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Abstract

In this paper, we enumerate the set of cyclic permutations in Sn that
classically avoid σ ∈ S3 in their one-line notation and avoid another pat-
tern τ ∈ S3 in their standard cycle notation. We find results for all pairs
of patterns (σ, τ) in terms of Fibonacci numbers, binomial coefficients,
and polynomial expressions.

1 Introduction

Pattern avoidance is a notion typically defined for the one-line notation of a permu-
tation. We say that a permutation π = π1π2 . . . πn contains another permutation (or
pattern) σ = σ1σ2 . . . σk if there is some subsequence of elements in the one-line form
of π that is in the same relative order as the one-line form of σ; we say π avoids σ if
π does not contain σ.

It is still an open question to enumerate cyclic permutations that avoid a given
pattern in their one-line notation. Generally, it has proven difficult to answer ques-
tions about cycle type or other algebraic properties of pattern-avoiding permutations,
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though some interesting results have been proven. These results include problems
related to strong avoidance (meaning that both a permutation and its square avoid
a given pattern) [10, 11, 18], pattern avoidance and the group structure of Sn [11],
pattern-avoiding permutations composed only of cycles of a certain size [4, 12, 16, 19],
and cyclic permutations that avoid sets of patterns [1, 3, 5, 9, 17] or consecutive pat-
terns [15, 20].

Pattern avoidance within the cycle notation itself has also been considered previ-
ously. In [13, 22], the authors consider the notion of cyclic pattern avoidance, where
all cyclic rotations of a permutation must avoid a given pattern. In [6, 14], the
authors investigate the cycle type of almost-increasing permutations, characterizing
these permutations in terms of pattern avoidance. A related concept of Boolean per-
mutations (see for example, [21]) which avoid the pair 321 and 3412 in its one-line
notation are characterized each cycle in the cycle form (beginning with its smallest
element) avoiding the patterns 213 and 312. Interestingly, shallow permutations, i.e.
those permutations which have minimal displacement (defined to be

∑

i |πi − i|) for
a given length and reflection length, have also been characterized as avoiding certain
vincular patterns in their cycle form [8].

In this paper, we also consider cyclic permutations π = π1π2 . . . πn = (1, c2, c3, . . . ,
cn) avoiding a pattern in its one-line form and its cycle form. In particular, we
enumerate the set of cyclic permutations that simultaneously avoid a given pattern
σ ∈ S3 in the one-line notation and avoid another pattern τ ∈ S3 in the standard
cycle notation. The nontrivial results are summarized by the chart in Figure 1.

1.1 Definitions and Notation

Let [n] denote the set {1, 2, . . . , n}, and for nonnegative integers n1 ≤ n2, let [n1, n2]
denote the set of consecutive integers {n1, n1 + 1, . . . , n2 − 1, n2}; if n1 > n2, then
[n1, n2] is the empty set.

We denote by Sn the set of permutations on [n] and denote by Cn the set of cyclic
permutations in Sn, i.e those permutations composed of exactly one cycle. For any
π ∈ Sn, the one-line notation of π is π = π1π2 · · · πn where πi := π(i). The standard
cyclic notation of a cyclic permutation π ∈ Cn, denoted C(π), is denoted in this paper
by C(π) = (c1, c2, . . . , cn) where c1 = 1 and ci = πci−1

for 2 ≤ i ≤ n. For example,
the permutation π = 46152837 is a cyclic permutation in C8 with C(π) = (14526873).

For any permutation π = π1π2 . . . πn ∈ Sn, we say that π avoids a pattern σ ∈ Sk

if there is no i1 < i2 < · · · < ik with πi1πi2 . . . πik in the same relative order as
σ1σ2 . . . σk. For example, the permutation π = 251683497 avoids the pattern 321
since there is no subsequence of π of length 3 that is in decreasing order. We will
also consider pattern avoidance within a cycle. If π is a cyclic permutation with
C(π) = (c1, c2, . . . , cn), then we say C(π) avoids a pattern σ = σ1σ2 . . . σn if there is
no i1 < i2 < · · · < ik with ci1 , ci2 , . . . , cik in the same relative order as σ.

Let us denote by An(σ; τ) the set of cyclic permutations that avoid σ in their
one-line form and avoid τ in their cycle form, and let an(σ; τ) = |An(σ; τ)|. For
example, the permutation π = 7341256 = (1, 7, 6, 5, 2, 3, 4) avoids σ = 132 in the
one-line notation since the word 7341256 contains no subsequence πi1πi2πi3 with
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σ τ an(σ; τ) Theorem OEIS

123

213

⌈n

2

⌉

+ 1 Theorem 3.5 A004526

132 n− 1 Theorem 3.8 A000027

213 Fn Theorem 3.13 A000045

231

⌊n−1

3
⌋

∑

k=0

(

n− 1− k

2k

)

Theorem 3.20 A005251

312 1 Theorem 3.22 A000012

321 2n−2 Theorem 3.24 A000079

123

231

5

(⌊n−1
2 ⌋
2

)

+

{

2n−5 n even,

n−2 n odd.
Theorem 4.5

{

A326725 n even,

A140066−2 n odd.

132 2Fn − 2 Theorem 4.9 A019274

213

⌊

n2

4

⌋

Theorem 4.12 A002620

231 n Theorem 4.16 A000027

312

⌊n−1

3
⌋

∑

k=0

(

n− 1− k

2k

)

Theorem 4.19 A005251

321 n− 1 Theorem 4.20 A000027

123

321

eventually 0 Theorem 6.2 A000004

132

⌈

(n− 2)2

2

⌉

+ 1 Theorem 6.6 A061925

213

(

n− 2

2

)

+

(⌈n−2
2 ⌉
2

)

+ 2 Theorem 6.12 A085787+2

231 eventually 0 Theorem 6.14 A000004

312

⌊n−2

2
⌋

∑

k=0

n−2−2k
∑

j=0

(

n−2−k−j

k

)(

2k

j

)

Theorem 6.18 A129847

321 1+2

(⌈n+1
2 ⌉
3

)

+







0 n even,
(n+1

2

2

)

n odd.
Theorem 6.24

{

A064999 n even,

A056520 n odd.

Figure 1: Included in the table are the cases where τ ∈ {213, 231, 321}. The
cases where τ ∈ {123, 132} are trivial and are summarized in Theorem 2.1. The
case where τ = 312 is similar (by symmetry) to the case where τ = 231 and is
summarized by Theorem 5.1.
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πi1 < πi3 < πi2 and avoids the pattern τ = 231 in the cycle notation since (1, 7, 6, 5, 2,
3, 4) contains no subsequence ci1 , ci2 , ci3 with ci3 < ci1 < ci2 . Thus, we would say
that π ∈ A7(132; 231).

1.2 Insertion and deletion

Within proofs throughout this paper, we will modify permutations by deleting or
inserting elements into specific positions and shifting the remaining elements accord-
ingly as seen in the definition and example below.

Definition 1.1. Let π = π1π2 · · · πn be a permutation on the set [n].

1. If π′ is formed by deleting πi from π, then

π′ = π′
1π

′
2 · · · π′

n−1

where

π′
j =



















πj if j < i and πj < πi

πj − 1 if j < i and πj > πi

πj+1 if j ≥ i and πj+1 < πi

πj+1 − 1 if j ≥ i and πj+1 > πi

2. If π′ is formed by inserting the element k ∈ [1, n+ 1] into π in position i, then

π′ = π′
1π

′
2 · · · π′

n+1

where

π′
j =































πj if j < i and πj < k

πj + 1 if j < i and πj ≥ k

k if j = i

πj−1 if j ≥ i and πj < k

πj−1 + 1 if j ≥ i and πj ≥ k.

For example, suppose π = 37561248. If π′ is formed from π by inserting 3 in
position 4, we would get π′ = 486371259. If π′′ is obtained by deleting 4 from π, we
would get π′′ = 3645127.

1.3 Symmetries

There are a few interesting symmetries on the set of permutations Sn that we will
make use of in this paper.

Definition 1.2. Given a permutation π ∈ Sn, we define:

• the reverse of π, denoted πr, by taking πr
i = πn−i+1 for each i ∈ [n],

• the complement of π, denoted πc, by taking πc
i = n+ 1− πi for each i ∈ [n],
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• the inverse of π, denoted π−1, by taking π−1
i = j where πj = i,

• the reverse-complement of π, denoted πrc, by taking πrc = (πr)c,

• the reverse-complement-inverse of π, denoted πrci, by taking
πrci = ((πr)c)−1,

For a cyclic permutation, we can apply the reverse, complement, or reverse-com-
plement to the cycle notation C(π) to get a new cyclic permutation (which in turn
correspond to the inverse, reverse-complement, and reverse-complement-inverse of π
itself).

Example 1.3. If we consider π = 4763125 ∈ S7, then: π−1 = 5641732, πr =
5213674, πc = 4125763, πrc = 3675214, and πrci = 6517423. Notice that π is cyclic
and C(π) = (1, 4, 3, 6, 2, 7, 5). We can also consider C(π)r = (5, 7, 2, 6, 3, 4, 1) which
in one-line notation is 5641732. It is not a coincidence that this coincides with π−1

as stated below in Lemma 1.4. Similarly, we can write C(π)c = (7, 4, 5, 2, 6, 1, 3)
which has one-line form 3675214 and is equal to πrc, and we can write C(π)rc =
(3, 1, 6, 2, 5, 4, 7) which has one-line form 6517423 and is equal to πrci.

Lemma 1.4. For any n ≥ 1 and any cyclic π ∈ Cn, we have:

• C(π−1) = C(π)r (up to cyclic rotation),

• C(πrc) = C(π)c (up to cyclic rotation),

• C(πrci) = C(π)rc (up to cyclic rotation).

Proof. Let π = π1π2 · · · πn with C(π) = (1, c2, c3, . . . , cn) with ci = πci−1
for i ∈ [2, n].

Let k ∈ [1, n]. We will consider the element after k in the cycle structure of each
permutation.

First consider π−1 and choose j so π−1
k = j where πj = k. Thus, the element

after k in C(π−1) is j. Notice C(π)r = (1, cn, cn−1, . . . , c2). Choose i so k = ci. The
element after k in C(π)r is then ci−1. Since ci = πci−1

and k = πj, the equation
k = ci is equivalent to πj = πci−1

. Thus the subscripts are equal and ci−1 = j and k
maps to j in C(π)r as desired.

Now consider πrc = (n + 1 − πn)(n + 2 − πn−1) · · · (n + 1 − π1). Notice k maps
to n + 1 − πn+1−k in πrc so the element after k in C(πrc) is n + 1 − πn+1−k. Now
C(π)c = (n, n+ 1− c2, n+ 1− c3, . . . , n+ 1− cn). Choose i so k = n+ 1− ci. The
element after k in C(π)c is then n+1− ci+1. Using the relationship ci+1 = πci along
with k = n+1−ci, we have the element after k in C(π)c is n+1−πci = n+1−πn+1−k

as desired.
Finally, consider πrci. By the previous two results, we have C(πrci) = C(πrc)r =

(C(π)c)r. Because the complement and reverse operators commute, we have the
desired result.
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2 Enumerating An(σ; 123) and An(σ; 132)

In this section, we enumerate An(σ; 123) and An(σ; 132) for all patterns σ of length
3. The results are trivial as there is only one cyclic permutation whose cycle form
avoids 123, namely π = n123 · · · (n−1), and only one cyclic permutation whose cycle
form avoids 132, namely π = 234 · · ·n1. We state the results for completeness in the
next theorems.

Theorem 2.1. Suppose n ≥ 4. Then:

• an(σ; 123) =

{

0 for σ ∈ {123, 312}
1 for σ ∈ {132, 213, 231, 321},

• an(σ; 132) =

{

0 for σ ∈ {123, 231}
1 for σ ∈ {132, 213, 312, 321}.

3 Enumerating An(σ; 213)

In this section, we enumerate An(σ; 213) for all patterns σ of length 3. The first
lemma in this section, Lemma 3.1, gives more information about permutations whose
cycle avoids 213. The remainder of the section is divided into subsections examining
each of the cases for σ ∈ S3 in more detail.

Lemma 3.1. For n ≥ 6, if π ∈ An(σ; 213) with σ ∈ {123, 132, 213, 231, 312}, then
π1 ∈ {2, n}.
Proof. Let π ∈ An(σ; 213) with C(π) = (1, c2, c3, . . . , cn), and suppose toward a
contradiction that π1 ∈ [3, n− 1]. Since π1 6= 2, there is some k ∈ [3, n] with ck = 2.
Furthermore, since C(π) avoids the pattern 213, ci > cj for all i ∈ [2, k − 1] and
j ∈ [k + 1, n]. In particular, n = ci for some i ∈ [3, k − 1]. Therefore, C(π) can be
written as

C(π) = (1, c2, . . . , ci−1, n, ci+1, . . . , ck−1, 2, ck+1, . . . , cn).

Let us achieve our contradiction by finding the pattern σ for each possible choice
of σ in the one-line notation of π. First, to see that there is a 132 pattern, we note
that 1, n, and πn occur in positions cn, ci−1, and n, respectively. Since cn < ci−1 < n,
the pattern 1nπn is a 132 pattern. To find a a 213 pattern, consider the elements c2,
ck+1, and n, which occur in positions 1, 2, and ci−1, respectively. Since ck+1 < c2, the
pattern c2ck+1n is a 213 pattern. For a 312 pattern, we note the elements c2, 1, and
2 occur in positions 1, cn, and ck−1, respectively. Since cn < ck−1, the pattern c212 is
a 312 pattern.

To see that π has a 123 pattern, we consider two cases. If i 6= k−1, or equivalently
ck−1 6= n, then 12πn is a 123 pattern occurring in positions cn, ck−1, and n. In the
case where ck−1 = n, we note that C(π) = (1, c2, . . . , ck−2, n, 2, ck+1, . . . , cn) where
k 6= 3 since π1 6= n. Since C(π) avoids 213, ck−2 = n − 1 otherwise (n − 1)ck−2n
would be a 213 pattern. Thus 1(n− 1)n is a 123 pattern in π occurring in positions
cn, ck−3, and n− 1.
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Finally, we will show that π contains a 231 pattern. Because C(π) avoids 213
and π1 = c2 /∈ {2, n}, all elements greater than c2 must appear in C(π) before all
elements smaller than 2. Formally, the elements in [c2 + 1, n] must appear before
the elements [2, c2 − 1] in C(π). Thus, taking r = n− c2 + 2, we have cr > c2 while
cr+1 < c2. In one-line notation, the elements c2, c3, and cr+1 occur in positions 1, c2,
and cr, respectively, and thus c2c3cr+1 is a 231 pattern.

We have shown that when π1 ∈ [3, n − 1], there is always a σ pattern in the
one-line notation for π for all σ ∈ {123, 132, 213, 231, 312}. Thus π1 ∈ {2, n} as
desired.

3.1 An(123; 213)

Permutations in An(123; 213) are enumerated based on the value of π1, and by
Lemma 3.1, π1 ∈ {2, n}. The next lemma shows that there is only one cyclic per-
mutation that avoids 123 with π1 = 2. Because the proof does not depend on the
condition that C(π) avoids 213, we remove that condition from the hypotheses so
that this lemma can also be used in later sections.

Lemma 3.2. Suppose that n ≥ 2 and that π ∈ Cn avoids the pattern 123. If π1 = 2,
then

C(π) =

(

1, 2, n, 3, n− 1, 4, . . . ,

⌊

n+ 3

2

⌋)

.

Proof. Since π1 = 2 and π avoids 123, the remaining elements in π, excepting 1,
must be decreasing. Suppose πk = 1 for some k ∈ [2, n]. Thus πi = n + 2 − i for
i ∈ [2, k − 1] and πi = n+ 3− i for i ∈ [k + 1, n]. In cycle form, C(π) then contains
the cycle (1, 2, n, 3, n − 1, 4, . . . , k). Since π is cyclic, this cycle must have length n.
Thus k = ⌊n+3

2
⌋.

We now turn our attention to the permutations in An(123; 213) where π1 = n.
In this case, we must also have πn = 2 as demonstrated in the lemma below.

Lemma 3.3. Suppose n ≥ 3 and π ∈ An(123; 213) with π1 = n. Then πn = 2.

Proof. Suppose π is a cyclic permutation with π1 = c2 = n, and suppose toward a
contradiction that ck = 2 for some k ∈ [3, n− 1]. Then we can write

C(π) = (1, n, c3, c4, . . . , ck−1, 2, ck+1, ck+2, . . . , cn).

Since C(π) avoids 213, the elements in C(π) before 2 must be larger than the elements
in C(π) after 2. In particular, cn < ck−1. In one-line notation, 1 is in position cn
and 2 is in position ck−1, and thus 12πn is a 123 pattern. Therefore, we must have
πn = 2.

Given a permutation π ∈ An(123; 213) with the additional conditions that π1 = n
and πn = 2, we can simply delete n and 2 from π to obtain a permutation π′ ∈
An−2(123; 213). This map is in fact a bijection, and can be generalized to other
patterns as shown in the next lemma.
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Lemma 3.4. Suppose n ≥ 3, σ ∈ {123, 213}, and τ ∈ {213, 231}. Then the number
of permutations π ∈ An(σ; τ) with π1 = n and πn = 2 is equal to an−2(σ; τ).

Proof. Let π ∈ An(σ; τ) so that π1 = n and πn = 2. Then C(π) = (1, n, 2, c4, c5, . . . ,
cn). Let π′ be the permutation formed by deleting both n and 2 from π. Then π′

clearly still avoids σ. Also, C(π′) = (1, c4 − 1, c5 − 1 . . . , cn − 1) and thus π′ remains
cyclic and C(π′) avoids τ . To see that we obtain every permutation in An−2(σ; τ),
we consider the process in reverse. Let π′ ∈ An−2(σ; τ). Form π by inserting a 2 at
the end followed by an n in the front. This cannot create a new 123 or a 213 pattern
and thus π still avoids σ. In cycle notation, this process is equivalent to inserting an
n followed by a 2 after the 1 in C(π′). This insertion cannot create a new 213 or 231
pattern in C(π), and thus the result follows.

With these results in hand, we can now enumerate An(123; 213).

Theorem 3.5. For n ≥ 4, an(123; 213) = ⌈n
2
⌉+ 1.

Proof. Let n ≥ 6 and suppose π ∈ An(123; 213). By Lemma 3.1, either π1 = 2 or
π1 = n. By Lemma 3.2, there is exactly one permutation inAn(123; 213) with π1 = 2.
If π1 = n, then by Lemma 3.3, we must have πn = 2 and by Lemma 3.4, there are
exactly an−2(123; 213) such permutations. Thus for n ≥ 6, we have an(123; 213) =
1+ an−2(123; 213). As a4(123; 213) = 3 and a5(123; 213) = 4, solving this recurrence
yields the desired results.

We note that of the total permutations in An(123; 213), all but one of these
permutations begin with n. Because this result will be referenced later in Section 4.1,
we state the result as a corollary here.

Corollary 3.6. For n ≥ 4, the number of permutations π ∈ An(123; 213) with
π1 = n is ⌈n

2
⌉.

Example 3.7. Consider A9(123; 213). Lemma 3.2 yields the only permutation in
A9(123; 213) with π1 = 2. Namely C(π) = (1, 2, 9, 3, 8, 4, 7, 5, 6) or π = 298761543.

The remainder of the permutations can be found recursively. We note that

A7(123; 213) = {2765143, 7365142, 7541632, 7645132, 7651432}.

The proof of Lemma 3.4 shows that we can get 5 new permutations in A9(123; 213)
by inserting a 2 at the end and a 9 in the front of all of these permutations. Thus
we have the following additional permutations in A9(123; 213):

938761542, 984761532, 986517432, 987561432, 987615432.

In total, this gives us ⌈9
2
⌉+ 1 = 6 permutations in A9(123; 213).
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3.2 An(132; 213)

Permutations in An(132; 213) can be listed explicitly, and there are exactly n − 1
permutations in this set.

Theorem 3.8. For n ≥ 2, an(132; 213) = n− 1.

Proof. Let n ≥ 3 and suppose π ∈ An(132; 213). By Lemma 3.1, either π1 = 2 or
π1 = n, and we examine both of those cases now.

First, we claim that if π ∈ An(132; 213) with π1 = 2, then π = 23 · · ·n1. Clearly,
if π avoids 132, we must have the elements in [3, n] appear in increasing order, while
1 can appear anywhere. However, if πk = 1 for any k, then the cycle (1, 2, . . . , k) will
be part of the cycle decomposition of π. Since π is cyclic, k = n.

Now suppose that π ∈ An(132; 213) with π1 = n, and let k ∈ [3, n] such
ck = 2. We claim that each k induces a unique permutation thus providing ex-
actly n − 2 more permutations in An(132; 213). Since C(π) avoids 213 and C(π) =
(1, n, c3, c4, . . . , ck−1, 2, ck+1,, . . . , cn), we must have that all ci’s appearing before 2
are greater than all elements appearing after 2. More formally, {c3, c4, . . . , ck−1} =
[n−k+3, n−1] and {ck+1, ck+2, . . . , cn} = [3, n−k+2]. Now in one-line notation, the
element 1 is in position cn and the element 2 is in position ck−1 > cn. Since π avoids
132, there cannot be any elements between 1 and 2 in π, and thus ck−1 = cn + 1.
This implies ck−1 = n−k+3 and cn = n−k+2. Furthermore, since cn is the largest
element in {ck+1, . . . , cn} and C(π) avoids 213, we must have that the elements after
2 in C(π) are increasing, and thus:

C(π) = (1, n, c3, c4, . . . , ck−2, n− k + 3, 2, 3, 4, . . . , n− k + 2),

or equivalently, π = n34 · · · (n−k+2)12πn−k+4 · · · πn. Since π avoids 132, all elements
in π after 1 must be increasing and we have

π = n34 · · · (n− k + 2)12(n− k + 3)(n− k + 4) · · · (n− 1), (1)

or equivalently,

C(π) = (1, n, n− 1, . . . , n− k + 3, 2, 3, 4, . . . , n− k + 1, n− k + 2),

Since C(π) avoids 213, we see π ∈ An(132; 213), and all n− 2 possible choices for k
yield a unique permutation, our claim holds.

We note that of the total permutations in An(132; 213), all but one of these
permutations begin with n. Because this result will be referenced later in Section 4.3,
we state the result as a corollary here.

Corollary 3.9. For n ≥ 3, the number of permutations π ∈ An(132; 213) with
π1 = n is n− 2.

Example 3.10. ConsiderA7(132; 213). Following the proof of Theorem 3.8, the only
permutation in A7(132; 213) with π1 = 2 is 2345671. There are five permutations
with π1 = n based on the position of 2 in the cycle notation. These permutations
are given by Equation (1) for k ∈ [3, 7] and thus:

A7(132; 213) = {2345671, 7345612, 7345126, 7341256, 7312456, 7123456}.
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3.3 An(213; 213)

In this subsection, we consider the case where σ = τ = 213. If π ∈ An(213; 213), the
first lemma, Lemma 3.11, gives additional structural information about π.

Lemma 3.11. Suppose n ≥ 6 and π ∈ An(213; 213).

• If π1 = 2, then π = 23 · · ·n1; and

• If π1 = n, then either π2 = 1 or πn = 2.

Proof. Let π ∈ A(213; 312) and suppose first that π1 = 2. Note that πn = 1 be-
cause if πn 6= 1, then 21πn is a 213-pattern in one-line notation. Thus C(π) =
(1, 2, c3, c4, . . . , cn−1, n). Suppose toward a contradiction that π 6= 23 · · ·n1, or equiv-
alently that C(π) 6= (1, 2, . . . , n). Then there is a smallest k ∈ [3, n−2] where ck > k,
and ci = i for i < k. Note that k 6= n− 1 because cn−1 ≤ n− 1. But then, ckkn is a
213 pattern in C(π).Therefore ci = i for all i and π = 23 . . . n1.

Now consider the case where π1 = n. Thus C(π) = (1, n, c3, c4, . . . , cn). We want
to show that either cn = 2 or c3 = 2. Suppose toward a contradiction that ck = 2 for
k ∈ [4, n− 1]. Thus

C(π) = (1, n, c3, . . . , ck−1, 2, ck+1, . . . cn)

and
π = nck+1π3π4 · · · πn−1c3.

Since C(π) avoids 213, we must have c3 > ck+1. But then in one-line notation,
ck+12c3 is a 213 pattern which is a contradiction. Thus either c3 = 2 or cn = 2 which
implies πn = 2 or π2 = 1 as desired.

All permutations in An(213; 213) that begin with n1 can be enumerated recur-
sively as shown in the lemma below.

Lemma 3.12. Suppose n ≥ 3. Then the number of permutations π ∈ An(213; 213)
with π1 = n and π2 = 1 is equal to an−1(213; 213)− 1.

Proof. We will find a bijective correspondence between permutations in An(213; 213)
that begin with n1 and permutations in An−1(213; 213) that begin with n − 1. Let
π ∈ An(213; 213) so that π1 = n and π2 = 1. Then C(π) = (1, n, c3, c4, . . . , cn−1, 2).
Let π′ be the permutation formed by deleting 1 from π. Then π′ clearly avoids 213.
Also, C(π′) = (1, n − 1, c3 − 1, c4 − 1, . . . , cn−1 − 1) and thus π′ remains cyclic and
C(π′) avoids 213 as well. To see that we obtain every permutation in An−1(213; 213)
that begins with n − 1, we consider the process in reverse. Let π′ ∈ An−1(213; 213)
with π′

1 = n − 1. Form π by inserting a 1 in position 2 of π′ which is equivalent to
inserting a 2 at the end of the cycle notation of C(π′). Because π remains cyclic and
avoids 213 in both one-line and cycle notation, π ∈ An(213; 213). Thus our bijective
correspondence holds.

By Lemma 3.1, all permutations in An−1(213; 213) either begin with 2 or n− 1,
and Lemma 3.11 states there is only one permutation in An−1(213; 231) that does not
begin with n− 1. Thus there are an−1(213; 213)− 1 permutations π ∈ An(213; 213)
with π1 = n and π2 = 1.
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In the final case where π ∈ An(213; 213) with π1 = n and πn = 2, Lemma 3.4
from Section 3.1 states that we can can count the permutations recursively. Thus
we are now ready to enumerate An(213; 213).

Theorem 3.13. For n ≥ 1, an(213; 213) = Fn where Fn denotes the n-th Fibonacci
number.

Proof. This is easily checked for n ∈ [1, 5], so let n ≥ 6. We will count the number of
permutations in An(213; 213) by looking at three disjoint sets based on Lemma 3.11.
First, we note that there is exactly one permutation π ∈ An(213; 213) with π1 = 2 by
the first part of Lemma 3.11. In the second case, we consider the permutations π ∈
An(213; 213) where π1 = n and π2 = 1. By Lemma 3.12, there are an−1(213; 213)−1
such permutations. For the third case, Lemma 3.4 states that there are an−2(213; 213)
permutations π ∈ An(213; 213) with π1 = n and πn = 2. Thus we have

an(213; 213) = 1 + (an−1(213; 213)− 1) + an−2(213; 213)

= an−1(213; 213) + an−2(213; 213)

which satisfies the Fibonacci recurrence and the result follows.

We note that of the total permutations in An(213; 213), all but one of these
permutations begin with n. Because this result will be referenced later in Section 4.2,
we state the result as a corollary here.

Corollary 3.14. For n ≥ 2, the number of permutations π ∈ An(213; 213) with
π1 = n is Fn − 1 where Fn denotes the n-th Fibonacci number.

Example 3.15. Consider A7(213; 213). The first part of Lemma 3.11 gives us the
permutation 2345671 in A7(213; 213) as the only permutation beginning with 2.
Next, we note that the permutations in A6(213; 213) that begin with 6 are 634512,
654132, 651342, 614523, 615243, 612345, and 612534. The proof of Lemma 3.12 shows
that we can insert the element 1 into position 2 of all the permutations in this list to
get permutations in A7(213; 213) that begin with 71. These seven permutations are:

7145623, 7165243, 7162453, 7125634, 7126354, 7123456, 7123645.

Finally, to find the remainder of the permutations in A7(213; 213), we list all five
permutations in A5(213; 213) which are 23451, 53412, 54132, 51234, and 51423. The
proof of Lemma 3.4 shows that inserting a 2 at the end and a 7 at the beginning
of these permutations will yield permutations in A7(213; 213) that begin with 7 and
end in two; these five permutations are:

7345612, 7645132, 7651432, 7613452, 7615342.

Thus there are F7 = 13 permutations in A7(213; 213).
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3.4 An(231; 213)

This is the most complicated case for τ = 213. Permutations in An(231; 213) can
be enumerated via a recurrence based on the last element of the permutation. The
lemmas below give additional constraints on π1, and consider different cases for πn.

Lemma 3.16. Suppose n ≥ 1 and π ∈ An(231; 213). Then π1 = n.

Proof. We can easily check this for n ∈ {1, 2}, so suppose n ≥ 3 and let π ∈
An(231; 213). By Lemma 3.1, we know that π1 ∈ {2, n}. However, if π1 = 2, then
to avoid 231 in the one-line form, we would have π2 = 1, which contradicts the fact
that π is cyclic. Thus π1 = n.

The next lemma shows that there is only one permutation in An(231; 213) with
πn = 2. Because the proof does not depend on the condition that C(π) avoids 213,
we remove that condition from the hypotheses so that the lemma can be used in
future sections.

Lemma 3.17. Suppose that n ≥ 2 and that π ∈ Cn avoids 231. If πn = 2, then

C(π) =

(

1, n, 2, n− 1, 3, n− 2, . . . ,

⌊

n+ 2

2

⌋)

.

Proof. Suppose π is as stated and πn = 2. Because π avoids 231, the remaining
elements in π, excepting 1, must be decreasing. Suppose πr = 1 for some r ∈ [2, n−1].
Then the remaining elements must be πi = n+1−i for i ∈ [2, r−1] and πi = n+2−i
for i ∈ [r+1, n−1]. In cycle form, C(π) contains the cycle (1, n, 2, n−1, 3, n−2, . . . , r).
Since π is cyclic, this cycle must have length n and thus r = ⌊n+2

2
⌋.

In fact, the last lemma, Lemma 3.17, can be generalized to the case where πn = k
for any k ∈ [2, n−2] when π ∈ An(231; 213). In this case, the first n−k+3 elements
of C(π) are forced.

Lemma 3.18. Suppose n ≥ 4 and π ∈ An(231; 213) with πn = k for some k ∈
[2, n− 2]. Then

C(π) =

(

1, n, k, n− 1, k + 1, . . . ,

⌊

n+ k

2

⌋

, k − 1, cn−k+4, cn−k+5, . . . , cn

)

.

Proof. By Lemma 3.16, we have π1 = n. Since C(π) avoids 213, we can write

C(π) = (1, n, k, c4, c5, . . . , cn−k+2, cn−k+3, . . . , cn)

where {c4, . . . , cn−k+2} = [k + 1, n− 1] and {cn−k+3, . . . , cn} = [2, k − 1]. In one-line
notation, we have

π = nπ2 · · · πk−1c4πk+1 · · · πn−1k

where {π2, . . . , πk−1} = [1, k − 1] \ {cn−k+3} and {πk, . . . , πn−1} = [k + 1, n − 1] ∪
{cn−k+3}.
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We first claim that c4 = n − 1 and that cn−k+3 = k − 1. Since π avoids 231, all
elements in π that are greater than k must appear in decreasing order. In particular,
since πk = c4, we have c4 ∈ {n− 1, cn−k+3}. However, k 6= n− 1, so c4 = n− 1. Also,
if cn−k+3 6= k− 1, then (k− 1)c4cn−k+3 = (k− 1)(n− 1)cn−k+3 is a 231 pattern in π.
Thus cn−k+3 = k − 1 as well.

Recall from the one-line notation of π the elements in {πk, . . . , πn−1} = [k+1, n−
1]∪{k−1}, excepting k−1, must appear in decreasing order. Choose r ∈ [k+1, n−1]
so that πr = k − 1. Then C(π) contains the cycle (1, n, k, n − 1, k + 1, . . . , r, k −
1, cn−k+4, . . . , cn). Since π is cyclic, we must have r = ⌊n+k

2
⌋ as desired.

Because the value of πn forces other parts of the permutation, we now recursively
enumerate permutations in An(231; 213) based on specific values of πn.

Lemma 3.19. Suppose n ≥ 4. There are

• an−1(231; 213) permutations in An(231; 213) with πn = n− 1;

• an−3(231; 213) permutations in An(231; 213) with πn = n− 2; and

• an−1(231; 213)− an−2(231; 213) permutations in An(231; 213) with πn ∈ [2, n−
3].

Proof. Let π ∈ An(231; 213), and suppose first that πn = n − 1. Then C(π) =
(1, n, n − 1, c4, . . . , cn) and π = nπ2 . . . πn−1(n − 1). By deleting n − 1 from π, we
get π′ so that C(π′) = (1, n − 1, c4, . . . , cn) and π′ = (n − 1)π2π3 . . . πn−1. Clearly,
this process is reversible since inserting an n− 1 at the end of the one-line notation
cannot introduce a 231 pattern and inserting n− 1 after the current n− 1 in C(π′)
cannot introduce a 213 pattern.

Next suppose πn = n − 2. Then by Lemma 3.18, C(π) = (1, n, n − 2, n − 1, n −
3, c6, . . . , cn) and π = nπ2 . . . πn−3(n− 1)(n− 3)(n− 2). By deleting n− 1, n− 2, and
n − 3, we get π′ so that C(π′) = (1, n − 3, c6, . . . , cn) and π′ = (n − 3)π2π3 . . . πn−3.
Again, this process is reversible since inserting an (n− 1)(n− 3)(n− 2) at the end of
the one-line notation cannot introduce a 231 pattern and inserting n−2, n−1, n−3,
after the n− 3 in C(π′) cannot introduce a 213 pattern.

Finally, suppose πn = k for some k ∈ [2, n − 3]. Then by Lemma 3.18, C(π) =
(1, n, k, n− 1, k+1, n− 2, k+2, . . . , ⌊n+k

2
⌋, k− 1, cn−k+4, . . . , cn). By letting C(π′) be

the permutation formed by deleting ⌊n+k
2
⌋ from C(π), we get C(π′) still satisfies the

conditions of Lemma 3.18. Since cn−k+2 = ⌊n+k
2
⌋ ± 1, this is equivalent to deleting

⌊n+k
2
⌋ from the one-line notation. In particular, we note that π′ does not end in n−2

because π did not end in n − 1; there are an−1(231; 213) − an−2(231; 213) such per-
mutations. Again, we reverse this process by first starting with π′ ∈ An−1(231; 213)
where π′ does not end with n− 2. In this case, insert ⌊n+k

2
⌋ into position n+ 2− k

of C(π′).

Theorem 3.20. For n ≥ 4, the number of permutations in An(231; 213) satisfies
the recurrence

an(231; 213) = 2an−1(231; 213)− an−2(231; 213) + an−3(231; 213).
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with a1(231; 213) = a2(231; 213) = a3(231; 213) = 1. In closed form,

an(231; 213) =

⌊n−1

3
⌋

∑

k=0

(

n− 1− k

2k

)

,

for all n ≥ 1.

Proof. We can easily check that a1(231; 213) = a2(231; 213) = a3(231; 213) = 1.
Suppose n ≥ 4 and let π ∈ An(231; 213). By Lemma 3.16, π1 = c2 = n. By
Lemma 3.19, we have

an(231; 213) = 2an−1(231; 213)− an−2(231; 213) + an−3(231; 213).

Since the formula in the statement of the theorem satisfies this recurrence and the
initial conditions, the theorem holds.

Example 3.21. Consider A7(231; 213). Because we build this set of permutations
recursively, we begin by listing A4(231; 213) and A6(231; 213):

A4(231; 213) = {4312, 4123}
A6(231; 213) = {631245, 612345, 614235, 641325, 612534, 615243, 654132}.

To create those permutations in A7(231; 213) ending in 6, we start with the permu-
tations in A6(231; 213) and insert a 6 at the end yielding the following permutations
in A7(231; 213):

7312456, 7123456, 7142356, 7413256, 7125346, 7152436, 7541326.

To create those permutations in A7(231; 213) ending in 5, we start with the permu-
tations in A4(231; 213) and insert a 645 at the end giving us the permutations

7312645, 7123645.

Finally, to create those permutations in A7(231; 213) ending in k for k < 6, we need
the permutations in A6(231; 213) that do not end in 5. There are a6(231; 213) −
a5(231; 213) = 7 − 4 = 3 such permutations: (1, 6, 4, 5, 3, 2), (1, 6, 3, 5, 4, 2), and
(1, 6, 2, 5, 3, 4). For each of these, let k be the element after 6 in cycle form, and insert
⌊7+k

2
⌋ into position 9−k of the cycle form. For the permutation (1, 6, 4, 5, 3, 2), k = 2,

so we insert 5 in position 5 of the cycle form giving the permutation (1, 7, 4, 6, 5, 3, 2)
in A7(231; 213). For the permutation (1, 6, 3, 5, 4, 2), k = 3, so we insert 5 in position
6 of the cycle yielding the permutation (1, 7, 3, 6, 4, 5, 2). Finally, for the permutation
(1, 6, 2, 5, 3, 4), k = 2, and we insert 4 in position 7 of the cycle form to get the
permutation (1, 7, 2, 6, 3, 5, 4). In one-line form, these three permutations are

7126354, 7165243, 7651432.

Thus there are 7 + 2 + (7 − 4) = 12 permutations in A7(231; 213). In closed form,
notice

(

6
0

)

+
(

5
2

)

+
(

4
4

)

= 12 as well.
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3.5 An(312; 213)

When σ = 312 and τ = 213, there is only one permutation in An(312; 213), namely
the permutation π = 23 . . . n1 so that C(π) = (1, 2, 3, . . . , n).

Theorem 3.22. For n ≥ 1, an(312; 213) = 1.

Proof. Let n ≥ 3 and π ∈ An(312; 213). By Lemma 3.1, either π1 = n or π1 = 2.
If π1 = n, then π = nπ2π3 · · · πn must have πn = 1 in order to avoid 312. But this
permutation is not cyclic for n ≥ 3 since π1 = n and πn = 1 yields a transposition.
Thus π1 = 2.

We claim that the permutation π = 23 . . . n1 is the only permutation in
An(312; 213). To this end, let C(π) = (1, 2, c3, . . . , cn) and suppose toward a contra-
diction that there exists a k so that ci = i for i < k and ck > k. Thus cℓ = k for
some ℓ > k and

C(π) = (1, 2, 3, . . . , k − 1, ck, ck+1, . . . , cℓ−1, k, cℓ+1, . . . , cn).

If ℓ = n, or equivalently cn = k, then

π = 23 · · · (k − 1)ck1πk+1πk+2 · · · πn.

Since ck > k, we have ck1k is a 312 pattern which is a contradiction. Thus ℓ 6= n
and it must be that cℓ−1 > cn since C(π) avoids 213. But then the pattern ck1k,
occurring in positions k − 1, cn, and cℓ−1 of π, is a 312 pattern.

3.6 An(321; 213)

In this section, we enumerate the permutations in An(321; 213). We begin by giving
conditions on the position of 2 in cycle notation.

Lemma 3.23. Suppose n ≥ 2 and π ∈ An(321; 213). Then either π1 = 2 or π2 = 1.

Proof. If n ∈ {2, 3}, the only permutations in An(321; 213) are 21, 231, and 312 all
of which satisfy the statement of the lemma. So assume n ≥ 4, and suppose toward
a contradiction that π1 6= 2 and π2 6= 1. In C(π), we thus have ck = 2 for some
3 ≤ k ≤ n− 1 and for reference write

C(π) = (1, c2, . . . , ck−1, 2, ck+1, . . . , cn).

Since C(π) avoids 213, we must have c2 > ck+1. But then in one-line notation,
c2ck+12 is a 321 pattern which is a contradiction.

For any permutation in An(321; 213), we can insert either a 2 at the beginning
or a 1 in the second position to get a permutation in An+1(321; 213). In fact, this
process yields all possible permutations and we have the following theorem.

Theorem 3.24. For n ≥ 2, an(321; 213) = 2n−2.
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Proof. We begin by showing that every permutation in An(321; 213) corresponds
to exactly two permutations in An+1(321; 213). Let π ∈ An(321; 213), and let π′

be the permutation formed by inserting the element 2 in position 1 of π. Thus
π′ = 2π′

1π
′
2 · · · π′

n where π′
i = 1 if πi = 1 and π′

i = πi + 1 if πi 6= 1. Notice that
π′ avoids 321 in one-line notation. Furthermore, in cycle notation, this process is
equivalent to inserting the element 2 after 1 and thus C(π′) avoids 213 as well. Thus
π′ ∈ An+1(321; 213).

Similarly, let π′′ be the permutation formed by inserting the element 1 in position
2 of π. Thus π′′ = π′′

11π
′′
2 · · · π′′

n where π′′
i = πi + 1 and thus π′′ avoids 321. Notice

this process in equivalent to inserting 2 at the end of the cycle notation of C(π) and
thus C(π′′) also avoids 213, and π′′ ∈ An+1(321; 213). Furthermore, the only way for
π′ = π′′ is if π1 = 1 which is not true if n ≥ 2. Thus an+1(321; 213) ≥ 2an(321; 213).

To show equality, we note that this process is reversible. If π = π1π2 · · · πn+1 ∈
An+1(321; 213), then by Lemma 3.23, either π1 = 2 or π2 = 1. In the case where
π1 = 2, deleting 2 from π yields a permutation cyclic permutation π′ (whose cycle
form is obtained by deleting 2 in C(π)) in An(321; 213). Indeed, π

′ clearly avoids 321
since π′ does and C(π′) avoids 213 since C(π) does. Similarly, in the case where π2 =
1, deleting 1 from π yields a permutation in An(321; 213). Thus an+1(321; 213) =
2an(321; 213). Since a2(321; 213) = 1, we have an(321; 213) = 2n−2 as desired.

Example 3.25. Consider A5(321; 213). To find the permutations in this set, we first
list the four permutations in A4(321; 213) and insert the element 2 in position 1 to
obtain four of the permutations in A5(321; 213) and insert the element 1 in position
2 to obtain the other four permutations in A5(321; 213). Recall that when inserting
a value, all other values are adjusted accordingly so the result is still a permutation.
The four permutations in A4(321; 213) are 2341, 3142, 2413, and 4123. Thus, the
eight permutations in A5(321; 213) are

A5(321; 213) = {23514, 25134, 24153, 23451, 31524, 51234, 41253, 31452}.

4 Enumerating An(σ; 231)

In this section we consider the cases where τ = 231. Similar to the previous section,
we begin with a lemma to give more information about permutations in An(σ; 231)
for certain patterns σ. The remainder of the section is divided into subsections
examining each of the cases for σ ∈ S3 in more detail.

Lemma 4.1. For any n ≥ 1, if π ∈ An(σ; 231) with σ ∈ {132, 213, 231, 312}, then
either π1 = n or πn = 1.

Proof. It is straightfoward to check this is true for n < 6, so let us assume n ≥ 6.
Let π ∈ An(σ; 213), and suppose toward a contradiction that π1 6= n and πn 6= 1. In
cycle notation, this implies there is a k ∈ [3, n− 1] so that ck = n. Since C(π) avoids
231, we must have {c2, c3, . . . ck−1} = [2, k − 1] and {ck+1, ck+2, . . . , cn} = [k, n− 1].

Let us achieve our contradiction by finding the pattern σ ∈ {132, 213, 231, 312} in
the one-line notation of π. First, to see there is a 132 pattern, we note that c2, n, and
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ck+1 occur in positions 1, ck−1, and n, respectively, thus forming a 132 pattern. For
the 213 pattern, c2 is in position 1, 1 is in position cn and ck+1 is in position n. Since
c2 < ck+1, this is a 213 pattern. Next, we have the pattern c2n1 in π which is a 231
pattern. And finally, n1ck+1 is a 312 pattern. Therefore, for σ ∈ {132, 213, 231, 312},
we have either π1 = n or πn = 1 as desired.

4.1 An(123; 231)

We begin by considering the position of n in the cycle notation of a permutation in
An(123; 231).

Lemma 4.2. Suppose n ≥ 4 and let π ∈ An(123; 231) with C(π) = (1, c2, c3, . . . , cn).
If ck = n for k ∈ [3, n− 1], then

C(π) =

(

1, k − 1, 2, k − 2, 3, k − 3, . . . ,

⌊

k + 1

2

⌋

, n, k, n− 1, k + 1, . . . ,

⌊

n+ k

2

⌋)

.

Proof. Since C(π) avoids 231, elements in C(π) that come before n must be smaller
than those that come after n. Thus, {c2, c3, . . . , ck−1} = [2, k−1], and {ck+1, ck+2, . . . ,
cn} = [k, n− 1]. In one-line notation, note that πn = ck+1. Since the elements in the
set [2, k − 1] are all less than ck+1 and π avoids 123, these elements must appear in
π in decreasing order. These elements occur in positions [1, k− 1] \ {ck−1} of π, and
thus we have

πi =

{

k − i if i ∈ [1, ck−1 − 1]

k + 1− i if i ∈ [ck−1 + 1, k − 1].

On the other hand, we note that in one-line notation, π1 = c2, and thus all
elements in π greater than c2 must be decreasing. Since the elements in the set
[k, n− 1] must occur in positions [k, n] \ {cn}, we have

πi =

{

n+ k − 1− i if i ∈ [k, cn − 1]

n+ k − i if i ∈ [cn + 1, n].

Then π contains the cycle (1, k−1, 2, k−2, 3, . . . , ck−1, n, k, n−1, k+1, . . . , cn). Since
π is cyclic, ck−1 = ⌊(k + 1)/2⌋ and cn = ⌊(n+ k)/2⌋ as desired.

The remaining cases occur when n is either the second position in cycle notation
or at the end. Lemma 3.4 deals with the case where c2 = n and c3 = 2, and the
following lemma examines the case where c2 = n and c3 6= 2. In this case, we
have a similar result to Theorem 3.8; the element πn = k uniquely determines the
permutation if k ∈ [4, n− 2].

Lemma 4.3. Suppose n ≥ 8. Then there are n−3 permutations in π ∈ An(123; 231)
with π1 = n and πn 6= 2.

Proof. Let π ∈ An(123; 231) with π1 = n. We first show that πn 6= n − 1. If
πn = n − 1, then the remaining elements of π would need to be decreasing since



K. ARCHER ET AL. /AUSTRALAS. J. COMBIN. 94 (1) (2026), 50–92 67

π avoids 123. Then πn−1 = 1 and π contains the cycle (1, n, n − 1) which is a
contradiction.

We now suppose πn = k for k ∈ [4, n− 2] and show that there is exactly one such
permutation. Write

C(π) = (1, n, k, c4, c5, . . . , ck+1, ck+2, ck+3, . . . , cn).

Since C(π) avoids 231, we have {c4, c5, . . . , ck+1} = [2, k−1] and {ck+2, ck+3, . . . , cn} =
[k+1, n−1]. In one-line notation, note that πn = k so the elements in [2, k−1], which
occur in positions [2, k]\{ck+1} must occur in decreasing order. In cycle notation, we
then have C(π) = (1, n, k, 2, k−1, 3, k−2, . . . , ck+1, ck+2, . . . , cn). In order for C(π) to
contain all elements in [1, k− 1], we must have ck−1 = ⌊(k+2)/2⌋. Similarly, since 2
comes before the elements in [k+1, n−1]\{ck+2} in one-line notation, these elements
must also be in decreasing order, and they appear in positions [k + 1, n− 1] \ {cn}.
Again, in order for C(π) to contain all of the elements, we need cn = ⌊(n + k)/2⌋.
Thus, in cycle notation,

C(π) =

(

1, n, k, 2, k − 1, 3, k − 2, . . . ,

⌊

k + 2

2

⌋

, n− 1, k + 1, n− 2, k + 2, . . . ,

⌊

n+ k

2

⌋)

.

(2)

Finally, we show that if πn = 3, there are exactly two possible permutations.
Since C(π) avoids 231, c4 = 2 otherwise 3c42 would be a 231 pattern in C(π). For
reference, note that in this case C(π) = (1, n, 3, 2, c5, c6, . . . , cn). We now claim that
c5 ∈ {4, n − 1} each producing a unique permutation with n ≥ 8. Suppose toward
a contradiction that c5 = k for k ∈ [5, n − 2]. Since C(π) avoids 231, we must have
{c6, c7, . . . , ck+1} = [4, k − 1] and {ck+2, ck+3, . . . , cn} = [k + 1, n − 1]. In one-line
notation, consider the pattern 2πkπk+1. Since πk = c6 < k, we must have πk+1 = 1
to avoid 123. But then k = n − 2 since otherwise 2πkcn−1 is a 123 pattern in π. If
k = n−2, we have that π1π2π3 = n(n−2)2 and πn−1πn = 13. Since π avoids 123, the
remaining elements in π must be decreasing and thus π4 = n− 1 and πi = n+ 2− i
for i ∈ [4, n − 2]. But then C(π) contains the cycle (1, n, 3, 2, n − 2, 4, n − 1) which
is a contradiction. Thus c5 /∈ [5, n− 2].

Suppose that c5 = 4. In this case C(π) = (1, n, 3, 2, 4, c6, c7, . . . , cn). In one-line
notation, π1π2π3 = n42 and πn = 3. The remaining elements in π, excluding 1, must
be decreasing since π avoids 123. Thus, πi = n+3−i for i ∈ [4, cn] and πi = n+4−i for
i ∈ [cn+1, n−1]. In cycle form, we have the cycle (1, n, 3, 2, 4, n−1, 5, n−2, 6, . . . , cn).
Since π is cyclic, this cycle must contain all n elements and thus cn = ⌊(n + 4)/2⌋
and a unique permutation in An(123; 231) exists in this case, namely,

C(π) =

(

1, n, 3, 2, 4, n− 1, 5, n− 2, 6, . . . ,

⌊

n+ 4

2

⌋)

. (3)

A very similar argument shows that if c5 = n − 1, the unique permutation in
An(123; 231) is

C(π) =

(

1, n, 3, 2, n− 1, 4, n− 2, 5, . . . ,

⌊

n+ 3

2

⌋)

. (4)
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The final lemma for this case counts the permutations in An(123; 231) where n
is the last element in cycle form. We enumerate these by making use of symmetries
of permutations and the results in Section 3. The following lemma states a general
result about enumerating permutations based on symmetries and will be used in
future sections as well.

Lemma 4.4. The number of permutations π ∈ An(σ; 231) with πn = 1 is equal to
the number of permutations π′ ∈ An(σ

rc; 213) with π′
1 = n.

Proof. Suppose π ∈ An(σ; 231) with πn = 1. Then C(π) = (1, c2, . . . , cn−1, n).
Furthermore, we note that C(π)c = (n, n+ 1− c2, . . . , n+ 1− cn−1, 1) which we can
cyclicly rotate to see C(π)c = (1, n, n + 1 − c2, . . . , n + 1 − cn−1). Notice that since
C(π) avoids 231, C(π)c avoids 213.

Let π′ = πrc. We claim that π′ ∈ An(σ
rc; 213) with π′

1 = n. Since π avoids σ, we
see that πrc avoids σrc. Also, by Lemma 1.4, we have C(π′) = C(π)c which avoids
213. Thus π′ ∈ An(σ

rc; 213). Furthermore, this process works in reverse and thus
the equality holds.

Since 123rc = 123, the number of permutations π ∈ An(123; 231) where πn = 1
can thus be enumerated using Corollary 3.6. We can now enumerate all of
An(123; 231).

Theorem 4.5. For n ≥ 8, the number of permutations in An(123; 231) satisfies the
recurrence

an(123; 231) = an−2(123; 231) + 2n− 6 +
⌈n

2

⌉

where a6(123; 231) = 12 and a7(123; 231) = 20. In closed form,

an(123; 231) = 5

(⌊n−1
2
⌋

2

)

+

{

2n− 5 if n is even,

n− 2 if n is odd.

Proof. It is not hard to verify that ak(123; 231) satisfies the results in the theorem for
k ∈ {6, 7}. Thus, we assume n ≥ 8 and we enumerate permutations in An(123; 231)
based on the position of n in cycle form. By Lemma 4.2, for each k ∈ [3, n − 1],
there is exactly one permutation with ck = n. Thus there are n − 3 permutations
in An(123; 231) with cn = k for some k ∈ [3, n − 1]. By Lemma 3.4 from Section 3,
there are an−2(123; 231) permutations in An(123; 231) with c2 = n and c3 = 2. In the
case where c2 = n and c3 6= 2, Lemma 4.3 states that there are n− 3 permutations.
Finally, Lemma 4.4 says the number of permutations in An(123; 231) with cn = n
is equal to the number of permutations in An(123; 213) where 1 maps to n. By
Corollary 3.6, there are ⌈n

2
⌉ permutations with cn = n. Thus we have

an(123; 231) = n− 3 + an−2(123; 231) + n− 3 +
⌈n

2

⌉

and the desired recurrence relation is satisfied.
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Example 4.6. Consider A8(123; 231). By Lemma 4.2, there are five permutations
where 8 is in position 3 through 7 in cycle notation, namely,

(1, 2, 8, 3, 7, 4, 6, 5), (1, 3, 2, 8, 4, 7, 5, 6), (1, 4, 2, 3, 8, 5, 7, 6),

(1, 5, 2, 4, 3, 8, 6, 7), (1, 6, 2, 5, 3, 4, 8, 7)

which in one-line notation is:

28761543, 38276154, 45827165, 54832716, 65483217.

Using Lemma 4.3, we can list those permutations where 8 is in the second position
of cycle notation and the third position is k ∈ {4, 5, 6} according to Equation (2):

(1, 8, 4, 2, 3, 7, 5, 6), (1, 8, 5, 2, 4, 3, 7, 6), (1, 8, 6, 2, 5, 3, 4, 7),

which in one-line notation is

83726154, 84732165, 85473216.

Lemma 4.3 also gives those permutations where 8 is in the second position and the
third position is 3 in Equations (3) and (4):

(1, 8, 3, 2, 4, 7, 5, 6), (1, 8, 3, 2, 7, 4, 6, 5) or equivalently 8426153, 87261543.

The permutations in A8(123; 231) where 8 is in the last position in cycle no-
tation are the reverse complements of the permutations in A8(123; 213) that be-
gin with 8. There are 4 such permutations: (1, 8, 2, 7, 3, 6, 4, 5), (1, 8, 2, 7, 3, 5, 6, 4),
(1, 8, 2, 7, 3, 4, 6, 5), and (1, 8, 2, 3, 7, 4, 6, 5). Taking the reverse complement of each
of these (or equivalently taking the complement of the cycle and cyclicly shifting),
we have the following corresponding permutations in A8(123; 231):

(1, 7, 2, 6, 3, 5, 4, 8), (1, 7, 2, 6, 4, 3, 5, 8), (1, 7, 2, 6, 5, 3, 4, 8), (1, 7, 6, 2, 5, 3, 4, 8),

which in one-line notation is

76584321, 76538421, 76483521, 75483261.

Finally, Lemma 3.4 from Section 3, shows that there are a6(123; 231) = 12 per-
mutations in A8(123; 231) with c2 = 8 and c3 = 2. The twelve permutations in
A6(123; 231) are

A6(123; 231) = {(1, 6, 2, 5, 3, 4), (1, 6, 3, 2, 5, 4), (1, 6, 2, 4, 3, 5), (1, 6, 3, 2, 4, 5),
(1, 6, 2, 3, 5, 4), (1, 6, 4, 2, 3, 5), (1, 5, 2, 4, 3, 6), (1, 5, 4, 2, 3, 6),

(1, 5, 3, 2, 4, 6), (1, 4, 2, 3, 6, 5), (1, 3, 2, 6, 4, 5), (1, 2, 6, 3, 5, 4)}

We obtain the additional twelve permutations in A8(123; 231) by inserting an 8
followed by a 2 after the 1 in cycle notation:

(1, 8, 2, 7, 3, 6, 4, 5), (1, 8, 2, 7, 4, 3, 6, 5), (1, 8, 2, 7, 3, 5, 4, 6), (1, 8, 2, 7, 4, 3, 5, 6),

(1, 8, 2, 7, 3, 4, 6, 5), (1, 8, 2, 7, 5, 3, 4, 6), (1, 8, 2, 6, 3, 5, 4, 7), (1, 8, 2, 6, 5, 3, 4, 7),

(1, 8, 2, 6, 4, 3, 5, 7), (1, 8, 2, 5, 3, 4, 7, 6), (1, 8, 2, 4, 3, 7, 5, 6), (1, 8, 2, 3, 7, 4, 6, 5),



K. ARCHER ET AL. /AUSTRALAS. J. COMBIN. 94 (1) (2026), 50–92 70

or equivalently, in one-line notation,

87651432, 87631542, 87564132, 87536142,

87461532, 87463152, 86574312, 86473512,

86537412, 85473162, 84736152, 83761542.

4.2 An(132; 231)

In this section we enumerate permutations in An(123; 231). We begin by showing
that for permutations in An(123; 231), either 1 maps to n, or n maps to 1.

Lemma 4.7. If π ∈ An(132; 231), then either π1 = n or πn = 1.

Proof. This is true for n ∈ {1, 2, 3}, so suppose n ≥ 4 and π ∈ An(132; 231). For the
sake of contradiction, suppose π1 6= n and πn 6= 1. Then there is some k ∈ [3, n− 1]
with ck = n and we can write:

C(π) = (1, c2, . . . , ck−1, n, ck+1, . . . , cn)

with each element in {c2, . . . , ck−1} less than each element in {ck+1, . . . , cn}. But now
in one-line notation, we have that c2nck+1 in positions 1, ck−1, and n, respectively, is
a 132 pattern. Therefore, we must have n ∈ {c2, cn}, and the result follows.

We proceed by considering the two possible positions of n in cycle notation.
For the case where πn = 1, we can make use of permutation symmetries and use
the results in Section 3. The following lemma considers the remaining case where
π1 = n.

Lemma 4.8. For n ≥ 3, the number of permutations π ∈ An(132; 231) with π1 = n
is equal to Fn − 1 where Fn denotes the n-th Fibonacci number.

Proof. Let bn denote the number of permutations π ∈ An(132; 231) with π1 = n. We
have b3 = 1 since the only such permutation is 312, and we have b4 = 2 since the
only permutations of length 4 satisfying these requirements are 4123 and 4312. Now,
let n ≥ 5. Since Fn − 1 satisfies the recurrence:

Fn − 1 = (Fn−1 − 1) + (Fn−2 − 1) + 1,

it is enough to show that bn = bn−1 + bn−2 + 1.
Let us first show that if π1 = n, then we must have either πn = n−1 or πn−1 = 1.

By contradiction, let’s suppose not and write

C(π) = (1, n, c3, . . . , ck−1, n− 1, ck+1, . . . , cn)

for some k ∈ [4, n − 1] with each element in {c3, . . . , ck−1} less than each element
in {ck+1, . . . , cn}. Then 1ck+1c3 in positions cn, n − 1, and n, respectively, is an
occurrence of 132 in the one-line notation of π. Therefore we must have n − 1 ∈
{c3, cn}.
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In the case where n − 1 = c3, we claim that the number of permutations with
π1 = n and πn = n− 1 is bn−1. Indeed, if you have such a permutation, we can write
C(π) = (1, n, n− 1, c4, . . . , cn). We can obtain a permutation π′ ∈ An−1(132; 231) by
deleting n so that C(π′) = (1, n − 1, c4, . . . , cn). In the one-line notation, this only
corresponds to deleting n − 1 from the n-th position, and so no new patterns are
created. On the other hand, starting with a permutation π′ ∈ An−1(132; 231) with
π′
1 = n− 1, we can insert an n− 1 into the n-th position of the one-line notation to

obtain a permutation π, which is still a cyclic permutation since this corresponds to
inserting n− 1 after the n in C(π′). Since π′

1 = n− 1, we must have π1 = n, and so
the n− 1 in position n cannot be part of a new 132 pattern.

Next, we show that if π1 = n and πn−1 = 1, we must have that either πn = n− 2
or πn = 2. For contradiction, suppose not. Then we have

C(π) = (1, n, c3, c4 . . . , ck, ck+1, . . . , cn−1, n− 1)

where k = c3 + 1, {c4, · · · , ck} = [2, c3 − 1] and {ck+1, . . . , cn−1} = [c3 + 1, n − 2].
Then c4(n − 1)j in positions c3, cn−1, and n, respectively, is a 132 pattern. Thus
c3 ∈ {2, n− 2}.

Notice that if c3 = n− 2, then we have

C(π) = (1, n, n− 2, c4, . . . , cn−1, n− 1)

which means π = nπ2 . . . πn−21(n − 2). To avoid 132, we must therefore have π2 =
n − 1 since otherwise π2(n − 1)(n − 2) would be a 132 pattern. Thus C(π) =
(1, n, n − 2, c4, . . . , cn−2, 2, n − 1). But now, since C(π) must avoid 231, it must be
the case that the remaining elements of C(π), namely {c4, c5, . . . , cn−2}, must appear
in decreasing order. Thus there is only one permutation with π1 = n, πn−1 = 1, and
πn = n− 2 given by

C(π) = (1, n, n− 2, n− 3, n− 4, . . . , 3, 2, n− 1) (5)

Finally, we consider those permutations with π1 = n, πn−1 = 1, and πn = 2. In
these cases, we have

C(π) = (1, n, 2, c4, . . . , cn−1, n− 1),

with π = nπ2 . . . 12. Notice that deleting n and 2 from both the cycle and the one-line
notation leaves us with the permutation π′′ ∈ Sn−2 with C(π′′) = (1, c4−1, . . . , cn−1−
1, n− 2). Since this corresponds to deleting n and 2 from the one-line notation, we
do not introduce any new patterns by this deletion. This is also reversible; if we start
with a permutation π′′ ∈ An−2(132; 231) with π′′

n−2 = 1 and insert n at the beginning
and 2 at the end of π′′, we will not introduce a new 132 pattern since 1 appeared at
the end of π′′. By Lemma 4.4, there are Fn−2 − 1 permutations π′′ ∈ An−2(132; 231)
with π′′

n−2 = 1, which inductively is bn−2.
Taken together, we have shown that bn = bn−1 + 1 + bn−2, from which it follows

that bn = Fn − 1.
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Theorem 4.9. For n ≥ 2, an(132; 231) = 2Fn − 2 where Fn denotes the n-th Fi-
bonacci number.

Proof. By Lemma 4.7, we have that an(132; 231) is the sum of the number of permu-
tations in An(132; 231) with π1 = n and the number of permutations in An(132; 231)
with πn = 1.

Since 132rc = 213, by Lemma 4.4, the number of permutations π ∈ An(132; 231)
with πn = 1 is equal to the number of permutations π′ ∈ An(213; 213) with π′

1 = n;
Corollary 3.14 states there are Fn − 1 such permutations. Finally, Lemma 4.8 states
there are Fn − 1 permutations with π1 = n, and thus the theorem follows.

Example 4.10. Consider A6(132; 231). We first list all permutations with π1 =
6. Following the proof of Lemma 4.8, we begin by listing those permutations in
A6(132; 231) that both start with 6 and end in 5. These are formed recursively by
finding all permutations in A5(132; 231) that start with 5 and then insert a 5 at the
end (which turns the original 5 into a 6). The four permutations in A5(132; 231)
that start with 5 are 54213, 53412, 51234, and 53124. Inserting a 5 at the end yields
the following permutations in A6(132; 231) that start with 6 and end in 5:

642135, 634125, 612345, 631245.

We then list the one permutation in A6(132; 231) that has π1 = 6, π2 = 5, and π5 = 1
as given in Equation (5):

(1, 6, 4, 3, 2, 5).

For the remaining permutations that begin with 6, we start with permutations in
A4(132; 231) that end in 1 and insert 6 in the front and 2 at the end. There are two
permutations in A4(132; 231) that end in 1: 3421 and 2341. By inserting 6 in the
front and 2 at the end, we have the following permutations in A6(132; 231):

645312, 634512.

Notice there are a total of F5 − 1 = 7 permutations in A6(132; 231) that start with
6.

We now list the F5−1 = 7 permutations in A6(132; 231) that end in 1. Lemma 4.4
states that these are found by first finding the permutations inA6(213; 213) that start
with 6 and then taking the reverse-complement of each. The seven permutations in
A6(213; 213) that start with 6 are 634512, 654132, 651342, 614523, 615243, 612345,
and 612534. The reverse-complements of these permutations are:

562341, 546321, 534621, 452361, 435261, 234561, 342561.

Thus there are 2F5 − 2 = 14 total permutations in A6(132; 231).

4.3 An(213; 231)

This section enumerates the set An(213; 231). By Lemma 4.1, we know that for
π ∈ An(213; 231) either π1 = n or πn = 1. For the case where πn = 1, we use
symmetries of permutations and the results from Section 3.2. We enumerate the
case where π1 = n in the subsequent lemma.
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Lemma 4.11. Suppose n ≥ 2. The number of permutations π ∈ An(213; 231) with
π1 = n is equal to an−2(213; 231) + 1.

Proof. Suppose π ∈ An(213; 231) with π1 = n. In the case with the additional condi-
tion that πn = 2, by Lemma 3.4, there are exactly an−2(213; 231) such permutations.

Assume then that πn 6= 2 and write

C(π) = (1, n, c3, . . . , cn).

Then either c3 = n − 1 or c3 ∈ [3, n − 2]. If c3 = n − 1, then πn = n − 1. Since π
avoids 213, we must have π = n123 · · · (n − 1), or equivalently, C(π) = (1, n, n −
1, n−2, . . . , 3, 2). We will prove by contradiction that we cannot have c3 ∈ [3, n−2].
For ease of notation, let r = c3. If r ∈ [3, n− 2], we must have that {c4, . . . , cr+1} =
[2, r−1] and that {cr+2, . . . , cn} = [r+1, n−1] since C(π) avoids 231. However, this
implies that in π, we have πn = r, πr = c4 < r and πcn = 1 with r < cn < n. Thus
c41r is a 213 pattern in π.

Since we have shown that for permutations in An(213, 231) with π1 = n, there
are an−2(213; 231) with πn = 2, one with πn = n− 1, and none with 3 ≤ πn ≤ n− 2,
the results follows.

Theorem 4.12. For n ≥ 3, the number of permutations in An(213; 231) satisfies
the recurrence

an(213; 231) = an−2(213; 231) + n− 1

where a1 = a2 = 1. In closed form, an(213; 231) =
⌊

n2

4

⌋

.

Proof. By Lemma 4.1, all permutations π ∈ An(213; 231) have either π1 = n or
πn = 1. Lemma 4.11 states that an−2(213; 231)+1 of these permutations have π1 = n.
Since 213rc = 132, by Lemma 4.4, the number of permutations π ∈ An(213; 231)
with πn = 1 is equal to the number of permutations π′ ∈ An(132; 213) with π′

1 = n;
Corollary 3.9 states that there are n−2 such permutations. Thus the given recurrence
relation holds. The closed form can be found by solving the recurrence relation.

Example 4.13. Consider A6(213; 231). We first note that

A4(213; 231) = {2341, 3421, 4312, 4123}.
The proof of Lemma 3.4 shows that we can get four new permutations inA6(213; 231)
by inserting a 2 at the end of each permutation and a 6 in the front. Thus we have
the following permutations in A6(213; 231):

634512, 645312, 654132, 651342.

The remaining permutation in A6(213; 231) with π1 = 6 is found at the end of the
proof of Lemma 4.11 and is 612345.

The permutations in A6(213; 231) with π6 = 1 are found by taking the reverse-
complements of those permutations in A6(132; 213) that start with 6. These permu-
tations are 634512, 634125, 612345, and 631245. Thus the remaining desired permu-
tations in A6(213; 231) are

562341, 256341, 234561, and 235641.

These are the 9 permutations in A6(231; 231).
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4.4 An(231; 231)

We first show that for π ∈ An(231; 231), π1 = n.

Lemma 4.14. Suppose n ≥ 1 and π ∈ An(231; 231). Then π1 = n.

Proof. If n ∈ {1, 2}, the result clearly holds so assume n ≥ 3. By Lemma 4.1,
either π1 = n or πn = 1. Suppose πn = 1. Since π avoids 231, we must have the
remaining elements in π decreasing which implies π1 = n. But then (1, n) is part of
the cycle structure of π which contradicts the fact that π is cyclic. Therefore π1 = n
as desired.

The permutations in An(231; 231) are enumerated based on πn. The next lemma
shows that we can recursively count those that end in n− 1.

Lemma 4.15. Suppose n ≥ 5. The number of permutations π ∈ An(231; 231) with
πn = n− 1 is equal to an−1(231; 231).

Proof. Suppose π ∈ An(231; 231) with πn = n − 1. Using Lemma 4.14, we have
C(π) = (1, n, n − 1, c4, c5, . . . , cn). Let π′ be the permutation formed by deleting
n− 1 from π in one-line notation. Notice C(π′) = (1, n− 1, c4 − 1, c5 − 1, . . . , cn − 1)
and thus π′ avoids 231 in both one-line notation and cycle notation. To see that we
obtain every permutation in An−1(231; 231), we let π′ ∈ An−1(231; 231) and form π
by inserting n− 1 at the end of π′. In cycle notation, this is equivalent to inserting
n − 1 after n. This insertion cannot create a 231 pattern in either π or C(π), and
the result follows.

To count the remaining permutations in An(231; 231), we show that if π ∈
An(231; 231) and πn 6= n − 1, then πn = 2, and there is only one such permuta-
tion. This result is part of the proof of the following main result.

Theorem 4.16. For n ≥ 6, an(231; 231) = n.

Proof. This is easily checked for n = 6, so assume n ≥ 7. Suppose π ∈ An(231; 231).
By Lemma 4.14, π1 = n. If πn = n−1, there are an−1(231; 231) such permutations so
we consider the case where πn 6= n−1 and show there is exactly one such permutation.
By Lemma 3.17, there is exactly one permutation if πn = 2, and we show there are
no permutations with πn ∈ [3, n− 2].

Toward a contradiction, suppose C(π) = (1, n, r, c4, c5, . . . , cn) where r ∈ [3, n−2].
Because C(π) avoids 231, we have {c4, c5, . . . , cr+1} = [2, r−1] and {cr+2, cr+3, . . . , cn}
= [r+ 1, n− 1]. If πr+1 6= 1, then πrπr+11 is a 231 pattern in one-line notation since
πr ∈ [2, r− 1]. Thus assume πr+1 = 1, or equivalently, cn = r+1. Since C(π) avoids
231, we must have the remaining elements in [r + 2, n − 1] appearing in decreasing
order and thus ci = n+ r+ 1− i for i ∈ [r+ 2, n]. In one-line notation, if r ≤ n− 4,
we have the pattern (r + 1)(r + 2)r occurring in positions r + 2, r + 3, and n which
is a contradiction. Thus r ∈ [n− 3, n− 2]. Now in one-line notation, πr+1 = 1 so the
elements before 1 must be decreasing. We have {π2, π3, . . . , πr} = [2, r−1]∪{n−1},
and so π2 = n − 1 and πi = r + 2 − i for i ∈ [3, r]. In the case where r = n − 3,
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in cycle form we have the cycle (1, n, n − 3, 2, n − 1, n − 2), and in the case where
r = n− 2, we have the cycle (1, n, n− 2, 2, n− 1). In either case, π is not cyclic since
n ≥ 7. Thus no such π exists.

Therefore, if πn 6= n − 1, we must have πn = 2, in which case the permuta-
tion in Lemma 3.17 is in An(231; 231). Thus for n ≥ 7, we have an(231; 231) =
an−1(231; 231) + 1. Solving the recurrence yields the desired result.

Example 4.17. Consider A7(231; 231). Because we build this set of permutations
recursively, we first list A6(231; 231):

A6(231; 231) = {631245, 612345, 641325, 642135, 652143, 654132}.

To create those permutations in A7 ending in 6, we insert a 6 into the last posi-
tion of all the permutations in A6(231; 231) to get the following permutations in
A7(231; 231):

7312456, 7123456, 7413256, 7421356, 7521436, 7541326.

Finally, by Lemma 3.17, the only permutation in A7(231; 231) that has πn = 2 is
7651432. This permutation, along with the previous six permutations, make up all
seven permutations in A7(231; 231).

4.5 An(312; 231)

In this section, we make use of Lemma 4.4 together with some of the results in Sec-
tion 3. Before doing so, we briefly explain why permutations in the set An(312; 231)
must end in 1.

Lemma 4.18. Suppose n ≥ 1 and π ∈ An(312; 231). Then πn = 1.

Proof. Lemma 4.1 states that we must have πn = 1 or π1 = n. However if π1 = n,
then since π avoids 312, it is the decreasing permutation which is only cyclic when
n ≤ 2. Thus the lemma holds.

Because πn = 1 for all π ∈ An(312; 231), Lemma 4.4 states that an(312; 231)
is equal to the number of permutations π′ ∈ An(231; 213) that have π′

1 = n.
Lemma 3.16 states that all elements in An(231; 213) have π

′
1 = n and so an(312; 231)

= an(231; 213). We summarize these results in a theorem.

Theorem 4.19. For n ≥ 1, an(312; 231) =

⌊n−1

3
⌋

∑

k=0

(

n− 1− k

2k

)

.

4.6 An(321; 231)

In this section, we show that all permutations in An(321; 231) must be of the form

23 · · · (k − 1)n1k(k + 1) · · · (n− 1) = (1, 2, . . . , k − 1, n, n− 1, n− 2, . . . , k)

where k ∈ [2, n].
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Theorem 4.20. Suppose n ≥ 2. Then an(321; 231) = n− 1.

Proof. It is easy to check the result holds for n ∈ [2, 5], so suppose n ≥ 6 and let π ∈
An(321; 231). We will show that the position of n in C(π) uniquely determines the
remainder of the permutation. To that end, choose k ∈ [2, n] so that ck = n. Because
C(π) avoids 231, we have {c2, c3, . . . , ck−1} = [2, k − 1] and {ck+1, ck+2, . . . , cn} =
[k, n − 1]. If k = n, then πn = 1, and so all the remaining elements in π must be
increasing since π avoids 321. Thus π = 23 · · ·n1 which is in An(321; 231).

If k < n, in one-line notation we have n in position ck−1, and 1 in position
cn > ck−1. Because π avoids 321, there can be no other elements between n and
1 and so cn = ck−1 + 1, which implies cn = k and ck−1 = k − 1. Since π avoids
321, the elements before 1 must be increasing. We know that πi ∈ [2, k − 1] for
i ∈ [1, k − 2], and thus πi = i + 1 for i ∈ [1, k − 2]. Similarly, the elements in π
that come after n must be increasing and thus πi = i − 1 for i ∈ [k + 1, n]. Thus
π = 23 · · · (k − 1)n1k(k + 1) · · · (n− 1) which is in An(321; 231).

Example 4.21. The 6 permutations in A7(321; 231) are

A7(321; 231) = {7123456, 2713456, 2371456, 2347156, 2345716, 2345671}.

5 Enumerating An(σ; 312)

In this case, we can observe that an(σ; 312) = an(σ
−1; 213). Indeed C(π) =

(1, c2, . . . , cn) avoids 312 if and only if C(π)r avoids 213 and by Lemma 1.4, C(π)r is
equal to C(π−1) up to cyclic rotation. In particular, C(π−1) = (1, cn, . . . , c2). Since
this cyclic rotation just moves the 1 from the end of C(π)r to the front, it doesn’t
change the avoidance of 213. Therefore, we have the following theorem.

Theorem 5.1. For n ≥ 5,

an(σ; 312) =























































⌈n
2
⌉+ 1 if σ = 123

n− 1 if σ = 132

Fn if σ = 213

1 if σ = 231
⌊n−1

3
⌋

∑

k=0

(

n− 1− k

2k

)

if σ = 312

2n−2 if σ = 321.

6 Enumerating An(σ; 321)

6.1 An(123; 321)

The number of permutations in An(123; 321) is zero for n ≥ 9. We start with the
following lemma which says that if you have a consecutive increasing run of length
4 in C(π), this implies you have an increasing pattern of length 3 appearing in π.
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Lemma 6.1. Let n ≥ 4 and suppose π is a cyclic permutation on [n] with C(π) =
(1, c2, c3, . . . , cn). If there is some 1 ≤ i ≤ n− 3 with ci < ci+1 < ci+2 < ci+3 (taking
c1 := 1), then there is a 123 pattern in the one-line form of π.

Proof. Since ci < ci+1 < ci+2 < ci+3, πci appears before πci+1
which appears before

πci+2
. Also, πciπci+1

πci+2
= ci+1ci+2ci+3 is a 123 pattern.

Theorem 6.2. For n ≥ 9, an(123; 321) = 0.

Proof. It is straightforward to check that a9(123; 321) = 0, so suppose n ≥ 10. We
will show that An(123; 321) is the empty set.

Case 1: Assume first that 3 appears before 2 in C(π). Then c2 = 3 since
otherwise c2, 3, 2 is a 321 pattern in C(π). In one-line notation, π1 = 3 and thus
π2 ∈ {1, n} since otherwise 3π2n is a 123 pattern in π. If π2 = 1, then in C(π), all
elements between 3 and 2 must be increasing and thus C(π) = (1, 3, 4, 5, . . . , n, 2).
By Lemma 6.1, this permutation does not avoid 123 if n ≥ 6.

In the case where π2 = n, we claim that π3 ∈ {2, n−1} since otherwise 3π3(n−1)
is a 123 pattern in π when n ≥ 6. If π3 = 2, then C(π) = (1, 3, 2, n, 4, 5, . . . , n − 1)
because all elements after n in C(π) must be decreasing. By Lemma 6.1, this permu-
tation does not avoid 123 when n ≥ 8 (and it can be checked it also does not avoid
123 when n = 7). On the other hand, if π3 = n−1, then 2 must appear immediately
after n− 1 in C(π) since it avoids 321. Then C(π) = (1, 3, n− 1, 2, n, 4, 5, . . . , n− 2)
because all elements after n in C(π) must be decreasing. Again, this does not avoid
π if n ≥ 7. Indeed, for n ∈ {7, 8}, this is straightforward to check and for n ≥ 9, it
follows from Lemma 6.1.

Case 2: Now assume that 2 appears before 3 in C(π). We first consider the
value of π1 and then examine two subcases based on two possible values of π2. If
π1 = 2, then π2 = n otherwise 2π2n is a 123 pattern for n ≥ 4. Then C(π) =
(1, 2, n, 3, 4, . . . , n − 1) because all elements after n in C(π) must be increasing. In
this case, π has a 123 pattern for n ≥ 7 by Lemma 6.1. If π1 = n, then C(π) =
(1, n, 2, 3, . . . , n − 1) and π has a 123 pattern if n ≥ 6 by Lemma 6.1. So assume
n ≥ 5 and π1 = k for some k ∈ [4, n− 1].

Let π2 = r for some r ∈ [4, n]− {k}. If r < k, then r = 3 otherwise kr3 is a 321
pattern in C(π). On the other hand, if r > k, then r = n otherwise krn is a 123
pattern in π. We continue this case by examining these two cases in detail.

Subcase 2A: Assume that π2 = 3, and for reference, write C(π) = (1, k, . . . ,
2, 3, . . .). Then π3 ∈ {1, n} since otherwise 3π3n is a 123 pattern in π. If π3 = 1,
then cn = 3, and thus we must have k = 4 since otherwise k, k − 1, 3 would be a
321 in C(π). But then C(π) = (1, 4, 5, . . . , n, 2, 3) for which the one-line notation
π has a 123 pattern for n ≥ 7. On the other hand, if π3 = n, notice that we must
have C(π) = (1, k, . . . , 2, 3, n, . . . , cn). Since C(π) avoids 321, the elements before 2
are increasing and the elements after n are increasing. For n ≥ 10, it must be that
there is an increasing segment of length 4 in C(π) and thus by Lemma 6.1, π does
not avoid 123.

Subcase 2B: For the final case, assume that π2 = n. We must have C(π) =
(1, k, . . . , 2, n, . . .). As above, since the elements before 2 are increasing and the
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elements after n are increasing, there must be an increasing subsequence of C(π) if
n ≥ 9. Therefore by Lemma 6.1, π does not avoid 123.

This result raises the more general question: is it true that an(12 . . . k; ℓ . . . 21) is
eventually zero for any choice of k, ℓ ≥ 3? The proof above doesn’t easily generalize
since it is a case-by-case analysis, but it seems like a reasonable conjecture. Perhaps
there is an alternative approach more amenable to this generalization.

6.2 An(132; 321)

In this section, we begin by establishing some facts about permutations π ∈
An(132; 321). In particular, we show that π must end with a consecutive increasing
run 12 . . . (n− k + 1) for some k.

Lemma 6.3. Suppose n ≥ 2 and let π ∈ An(132; 321) with C(π) = (1, c2, c3, . . . ,
cn−1, k). Then k ≥ ⌈n+1

2
⌉, and πkπk+1 · · · πn = 12 · · · (n− k + 1).

Proof. First we will show k ≥ ⌈n+1
2
⌉. If k ∈ {n − 1, n}, the result holds. Suppose

k ≤ n − 2, and choose r ∈ [1, n − 1] so that πr = n. Note that r < k otherwise
1, n, πn is a 132 pattern in π occurring in positions k, r, and n. Since π avoids 132,
we have that all elements appearing before n in π must be larger than all elements
appearing after n. In particular, π1 = c2 ≥ n − r + 1. Also, in C(π), c2 ≤ k + 1
otherwise c2, k + 1, k is a 321 pattern in C(π). Since n − r + 1 ≤ c2 ≤ k + 1, this
implies r ≥ n− k. This, together with the fact that r < k implies that k ≥ ⌈n+1

2
⌉.

Next we will show that πk+1πk+2 · · · πn = 23 · · · (n − k + 1). Since πk = 1 and
π avoids 132, it is clear that πk+1πk+2 · · · πn is increasing. If we can show that
πn = n − k + 1, then we would be done. Suppose instead that πn = ℓ > n − k + 1
and there is some s and t with r < s < k and 1 < t < n− k+1 with πs = t. Then in
C(π), t follows s and ℓ follows n, so either n, ℓ, t is a 321 pattern, or c2, s, r is. Thus
πk+1πk+2 · · · πn = 23 · · · (n− k + 1).

We now count the permutations in An(132; 321) based on the position of 1. The
next lemma shows that the total number of permutations that end in 1 is equal to
the number of permutations of one size smaller. We follow this up with a lemma
counting the number of such permutations that do not end in 1.

Lemma 6.4. Suppose n ≥ 2. Then the number of permutations π ∈ An(132; 321)
with πn = 1 is equal to an−1(132; 321).

Proof. This is true for n = 2, so assume n ≥ 3 and let π ∈ An(132, 321) with
C(π) = (1, c2, c3, . . . , k, n) for k ∈ [2, n− 1]. We first show that k ≥ ⌈n

2
⌉. In one-line

notation, since πk = n, we must have that all the elements preceding n are larger than
all elements that come after n since π avoids 132. In particular, π1 = c2 ≥ n− k+1.
Then if k < ⌈n

2
⌉, in C(π), we have the pattern c2, c2 − 1, k which is a 321-pattern.

Thus we must have k ≥ ⌈n
2
⌉.

Next we will show that πk+1πk+2 · · · πn−1 = 23 · · · (n − k). This is very similar
to the result in the previous lemma. Let i, j ∈ [k + 1, n − 1] with i < j. Then



K. ARCHER ET AL. /AUSTRALAS. J. COMBIN. 94 (1) (2026), 50–92 79

in C(π), i must appear before j otherwise j, i, k would be a 321-pattern in C(π).
Since i comes before j we also must have πi comes before πj and thus have the
pattern c2, πi, πj in C(π). Since c2 > πi and c2 > πj, it must be that πi < πj. Thus
πk+1πk+2 · · · πn−1 = 23 · · · (n− k).

We can now prove our main result. Let π′ be the permutation formed by delet-
ing n from C(π). This is equivalent to taking the one-line notation of π, deleting
n, and moving 1 to position k. Notice π′ is cyclic and C(π′) avoids 321. Also,
π′ = π1π2 . . . πk−11πk+1πk+2 · · · πn−1. Because all elements after 1 are increasing, π′

avoids 132 and thus π′ ∈ An(132; 321). To see that we obtain every permutation in
An−1(132; 321), we consider the process in reverse. Let π′ ∈ An−1(132; 321). Form
π by inserting n to the end of C(π′). Thus π is cyclic and C(π) avoids 321 still. In
one-line notation, inserting n at the end of C(π′) is equivalent to replacing 1 with n
and inserting 1 at the end. By Lemma 6.3, since all elements after 1 in π′ are smaller
than the elements that come before it, π is still 132 avoiding.

Lemma 6.5. Suppose n ≥ 2. Then the number of permutations π ∈ An(132; 321)
with πn 6= 1 is equal to 2⌈n

2
⌉ − 3.

Proof. Suppose π ∈ An(132; 321). Then πk = 1 for some k ≥ ⌈n+1
2
⌉ by Lemma 6.3.

We begin by showing that for each ⌈n+1
2
⌉ ≤ k < n− 1, there is exactly one permuta-

tion with πk = 1. By Lemma 6.3, since πk = 1, we have πi = i− k + 1 for i ∈ [k, n].
In C(π), elements in [k+1, n] must appear in increasing order (since cn = k). Thus,
we must have that C(π) is of the form

C(π) = (1, . . . , (k+1), 2, . . . , (k+2), 3, . . . , (n−1), (n−k), . . . , n, (n−k+1), . . . , k).

Therefore, for each i ∈ [2, n − k], either πi = k + i or πi ∈ [n − k + 2, k − 1]. We
claim that we must have πi = k + i for i ∈ [2, n − k]. If not, then there is some
r ∈ [2, n−k] where πr = x for some x ∈ [n−k+2, k−1]. But then r+k−1, x, r+1
is a 321-pattern in C(π).

Consider the one-line notation of π. Because πi = k + i for i ∈ [2, n − k] and
πi = i − k + 1 for i ∈ [k, n], we must have {π1} ∪ {πn−k+1, πn−k+2, . . . , πk−1} =
[n − k + 2, k + 1]. Since π avoids 132, π1 = k + 1. Thus C(π) = (1, k + 1, 2, k +
2, 3, . . . , n, n − k + 1, c2(n−k+1), . . . , cn−1, k). Since C(π) avoids 321, the remaining
elements after n in C(π) must be increasing and thus

π = (k + 1)(k + 2) · · ·n(n− k + 2)(n− k + 3) · · · k12 · · · (n− k + 1).

Now suppose πn−1 = 1, which implies by Lemma 6.3 that πn = 2. We count
these permutations by the position of n in cycle notation. To that end, suppose
first that c2 = n. Because all elements after n is C(π) must be increasing, we have
C(π) = (1, n, 2, 3, . . . , n − 1) which is in An(132; 321). Suppose next that cn−2 = n.
All elements before 2 in C(π) must be increasing so we have C(π) = (1, 3, 4, . . . , n−
2, n, 2, n − 1). This permutation is not in An(132; 321) because 3(n − 1)4 is a 132
pattern in π.

Finally, suppose that cr = n for some r ∈ [3, n− 3]. We claim that the number of
permutations in An(132; 321) with πn−1 = 1 and cr = n for r ∈ [3, n− 3] is equal to
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the number of permutations in An−2(132; 321) with 1 in the second to last position.
Since C(π) avoids 321, all elements after n must be increasing and all elements
before 2 must be increasing. In particular, either cr−1 = n − 2 or cn−1 = n − 2. If
cn−1 = n − 2, then π1n(n − 1) is a 132-pattern in π occurring in positions 1, cr−1,
and n− 2, and thus we must have cr−1 = n− 2.

Similarly, we can consider the position of n − 3 in C(π). If cr−2 = n − 3, then
π1(n − 1)(n − 2) is a 132-pattern in π and so cn−1 = n − 3. Form π′ by deleting
n−1 and n from π. In cycle notation, this is equivalent to deleting both n and n−1
as well. Thus C(π′) = (1, c′2, c

′
3, . . . , c

′
r−2, n − 2, 2, c′r+1, c

′
r+2, . . . , c

′
n−3, n − 3) where

c′i = ci for i ∈ [2, r − 2] and c′i = ci+1 for i ∈ [3, n − 3]. Thus π′ ∈ An−2(132; 321)
with 1 in the second to last position. Because this process is reversible, we have the
desired equality. Recalling that there is exactly one permutation with πn−1 = 1 and
πn = 2, we have that the number of permutations in An(132; 321) with πn−1 = 1 is
one more than the number of permutations in An−2(132; 321) with πn−3 = 1. For
the base cases, we note that there is one permutation in A3(132; 321) with π2 = 1
and one permutation in A4(132; 321) with π3 = 1. Solving this recurrence yields a
total of ⌈n−2

2
⌉ permutations in An(132; 321) with πn−1 = 1.

Overall, we have shown that there are n−1−⌈n+1
2
⌉ permutations π ∈ An(132; 321)

with πk = 1 for k < n− 1 and ⌈n−2
2
⌉ permutations with πn−1 = 1. Thus there are

n− 1−
⌈

n+ 1

2

⌉

+

⌈

n− 2

2

⌉

= 2
⌈n

2

⌉

− 3

permutations in An(132; 321) that do not end in 1.

Theorem 6.6. For n ≥ 2, an(132; 321) = ⌈ (n−2)2

2
⌉+ 1.

Proof. By Lemmas 6.4 and 6.5, we have an(132; 321) = an−1(132; 321) + 2⌈n
2
⌉ − 3.

Since a2(132; 321) = 1, solving this recurrence relation yields the desired results.

Example 6.7. Consider A7(132; 321). We list those permutations that end in 1
by considering the nine permutations in A6(132; 321) = {634512, 564123, 456231,
345621, 435612, 534621, 435261, 234561, 342561}. Following the proof of Lemma 6.4,
for each of these nine permutations, we replace the element 1 with 7 and insert a 1
at the end yielding the following nine permutations in A7(132; 231):

6345721, 5647231, 4562371, 3456271, 4356721, 5346271, 4352671, 2345671, 3425671.

Following the proof of Lemma 6.4, we note that there is exactly one permutation
with πk = 1 for each 4 ≤ k < 6 yielding the following two permutations:

5671234, 6745123.

Finally, there are ⌈7−2
2
⌉ = 3 permutations with π6 = 1. If π1 = n, there is exactly

one such permutation, namely
7345612.

If π1 6= 1, we must first find the permutations in A5(132; 321) that have 1 in the
second to last position. These two permutations are 53412 and 34512. For each of
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these permutations we insert the elements 6 and 7 before the 1 to get the following
additional permutations in A7(132; 321):

5346712, 3456712.

6.3 An(213; 321)

Let us first count the number of permutations in An(213; 321) with πn = 1.

Lemma 6.8. Suppose n ≥ 3. Then the number of permutations π ∈ An(213; 321)

with πn = 1 is equal to ⌈ (n−3)2

2
⌉+ 1.

Proof. We first show that the number of permutations π ∈ An(213; 321) with πn =
1 is equal to the number of permutations π ∈ An(132; 321) with πn = 1. In-
deed, by Lemma 1.4, the reverse-complement of the cycle is equal to the reverse-
complement-inverse of the one-line notation. By taking a cycle of the form C(π) =
(1, c2, . . . , cn−1, n) that avoids 321, we can see that C(π)rc = (1, n+1− cn−1, . . . , n+
1, c2, n) avoids 321

rc = 321 with C(π)rc = C(πrci). Furthermore, π avoids 213 if and
only if πrci avoids 213rci = 132.

By Lemma 6.4, the number of π ∈ An(132; 321) with πn = 1 is equal to the
number of permutations in π ∈ An−1(132; 321), which by Theorem 6.6, is equal to

⌈ (n−3)2

2
⌉+ 1.

To count the number with πn 6= 1, we proceed by giving more information about
the structure of C(π) based on the element at the end of C(π).

Lemma 6.9. Suppose n ≥ 3 and let π ∈ An(213; 321) with πk = 1 where k 6= n.
Then

• k ≥ ⌈n+1
2
⌉;

• C(π) contains the consecutive terms

k + 1, 2, k + 2, 3, k + 3, 4, . . . , n, n− k + 1,

or equivalently, πi = i − k + 1 for all i ∈ [k + 1, n] and πi = k + i for all
i ∈ [2, n− k]; and

• If πr = k, then r ∈ {k − 2, k − 1, n}.

Proof. First, for the sake of contradiction, suppose that k < n+1
2
. Then since πk = 1

and π avoids 213, {πk+1, . . . , πn} = [2, n − k + 1] with n − k + 1 > k. In particular
there is some s > k so that πs = k + 1. Now, in the cycle, we must have that k + 1
immediately follows s. Since πk = 1, we must have cn = k and so s, (k + 1), k is a
321 occurrence in the cycle. Thus we must have k ≥ n+1

2
.

Since πk = 1 and π avoids 213, {πk+1, . . . , πn} = [2, n−k+1] with n−k+1 ≤ k.
Also, because the cycle form avoids 321 and cn = k, we must have that the elements
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of the cycle with values in [k + 1, n] appear in increasing order. Furthermore, these
elements must each be followed by an element in [2, n− k + 1]. Now, since k + 1 is
greater than any element in [2, n − k + 1], we must also have that the elements in
[2, n − k + 1] appear in increasing order. Thus πi = i − k + 1 for all i ∈ [k + 1, n],
and C(π) contains the pairs i, i − k + 1 for all i ∈ [k + 1, n] in increasing order.
Furthermore, we claim that these pairs appear consecutively. If x ∈ [n−k+2, k− 1]
appears in C(π) between the pair i, i−k+1 and i+1, i−k+2 for some i ∈ [k+1, n−1],
then C(π) would contain the 321-pattern i, x, i− k + 2. Thus these pairs appear in
C(π) consecutively and πi = k + i for all i ∈ [2, n− k].

Suppose πr = k. We now write C(π) as

C(π) = (1, c2, . . . , cs, k+1, 2, k+2, 3, k+3, 4, . . . , n, n− k+1, ct, . . . , cn−2, r, k) (6)

for some s and t. We want to show r ∈ {k − 2, k − 1, n}. If k < r < n, then nrk
is a 321-pattern in C(π). Thus r ∈ [n − k + 2, k − 1] ∪ {n}. Suppose toward a
contradiction that r < k− 2. The elements k− 1 and k− 2 must appear before k+1
in C(π) otherwise n(k − 1)r or n(k − 2)r would be a 321-pattern. Furthermore, the
elements c2, c3, . . . , cs must be increasing since they are followed by 2. Since k − 2
and k−1 are the largest elements not already accounted for, this implies cs−1 = k−2
and cs = k− 1. But then in one-line notation, we have πrπk−2πk−1 = k(k− 1)(k+1)
which is a 213 pattern. Therefore r ∈ {k − 2, k − 1, n} as desired.

Lemma 6.10. Suppose n ≥ 3 and let π ∈ An(213; 321) with πk = 1 where k 6= n.
Further suppose πr = k.

• If r = n, then n is odd, k = n+1
2
, and C(π) = (1, k + 1, 2, k + 2, 3, . . . , n, k).

• If r = k − 2, then n is odd, k > n+1
2
, and

C(π) = (1, n− k + 2, n− k + 4, . . . , k − 3, k − 1, k + 1, 2, k + 2, 3, . . . ,

n, n− k + 1, n− k + 3, . . . , k − 4, k − 2, k).

Proof. If πn = k, then by Equation (6), k = n − k + 1, or k = n+1
2
. Thus n is odd,

and C(π) = (1, k + 1, 2, k + 2, 3, . . . , n, k),where k = n+1
2
.

Suppose r = k − 2 and write C(π) as in Equation (6):

C(π) = (1, c2, . . . , cs, k + 1, 2, k + 2, 3, k + 3, 4, . . . , n, n− k + 1, ct, . . . , cn−2, k − 2, k).

Note that n−k+1 < k since n 6= k−2, and thus k > n+1
2
. Also, since C(π) avoids 321,

the elements c2, . . . , cs must be increasing as well as the elements ct, . . . cn−2, k−2, k.
Thus, cs = k − 1. In one-line notation, we then have

π = π1(k + 2)(k + 3) . . . (n− 1)nπn−k+1 . . . πk−3k(k + 1)12 . . . (n− k + 1).

Now, since πi ∈ [n− k + 2, k − 1] for i ∈ {1} ∪ [n− k + 1, k − 3], and π avoids 213,
we must have that π1 = n − k + 2 and πi = i + 2 for i ∈ [n − k + 1, k − 3]. If n is
odd, then this permutation is cyclic and has form:

C(π) = (1, n− k + 2, n− k + 4, . . . , k − 3, k − 1, k + 1, 2, k + 2, 3, k + 1, 4, . . . ,

n, n− k + 1, n− k + 3, . . . , k − 4, k − 2, k).
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If n is even, then (1, n− k + 2, n− k + 4, . . . , k − 4, k − 2, k) forms a cycle of length
k − n

2
+ 1, which is less than n when k > n+1

2
.

Lemma 6.11. The number of permutations π ∈ An(213; 321) with πk = 1 where

k 6= n and πk−1 = k is equal to an−1(213; 321)− ⌈ (n−4)2

2
⌉ − 1.

Proof. By Lemma 6.8, the number of permutations π′ ∈ An−1(213; 321) with π′
n−1 6=

1 is an−1(213; 321) − ⌈ (n−4)2

2
⌉ − 1. We will find a bijective correspondence between

permutations π ∈ An(213; 321) with πk = 1 where k 6= n and πk−1 = k and permu-
tations π′ ∈ An−1(213; 321) with π′

n−1 6= 1.
Suppose first π ∈ An(213; 321) with πk = 1 where k 6= n and πk−1 = k. Form

π′ by deleting k from π. Equivalently, C(π′) is formed from deleting k from C(π).
Since π′ is cyclic and continues to avoid 213 in its one-line form and 321 in its cycle
form, we have π′ ∈ An−1(213; 321). Notice that π′

k−1 = 1.
Consider this process in reverse. Suppose π′ ∈ An−1(213; 321) with π′

k−1 = 1
where k − 1 6= n − 1. Form π by inserting k just after k − 1 in the cycle notation,
or equivalently, insert k in position k − 1 in one-line notation. Clearly this will not
introduce a 321 pattern to the cycle and thus C(π) avoids 321. By Lemma 6.9, if
π′
r = k− 1, then r ∈ {k− 3, k− 2, n− 1}. In other words, in the one-line notation of

π′, k− 1 must appear in position k− 3, k− 2, or n. We examine each of these cases
separately to show that inserting k in position k−1 does not introduce a 213-pattern.
If k − 1 is in position k − 3 of π′, inserting k will only introduce a 213 pattern in
πk−2 < k− 1. However, from Lemma 6.10, π′

k−2 = k so no 213 pattern is introduced.
In the cases where k − 1 is in position k − 2 or n − 1 of π′, clearly no 213 pattern
can be introduced. Thus π ∈ An(213; 321) and our result holds.

Theorem 6.12. For n ≥ 4. Then:

an(213; 321) =

{

an−1(213; 321) + n− 3 if n is even

an−1(213; 321) + n− 3 + n−3
2

if n is odd,

which has closed form

an =

(

n− 2

2

)

+

(⌈n−2
2
⌉

2

)

+ 2.

Proof. First note that there are ⌈ (n−3)2

2
⌉+1 permutations with πn = 1 by Lemma 6.8.

Now, let us count the number with πn 6= 1, or equivalently, cn 6= n. The number of
permutations π ∈ An(231; 321) with cn−1 = n is 1 when n is odd and 0 when n is
even by Lemma 6.10. To count the permutations π ∈ An(231; 321) with cn = k 6= n
and cn−1 = k − 2, we first see that n+1

2
< k < n by Lemmas 6.9 and 6.10, and

thus there are n−3
2

possible choices for k. By Lemma 6.10, these choices each yield a
unique permutation in An(213; 321) when n is odd and there are no possible choices

for k when n is even. Finally, there are an−1(213; 321) − ⌈ (n−4)2

2
⌉ − 1 permutations

π ∈ An(213; 321) with cn = k 6= n and cn−1 = k − 1 by Lemma 6.11.
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Taken together, we have

an(213; 321) =

{

an−1(213; 321) + ⌈ (n−3)2

2
⌉ − ⌈ (n−4)2

2
⌉ if n is even

an−1(213; 321) +
n−1
2

+ ⌈ (n−3)2

2
⌉ − ⌈ (n−4)2

2
⌉ if n is odd,

which is equivalent to the recurrence in the theorem statement.

Example 6.13. ConsiderA7(213; 321). The number of permutations inA7(213; 321)

whose cycles end in 7 in ⌈ (7−3)2

2
⌉+ 1 = 9 by Lemma 6.8. These are found by taking

the reverse-complement-inverse of the permutations in A7(132; 321) and are:

3745621, 3457621, 4675231, 2456731, 2475631, 2567341, 2357641, 2345671, 2346751.

There is exactly one permutation in A7(213; 321) with c7 = k 6= 7 and c6 = 7 as
given by Lemma 6.10:

(1, 5, 2, 6, 3, 7, 4) or equivalently 5671234.

There are 2 permutations with c7 6= 7 and c6 = c7 − 2 given by k ∈ {5, 6} in
Lemma 6.10:

(1, 4, 6, 2, 7, 3, 5), (1, 3, 5, 7, 2, 4, 6), or equivalently 4756123, 3456712.

Finally, there are a6(213; 321)−⌈ (7−4)2

2
⌉−1 = 9−5−1 = 3 permutations with π7 6= 1

and c6 = c7 − 1. We form these by starting with any permutation in A6(213; 321)
with πk−1 = 1 and k− 1 < 6, and insert k after k− 1 in cycle notation. The desired
permutations in A6(213; 321) are (1, 6, 2, 3, 4, 5), (1, 3, 6, 2, 4, 5), and (1, 5, 2, 6, 3, 4).
Inserting the appropriate element in the cycle structure yields the following permu-
tations in A7(213; 321):

(1, 7, 2, 3, 4, 5, 6), (1, 3, 7, 2, 4, 5, 6), (1, 6, 2, 7, 3, 4, 5),

which in one-line notation is

7345612, 3475612, 6745123.

6.4 An(231; 321)

This is the simplest case for τ = 321.

Theorem 6.14. For 1 ≤ n ≤ 4, we have an(231; 321) = 1 and for n ≥ 5,
an(231; 321) = 0.

Proof. First notice that if π is cyclic and avoids σ = 231, we must have π1 = n.
Indeed, if we suppose π1 = j, then π = jπ2π3 . . . πjπj+1 . . . πn with {π2, π3, . . . , πj} =
[1, j − 1] and {πj+1, . . . , πn} = [j + 1, n]. However, since the numbers in [j] map to
themselves, this is only cyclic if j = n.

Now, since π1 = n, the cycle form of π is C(π) = (1, n, c3, . . . , cn). Since C(π)
avoids 321, we must have C(π) = (1, n, 2, 3, 4, . . . , n−1) and so π = n34 . . . (n−1)12,
which only avoids 231 if n ≤ 4.
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6.5 An(312; 321)

Let us start with a few lemmas.

Lemma 6.15. Let n ≥ 2. For any permutation π ∈ An(312; 321), we must have
πn = 1 and π1 ∈ {2, 3, 4}.
Proof. First note that if π avoids 312 in its one line notation, it is of the form
π = π1π2 . . . πk−11πk+1 . . . πn for some k ∈ [2, n] with {π1, . . . , πk} = [1, k] and
{πk+1, . . . , πn} = [k + 1, n]. In particular, the elements [1, k] map to themselves
under the permutation and so if k < n, π is composed of at least two cycles. There-
fore πn = 1.

If n ≤ 5, it is easy to check that the results hold, so for the remainder of the proof
suppose n ≥ 6. For the sake of contradiction, let us suppose that π1 > 4. Then since
the cycle avoids 321, we must have that 2, 3, and 4, appear in the cycle in increasing
order. Note we must have π3 6= 2 since 2 appears before 3 in the cycle form. Also,
we must have that π2 6= 3 because otherwise π134 would be a 312 occurrence in π.
We can then write π = π1π2π3π4 . . . πm−12πm+1 . . . πn−11 for some m ∈ [5, n − 1].
(We must have m ≥ 5 since π4 6= 2.) Since π avoids 312, it must be the case that
{π1, . . . , πm−1} = [3,m+ 1].

Notice π3 /∈ {1, 2, 3}, so we consider the two cases where π3 = 4 or π3 > 4. If
π3 = 4, then C(π) contains the pattern mπ23 thus implying π2 = m + 1. But then
(m + 1)4π4 is a 312 pattern in π which is a contradiction. On the other hand, if
π3 > 4, at least one of π2 or π4 is less than m. Then either mπ24 or mπ34 is a 321
pattern in C(π). We have thus proven that π1 ≤ 4.

Lemma 6.16. Suppose n ≥ 4 and π ∈ An(312; 321). If π1 = 3, then either:

• π2 = 4, or

• π2 = 5 and π3 = 4.

Proof. Choose m ∈ [3, n− 1] so that πm = 2. Thus π = 3π2 · · · πm−12πm+1 · · · πn−11
with {π1, . . . , πm−1} = [3,m + 1]. For reference, C(π) = (1, 3, π3, . . . ,m, 2, π2, . . . ,
cn−1, n). Note that π2 6= m so π2 ∈ {m + 1} ∪ [4,m − 1]. Let us first show that
π2 ∈ {4, 5}.

Suppose π2 ∈ [6,m− 1]. Then in C(π), we must have 4 and 5 appear before 2 in
the cycle or else m,π2, 4 or m,π2, 5 would be a 321 pattern. Also, since the segment
of the cycle appearing before 2 is increasing, we must have π3 = 4 and π4 = 5. But
then π245 is a 312 pattern in π which is a contradiction. Now suppose π2 = m + 1.
Since π avoids 312, we must have π3 = m otherwise (m + 1)π3m is a 312 pattern.
But then {π4, π5, . . . , πm−1} = [4,m−1], implying π is not cyclic. Therefore we have
π2 ∈ {4, 5}.

Finally, let us show that if π1 = 3 and π2 = 5, then we must have π3 = 4.
First, note that π3 6= 2 since otherwise 524 would appear as a 312 pattern in π.
Now, notice that in the cycle, we have C(π) = (1, 3, π3, . . . ,m, 2, 5, . . . , cn−1, n). If 4
appears before 2 in the cycle, we must have that π3 = 4 since C(π) avoids 321. On
the other hand, if 4 appears after 2 in the cycle, then π3 > 5, and so, π3, 5, 4 will be
a 321 pattern in C(π).



K. ARCHER ET AL. /AUSTRALAS. J. COMBIN. 94 (1) (2026), 50–92 86

Lemma 6.17. Suppose n ≥ 5 and π ∈ An(312; 321). If π1 = 4, then π2 = 3 and
either:

• π3 = 5, or

• π3 = 6 and π4 = 5.

Proof. Since π avoids 312 and π1 = 4, we must have π = 4π2 . . . πs−13πs+1 . . .
πt−12πt+1 . . . πn−11 for some s, t ∈ [2, n − 1] with s < t. Let us first show that
π2 = 3. If we assume π2 6= 3, we must have π2 > 4. In the cycle we would have
C(π) = (1, 4, π4, . . . , t, 2, π2, . . . , s, 3, . . . , n) where s 6= 2. Thus t, s, 3 would be a 321
pattern in C(π). Therefore, π2 = 3.

Next let us see that if π1 = 4 and π2 = 3, then π3 ∈ {5, 6}. We know that
C(π) = (1, 4, π4, . . . , t, 2, 3, π3, . . . , n) and π = 43π3π4 . . . πt−12πt+1 . . . πn−11 with
{π3, . . . , πt−1} = [5, t + 1]. For the sake of contradiction, suppose π3 ∈ [7, t + 1].
Note that if 5 and 6 both appear before 2 in the cycle notation, we must have
π4 = 5 and π5 = 6 since C(π) avoids 321. However, then we would have π356 as
a 312 pattern in π. Thus, at least one of 5 or 6 appears after the 2 in the cycle
notation. Now, if π3 < t, then t, π3, 5 or t, π3, 6 would be a 321 pattern in C(π).
Therefore, it must be that π3 = t + 1. The remaining entries before 2 in π must be
decreasing since they are all less than t + 1. In particular, π4 = t and π5 = t − 1,
and C(π) = (1, 4, t, 2, 3, t + 1, . . . , 5, t − 1, . . . , n). If t ≥ 8, then this implies 6 ap-
pears after the 5, and so we have that t, t − 1, 6 is a 321 pattern. If t = 7, then
π = 4387652πt+1 . . . πn−11, so π5 = 6 and π6 = 5, so π is not cyclic. If t = 6, we have
π = 437652πt+1 . . . πn−11 and so 5 is a fixed point and thus π is not cyclic. Therefore,
we have shown that π3 ∈ {5, 6}.

Finally, we will show that if π1 = 4, π2 = 3, and π3 = 6, then π4 = 5. In this case,
we know that C(π) = (1, 4, π4, . . . , t, 2, 3, 6, π6 . . . , n) and π = 436π4 . . . πt−12πt+1 . . .
πn−11. Notice first that π4 6= 2 since in that case, 625 would be a 312 pattern in π.
Therefore, π4 ∈ {5} ∪ [7, t + 1]. If the 5 appears after the 2 in the cycle-notation,
then π4 > 6, so π4, 6, 5 would be a 321 pattern. If the 5 appears before the 2 in the
cycle notation, it must be that π4 = 5 since otherwise π4, 5, 2, is a 321 pattern.

Theorem 6.18. For n ≥ 7, the number of permutations in An(312; 321) satisfies
the recurrence

an(312; 321) = an−1(312; 321) + an−2(312; 321) + 2an−3(312; 321) + an−4(312; 321),

where a3(312; 321) = 1, a4(312; 321) = 2, a5(312; 321) = 5, and a6(312; 321) = 10.
In closed form,

an =

⌊n−2

2
⌋

∑

k=0

n−2−2k
∑

j=0

(

n− 2− k − j

k

)(

2k

j

)

for n ≥ 3.

Proof. First, we show there are an−1(312; 321) permutations that have π1 = 2. In
this case, all permutations in An(312; 321) with π1 = 2 can be obtained from per-
mutations π′ ∈ An−1(312; 321) by inserting 2 in the first position of the one-line
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notation π′, or equivalently inserting a 2 immediately after 1 in C(π′). In this case,
we clearly do not introduce a 312 pattern in π or a 321 pattern in C(π). The process
is reversible and the correspondence is bijective.

Next, we will see that there are an−2(312; 321) permutations that have π1 = 3 and
π2 = 4. In this case, all permutations in An(312; 321) with π1 = 3 and π2 = 4 can be
obtained from permutations π′ ∈ An−2(312; 321) by inserting 3 in the first position
and 4 in the second position of the one-line notation π′, or equivalently inserting a
3 immediately after 1 and a 4 immediately after the 2 in C(π′). In this case, we do
not introduce a 312 pattern in π or a 321 pattern in C(π). The process is invertible
so the correspondence is bijective.

We now consider permutations in An(312; 321) that have π1π2π3 = 354; we will
show there are an−3(312; 321) such permutations. In this case, any permutations
π ∈ An(312; 321) with π1π2π3 = 345 can be obtained from some permutation π′ ∈
An−3(312; 321) by inserting 3 in the first position, 5 in the second position, and
4 in the third position of the one-line notation π′, or equivalently inserting a 34
immediately after 1 and a 5 immediately after the 2 in C(π′). In this case, we do
not introduce a 312 pattern in π or a 321 pattern in C(π).

Next, we will see that there are an−3(312; 321) permutations that have π1π2π3 =
435. In this case, all permutations inAn(312; 321) with π1π2π3 = 435 can be obtained
from permutations π′ = An−3(312; 321) by inserting 4 in the first position, 3 in the
second position, and 5 in the third position, or equivalently inserting a 4 immediately
after 1 and a 35 immediately after the 2 in C(π′). In this case, we do not introduce
a 312 pattern in π or a 321 pattern in C(π).

Finally, we will see that there are an−4(312; 321) permutations that have
π1π2π3π4 = 4365. In this case, all permutations in An(312; 321) with π1π2π3π4 =
4365 can be obtained from permutations π′ = An−4(312; 321) by inserting 4 in the
first position, 3 in the second position, 6 in the third position, and 5 in the fourth
position, or equivalently inserting a 45 immediately after 1 and a 36 immediately
after the 2 in C(π′). In this case, we do not introduce a 312 pattern in π or a 321
pattern in C(π).

Example 6.19. Consider A7(312; 321). We build this set recursively by first listing
the permutations in A3(312; 321), A4(312; 321), A5(312; 321), and A6(312; 321):

A3(312; 321) = {231},
A4(312; 321) = {3421, 2341},
A5(312; 321) = {24531, 23451, 34251, 43521, 35421},
A6(312; 321) = {235641, 234561, 245361, 254631, 246531, 342561, 435261, 354261,

345621, 436521}.

To obtain the permutations in A7(312; 321), insert 4365 in the front of the per-
mutation in A3(312; 321), insert 354 and 435 in the front of the permutations in
A4(312; 321), insert 34 in the front of the permutations in A5(312; 321), and insert 2
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in the front of the permutations in A6(312; 321):

A7(312; 321) = {4365271, 3546721, 3542671, 4356721, 4352671, 3426751, 3425671,
3456271, 3465721, 3457621, 2346751, 2345671, 2356471, 2365741,

2357641, 2453671, 2546371, 2465371, 2456731, 2547631}.

6.6 An(321; 321)

We will count these by the position of n.

Lemma 6.20. Let n ≥ 2. Then the number of permutations π ∈ An(321; 321) with
πn−1 = n is an−1(321; 321).

Proof. Let π ∈ An(321; 321) with πn−1 = n. Form π′ by deleting n from π. Equiv-
alently, C(π′) is formed from C(π) by deleting n. Thus π′ ∈ An−1(321; 321). Now
consider the process in reverse by letting π′ ∈ An−1(321; 321). Form π by inserting
n in position n − 1 of π′, or equivalently, inserting n after n − 1 in C(π′). Since
π ∈ An(321; 321) with πn−1 = n, our result holds.

Lemma 6.21. Let n ≥ 3. Then the number of permutations π ∈ An(321; 321) with
πn−2 = n is ⌊n−1

2
⌋.

Proof. Let π ∈ An(321; 321) with πn−2 = n and consider the position of 1 in one-line
notation. We note that πn 6= 1 since otherwise nπn−11 is a 321 pattern. Also, if
πj = 1 for some j ∈ [2, n − 3], then j is the last element in cycle notation and thus
n − 1 must come before n in C(π). However, then (n − 1)(n − 2)j is a 321 pattern
in C(π) and thus πn−1 = 1.

In one-line notation, all elements before 1 must be increasing. In particular, if
πn = k for some k ∈ [2, n − 1], then πi = i + 1 for i ∈ [1, k − 2] and πi = i + 2 for
i ∈ [k − 1, n − 3]. However, if k is the same parity as n, then the cycle form of π
contains the cycle (1, 2, 3, . . . , k−1, k+1, k+3, . . . , n−1) which contradicts the fact
that π is cyclic. Thus, k must be the opposite parity as n. In this case

C(π) = (1, 2, 3, . . . , k − 1, k + 1, k + 3, . . . , n, k, k + 2, k + 4, . . . , n− 1) (7)

which avoids 321. Thus if k ∈ [2, n − 1] and k is the opposite parity as n there is
exactly one permutation yielding a total of ⌊n−1

2
⌋ such permutations.

Lemma 6.22. Let n ≥ 5, k ∈ [2, n− 4] and π ∈ An(321; 321) with πk = n. Then

C(π) = (1, c2, c3, . . . , cn−5, k − 1, n− 1, k, n, k + 1).

Furthermore, if πn−3 = n, then πn−2 = 1, πn = n− 2, and πn−4 = n− 1.

Proof. It is easy to verify this is true for n = 5, so assume n ≥ 6. Let π be as
given and consider the position of 1 in one-line notation. If πj = 1 for some j, then
j ∈ [2, k−1]∪{k+1} since otherwise nπk+11 is a 321 pattern. Suppose j ∈ [2, k−1].
Then in cycle notation, k > j and k comes before j. So the elements in [k+1, n− 1]
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must appear after n in increasing order to avoid 321. Thus πn−2 = n−1 and πn−1 = j.
But then n(n − 1)j is a 321-pattern in one-line notation. Thus j = k + 1, and so
πk+1 = 1.

Note that in C(π), elements in [k+2, n− 1] must come before n since C(π) ends
in k + 1. They must also appear in increasing order because k appears after them.
However, k+2 comes before k in C(π) and thus all elements after k, excepting k+1,
must be bigger than k + 2. Thus only k + 1 appears after n and we have πn = k + 1
as desired.

Next, since πn = k + 1, we must have that n − 1 appears before n. It must
occur in position k − 1 since otherwise (n − 1)πk−11 would be a 321 pattern. Thus
πk−1 = n− 1.

Finally, let k ∈ [2, n − 4] and consider πn−1 which must be less than k + 1 since
otherwise nπn−1(k+1) would be a 321 pattern in the one-line notation. Furthermore,
since πk−1 = n − 1, we have πn−1 6= k − 1 (since π is cyclic), and thus πn−1 ∈
[2, k − 2] ∪ {k}. Also, in C(π), we have n− 1 appearing before k and thus elements
in [k+2, n−2] (which is nonempty since k ≤ n−4) must appear before n−1. Since
C(π) contains the pattern (n− 2)(k − 1)πn−1, we have πn−1 = k as desired.

Lemma 6.23. Let n ≥ 5. The number of permutations π ∈ An(321; 321) with
πn−1 6= n is

(

⌈n/2⌉
2

)

.

Proof. We first show that for k ∈ [2, n − 3], the number of permutations π ∈
An(321; 321) with πk = n is equal to the number of permutations π′ ∈ An−2(321; 321)
with π′

k−1 = n− 2. Let π ∈ An(321; 321) with πk = n. By Lemma 6.22, if k ≤ n− 4,

C(π) = (1, c2, c3, . . . , cn−5, k − 1, n− 1, k, n, k + 1).

Consider the permutation π′ formed by deleting n and k + 1 from π. Then

C(π′) = (1, c′2, c
′
3, . . . , c

′
n−5, k − 1, n− 2, k)

where c′i = ci if i ≤ k and c′i = ci − 1 if i > k. Thus π′ ∈ An(321; 321) and
has the additional property that π′

k−1 = n − 2. Conversely, if π′ ∈ An−2(321; 321)
with π′

k−1 = n − 2, form π by inserting n in position k followed by k + 1 at the
end. If k = n − 3, we can make a similar argument using the second statement of
Lemma 6.22 that removing n and n − 3 results in a permutation in An−2(321; 321)
with πn−4 = n− 2, which are described in the proof of Lemma 6.21.

Now the total number of permutations in An(321; 321) that do not not have n
in the penultimate position can be found using induction. The base case n = 5 is
easily checked so assume n > 5. The number of permutations π ∈ An(321; 321) with
πn−1 6= n is equal to the number of permutations in An(321; 321) with πn−2 = n plus
the number with πk = n for k ∈ [2, n − 3]. Using Lemma 6.21 and induction, we
have the total number is given by

⌊

n− 1

2

⌋

+

(⌈n−2
2
⌉

2

)

=

(⌈n
2
⌉

2

)

.
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Taking this fact along with the results in Lemma 6.20, we can enumerate
An(321; 321).

Theorem 6.24. For n ≥ 5, the number of permutations in An(321; 321) satisfies
the recurrence

an(321; 321) = an−1(321; 321) +

(⌈n
2
⌉

2

)

where a3(321; 321) = 2 and a4(321; 321) = 3. In closed form,

an(321; 321) =















1 + 2

(

n+2
2

3

)

if n is even,

1 + 2

(

n+1
2

3

)

+

(

n+1
2

2

)

if n is odd.

Proof. Lemmas 6.20 and 6.23 combine to give the recurrence relation. Solving the
recurrence relation gives the provided closed form.

Example 6.25. Consider A6(321; 321). Because some of these permutations are
found recursively, we first note that

A5(321; 321) = 23514, 24153, 31452, 23451, 34512, 45123}.

The permutations in A6(321; 321) that have 6 in the penultimate position are found
recursively by inserting a 6 in position 5 of all those permutations in A5(321; 321).
Thus A6(321; 321) includes the following permutations:

235164, 241563, 314562, 234561, 345162, 451263.

The proof of Lemma 6.21 gives all ⌊6−1
2
⌋ = 2 permutations in A6(321; 321) where

π4 = 6. These 2 permutations are formed from Equation (7) where k ∈ [2, 5] and
k is the opposite parity as 6. Thus, using k ∈ {3, 5} in Equation (7), we have the
following additional 2 permutations in A6(321; 321):

(1, 2, 4, 6, 3, 5), (1, 2, 3, 4, 6, 5) or equivalently 245613, 234615.

By the proof of Lemma 6.23, the permutations in A6(321; 321) where πk = 6 for
k ∈ {2, 3} are formed recursively by considering all permutations in π′ ∈ A4(321; 321)
with π′

k−1 = 4. The new permutations are formed by inserting 6 in position k followed
by k at the end. When k = 2, there are no permutations in A4(321; 321) with 4 in
position 1. For k = 3, there is exactly one permutation in A4(321; 321) with 4 in
position 2, namely 2413. By inserting 6 in position 3 and 4 at the end, we get the
following permutation in A6(321; 321): 256134.

Thus we have
(

3
2

)

= 3 permutations in A6(321; 321) that do not have 6 in position
5, and a5(321; 321) = 6 permutations that have 6 in position 5 for a total of 9
permutations. We note that 1 + 2

(

4
3

)

= 9 and the closed form holds for n = 6.
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7 Further directions for research

There are several directions of future research to consider, including avoidance of
longer patterns. For example, we conjecture that an(3412; 213) has generating func-
tion

2x

1− 2x+
√
1− 4x+ 4x3

associated to the OEIS sequence A087626. We similarly conjecture that an(1324,
1423; 213) =

(

n
3

)

+ 1 and an(3421, 4321; 213) = F2n−3. By considering other permu-
tations or sets of permutations, many other interesting sequences seem to appear.
A few results involving longer patterns can be found in the follow-up paper to this
one [2], in which the authors extend Theorems 3.24 and 4.20, finding the number of
cyclic permutations π that avoid the monotone decreasing permutation of length k
and where C(π) avoids τ for τ ∈ {213, 231, 312}.

One could also consider cyclic permutations where all cycle forms (instead of just
the cycle form beginning with 1) avoid a given pattern. A few results in this vein can
be found in the follow-up paper [2], enumerating cyclic permutations π that avoid the
monotone decreasing permutation of length k where all cycle forms avoid a pattern
of length 4. Finally, it would additionally be interesting to consider avoidance among
other cycle types. Since originally written, some of the results in this paper have
been extended to other cycle types in [7] by considering permutations so that π and
its image under the fundamental bijection both avoid a given pattern.
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