claim that the number of permutations with
m =mn and 7w, =n—11is b,_;. Indeed, if you have such a permutation, we can write
C(r)=(1,n,n—1,cq,...,c,). We can obtain a permutation 7’ € A, _1(132;231) by
deleting n so that C(n') = (1,n — 1,¢4,...,¢,). In the one-line notation, this only
corresponds to deleting n — 1 from the n-th position, and so no new patterns are
created. On the other hand, starting with a permutation 7’ € A,,_1(132;231) with
7w =n — 1, we can insert an n — 1 into the n-th position of the one-line notation to
obtain a permutation m, which is still a cyclic permutation since this corresponds to
inserting n — 1 after the n in C'(7’). Since 7] = n — 1, we must have m; = n, and so
the n — 1 in position n cannot be part of a new 132 pattern.

Next, we show that if 71 = n and 7,,_1 = 1, we must have that either m, = n — 2
or m, = 2. For contradiction, suppose not. Then we have

C(m) = (1,n,¢3,¢4. .., Cy Cht1y -+, Cn1,n — 1)

where k = c3+ 1, {cg,-- - ,c1} = [2,¢c3 — 1] and {cgy1,..., 1} = [z + 1,n — 2].
Then c4(n — 1)j in positions c3,c,_1, and n, respectively, is a 132 pattern. Thus
C3 € {2, n— 2}

Notice that if ¢c3 = n — 2, then we have

C(ﬂ'>:(1,77/,71—2704,...,071,1,7?,—1)

which means m = nmy ... m,_21(n — 2). To avoid 132, we must therefore have my =
n — 1 since otherwise my(n — 1)(n — 2) would be a 132 pattern. Thus C(7) =
(I,n,n —2,¢4,...,Cn2,2,n — 1). But now, since C(m) must avoid 231, it must be
the case that the remaining elements of C'(7), namely {c4, cs, . .., c,_2}, must appear
in decreasing order. Thus there is only one permutation with 7y =n, 7,1 = 1, and
T, = n — 2 given by

Cm)y=(1,nn—-2n-3,n—-4,...,3,2,n—1) (5)

Finally, we consider those permutations with 7y = n, 7,1 =1, and 7, = 2. In
these cases, we have

C(r)=(1,n,2,¢4...,¢p1,n — 1),

with 7 = nm, ... 12. Notice that deleting n and 2 from both the cycle and the one-line
notation leaves us with the permutation 7" € S,,_o with C(7") = (1,c4—1,...,¢p1—
1,n — 2). Since this corresponds to deleting n and 2 from the one-line notation, we
do not introduce any new patterns by this deletion. This is also reversible; if we start
with a permutation 7” € A,,_5(132;231) with 7/_, = 1 and insert n at the beginning
and 2 at the end of 7, we will not introduce a new 132 pattern since 1 appeared at
the end of 7. By Lemma [4.4], there are F,_5 — 1 permutations 7" € A,,_5(132;231)
with 7/_, = 1, which inductively is b,_o.

Taken together, we have shown that b, = b,_1 + 1 + b,,_o, from which it follows
that b, = F,, — 1. m
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Theorem 4.9. For n > 2, a,(132;231) = 2F,, — 2 where F,, denotes the n-th Fi-
bonacci number.

Proof. By Lemma LT we have that a,(132;231) is the sum of the number of permu-
tations in A,,(132; 231) with 7 = n and the number of permutations in A,,(132; 231)
with 7, = 1.

Since 132" = 213, by Lemma [£.4] the number of permutations 7 € A4,,(132;231)
with 7, = 1 is equal to the number of permutations 7’ € A,,(213;213) with 7] = n;
Corollary B.14] states there are F,, — 1 such permutations. Finally, Lemma states
there are F,, — 1 permutations with m; = n, and thus the theorem follows. O]

Example 4.10. Consider Ag(132;231). We first list all permutations with m =
6. Following the proof of Lemma [4.8, we begin by listing those permutations in
Ag(132;231) that both start with 6 and end in 5. These are formed recursively by
finding all permutations in A5(132;231) that start with 5 and then insert a 5 at the
end (which turns the original 5 into a 6). The four permutations in A5(132;231)
that start with 5 are 54213, 53412,51234, and 53124. Inserting a 5 at the end yields
the following permutations in Ag(132;231) that start with 6 and end in 5:

642135, 634125, 612345, 631245.

We then list the one permutation in Ag(132;231) that has 7 = 6, mo = 5, and 75 = 1
as given in Equation (H):

(1,6,4,3,2,5).
For the remaining permutations that begin with 6, we start with permutations in
A4(132;231) that end in 1 and insert 6 in the front and 2 at the end. There are two
permutations in 4,4(132;231) that end in 1: 3421 and 2341. By inserting 6 in the
front and 2 at the end, we have the following permutations in Ag(132;231):

645312, 634512.

Notice there are a total of F5 — 1 = 7 permutations in A4g(132;231) that start with
6.

We now list the F5—1 = 7 permutations in A(132;231) that end in 1. LemmalZ4]
states that these are found by first finding the permutations in A44(213;213) that start
with 6 and then taking the reverse-complement of each. The seven permutations in
Ag(213;213) that start with 6 are 634512, 654132, 651342, 614523, 615243, 612345,
and 612534. The reverse-complements of these permutations are:

562341, 546321, 534621, 452361, 435261, 234561, 342561.
Thus there are 2F5 — 2 = 14 total permutations in Ag(132;231).

4.3 A, (213;231)

This section enumerates the set A4,(213;231). By Lemma A1l we know that for
m € A,(213;231) either m = n or m, = 1. For the case where m, = 1, we use
symmetries of permutations and the results from Section B2l We enumerate the
case where m; = n in the subsequent lemma.
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Lemma 4.11. Suppose n > 2. The number of permutations m € A, (213;231) with
™ =n is equal to a,—2(213;231) + 1.

Proof. Suppose m € A, (213;231) with m; = n. In the case with the additional condi-
tion that m, = 2, by Lemma [3.4] there are exactly a,_»(213;231) such permutations.
Assume then that 7, # 2 and write

C(m) = (1,n,c3,...,¢pn).

Then either ¢cs =n —1or ez € [3,n—2]. If 3 =n — 1, then m, = n — 1. Since 7
avoids 213, we must have 7 = n123---(n — 1), or equivalently, C'(7) = (1,n,n —
1,n—2,...,3,2). We will prove by contradiction that we cannot have c¢3 € [3,n—2].
For ease of notation, let r = ¢3. If r € [3,n — 2|, we must have that {c4,...,c,41} =
[2,r—1] and that {¢,19,...,¢,} = [r+1,n—1] since C(m) avoids 231. However, this
implies that in 7, we have 7, =r, m, = ¢4 < r and 7., = 1 with r < ¢, < n. Thus
cylr is a 213 pattern in 7.

Since we have shown that for permutations in A,(213,231) with m; = n, there
are a,_2(213;231) with 7, = 2, one with 7, = n — 1, and none with 3 < 7, <n — 2,
the results follows. m

Theorem 4.12. For n > 3, the number of permutations in A, (213;231) satisfies
the recurrence
4, (213;231) = an_(213;231) +n — 1

2

where a1 = ay = 1. In closed form, a,(213;231) = VTJ

Proof. By Lemma (]| all permutations 7 € A,(213;231) have either m = n or
7, = 1. Lemmal.TTstates that a,_2(213;231)+1 of these permutations have m; = n.
Since 213" = 132, by Lemma (.4l the number of permutations © € A,(213;231)
with 7, = 1 is equal to the number of permutations 7’ € A,,(132;213) with 7] = n;
Corollary 3.9 states that there are n—2 such permutations. Thus the given recurrence
relation holds. The closed form can be found by solving the recurrence relation. [

Example 4.13. Consider Ag(213;231). We first note that
Au(213;231) = {2341, 3421, 4312, 4123}.

The proof of Lemma [B.4lshows that we can get four new permutations in 44(213; 231)
by inserting a 2 at the end of each permutation and a 6 in the front. Thus we have
the following permutations in 44(213;231):

634512, 645312,654132, 651342.

The remaining permutation in Ag(213;231) with m = 6 is found at the end of the
proof of Lemma [£.17] and is 612345.

The permutations in A(213;231) with mg = 1 are found by taking the reverse-
complements of those permutations in 4g(132;213) that start with 6. These permu-
tations are 634512,634125,612345, and 631245. Thus the remaining desired permu-
tations in Ag(213;231) are

562341, 256341, 234561, and 235641.
These are the 9 permutations in 44(231;231).
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4.4 A,(231;231)
We first show that for m € A4,,(231;231), m = n.
Lemma 4.14. Suppose n > 1 and 7 € A,(231;231). Then 1 = n.

Proof. If n € {1,2}, the result clearly holds so assume n > 3. By Lemma [£.1]
either my = n or m, = 1. Suppose m, = 1. Since 7 avoids 231, we must have the
remaining elements in 7w decreasing which implies 71 = n. But then (1,n) is part of

the cycle structure of 7 which contradicts the fact that 7 is cyclic. Therefore m = n
as desired. n

The permutations in A, (231;231) are enumerated based on 7,,. The next lemma
shows that we can recursively count those that end in n — 1.

Lemma 4.15. Suppose n > 5. The number of permutations m € A, (231;231) with
T =n — 1 is equal to a,—1(231;231).

Proof. Suppose m € A,(231;231) with m, = n — 1. Using Lemma T4, we have
C(m) = (1,n,n — 1,¢4,¢5,...,¢,). Let 7’ be the permutation formed by deleting
n — 1 from 7 in one-line notation. Notice C(n’') = (I,n—1,c4 — L, c5—1,...,¢,— 1)
and thus 7" avoids 231 in both one-line notation and cycle notation. To see that we
obtain every permutation in 4,,_1(231;231), we let 7’ € A,,_1(231;231) and form =
by inserting n — 1 at the end of 7’. In cycle notation, this is equivalent to inserting
n — 1 after n. This insertion cannot create a 231 pattern in either = or C(w), and
the result follows. O

To count the remaining permutations in 4,(231;231), we show that if 7 €
A, (231;231) and 7, # n — 1, then m, = 2, and there is only one such permuta-
tion. This result is part of the proof of the following main result.

Theorem 4.16. Forn > 6, a,(231;231) = n.

Proof. This is easily checked for n = 6, so assume n > 7. Suppose 7 € A,(231;231).
By Lemma 14 7 = n. If 1, = n—1, there are a,,_1(231;231) such permutations so
we consider the case where 7, # n—1 and show there is exactly one such permutation.
By Lemma 317, there is exactly one permutation if m, = 2, and we show there are
no permutations with m, € [3,n — 2].

Toward a contradiction, suppose C'(7) = (1,n,r, ¢y, ¢s, . .., ¢,) Where r € [3,n—2].
Because C'(m) avoids 231, we have {cy4, ¢5,...,¢01} = [2,r—1] and {¢, 12, Crp3, ..., Cn }
=[r+1,n—1]. If m.41 # 1, then m, w11 is a 231 pattern in one-line notation since
7 € [2,7 —1]. Thus assume 7,,; = 1, or equivalently, ¢, = r + 1. Since C'(7) avoids
231, we must have the remaining elements in [r + 2,n — 1] appearing in decreasing
order and thus ¢; = n+r+1—i for i € [r+2,n]. In one-line notation, if r < n —4,
we have the pattern (r + 1)(r + 2)r occurring in positions r + 2,7 + 3, and n which
is a contradiction. Thus r € [n —3,n —2]. Now in one-line notation, m,;; = 1 so the
elements before 1 must be decreasing. We have {m, 73,..., 7.} = [2,r —1]U{n—1},
and so mp =n — 1 and m; = r+ 2 —1 for i € [3,7]. In the case where r = n — 3,
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in cycle form we have the cycle (1,n,n — 3,2,n — 1,n — 2), and in the case where
r = n —2, we have the cycle (1,n,n—2,2,n—1). In either case, 7 is not cyclic since
n > 7. Thus no such 7 exists.

Therefore, if 7, # n — 1, we must have m, = 2, in which case the permuta-
tion in Lemma BT is in A4,,(231;231). Thus for n > 7, we have a,(231;231) =
an—1(231;231) + 1. Solving the recurrence yields the desired result. ]

Example 4.17. Consider A7(231;231). Because we build this set of permutations
recursively, we first list Ag(231;231):

Ag(231;231) = {631245, 612345, 641325, 642135, 652143, 654132}

To create those permutations in A; ending in 6, we insert a 6 into the last posi-
tion of all the permutations in 44(231;231) to get the following permutations in
A7 (231;231):

7312456, 7123456, 7413256, 7421356, 7521436, 7541326.

Finally, by Lemma BT, the only permutation in A7(231;231) that has 7, = 2 is
7651432. This permutation, along with the previous six permutations, make up all
seven permutations in A47(231;231).

4.5  A,(312;231)

In this section, we make use of Lemma 4] together with some of the results in Sec-
tion Bl Before doing so, we briefly explain why permutations in the set 4,,(312;231)
must end in 1.

Lemma 4.18. Suppose n > 1 and 7 € A,,(312;231). Then 7, = 1.

Proof. Lemma 1] states that we must have m, = 1 or m; = n. However if m; = n,
then since 7 avoids 312, it is the decreasing permutation which is only cyclic when
n < 2. Thus the lemma holds. O

Because m, = 1 for all 7 € A,(312;231), Lemma [£4] states that a,(312;231)
is equal to the number of permutations ©’ € A4,(231;213) that have 7] = n.
Lemma [3.16 states that all elements in A,,(231; 213) have 7] = n and so a,,(312;231)
= a,(231;213). We summarize these results in a theorem.

125+

1k
Theorem 4.19. Forn > 1, a,(312;231) = (n o ).
k=0

4.6 A,(321;231)

In this section, we show that all permutations in 4,(321;231) must be of the form
23---(k—Dnlk(k+1)---(n—1)=(L,2,...;k—1nn—1,n—2,...,k)

where k € [2,n].
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Theorem 4.20. Suppose n > 2. Then a,(321;231) =n — 1.

Proof. 1t is easy to check the result holds for n € [2, 5], so suppose n > 6 and let 7 €
A, (321;231). We will show that the position of n in C(7) uniquely determines the
remainder of the permutation. To that end, choose k € [2,n] so that ¢, = n. Because
C(m) avoids 231, we have {co,c3,...,c,-1} = [2,k — 1] and {cri1, Cry2y ... Cn}t =
[k,n — 1]. If k = n, then 7, = 1, and so all the remaining elements in 7 must be
increasing since 7 avoids 321. Thus 7 = 23 ---nl which is in 4,(321;231).

If & < n, in one-line notation we have n in position cy_;, and 1 in position
¢, > cp_1. Because m avoids 321, there can be no other elements between n and
1 and so ¢, = ¢,_1 + 1, which implies ¢, = k£ and ¢,_; = k — 1. Since 7 avoids
321, the elements before 1 must be increasing. We know that m; € [2,k — 1] for
i € [1,k—2], and thus m; = i+ 1 for ¢ € [1,k — 2]. Similarly, the elements in 7
that come after n must be increasing and thus m; =i — 1 for ¢ € [k + 1,n]. Thus
7=23---(k—1)nlk(k+1)---(n—1) which is in A,(321;231). O

Example 4.21. The 6 permutations in A7(321;231) are

A7(321;231) = {7123456, 2713456, 2371456, 2347156, 2345716, 2345671 }.

5 Enumerating A, (c;312)

In this case, we can observe that a,(0;312) = a,(c7%;213). Indeed C(7) =
(1,¢,...,¢,) avoids 312 if and only if C(7)" avoids 213 and by Lemma [[4 C'(7)" is
equal to C'(7~!) up to cyclic rotation. In particular, C'(7=!) = (1,¢p, ..., c2). Since
this cyclic rotation just moves the 1 from the end of C(7)" to the front, it doesn’t
change the avoidance of 213. Therefore, we have the following theorem.

Theorem 5.1. Forn > 5,

(127 +1 if o =123

n—1 if o =132

F, if o =213

an(0;312) =< 1 if o =231
1252

n—1—k .

> ( o ) if o =312
k=0

on—2 if o = 321.

6 Enumerating A, (c;321)

6.1 A,(123;321)

The number of permutations in A, (123;321) is zero for n > 9. We start with the
following lemma which says that if you have a consecutive increasing run of length
4 in C(m), this implies you have an increasing pattern of length 3 appearing in 7.
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Lemma 6.1. Let n > 4 and suppose 7 is a cyclic permutation on [n] with C(7) =
(1,c9,¢3,...,¢,). If there is some 1 < i < mn — 3 with ¢; < ¢i41 < Cipa < Cirs (taking
c1 := 1), then there is a 123 pattern in the one-line form of .

Proof. Since ¢; < ¢ip1 < ¢iya < Ciy3, T, appears before 7., which appears before
Teivo AlSO, o, e, e,y = Cip1CipaCiys is a 123 pattern. ]

Theorem 6.2. Forn > 9, a,(123;321) = 0.

Proof. 1t is straightforward to check that ag(123;321) = 0, so suppose n > 10. We
will show that A,,(123;321) is the empty set.

Case 1: Assume first that 3 appears before 2 in C(w). Then ¢ = 3 since
otherwise ¢y, 3,2 is a 321 pattern in C(x). In one-line notation, m; = 3 and thus
7y € {1,n} since otherwise 3mon is a 123 pattern in 7. If mp = 1, then in C(7), all
elements between 3 and 2 must be increasing and thus C'(7) = (1,3,4,5,...,n,2).
By Lemma [6.1] this permutation does not avoid 123 if n > 6.

In the case where m = n, we claim that 73 € {2,n—1} since otherwise 3m3(n—1)
is a 123 pattern in 7 when n > 6. If 73 = 2, then C(7) = (1,3,2,n,4,5,...,n — 1)
because all elements after n in C'(7) must be decreasing. By Lemma [6.1], this permu-
tation does not avoid 123 when n > 8 (and it can be checked it also does not avoid
123 when n = 7). On the other hand, if 73 = n — 1, then 2 must appear immediately
after n — 1 in C'(7) since it avoids 321. Then C(7) = (1,3,n—1,2,n,4,5,...,n —2)
because all elements after n in C'(7) must be decreasing. Again, this does not avoid
7w if n > 7. Indeed, for n € {7,8}, this is straightforward to check and for n > 9, it
follows from Lemma 6.1

Case 2: Now assume that 2 appears before 3 in C(m). We first consider the
value of 71 and then examine two subcases based on two possible values of my. If
m = 2, then my = n otherwise 2mon is a 123 pattern for n > 4. Then C(mw) =
(1,2,n,3,4,...,n — 1) because all elements after n in C'(7) must be increasing. In
this case, ™ has a 123 pattern for n > 7 by Lemma 61l If 7 = n, then C(7) =
(1,n,2,3,...,n — 1) and 7 has a 123 pattern if n > 6 by Lemma [6.Il So assume
n > 5 and m = k for some k € [4,n — 1].

Let mo = r for some r € [4,n] — {k}. If r < k, then r = 3 otherwise k73 is a 321
pattern in C'(7). On the other hand, if r > k, then r = n otherwise krn is a 123
pattern in 7. We continue this case by examining these two cases in detail.

Subcase 2A: Assume that mo = 3, and for reference, write C(w) = (1,k,...,
2,3,...). Then 73 € {1,n} since otherwise 3m3n is a 123 pattern in =. If 73 = 1,
then ¢, = 3, and thus we must have k£ = 4 since otherwise k,k — 1,3 would be a
321 in C(m). But then C(7) = (1,4,5,...,n,2,3) for which the one-line notation
7 has a 123 pattern for n > 7. On the other hand, if 73 = n, notice that we must
have C'(7) = (1,k,...,2,3,n,...,¢,). Since C(m) avoids 321, the elements before 2
are increasing and the elements after n are increasing. For n > 10, it must be that
there is an increasing segment of length 4 in C(7) and thus by Lemma 6.1 © does
not avoid 123.

Subcase 2B: For the final case, assume that m = n. We must have C(7) =
(1,k,...,2,n,...). As above, since the elements before 2 are increasing and the
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elements after n are increasing, there must be an increasing subsequence of C(7) if
n > 9. Therefore by Lemma [6.1], 7 does not avoid 123. O

This result raises the more general question: is it true that a, (12...k;¢...21) is
eventually zero for any choice of k, ¢ > 37 The proof above doesn’t easily generalize
since it is a case-by-case analysis, but it seems like a reasonable conjecture. Perhaps
there is an alternative approach more amenable to this generalization.

6.2 A, (132;321)

In this section, we begin by establishing some facts about permutations n €
A, (132;321). In particular, we show that 7 must end with a consecutive increasing
run 12...(n — k + 1) for some k.

Lemma 6.3. Suppose n > 2 and let 7 € A,(132;321) with C(7) = (1,¢9,¢3,.. .,
Cn-1,k). Then k > (”THL and sy - T =12+ (n — k +1).

Proof. First we will show k > [25]. If k € {n — 1,n}, the result holds. Suppose
k < n —2, and choose r € [1,n — 1] so that m, = n. Note that r < k otherwise
1,n,m, is a 132 pattern in 7 occurring in positions k,r, and n. Since 7 avoids 132,
we have that all elements appearing before n in 7 must be larger than all elements
appearing after n. In particular, m = ¢ > n —r + 1. Also, in C(7), ¢ < k+ 1
otherwise co, k + 1,k is a 321 pattern in C(7). Since n —r+1 < ¢3 < k+ 1, this
implies » > n — k. This, together with the fact that » < k& implies that k > (”T“]
Next we will show that mp1mgso---m, = 23---(n — k4 1). Since m, = 1 and
m avoids 132, it is clear that myy 7o - 7, is increasing. If we can show that
7, = n — k+ 1, then we would be done. Suppose instead that 7, = ¢ >n —k + 1
and there is some sand t withr < s < kand 1 <t <n-—k-+1 with 7y, =¢. Then in
C(m), t follows s and ¢ follows n, so either n, ¢, is a 321 pattern, or cg, s, is. Thus
Tha1Thao T =23---(n—k+1).
]

We now count the permutations in A, (132;321) based on the position of 1. The
next lemma shows that the total number of permutations that end in 1 is equal to
the number of permutations of one size smaller. We follow this up with a lemma
counting the number of such permutations that do not end in 1.

Lemma 6.4. Suppose n > 2. Then the number of permutations m € A, (132;321)
with m, = 1 is equal to a,_1(132;321).

Proof. This is true for n = 2, so assume n > 3 and let 7 € A,(132,321) with
C(m) = (1,¢ca,¢3,...,k,n) for k € [2,n —1]. We first show that £ > [§]. In one-line
notation, since 7, = n, we must have that all the elements preceding n are larger than
all elements that come after n since 7 avoids 132. In particular, m; = co > n—k+1.
Then if & < [§], in C(7), we have the pattern cz,c; — 1,k which is a 321-pattern.
Thus we must have k > [7].

Next we will show that 7 17gso- - m—1 = 23---(n — k). This is very similar

to the result in the previous lemma. Let i,j € [k 4 1,n — 1] with ¢ < j. Then
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in C(m), i must appear before j otherwise j,i,k would be a 321-pattern in C(r).
Since ¢ comes before j we also must have m; comes before 7; and thus have the
pattern co, m;, m; in C(m). Since ¢ > m; and ¢y > ;, it must be that 7; < m;. Thus
Thi1Tht2 *  Tpo1 = 23+ (n — k).

We can now prove our main result. Let 7’ be the permutation formed by delet-
ing n from C(m). This is equivalent to taking the one-line notation of 7, deleting
n, and moving 1 to position k. Notice 7’ is cyclic and C(7) avoids 321. Also,
7 = My .. W1 1M1 TRy - - - Tn_1. Because all elements after 1 are increasing, 7’
avoids 132 and thus 7' € A,,(132;321). To see that we obtain every permutation in
A,—1(132;321), we consider the process in reverse. Let 7' € A,_;(132;321). Form
7 by inserting n to the end of C(7’). Thus 7 is cyclic and C(7) avoids 321 still. In
one-line notation, inserting n at the end of C'(7’) is equivalent to replacing 1 with n
and inserting 1 at the end. By Lemma[6.3] since all elements after 1 in 7" are smaller
than the elements that come before it, 7 is still 132 avoiding. O]

Lemma 6.5. Suppose n > 2. Then the number of permutations m € A, (132;321)
with m, # 1 is equal to 2[%] — 3.

Proof. Suppose 7 € A,(132;321). Then 7, = 1 for some k > [%:] by Lemma
We begin by showing that for each ["THW < k < n—1, there is exactly one permuta-
tion with 7, = 1. By Lemma [6.3] since 7y = 1, we have m; =i — k + 1 for i € [k, n].
In C(7), elements in [k + 1, n] must appear in increasing order (since ¢, = k). Thus,
we must have that C'() is of the form

Cm)=(1,...,(k+1),2,...,(k+2),3,...,(n—=1),(n—k),...,n,(n—k+1),..., k).

Therefore, for each i € [2,n — k|, either m; = k+ior 7 € [n —k+ 2,k — 1]. We
claim that we must have m; = k + ¢ for i € [2,n — k]. If not, then there is some
r € [2,n— k] where m, = x for some x € [n—k+2,k—1]|. But then r+k—1, 2,7 +1
is a 321-pattern in C'(7).

Consider the one-line notation of w. Because m; = k + i for ¢ € [2,n — k] and
m = 1—k+1for i € [k,n], we must have {m} U {mp k1, Tn_ka2, -, Th_1} =
[n —k+ 2,k + 1]. Since 7 avoids 132, m; = k+ 1. Thus C(n) = (1,k + 1,2,k +
2,3,...,n,n — k + 1,¢(n—kt1),---+Cn-1,k). Since C(m) avoids 321, the remaining
elements after n in C'(7) must be increasing and thus

r=k+1)(k+2)--nn—k+2)(n—k+3)---kl2---(n—k+1).

Now suppose 7,1 = 1, which implies by Lemma that m, = 2. We count
these permutations by the position of n in cycle notation. To that end, suppose
first that c; = n. Because all elements after n is C'(7) must be increasing, we have
C(m) = (1,n,2,3,...,n — 1) which is in A, (132;321). Suppose next that ¢,_o = n.
All elements before 2 in C'(7) must be increasing so we have C(7) = (1,3,4,...,n—
2,n,2,n — 1). This permutation is not in .4,(132;321) because 3(n — 1)4 is a 132
pattern in 7.

Finally, suppose that ¢, = n for some r € [3,n — 3]. We claim that the number of
permutations in A4,,(132;321) with 7,1 = 1 and ¢, = n for r € [3,n — 3] is equal to
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the number of permutations in A,_5(132;321) with 1 in the second to last position.
Since C(m) avoids 321, all elements after n must be increasing and all elements
before 2 must be increasing. In particular, either ¢,_1 =n—2orc, 1 =n—2. If
Cn—1 = n — 2, then mn(n — 1) is a 132-pattern in 7 occurring in positions 1, ¢, 1,
and n — 2, and thus we must have ¢,_1 =n — 2.

Similarly, we can consider the position of n — 3 in C(7). If ¢,_9 = n — 3, then
m(n —1)(n — 2) is a 132-pattern in 7 and so ¢,—1 = n — 3. Form 7’ by deleting
n—1 and n from 7. In cycle notation, this is equivalent to deleting both n and n—1
as well. Thus C(7') = (1,¢5,¢5,...,¢,_9,n —2,2,¢ 0 1,Chig,- .., Coh_g,n — 3) where
¢ =c¢ fori € [2,r —2] and ¢, = ¢;4q for i € [3,n —3]. Thus 7’ € A,,_5(132;321)
with 1 in the second to last position. Because this process is reversible, we have the
desired equality. Recalling that there is exactly one permutation with 7, ; =1 and
T, = 2, we have that the number of permutations in A4,(132;321) with 7,y = 1 is
one more than the number of permutations in A, _5(132;321) with 7,_3 = 1. For
the base cases, we note that there is one permutation in A3(132;321) with m = 1
and one permutation in 4,(132;321) with m3 = 1. Solving this recurrence yields a
total of [252] permutations in A, (132;321) with m,_; = 1.

Overall, we have shown that there are n—1—[2$1] permutations 7 € A, (132; 321)
with 7, = 1 for k < n — 1 and ["52] permutations with 7,_; = 1. Thus there are

n+1 n—2 n
. _9 {_1 _
O b R b RS
permutations in A4,,(132;321) that do not end in 1.

Theorem 6.6. Forn > 2, a,(132;321) = [@1 + 1.

Proof. By Lemmas [6.4] and 6.5, we have a,(132;321) = a,-1(132;321) + 2[%] — 3.
Since ay(132;321) = 1, solving this recurrence relation yields the desired results. [

Example 6.7. Consider A;(132;321). We list those permutations that end in 1
by considering the nine permutations in Ag(132;321) = {634512,564123, 456231,
345621, 435612, 534621, 435261, 234561, 342561}. Following the proof of Lemma [6.4]
for each of these nine permutations, we replace the element 1 with 7 and insert a 1
at the end yielding the following nine permutations in A7(132;231):

6345721, 5647231, 4562371, 3456271, 4356721, 5346271, 4352671, 2345671, 3425671.

Following the proof of Lemma [6.4] we note that there is exactly one permutation
with m, = 1 for each 4 < k < 6 yielding the following two permutations:

5671234, 6745123.

Finally, there are [%1 = 3 permutations with mg = 1. If m; = n, there is exactly

one such permutation, namely
7345612.

If 71 # 1, we must first find the permutations in A45(132;321) that have 1 in the
second to last position. These two permutations are 53412 and 34512. For each of
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these permutations we insert the elements 6 and 7 before the 1 to get the following
additional permutations in A7(132;321):

5346712, 3456712.

6.3 A,(213;321)
Let us first count the number of permutations in .4,,(213;321) with m, = 1.

Lemma 6.8. Suppose n > 3. Then the number of permutations 7 € A, (213;321)
(n—3)*

with m, = 1 is equal to [*5==1] + 1.
Proof. We first show that the number of permutations = € A,(213;321) with m,, =
1 is equal to the number of permutations = € A,(132;321) with =, = 1. In-
deed, by Lemma [[.4] the reverse-complement of the cycle is equal to the reverse-
complement-inverse of the one-line notation. By taking a cycle of the form C(7) =
(1,¢9,...,¢h_1,n) that avoids 321, we can see that C(7)™ = (I, n+1—¢cp_1,...,n+
1, ¢, n) avoids 3217 = 321 with C'(7)™ = C(7"*). Furthermore, 7 avoids 213 if and
only if 77 avoids 213" = 132.

By Lemma [6.4], the number of 7 € A,(132;321) with 7, = 1 is equal to the
number of permutations in 7 € A,,_1(132;321), which by Theorem [6.6] is equal to

[ 4. 0

To count the number with 7, # 1, we proceed by giving more information about
the structure of C'(r) based on the element at the end of C'().

Lemma 6.9. Suppose n > 3 and let m € A, (213;321) with 7, = 1 where k # n.
Then

o k= ["2;

e C(m) contains the consecutive terms
kE+1,2,k+2,3,k+3,4,...,n,n—k+1,

or equivalently, m; = i —k + 1 for alli € [k + 1,n| and m; = k + ¢ for all
i €[2,n—kl|; and

o [fm, =k, thenr € {k—2,k—1,n}.

Proof. First, for the sake of contradiction, suppose that k < ”T“ Then since m, = 1

and 7 avoids 213, {mgy1,...,m} = [2,n — k + 1] with n — k+ 1 > k. In particular
there is some s > k so that 7, = k + 1. Now, in the cycle, we must have that k + 1
immediately follows s. Since m; = 1, we must have ¢, = k and so s, (k + 1),k is a
321 occurrence in the cycle. Thus we must have & > ”T“

Since 1, = 1 and 7 avoids 213, {mxy1,..., T} =[2,n—k+1] withn—k+1 < k.
Also, because the cycle form avoids 321 and ¢,, = k, we must have that the elements
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of the cycle with values in [k + 1,n] appear in increasing order. Furthermore, these
elements must each be followed by an element in [2,n — k + 1]. Now, since k + 1 is
greater than any element in [2,n — k + 1], we must also have that the elements in
[2,n — k + 1] appear in increasing order. Thus m; =i — k + 1 for all i € [k + 1,n],
and C(7) contains the pairs i,7 — k + 1 for all i € [k + 1,n] in increasing order.
Furthermore, we claim that these pairs appear consecutively. If x € [n —k+2, k — 1]
appears in C'(7) between the pair i,i—k+1 and i+1,i—k+2 for some i € [k+1,n—1],
then C(7) would contain the 321-pattern i, x,i — k + 2. Thus these pairs appear in
C(m) consecutively and m; = k + 4 for all ¢ € [2,n — k].
Suppose 7, = k. We now write C() as

C(r)=1,c9,...,¢,k+1,2,k+2,3,k+3,4,...,n,n—k+1,¢,...,cho,1,k) (6)

for some s and t. We want to show r € {k — 2,k — 1,n}. If & < r < n, then nrk
is a 321-pattern in C(w). Thus r € [n — k + 2,k — 1] U {n}. Suppose toward a
contradiction that r < k£ — 2. The elements £ — 1 and k£ — 2 must appear before k£ + 1
in C(m) otherwise n(k — 1)r or n(k — 2)r would be a 321-pattern. Furthermore, the
elements co, c3,...,cs must be increasing since they are followed by 2. Since k — 2
and k—1 are the largest elements not already accounted for, this implies ¢,_1 = k—2
and ¢ = k' — 1. But then in one-line notation, we have w7 _om,_1 = k(k—1)(k+1)
which is a 213 pattern. Therefore r € {k — 2,k — 1,n} as desired. ]

Lemma 6.10. Suppose n > 3 and let m € A, (213;321) with 7, = 1 where k # n.
Further suppose m, = k.

o Ifr=mn, thenn is odd, k =", and C(r) = (L,k+ 1,2,k +2,3,...,n,k).

o I[fr=Fk—2, thenn is 0dd,k>”T+1, and

Clr) = (Ln—k+2n—k+4,.. k—3k—1k+1,2k+23,...,
nn—k+1ln—k+3,....k—4k—2k).

Proof. If m, =k, then by Equation (@), k =n—k+ 1, or k = "T“ Thus n is odd,
and C(m) = (1,k+ 1,2,k +2,3,...,n,k),where k = ”TH
Suppose r = k — 2 and write C'(7) as in Equation ({@):

C(m)=(L,co,...,c, k+1,2,k+2,3k+3,4,....n,n—k+1,¢,...,¢h0,k—2,k).

Note that n—k+1 < k since n # k—2, and thus k > 2. Also, since C() avoids 321,
the elements co, . .., ¢, must be increasing as well as the elements ¢;,...c, 9,k —2, k.
Thus, ¢s = k — 1. In one-line notation, we then have

T=m(k+2)(k+3)...(n — Dnmp_ps1...mesk(k+1)12...(n —k+1).

Now, since m; € [n —k+ 2,k — 1] fori € {1} U[n — k+ 1,k — 3], and 7 avoids 213,
we must have that ; =n—k+2and m =i+2fori € n—k+1,k—3]. If nis
odd, then this permutation is cyclic and has form:
Clr) = (Ln—k+2n—k+4,... . k—3k—1k+1,2k+23k+1,4,....
nn—k+1ln—k+3,....k—4k—2k).
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If nis even, then (1,n —k+2n—k+4,...,k—4,k—2 k) forms a cycle of length
k — % + 1, which is less than n when £k > ”TH O

Lemma 6.11. The number of permutations m € A, (213;321) with mx = 1 where
k #n and m—1 = k is equal to a,_1(213;321) — [@1 -1

Proof. By Lemma[6.8) the number of permutations 7’ € A,,_1(213;321) with #/,_, #

1is a,-1(213;321) — [%1 — 1. We will find a bijective correspondence between
permutations w € A, (213;321) with 7, = 1 where k # n and 7m,_; = k and permu-
tations 7’ € A,,_1(213;321) with 7/, # 1.

Suppose first 7 € A,(213;321) with 7, = 1 where k& # n and 7,1 = k. Form
7' by deleting k from 7. Equivalently, C(n’) is formed from deleting k& from C(r).
Since 7’ is cyclic and continues to avoid 213 in its one-line form and 321 in its cycle
form, we have 7’ € A,,_1(213;321). Notice that m,_; = 1.

Consider this process in reverse. Suppose 7' € A,_1(213;321) with m;_; = 1
where k — 1 #% n — 1. Form 7 by inserting k just after £ — 1 in the cycle notation,
or equivalently, insert k£ in position k£ — 1 in one-line notation. Clearly this will not
introduce a 321 pattern to the cycle and thus C(m) avoids 321. By Lemma 6.9] if
m. =k —1, then r € {k—3,k —2,n— 1}. In other words, in the one-line notation of
7', k — 1 must appear in position k — 3, k — 2, or n. We examine each of these cases
separately to show that inserting k in position k—1 does not introduce a 213-pattern.
If £ — 1 is in position & — 3 of 7/, inserting k& will only introduce a 213 pattern in
Tk—2 < k—1. However, from Lemma [6.10 7;,_, = k so no 213 pattern is introduced.
In the cases where k — 1 is in position k& — 2 or n — 1 of 7/, clearly no 213 pattern
can be introduced. Thus 7 € A4,,(213;321) and our result holds. O

Theorem 6.12. Forn > 4. Then:

an-1(213;321) +n—3 if nis even
an—1(213;321) + n — 3+ 252 if n is odd,

o (77 (P51 42

Proof. First note that there are [@1 +1 permutations with 7, = 1 by Lemmal6.8
Now, let us count the number with m, # 1, or equivalently, ¢, # n. The number of
permutations 7 € A,(231;321) with ¢,—1 = n is 1 when n is odd and 0 when n is
even by Lemma [6.I0 To count the permutations 7 € A,,(231;321) with ¢, =k # n
and ¢,_; = k — 2, we first see that 2 < k < n by Lemmas and (.10, and
thus there are ”T_?’ possible choices for k. By Lemma [6.10, these choices each yield a

unique permutation in A4,,(213;321) when n is odd and there are no possible choices

a,(213;321) = {

which has closed form

for k when n is even. Finally, there are a,_1(213;321) — [%1 — 1 permutations
m € A,(213;321) with ¢, =k # n and ¢,,_1 = k — 1 by Lemma [6.11]
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Taken together, we have

[

(
(n 3)21

- 1 if n is even
2

(M] if n is odd,

an_1(213;321) 4 [{2520]
[ ;

n—4)>2
2
an—1(213;321) + 251 + -

a,(213;321) = {

which is equivalent to the recurrence in the theorem statement. [l

Example 6.13. Consider A7(213;321). The number of permutations in .4;(213; 321)

whose cycles end in 7 in (@] + 1 =9 by Lemma [6.8 These are found by taking
the reverse-complement-inverse of the permutations in 4;(132;321) and are:

3745621, 3457621, 4675231, 2456731, 2475631, 2567341, 2357641, 2345671, 2346751.

There is exactly one permutation in A;(213;321) with ¢; = k # 7 and ¢ = 7 as
given by Lemma [G.10F

(1,5,2,6,3,7,4) or equivalently  5671234.

There are 2 permutations with ¢; # 7 and ¢g = ¢; — 2 given by k € {5,6} in
Lemma [6.10¢

(1,4,6,2,7,3,5),(1,3,5,7,2,4,6), or equivalently 4756123, 3456712

Finally, there are aq(213;321) — [(522] —1 = 9—5—1 = 3 permutations with 7 # 1
and cg = ¢; — 1. We form these by starting with any permutation in 44(213;321)
with m,_1 =1 and k£ — 1 < 6, and insert k£ after k£ — 1 in cycle notation. The desired
permutations in Ag(213;321) are (1,6,2,3,4,5), (1,3,6,2,4,5), and (1,5,2,6,3,4).
Inserting the appropriate element in the cycle structure yields the following permu-
tations in A7(213;321):

(1,7,2,3,4,5,6),(1,3,7,2,4,5,6), (1,6,2,7,3,4,5),
which in one-line notation is

7345612, 3475612, 6745123.

6.4 A,(231;321)
This is the simplest case for 7 = 321.

Theorem 6.14. For 1 < n < 4, we have a,(231;321) = 1 and for n > 5,
a,(231;321) = 0.

Proof. First notice that if 7 is cyclic and avoids ¢ = 231, we must have m = n.
Indeed, if we suppose m = j, then m = jmoms ... mmjpq ... T, With {mo, w3, ... 7} =
1,7 —1] and {mj41,...,m} = [j + 1,n]. However, since the numbers in [j] map to
themselves, this is only cyclic if 7 = n.

Now, since m = n, the cycle form of 7 is C(7) = (1,n,¢3,...,¢,). Since C(m)
avoids 321, we must have C(7) = (1,n,2,3,4,...,n—1)and som =n34...(n—1)12,
which only avoids 231 if n < 4. O]
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6.5 A,(312;321)

Let us start with a few lemmas.

Lemma 6.15. Let n > 2. For any permutation m € A, (312;321), we must have
=1 and m € {2,3,4}.

Proof. First note that if 7 avoids 312 in its one line notation, it is of the form
T = MMy...Tg—11Tgs1...m, for some k € [2,n] with {m,...,m} = [1,k] and
{Tks1,-..,m} = [k + 1,n]. In particular, the elements [1,k] map to themselves
under the permutation and so if k£ < n, 7 is composed of at least two cycles. There-
fore m, = 1.

If n <5, it is easy to check that the results hold, so for the remainder of the proof
suppose n > 6. For the sake of contradiction, let us suppose that m; > 4. Then since
the cycle avoids 321, we must have that 2, 3, and 4, appear in the cycle in increasing
order. Note we must have w3 # 2 since 2 appears before 3 in the cycle form. Also,
we must have that my # 3 because otherwise 734 would be a 312 occurrence in 7.
We can then write @ = mmomsmy .. T 12Tyt - .. 11 for some m € [5,n — 1].
(We must have m > 5 since m4 # 2.) Since 7 avoids 312, it must be the case that
{m, oy} = [3,m+ 1].

Notice w3 ¢ {1,2,3}, so we consider the two cases where m3 = 4 or m3 > 4. If
73 = 4, then C(7) contains the pattern mme3 thus implying m = m + 1. But then
(m + 1)4my is a 312 pattern in m which is a contradiction. On the other hand, if
w3 > 4, at least one of my or 7, is less than m. Then either mmy4 or mms4 is a 321
pattern in C (7). We have thus proven that m; < 4. O

Lemma 6.16. Suppose n > 4 and w € A, (312;321). If m = 3, then either:
o ™, =4, or
e Ty, =5 and m3 = 4.

Proof. Choose m € [3,n — 1] so that 7, = 2. Thus 7 = 3my - T 12Tyt Tn_1l
with {m,...,mn-1} = [3,m + 1]. For reference, C(7) = (1,3,73,...,m, 2,79, ...,
Cn—1,n). Note that my # m so m € {m + 1} U [4,m — 1]. Let us first show that
Ty € {4, 5}

Suppose m2 € [6,m — 1]. Then in C(7), we must have 4 and 5 appear before 2 in
the cycle or else m, my, 4 or m, w9, 5 would be a 321 pattern. Also, since the segment
of the cycle appearing before 2 is increasing, we must have 73 = 4 and 7, = 5. But
then w945 is a 312 pattern in m which is a contradiction. Now suppose my = m + 1.
Since 7 avoids 312, we must have m3 = m otherwise (m + 1)mym is a 312 pattern.

But then {my, 75, ..., Tm_1} = [4,m — 1], implying 7 is not cyclic. Therefore we have
Ty € {4, 5}
Finally, let us show that if my = 3 and m, = 5, then we must have 73 = 4.

First, note that m3 # 2 since otherwise 524 would appear as a 312 pattern in 7.
Now, notice that in the cycle, we have C(7) = (1,3, 73,...,m,2,5,...,¢h_1,n). If 4
appears before 2 in the cycle, we must have that m3 = 4 since C(7) avoids 321. On
the other hand, if 4 appears after 2 in the cycle, then 73 > 5, and so, 73, 5,4 will be
a 321 pattern in C(m). O
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Lemma 6.17. Suppose n > 5 and m € A,(312;321). If m; = 4, then m = 3 and
either:

® T3 =09, Oor
e m3 =0 and w4 = 5.

Proof. Since 7 avoids 312 and m; = 4, we must have m = 4my ... ms_13Tsiq ...
1241 - .- Tpo11 for some s,t € [2;n — 1] with s < ¢. Let us first show that
my = 3. If we assume my # 3, we must have m, > 4. In the cycle we would have
C(r)=(1,4,m4,...,t,2,m9,...,8,3,...,n) where s # 2. Thus t, s,3 would be a 321
pattern in C(m). Therefore, m = 3.

Next let us see that if m; = 4 and my, = 3, then 73 € {5,6}. We know that
C(m) = (1,4,74,...,t,2,3,m3,...,n) and 7 = 43mgmy... T 12M441 ... 11 with
{m3,...,m_1} = [5,t + 1]. For the sake of contradiction, suppose w3 € [7,t + 1].
Note that if 5 and 6 both appear before 2 in the cycle notation, we must have
my = b and w5 = 6 since C(m) avoids 321. However, then we would have 7356 as
a 312 pattern in w. Thus, at least one of 5 or 6 appears after the 2 in the cycle
notation. Now, if w3 < ¢, then ¢, 73,5 or ¢, 73,6 would be a 321 pattern in C(r).
Therefore, it must be that m3 =t + 1. The remaining entries before 2 in 7 must be
decreasing since they are all less than ¢ + 1. In particular, 74 = t and 5 =t — 1,
and C(m) = (1,4,t,2,3,t+1,...,5,t —1,...,n). If t > 8, then this implies 6 ap-
pears after the 5, and so we have that t,t — 1,6 is a 321 pattern. If ¢ = 7, then
m = 438765271 ...m,_11, so w5 = 6 and g = 5, so 7 is not cyclic. If t = 6, we have
m = 437652711 ...m,_11 and so 5 is a fixed point and thus 7 is not cyclic. Therefore,
we have shown that 73 € {5, 6}.

Finally, we will show that if 71 = 4, 7y = 3, and w3 = 6, then 7, = 5. In this case,
we know that C(7) = (1,4, 74,...,t,2,3,6,7m6...,n) and 7 = 43674 ... 127441 - - .
mn_11. Notice first that my; # 2 since in that case, 625 would be a 312 pattern in 7.
Therefore, my € {5} U [7,t + 1]. If the 5 appears after the 2 in the cycle-notation,
then w4 > 6, so 74, 6,5 would be a 321 pattern. If the 5 appears before the 2 in the
cycle notation, it must be that w4, = 5 since otherwise 7y, 5, 2, is a 321 pattern. [

Theorem 6.18. For n > 7, the number of permutations in A, (312;321) satisfies
the recurrence

(3125 321) = an_1(312;321) + ap_2(312; 321) + 2a,_5(312; 321) + a,_4(312; 321),
where az(312;321) = 1, a4(312;321) = 2, a5(312;321) = 5, and ag(312;321) = 10.

In closed form,
1%52] n—2-2k .
n—2—k—7\(2k
ERPIEDP ( k ) (j )
k=0  j=0

forn > 3.

Proof. First, we show there are a,_1(312;321) permutations that have 7 = 2. In
this case, all permutations in 4,,(312;321) with m; = 2 can be obtained from per-
mutations 7' € A,,_1(312;321) by inserting 2 in the first position of the one-line
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notation 7', or equivalently inserting a 2 immediately after 1 in C'(7’). In this case,
we clearly do not introduce a 312 pattern in 7 or a 321 pattern in C(x). The process
is reversible and the correspondence is bijective.

Next, we will see that there are a,,_5(312; 321) permutations that have m = 3 and
7o = 4. In this case, all permutations in 4,,(312;321) with m = 3 and m = 4 can be
obtained from permutations 7’ € A, _5(312;321) by inserting 3 in the first position
and 4 in the second position of the one-line notation #’, or equivalently inserting a
3 immediately after 1 and a 4 immediately after the 2 in C'(7’). In this case, we do
not introduce a 312 pattern in 7 or a 321 pattern in C'(7). The process is invertible
so the correspondence is bijective.

We now consider permutations in A,(312;321) that have mmoms = 354; we will
show there are a,_3(312;321) such permutations. In this case, any permutations
m € A,(312;321) with mmems = 345 can be obtained from some permutation n’ €
A, _3(312;321) by inserting 3 in the first position, 5 in the second position, and
4 in the third position of the one-line notation 7/, or equivalently inserting a 34
immediately after 1 and a 5 immediately after the 2 in C'(7’). In this case, we do
not introduce a 312 pattern in 7 or a 321 pattern in C(m).

Next, we will see that there are a,_3(312;321) permutations that have mmms =
435. In this case, all permutations in 4,,(312; 321) with mmem3 = 435 can be obtained
from permutations 7’ = A,,_3(312;321) by inserting 4 in the first position, 3 in the
second position, and 5 in the third position, or equivalently inserting a 4 immediately
after 1 and a 35 immediately after the 2 in C'(7’). In this case, we do not introduce
a 312 pattern in 7 or a 321 pattern in C().

Finally, we will see that there are a,_4(312;321) permutations that have
mmomamy = 4365. In this case, all permutations in A4,,(312;321) with mmomsmy =
4365 can be obtained from permutations 7’ = A,,_4(312;321) by inserting 4 in the
first position, 3 in the second position, 6 in the third position, and 5 in the fourth
position, or equivalently inserting a 45 immediately after 1 and a 36 immediately
after the 2 in C'(7’). In this case, we do not introduce a 312 pattern in 7 or a 321
pattern in C(m). O

Example 6.19. Consider A7(312;321). We build this set recursively by first listing
the permutations in A3(312;321), A4(312;321), A5(312;321), and Ag(312;321):

A3(312;321) = {231},

4(312;321) = {3421,2341},

5(312;321) = {24531, 23451, 34251, 43521, 35421},
Ag(312;321) =

DN

{235641,234561, 245361, 254631, 246531, 342561, 435261, 354261,
345621, 436521}

To obtain the permutations in .47(312;321), insert 4365 in the front of the per-
mutation in A3(312;321), insert 354 and 435 in the front of the permutations in
A4(312;321), insert 34 in the front of the permutations in A5(312;321), and insert 2
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in the front of the permutations in Ag(312;321):

A7(312;321) = {4365271, 3546721, 3542671, 4356721, 4352671, 3426751, 3425671,
3456271, 3465721, 3457621, 2346751, 2345671, 2356471, 2365741,
2357641, 2453671, 2546371, 2465371, 2456731, 2547631}

6.6 A,(321;321)
We will count these by the position of n.

Lemma 6.20. Let n > 2. Then the number of permutations = € A, (321;321) with
Tn—1 =N 1S a,-1(321;321).

Proof. Let m € A,(321;321) with m,_y = n. Form 7’ by deleting n from 7. Equiv-
alently, C(7') is formed from C(7) by deleting n. Thus 7' € A,_;(321;321). Now
consider the process in reverse by letting 7’ € A,,_1(321;321). Form 7 by inserting
n in position n — 1 of 7/, or equivalently, inserting n after n — 1 in C'(7’). Since
m € A,(321;321) with 7,1 = n, our result holds. O

Lemma 6.21. Let n > 3. Then the number of permutations m € A,,(321;321) with

T =n is [ 251].

Proof. Let m € A,,(321;321) with m,_o = n and consider the position of 1 in one-line
notation. We note that m, # 1 since otherwise nm, 11 is a 321 pattern. Also, if
m; = 1 for some j € [2,n — 3], then j is the last element in cycle notation and thus
n — 1 must come before n in C(w). However, then (n — 1)(n — 2)j is a 321 pattern
in C(m) and thus m,-1 = 1.

In one-line notation, all elements before 1 must be increasing. In particular, if
7, = k for some k € [2,n — 1], then m; =i+ 1 for i € [1,k — 2] and m; = i + 2 for
i € [k —1,n — 3]. However, if k is the same parity as n, then the cycle form of 7
contains the cycle (1,2,3,...,k—1,k+1,k+3,...,n—1) which contradicts the fact
that 7 is cyclic. Thus, £ must be the opposite parity as n. In this case

C(m)=1(1,2,3,....,k—1Lk+1,k+3,....n,k,k+2,k+4,....n—1) (7)

which avoids 321. Thus if & € [2,n — 1] and k is the opposite parity as n there is
exactly one permutation yielding a total of [“5* ] such permutations. O

Lemma 6.22. Let n > 5, k € [2,n — 4] and 7 € A, (321;321) with 7, = n. Then
C(m) = (1,c9,¢3,...,¢p5,k—1,n—1 k,nk+1).
Furthermore, if m,_3 =n, thenm, o =1, m, =n—2, and m,_4 =n — 1.

Proof. 1t is easy to verify this is true for n = 5, so assume n > 6. Let m be as
given and consider the position of 1 in one-line notation. If 7; = 1 for some j, then
j € [2,k—1]U{k+1} since otherwise nm;11 is a 321 pattern. Suppose j € [2,k—1].
Then in cycle notation, k£ > j and k comes before j. So the elements in [k + 1,n — 1]
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must appear after n in increasing order to avoid 321. Thus 7, o =n—1and m,_; = J.
But then n(n — 1)j is a 321-pattern in one-line notation. Thus j = k + 1, and so
Thy1 = 1.

Note that in C'(7), elements in [k + 2,n — 1] must come before n since C'(7) ends
in k£ + 1. They must also appear in increasing order because k appears after them.
However, k+ 2 comes before k in C'(7) and thus all elements after k, excepting k+1,
must be bigger than k + 2. Thus only k£ + 1 appears after n and we have m, =k + 1
as desired.

Next, since m, = k + 1, we must have that n — 1 appears before n. It must
occur in position k£ — 1 since otherwise (n — 1)m;_11 would be a 321 pattern. Thus
Te—1 =n — 1.

Finally, let k € [2,n — 4] and consider 7,1 which must be less than k 4 1 since
otherwise nm,_1(k+1) would be a 321 pattern in the one-line notation. Furthermore,
since 1 = n — 1, we have m,_; # k — 1 (since 7 is cyclic), and thus m,; €
2,k — 2] U{k}. Also, in C(m), we have n — 1 appearing before k and thus elements
in [k +2,n —2] (which is nonempty since k£ < n —4) must appear before n — 1. Since
C(m) contains the pattern (n — 2)(k — 1)m,—1, we have m,_; = k as desired. O

Lemma 6.23. Let n > 5. The number of permutations m € A, (321;321) with
Tpo1 £ N 1S (["421).

Proof. We first show that for k& € [2,n — 3], the number of permutations © €
A, (321; 321) with 7, = n is equal to the number of permutations " € A,,_5(321; 321)
with m,_; =n—2. Let 7 € A,,(321; 321) with 7y = n. By Lemma[6.22] if £ <n —4,

C(ﬂ') = (1,02703,...,Cn_5,]€ — ].,TL— 1,k,n,]€—|— 1)
Consider the permutation 7’ formed by deleting n and k£ + 1 from 7. Then
C(r')=(1,dy, ¢4, .. sch sk —1,n—2)k)

where ¢, = ¢; if i < kand ¢, = ¢ —1if i > k. Thus 7’ € A,(321;321) and
has the additional property that m;_; = n — 2. Conversely, if 7’ € A,,_5(321;321)
with 7, = n — 2, form 7 by inserting n in position k followed by k + 1 at the
end. If £ = n — 3, we can make a similar argument using the second statement of
Lemma that removing n and n — 3 results in a permutation in A, _(321;321)
with 7,_4 = n — 2, which are described in the proof of Lemma

Now the total number of permutations in 4,,(321;321) that do not not have n
in the penultimate position can be found using induction. The base case n = 5 is
easily checked so assume n > 5. The number of permutations 7 € A,,(321;321) with
Tn—1 7# 1 is equal to the number of permutations in A, (321;321) with 7, s = n plus
the number with m, = n for k£ € [2,n — 3]. Using Lemma and induction, we
have the total number is given by

(5 -(5)
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Taking this fact along with the results in Lemma [6.20, we can enumerate
A, (321;321).

Theorem 6.24. For n > 5, the number of permutations in A, (321;321) satisfies
the recurrence

an(321;321) = a,-1(321;321) + (%1)

where a3(321;321) = 2 and a4(321;321) = 3. In closed form,

n+2
1+2 ; if n is even,
n+1

n+tl
14+2( 2 2 ] ] )
+(3>+<2> if n 1s odd

Proof. Lemmas [6.20 and combine to give the recurrence relation. Solving the
recurrence relation gives the provided closed form. [l

a,(321;321) =

Example 6.25. Consider Ag(321;321). Because some of these permutations are
found recursively, we first note that

A5(321;321) = 23514,24153, 31452, 23451, 34512, 45123}

The permutations in Ag(321;321) that have 6 in the penultimate position are found
recursively by inserting a 6 in position 5 of all those permutations in A5(321;321).
Thus Ag(321;321) includes the following permutations:

235164, 241563, 314562, 234561, 345162, 451263.

The proof of Lemma gives all |%51] = 2 permutations in Ag(321;321) where
7y = 6. These 2 permutations are formed from Equation () where k£ € [2,5] and
k is the opposite parity as 6. Thus, using k € {3,5} in Equation (), we have the
following additional 2 permutations in 4¢(321;321):

(1,2,4,6,3,5),(1,2,3,4,6,5) or equivalently 245613, 234615.

By the proof of Lemma [6.23] the permutations in Ag(321;321) where m; = 6 for
k € {2, 3} are formed recursively by considering all permutations in 7" € 4,(321; 321)
with 7, _; = 4. The new permutations are formed by inserting 6 in position & followed
by k at the end. When k = 2, there are no permutations in .4,4(321;321) with 4 in
position 1. For k = 3, there is exactly one permutation in A4(321;321) with 4 in
position 2, namely 2413. By inserting 6 in position 3 and 4 at the end, we get the
following permutation in A4(321;321): 256134.

Thus we have (g) = 3 permutations in 44(321; 321) that do not have 6 in position
5, and a5(321;321) = 6 permutations that have 6 in position 5 for a total of 9
permutations. We note that 1 + 2(3) = 9 and the closed form holds for n = 6.
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7 Further directions for research

There are several directions of future research to consider, including avoidance of
longer patterns. For example, we conjecture that a,(3412;213) has generating func-

tion
2z

1 —2x++1—4x + 423

associated to the OEIS sequence A087626. We similarly conjecture that a, (1324,
1423;213) = (g) + 1 and a,(3421,4321;213) = F5,_3. By considering other permu-
tations or sets of permutations, many other interesting sequences seem to appear.
A few results involving longer patterns can be found in the follow-up paper to this
one [2], in which the authors extend Theorems and [£.20, finding the number of
cyclic permutations 7 that avoid the monotone decreasing permutation of length &
and where C(m) avoids 7 for 7 € {213,231, 312}.

One could also consider cyclic permutations where all cycle forms (instead of just
the cycle form beginning with 1) avoid a given pattern. A few results in this vein can
be found in the follow-up paper [2], enumerating cyclic permutations 7 that avoid the
monotone decreasing permutation of length k& where all cycle forms avoid a pattern
of length 4. Finally, it would additionally be interesting to consider avoidance among
other cycle types. Since originally written, some of the results in this paper have
been extended to other cycle types in [7] by considering permutations so that 7 and
its image under the fundamental bijection both avoid a given pattern.
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