
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 94(1) (2026), Pages 25–49

Intrinsically knotted graphs and
connected domination

Gregory Li

Harvard University
Cambridge, MA 02138, U.S.A.

gregoryli@college.harvard.edu

Andrei Pavelescu Elena Pavelescu

Department of Mathematics and Statistics
University of South Alabama

Mobile, AL 36688, U.S.A.
andreipavelescu@southalabama.edu elenapavelescu@southalabama.edu

Abstract

We classify all the maximal linklessly embeddable graphs of order 12
and show that their complements are all intrinsically knotted. We de-
rive results about the connected domination numbers of a graph and its
complement. We provide an answer to an open question about the min-
imal order of a 3-non-compliant graph. We prove that the complements
of knotlessly embeddable graphs of order at least 15 are all intrinsically
knotted. We provide results on general k-non-compliant graphs and leave
a set of open questions for further exploration of the subject.

1 Introduction

Sixty years ago, Battle, Harary, and Kodama [2] proved that the complement of a
planar graph of order nine is not planar. This result was independently proved by
Tutte [25]. We express this fact by saying that the complete graph K9 is not bi-
planar. In general, for a graph property P , we say that Kn is bi-P , if there exists a
graph G of order n such that both G and its complement, G, have the property P .

Since then, many similar results were derived, some of them generalizing the
original one. Ichihara and Mattman [9] proved that for all nonnegative integers t,
the complete graph K2t+9 is not bi-t-apex. A graph is called t-apex if there exists a
choice of t of its vertices which deleted yield a planar graph. Odeneal, Naimi, and
the last two authors [17] proved that Kn is not bi-linklessly embeddable (bi-nIL), for
all n ≥ 11. A graph is intrinsically linked (IL) if every embedding of it in R3 (or S3)
contains a nonsplittable 2-component link. A graph is linklessly embeddable if it is
not intrinsically linked (nIL). The n ≥ 11 bound is sharp.
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In this article, we investigate bi-knotless embeddability. A graph is called in-
trinsically knotted if every embedding of it in S3 contains a nontrivial knot. We
abbreviate intrinsically knotted as “IK”, and not intrinsically knotted as “nIK”. We
try to answer the following question: what is the smallest integer n, such that Kn is
not bi-nIK? We employ some of the techniques used by the last two authors in [21],
where they proved K13 is not bi-nIL. In the process, we find all the 6503 maximal
nIL graphs of order 12. We focus on finding a large degree vertex in a minor of ei-
ther the graph or its complement. This, in turn, leads to the study of the connected
domination numbers for both G and G. We then prove:

Theorem 1.1. Let G be a simple graph on 15 vertices and let G denote its comple-
ment. If G is nIK, then G is IK.

All the graphs considered in this article are simple: non-oriented, without loops
or multiple edges. For a given graph G, we let V (G) denote its vertex set, and
E(G) denote its edge set. Given a graph G, the complement graph G has the same
vertex set as G and E(G) = {(u, v) | u, v ∈ V (G) and (u, v) 6∈ E(G)}. The maximum
degree among all vertices of G is ∆(G), and the minimum degree is δ(G). Let
δ∗(G) := min{δ(G), δ(G)}. For a vertex u ∈ V (G), the set NG(u) is the set of all
vertices of G that are adjacent to u, and NG[u] = NG(u) t {u}. For a given graph
G, we denote the number of edges (size) of G by |G|.

A set S ⊆ V (G) is a dominating set of G if every vertex in V \S is adjacent
to at least one vertex in S. The domination number γ(G) of G is the minimum
cardinality of dominating sets S of G. The connected domination number γc(G) of
G is the minimum cardinality of dominating sets S of G that induce a connected
subgraph G[S] of G.

Some of the necessary results on connected domination were readily available
by the work of Karami, Sheikholeslami, Khodkar, and West [11]. They proved a
Nordhaus-Gaddum type relation for the connected domination number.

Theorem 1.2 (Karami et al. [11]). If G and G are both connected graphs on n
vertices with γc(G), γc(G) ≥ 4, then

γc(G) + γc(G) ≤ δ∗(G) + 2.

They showed that equality can only hold when δ∗(G) = 6 and provided an ex-
ample of a simple graph G with γc(G) = γc(G) = 4, and δ∗(G) = 6. However, this
example has nearly 15,000 vertices. They asked what is the minimum order among
all such examples. We prove that the Paley graph QR13 of order 13 is the minimal
example.

A minor of a graph G is any graph that can be obtained from G by a sequence
of vertex deletions, edge deletions, and edge contractions. An edge contraction is
performed by identifying the endpoints of an edge in E(G) and then deleting any
loops and double edges thus created.

For k ≥ 1, we say that G with n vertices is k-compliant when G or G contains
a minor H with ∆(H) ≥ n − k. Otherwise, G is k-non-compliant. It follows that
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for k ≥ 1, if G is k-compliant then G is (k + 1)-compliant. Notice that a graph
G is 1-compliant if and only if G has a dominating vertex (cone) or an isolated
vertex. A graph is 2-compliant if and only if, in either the graph or its complement,
one edge contraction yields a dominant vertex. We also note that a disconnected
graph is 2-compliant. The results about general k-non-compliant graphs, proved in
Section 5, are independent of the results in previous sections. Among them, we prove
Theorem 5.1 which states G is k-compliant if and only if min{γc(G), γc(G)} ≤ k.
We will use the result of Theorem 5.1 throughout this article. In this setting, the
question posed by Karami et al. [11] is equivalent to finding the minimum order of a
3-non-compliant graph. This minimum order is 13 and we have Thorem 1.3.

Theorem 1.3. Up to isomorphism, the Paley 13-graph QR13 is the only 3-non-
compliant graph of order 13.

We also find all 3-non-compliant graphs of order 14.

Theorem 1.4. Up to isomorphism, there are only two 3-non-compliant graphs of
order 14: the graph obtained by adding a new vertex to QR13 connected to all the
vertices of the open neighborhood of an existing vertex, and the graph obtained by
adding a new vertex to QR13 connected to all the vertices of the closed neighborhood
of an existing vertex.

2 Three-Non-Compliant Graphs

The following result follows directly from the definition of a 3-non-compliant graph.

Lemma 2.1. Let G be a graph that is 3-non-compliant, and let S ⊆ V (G) have
cardinality 3. Then

• if G[S] is connected, there exists v ∈ V \ S such that (u, v) 6∈ E(G) for all
u ∈ S.
• if G[S] is connected, there exists v ∈ V \ S such that (u, v) ∈ E(G) for all
u ∈ S.

Lemma 2.2. For G a 3-non-compliant graph,

|NG(u) ∩NG(v)| ≥ 3,

for any (u, v) 6∈ E(G).

Proof. Let us assume on the contrary G is 3-non-compliant and |NG(u)∩NG(v)| ≤ 2
for (u, v) 6∈ E(G). If there exists a vertex w ∈ NG(u)∪NG(v) such that (w, vi) ∈ E(G)
for each vi ∈ NG(u) ∩NG(v), then we see γc(G) ≤ 3 by taking S = {u, v, w}.

Otherwise, for each vertex w ∈ NG(u) ∪NG(v), we have (w, vi) ∈ E(G) for some
vi ∈ NG(u)∩NG(v). By taking S = (NG(u)∩NG(v))t{u} or (NG(u)∩NG(v))t{v},
we see γc(G) ≤ 3.

In either case, if |NG(u) ∩NG(v)| ≤ 2, there is a contradiction, and we conclude
|NG(u) ∩NG(v)| ≥ 3.
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Lemma 2.3. For G a 3-non-compliant graph,

|NG(u) ∩NG(v)| ≥ 2,

for any (u, v) ∈ E(G).

Proof. Let us assume on the contrary G is 3-non-compliant and |NG(u)∩NG(v)| ≤ 1
for (u, v) ∈ E(G). If |NG(u) ∩ NG(v)| = 0, since G is 3-non-compliant, it must be
that there exists w ∈ V (G) \ {u, v} such that (v, w), (u,w) /∈ E(G). By Lemma 2.1,
it follows that u, v, and w must share a neighbor in V (G), thus |NG(u) ∩NG(v)| >
0. Thus |NG(u) ∩ NG(v)| = 1, that is, there is a vertex w0 ∈ V (G) such that
NG(u) ∩ NG(v) = {w0}. In G, by Lemma 2.1, the set {u, v, w0} must share a
common neighbor, say x. Then {u, v, x} forms a connected dominating set in G, a
contradiction.

Corollary 2.4. If a graph G of order n is 3-non-compliant, then n ≥ 13.

Proof. Let G be a 3-non-compliant graph. Then γc(G), γc(G) ≥ 4, and both G and
G are connected. Theorem 1.2 implies 8 ≤ δ∗(G)+2, that is δ∗(G) ≥ 6. The smallest
possible order for G with δ∗(G) ≥ 6 is n = 13.

Remark 2.5. By the argument of Corollary 2.4, for a 3-non-compliant graph G of
order n ≥ 13, the degree of every vertex of G and the degree of every vertex of
G must range between 6 and n − 7. This implies that QR13 is also the minimal
3-non-compliant graph by size.

If G is a 3-non-compliant graph of order 13, by the proof of Corollary 2.4, G
must be 6-regular. There are 367,860 non-isomorphic 6-regular graphs of order 13.
However, only one of them is 3-non-compliant. In [21], the last two authors gave
another proof for the following theorem. We present a shorter proof which uses
Lemmas 2.2 and 2.3.

Theorem 1.3. Up to isomorphism, the Paley 13-graph QR13 is the only 3-non-
compliant graph of order 13.

Proof. By Corollary 2.4, if G is a 3-non-compliant graph of order 13, it must be
6-regular. Let v ∈ V (G), let N denote the subgraph of G induced by NG(v), let
H = G \ NG[v] be the subgraph of G induced by the non-neighbors of v, and let
L be the bipartite graph whose edges have one endpoint in N and one endpoint in
H. By Lemma 2.2, each vertex of H must be adjacent to at least 3 vertices of N ,
thus |L| ≥ 6 · 3 = 18. By Lemma 2.3, δ(N) ≥ 2, thus, by the handshaking lemma,
|N | ≥ 6. Adding the degrees in G of the vertices of N , we get

36 =
∑
v∈N

degG(v) = 6 + 2|N |+ |L| ≥ 6 + 12 + 18 = 36,

which shows that |N | = 6 and N is 2-regular, and that |L| = 18 and L is 3-regular.
Since the same must hold for every vertex of G, lest G be 3-compliant, it follows that
G is a strongly regular (13, 6, 2, 3) graph. This means G is a 6-regular graph of order
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13, where any two adjacent vertices have exactly two common neighbors, and any
two non-adjacent vertices have exactly 3 common neighbors. Thus G is isomorphic
to the Paley 13-graph [1]. See Figure 1.

On the other hand, if G is isomorphic to the Paley 13-graph, up to isomorphism,
there are exactly 13 non-isomorphic minors obtained by contracting two edges of
G, and each of them has maximum degree at most 9. Since the Paley 13-graph is
self-complementary, it follows that G is 3-non-compliant.

Figure 1: The Paley graph of order 13.

Proposition 2.6. Let u and v be twin vertices of a graph G (NG(u) = NG(v)). For
k ≥ 2, G is k-non-compliant if and only if G′ := G− v is k-non-compliant.

Proof. Note that if u and v are twin vertices of G, then they are also twin vertices
of G. So, without loss of generality, we may assume (u, v) ∈ E(G).

Assume that G is k-non-compliant and that G′ is k-compliant. If γc(G
′) ≤ k,

let S = {u1, ..., up}, with p ≤ k, be a connected dominating set in G′. Since S is
dominating, there exist 1 ≤ i ≤ p such that (u, ui) ∈ E(G′). Since u and v were twin
vertices in G, we have the adjacency (v, ui) ∈ E(G), so S is a connected dominating
set of G, a contradiction.

If γc(G′) ≤ k, then let S = {u1, ..., up}, with p ≤ k, be a connected dominating
set of G′. Since S is dominating, there is some 1 ≤ i ≤ p such that (u, ui) ∈ E(G′).
As u and v are twins, we have (v, ui) ∈ E(G), so S dominates G.

Assume that G is k-compliant and that G′ is k-non-compliant. If γc(G) ≤ k, let
S = {u1, ..., up}, with p ≤ k, be a connected dominating set in G. As G′ is k-non-
compliant, we have v ∈ S. Since u and v have the same neighbors in G, (S−v)∪{u}
is a connected dominating set of G′ of size p. This is a contradiction, since G′ is
k-non-compliant.

If γc(G) ≤ k, let S = {u1, ..., up}, with p ≤ k, be a connected dominating set in
G. If v ∈ S, then (S − v) ∪ {u} is a connected dominating set of G′. If v /∈ S, then
S is a connected dominating set of G′. In either case, G′ must be k-compliant, a
contradiction.
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Note that deleting a vertex from the Paley 13 graph yields a subgraph of order
12 which, by Corollary 2.4, must be 3-compliant, but 2-non-compliant. We pose the
following question:

Question 1: Under what condition does adding a vertex to a k-compliant graph
yield a k-non-compliant graph?

Proposition 2.6 allows one to build 3-non-compliant graphs of order at least 13
by repeatedly adding twin vertices. For order 14, one obtains two non-isomorphic
structures: adding a new vertex v to the open/closed neighborhood of a vertex in
the QR13 graph. Theorem 1.4 shows that these two are the only 3-non-compliant
graphs of order 14.

Lemmas 2.2 and 2.3 imply that if G is 3-non-compliant, then every pair of ad-
jacent vertices has at least two common neighbors and every pair of non-adjacent
vertices has at least three common neighbors. For order n = 14, the possible degrees
for a vertex of a 3-non-compliant graph are 6 and 7. This implies the number of
edges for a 3-non-compliant graph of order 14 is 42 ≤ m ≤ 49. To find all 3-non-
compliant graphs, it suffices to find those graphs with size 42 ≤ m ≤ 45, and then
check their complements. More restrictions can be derived by inspecting the possible
configurations of the neighborhoods of vertices of degree 6.

Lemma 2.7. Let G be a graph with 14 vertices and u ∈ V (G) with degG(u) = 6. If
G is 3-non-compliant, then ∑

v∈NG(u)

degG(v) ≥ 39.

Proof. Let N be the subgraph induced by NG(u), let H be the subgraph induced by
V (G) \ NG[u], and let L be the bipartite graph whose edges have one endpoint on
N and one endpoint in H. By Lemma 2.2, each vertex of H shares at least three
neighbors with u, thus |L| ≥ 21. By Lemma 2.3, u shares at least two neighbors
with each of of its neighbors, thus degN(v) ≥ 2, for each v ∈ N and thus, by the
handshaking lemma, |N | ≥ 6. We have∑

v∈NG(u)

degG(v) = 6 + 2|N |+ |L| ≥ 6 + 12 + 21 = 39.

The next two lemmas partially strengthen the results of Lemmas 2.2 and 2.3 for
graphs of order 14.

Lemma 2.8. Let G be a 3-non-compliant graph of order 14. Let u, v ∈ V (G), such
that degG(u) = degG(v) = 7, and (u, v) /∈ E(G). Then |NG(u) ∩NG(v)| ≥ 4.

Proof. By Lemma 2.3, u and v share at least two neighbors in G. As u and v are
not adjacent in G, we have

10 ≥ |NG(u)∪NG(v)| = |NG(u)|+|NG(v)|−|NG(u)∩NG(v)| = 7+7−|NG(u)∩NG(v)|,
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which implies
|NG(u) ∩NG(v)| ≥ 14− 10 = 4.

Lemma 2.9. Let G be a 3-non-compliant graph of order 14. Let u, v ∈ V (G), such
that degG(u) = degG(v) = 7, and (u, v) ∈ E(G). Then |NG(u) ∩NG(v)| ≥ 3.

Proof. By Lemma 2.2, u and v share at least three neighbors in G. As u and v are
adjacent in G, we have

11 ≥ |NG(u)∪NG(v)| = |NG(u)|+|NG(v)|−|NG(u)∩NG(v)| = 7+7−|NG(u)∩NG(v)|,

which implies
|NG(u) ∩NG(v)| ≥ 14− 11 = 3.

Lemma 2.10. Graphs G of order 14 with 42, 43, or 44 edges are 3-compliant.

Proof. For graphs G of size 42, 43, consider a vertex u with deg(u) = 6. Since there
are at most two vertices of degree 7 in G, the sum of degrees for the neighbors of u
is strictly less than 39. By Lemma 2.7, the graph G is 3-compliant.
For graphs G of size 44, we only need to consider graphs with four vertices of degree 7
and ten vertices of degree 6. Using the pigeonhole principle, we see that there exists
a vertex of degree 6 which neighbors at most two vertices of degree 7. By Lemma
2.7, the graph G is 3-compliant.

Lemma 2.11. Let G be a graph with 14 vertices, size 45, and u ∈ V (G) with
degG(u) = 7. If G is 3-non-compliant, then∑

v∈NG(u)

degG(v) ≥ 44.

Proof. Let N = NG(u) and let H = NG(u). By Lemma 2.7,∑
v∈H

degG(v) ≥ 39⇒
∑

v∈NG[u]

degG(v) ≥ 45.

By the handshaking lemma,∑
v∈N

degG(v) ≤ 2|G| − 45 = 92− 45 = 47.

Taking complements,∑
v∈N

degG(v) ≥ 7 · 13− 47 = 91− 47 = 44.
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Theorem 1.4. Up to isomorphism, there are only two 3-non-compliant graphs of
order 14: the graph obtained by adding a new vertex to QR13 connected to all the
vertices of the open neighborhood of an existing vertex, and the graph obtained by
adding a new vertex to QR13 connected to all the vertices of the closed neighborhood
of an existing vertex.

Proof. Since a graph is 3-non-compliant if and only if its complement is 3-non-
compliant, by Lemma 2.10 it suffices to consider simple graphs of order 14 and
size 45. Let’s assume |G| = 45. Since δ∗(G) = 6, it follows that the degree sequence
of G is (6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7). Let A denote the subgraph of G induced by
the vertices of degree 7, let B denote the subgraph of G induced by the vertices of
degree 6, and let P denote the bipartite graph obtained by deleting all the edges
of A and all the edges of B from G. By Lemma 2.7, every vertex of degree 6 must
connect to at least three vertices of degree 7. It follows that ∆(B) ≤ 3 and that
|B| ≤ 12. By Lemma 2.11, it follows that δ(A) ≥ 2, and thus |A| ≥ 6.

42 =
∑
v∈A

degG(v) = 2|A|+ |P | ≥ 12 + |P | ⇒ |P | ≤ 30.

48 =
∑
v∈B

degG(v) = 2|B|+ |P | ≤ 24 + |P | ⇒ |P | ≥ 24.

Either relation shows that |P | is even, and thus |P | ∈ {24, 26, 28, 30}.
If |P | = 24, then |A| = 9, 2 ≤ δ(A) ≤ 3, |B| = 12, and every vertex of degree 6 is

adjacent to exactly three vertices of degree 7. There are 15 non-isomorphic structures
possible for A, as seen in Figure 2.
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Figure 2: The 15 graphs of order 6, size 9, and minimum degree at least 2.

If δ(A) = 3, then A is 3-regular and is therefore isomorphic to either the complete
bipartite graph K3,3, or the triangular prism (the last two graphs in Figure 2). In
either case, the edges (a, b), (c, d), and (e, f) are non-triangular in A, with both their
endpoints vertices of degree 7. By Lemma 2.9, the endpoints of each of these edges
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must share at least three neighbors among the vertices of B. As B has order 8, the
pigeonhole principle implies there is a vertex of degree 6 which is adjacent to at least
4 vertices of A, a contradiction.

If δ(A) = 2, then A is among the first 13 graphs in Figure 2. For a vertex
v ∈ V (A), let p2(v) denote the number of length-two paths containing v with both
endpoints in A and the middle vertex in B. Any vertex of degree 2 in A must be
adjacent to exactly 5 vertices of B. Since every vertex of B is adjacent to exactly
3 vertices of A, then p2(v) ≤ 10. On the other hand, without exception, there is
always a vertex of degree 2 in A, labeled a for all 13 graphs in Figure 2, for which
p2(a) > 10.

We provide here the computation for the first graph as an example, and we
leave the rest to the reader. Note that in Figures 2, 3, and 4, the numerical values
associated to vertices v different from a represent lower bounds for the number of
length-two paths with endpoints a and v, and middle vertex in B.

By Lemma 2.9, a and e have at least three common neighbors. Since they only
share one neighbor in A, they must have at least two common neighbors among the
vertices of B. The same argument works for a and f . By Lemma 2.8, a and b share
at least 4 neighbors, with at least two of them among the vertices of B. However, if
a and b have exactly two common neighbors among the vertices of B, then {a, e, b}
is a connected dominating set of G, so G is 3-compliant. This argument shows that
a and b share at least three neighbors among the vertices of B. The same must be
true for each of the pairs {a, c} and {a, d}. It follows that a must be in at least
2 + 2 + 3 + 3 + 3 = 13 > 10 pairs of vertices of A with a shared vertex in B, a
contradiction.

So, if |P | = 24, G must be 3-compliant.

If |P | = 26, then |A| = 8, δ(A) = 2, |B| = 11, and every vertex of degree 6 is
adjacent to at least three vertices of degree 7. There are 11 non-isomorphic structures
possible for A, depicted in Figure 3.
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Figure 3: The 11 graphs of order 6, size 8, and minimum degree at least 2.

Every vertex v of A with degA(v) = q ≥ 2 is adjacent to 7 − q vertices of B.
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Since every vertex of B is adjacent to at least three vertices of A, it follows that
p2(v) ≤ 2 · (7 − q) + 26 − 24 = 16 − 2q. In particular, for any vertex v of degree 2
of A, p2(v) ≤ 12. However, for each of the graphs in Figure 3, by Lemmas 2.8 and
2.9, there exists a vertex of degree 2, labeled a, with p2(a) > 12. We provide the
computations for the first graph in the list, and leave the rest to the reader. We note
that for the second graph in Figure 3, the argument is identical to the case covered
when |P | = 24. By Lemma 2.9, a and b have at least three common neighbors. Since
they share a neighbor in A, they must share at least two neighbors in B. The same
argument holds for the pair {a, f}. Each of the pairs {a, c}, {a, d}, and {a, e} must
share at least 4 neighbors in G, by Lemma 2.8. However, each of them has only
one common neighbor in A, giving them each at least three common neighbors in B.
Then, p2(a) ≥ 2 + 2 + 3 + 3 + 3 = 13 > 12.

So, if |P | = 26, G must be 3-compliant.

If |P | = 28, then |A| = 7, δ(A) = 2, |B| = 10, and every vertex of degree 6 is
adjacent to at least three vertices of degree 7. There are 5 non-isomorphic structures
possible for A, depicted in Figure 4.
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2

2
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a
a
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3 3

3

3

3

3

4
4

4
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Figure 4: The 5 graphs of order 6, size 7, and minimum degree at least 2.

Every vertex v of A with degA(v) = q ≥ 2 is adjacent to 7 − q vertices of B.
Since every vertex of B is adjacent to at least three vertices of A, it follows that
p2(v) ≤ 2 · (7 − q) + 28 − 24 = 18 − 2q. In particular, every vertex v of degree 2 in
any of the graphs in Figure 4 must have p2(v) ≤ 14. However, each of the graphs
in Figure 4, has a vertex of degree 2, labeled a, with p2(a) > 14. We provide the
computations for the first graph in the list, and leave the rest to the reader.

By Lemma 2.9, each pair {a, b} and {a, c} must have at least 3 common neighbors
in B, since neither shares neighbors in A. By Lemma 2.8, a and d must have at least
4 common neighbors, at least 2 of which must be in B. By Lemma 2.8, each pair
{a, e} and {a, f} must have at least 4 common neighbors in B, since neither shares
neighbors in A. Thus p2(a) ≥ 3 + 3 + 2 + 4 + 4 = 16 > 14, a contradiction.

So, if |P | = 28, G must be 3-compliant.

If |P | = 30, then |A| = 6, A is 2-regular, |B| = 9, and every vertex of degree 6 is
adjacent to at least three vertices of degree 7. There are only two structures possible
for A: the disjoint union K3 tK3 and the cycle graph C6, as in Figure 5.
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a
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Figure 5: The 2-regular graphs of order 6.

Since A is 2-regular, each vertex of A is adjacent to exactly 5 vertices of B. As
each vertex of B is adjacent to at least three vertices of A, each vertex of A can be
in at most 2 · 5 + 30− 24 = 16 pairs of vertices of A which share a neighbor in B.

If A ' K3 t K3, then by Lemma 2.9, each pair {a, b} and {a, c} must have at
least 2 neighbors in B, since they each share exactly one neighbor in A. By Lemma
2.8, each of the pairs {a, d}, {a, e}, and {a, f} must share at least 4 neighbors in B,
since they share no neighbors in A. As A is vertex-transitive, it follows that each
vertex of A must be in at least 2 + 2 + 4 + 4 + 4 = 16 pairs of vertices in A with a
shared vertex in B. This can only happen if exactly two vertices of B are adjacent
to all the vertices of A, and each of the remaining vertices of B is adjacent to exactly
3 vertices of A. Let v be a vertex of B which is adjacent to all vertices of A. If
a and b share only two neighbors in B, then, as a set, {a, b} is incident to every
vertex of B, and thus {a, v, b} is a connected dominating set and G is 3-compliant.
Else, a and b share at least three neighbors in B and thus a must be part of at least
3 + 2 + 4 + 4 + 4 = 17 > 16 pairs of vertices of A with a shared neighbor in B, a
contradiction.

If A ' C6, then by Lemma 2.9, each pair {a, b} and {a, f} must have at least 3
common neighbors in B, since they share no neighbors in A. By Lemma 2.8, each
of the pairs {a, c} and {a, e} must share at least 3 neighbors in B, since they share
exactly one neighbor in A. By Lemma 2.8, a and d must have at least 4 common
neighbors in B, as they have no shared neighbors in A. Since A is vertex-transitive,
it follows that each vertex of A must be in at least 3 + 3 + 3 + 3 + 4 = 16 pairs
of vertices in A with a shared vertex in B. This can only happen if exactly two
vertices of B are adjacent to all the vertices of A, and each of the remaining vertices
of B is adjacent to exactly 3 vertices of A. Then G has a pair of twin vertices u
and v of degree 6, adjacent to all the vertices of A. By Proposition 2.6, G − v is a
3-non-compliant graph of order 13. But Theorem 1.3 shows that G−v ' QR13, thus
G is obtained by adding a twin vertex which connects to the open neighborhood of
a vertex in QR13. Theorem 1.3 guarantees that G is 3-non-compliant along with its
complement G, which is the graph obtained by adding a twin vertex which connects
to the closed neighborhood of a vertex in QR13.

Note that the only 3-non-compliant graphs of order 14 have the graph QR13 as
an induced subgraph. We also found fourteen 3-non-compliant graphs of order 15
(seven pairs) which all have a subgraph isomorphic to QR13. We provide their edge
lists in Appendix A. On the other hand, the graph QR17 is 3-non-compliant, yet it
does not have any subgraph isomorphic to QR13. However, QR13 is a minor of QR17.
We would like to pose the following questions.
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Question 2: What is the complete list of 3-non-compliant graphs of order 15?

Question 3: Is there an example of a 3-non-compliant graph which does not have
QR13 as a minor?

3 Three-non-compliant graphs of order 15

Lemma 3.1. Let G be a graph with 15 vertices and u ∈ V (G) with degG(u) = 6. If
G is 3-non-compliant, then ∑

v∈N(u)

degG(v) ≥ 42.

Proof. Let N be the subgraph induced by NG(u), let H = G \ NG[u], and let L be
the bipartite graph whose edges have one endpoint in N and one endpoint in H. By
Lemma 2.2, each vertex of H shares at least three neighbors with u, thus |L| ≥ 24.
By Lemma 2.3, u shares at least two neighbors with each of of its neighbors, thus
degN(v) ≥ 2, for each v ∈ V (N) and |N | ≥ 6. We have∑

v∈V (N)

degG(v) = 6 + 2|N |+ |L| ≥ 6 + 12 + 24 = 42.

Lemma 3.2. For n = 15, graphs G with m = 45, 46, 47 or 48 edges are 3-compliant.

Proof. By Remark 2.5, the degrees of the vertices of G range between 6 and 8. If
there is no vertex of degree 6, by the handshaking lemma, the size of the graph is
at least 7 × 15/2 = 52.5, a contradiction. For m = 45, 46, 47, consider a vertex
u ∈ V (G) with deg(u) = 6. The sum of degrees for the neighbors of u is strictly less
than 42. By Lemma 3.1, the graph G is 3-compliant.
For m = 48, independent of its degree sequence, the graph G has at least nine vertices
of degree 6. There is at least one vertex u with deg(u) = 6 such that u does not
neighbor all vertices of degree 7 or 8. Then the sum of degrees for the neighbors of
u is strictly less than 42. By Lemma 3.1, the graph G is 3-compliant.

Lemma 3.3. Let G be a graph with 15 vertices and v ∈ V (G) with degG(v) = 6. If∑
u∈N(v)

degG(u) ≤ 45,

then at least one of the following three statements is true: G is 3-compliant; G has
a K7 minor; G has a K7 minor.

Proof. Let N be the subgraph induced by NG(v), let H = G \ NG[v], and let L be
the bipartite graph whose edges have one endpoint in N and one endpoint in H. We
denote by v1, v2, . . . , v8 the vertices of H.
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Assume G is 3-non-compliant. By Lemmas 2.2 and 2.3, v shares three neighbors
with each vertex of H and two neighbors which each vertex of N . This means
degL(u) ≥ 3 for all u ∈ H, and degN(u) ≥ 2 for each u ∈ N . This means |L| ≥ 24
and |N | ≥ 6, and since ∑

u∈N(v)

degG(u) = 6 + 2|N |+ |L| ≤ 45,

|N | = 6 or |N | = 7. With these restrictions, N can be one of the seven graphs in
Figure 6. The respective complements of these seven graphs can be seen in Figure 7.
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Figure 6: Graphs of order 6, size 6 or 7, and minimal degree 2.
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Figure 7: Complements of the seven graphs of order 6, size 6 or 7, and minimal
degree 2.

In each of these seven cases, we show that under the assumption that G is 3-non-
compliant, either G or G has a K7 minor. We primarily work in the complement
G. We note that regardless of N , in the complement G, each pair of vertices of N
have a common neighbor in H. Otherwise, this pair of vertices together with v form
a connected domination set of cardinality 3 in G, contradicting the assumption that
G is 3-non-compliant. We also note that each vertex of H neighbors at most three
vertices of N . In each case below we consider a graph N as labeled in Figure 6.



G. LI ET AL. /AUSTRALAS. J. COMBIN. 94 (1) (2026), 25–49 38

Case 1. N is a disjoint union of two triangles. A vertex of H, say v1, cannot
neighbor all three vertices a, b, c in G. Otherwise {v, v1, b} dominates G. Simi-
larly, a vertex of H cannot neighbor all vertices d, e, f . It follows that the edges
(a, b), (b, c), (a, c), (d, e), (d, f), and (e, f) are all covered by a different vertex of H.
We say a vertex covers an edge if the vertex is adjacent to both endpoints of that
edge. Six edge contractions give a graph which contains a K7 subgraph induced by
{a, b, c, d, e, f, v}
Case 2. N is a 6-cycle. Each edge (a, b), (c, d), and (e, f) is covered by a different
vertex of H. Also, each edge (b, c), (d, e), and (a, f) is covered by a different vertex of
H. If a single vertex of H, say v1 covers two edges, say (a, b) and (b, c), then {v, v1, b}
dominates G, a contradiction. It follows that the edges (a, b), (c, d), (e, f), (b, c), (d, e),
and (a, f) are all covered by a different vertex of H. Six edge contractions give a
graph which contains a K7 subgraph induced by {a, b, c, d, e, f, v}.
Case 3. N is a union of two triangles and an edge. As in Case 1, the edges
(a, b), (b, c), (a, c), (d, e), (d, f), and (e, f) are all covered by a different vertex of
H. Six edge contractions give a graph which contains a K7 subgraph induced by
{a, b, c, d, e, f, v}.

If the edge (a, d) is covered by same vertex that covers (a, b) or (a, c), say v2, then
edge (a, v2) is contracted. If the edge (a, d) is covered by same vertex that covers
(d, e) or (d, f), say v3, then edge (d, v3) is contracted.

Case 4. N is a 6-cycle together with a chord of length 2. Since {d, e, f} does not
dominate G, the vertices d, e, and f have a common neighbor in H, say v1. Then
{v, v1, e} dominate G, a contradiction.

Case 5. N is a 6-cycle together with a chord of length 3. Since {a, e, f} does not
dominate G, the vertices a, e, and f have a common neighbor in H, say v1. Since
{b, c, d} does not dominate G, the vertices a, e, and f have a common neighbor in
H, say v2. Then {v, v1, v2} dominate G, a contradiction.

Case 6. N is a 4-cycle and a 3-cycle that share a vertex. Since {a, c, d} does not
dominate G, the vertices a, c, and d have a common neighbor in H, say v1. Then
{v, v1, d} dominate G, a contradiction.

Case 7. N is a 5-cycle together with a vertex that neighbors two non-adjacent
vertices of the 5-cycle. Since {a, e, f} does not dominate G, the vertices a, e, and
f have a common neighbor in H, say v1. Since {b, c, d} does not dominate G, the
vertices b, c, and d have a common neighbor in H, say v2. Then {v, v1, v2} dominate
G, a contradiction.

Lemma 3.4. Let G be a 3-non-compliant graph with 15 vertices and m = 49, 50, 51,
or 52 edges. Then there exists H ∈ {G,G} and v ∈ V (H) such that degH(v) = 6
and ∑

u∈NH(v)

degH(u) ≤ 45.

Proof. By Remark 2.5, the degrees of the vertices of both G and G range between 6
and 8. By the handshaking lemma, G has at least one vertex w of degree 6. If G has
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no vertices of degree 6, it implies that G has maximum degree at most 7, so the sum
of the degrees of the neighbors of w in G is at most 42, and the lemma holds. So we
may assume that both G and G have vertices of degree 6. Let α, β, and γ represent
the number of vertices of degree 6, 7, and 8, respectively in G. Then α, β, and γ
represent the number of vertices of degree 8, 7, and 6, respectively in G. Under our
working assumptions, α > 0 and γ > 0. Assume by contradiction that for both G
and G, for all vertices of degree 6, the sum of the degrees of their neighbors is at
least 46. Then each vertex of degree 6 must neighbor at least four vertices of degree
8, in both G and G. Counting the number of edges with one endpoint a vertex of
degree 6 and the other endpoint a vertex of degree 8, in both G and G, we have
4α + 4γ ≤ αγ. This gives

(α− 4)(γ − 4) ≥ 16. (3.1)

Since α + γ ≤ 15, we have α− 4 ≤ 11− γ and Equation (3.1) implies

(11− γ)(γ − 4) ≥ 16. (3.2)

No value of γ satisfies equation (3.2), since f(x) = (11−x)(x−4) attains a maximum
of 12.25 at x = 7.5. We conclude the existence of a vertex v as in the statement of
the lemma.

Theorem 3.5. If G is graph with 15 vertices, then at least one of the following three
statements is true: G is 3-compliant; G has a K7 minor; G has a K7 minor.

4 K15 is not bi-nIK

The properties of being nIL or nIK are hereditary, which means that any minor of a
graph which is nIL (nIK), is itself nIL (nIK). Considering complements, any graph
which has an IL minor is itself IL, and any graph which has an IK minor is itself IK.
Conway and Gordon [4] proved that K6 is IL and that K7 is IK. The combined work
of Conway and Gordon [4], Sachs [23], and Robertson, Seymour and Thomas [22]
fully characterize IL graphs: a graph is IL if and only if it contains a graph in the
Petersen family as a minor. The Petersen family consists of seven graphs obtained
from K6 by ∇Y−moves and Y∇−moves, as presented in Figure 8.

Figure 8: ∇Y− and Y∇−moves

In the absence of a known IK minor, it is relatively difficult to prove a given
graph is IK. However, under certain linking conditions on the graph, it follows that
the graph is IK. The D4 graph is the (multi)graph shown in Figure 9. A double-
linked D4 is a D4 graph embedded in S3 such that each pair of opposite 2-cycles
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(C1∪C3, and C2∪C4) has odd linking number. The following lemma was proved by
Foisy [6]; a more general version of it was proved independently by Taniyama and
Yasuhara [24].

C1

C4

C2

C3

Figure 9: The D4 graph.

Lemma 4.1. Every double-linked D4 contains a nontrivial knot.

A graph which contains a double-linked D4-minor in every embedding is called
intrinsically D4 (ID4 ). Lemma 4.1 remains the gold standard in showing a graph is
IK, since any intrinsically D4 graph is intrinsically knotted. For this reason, Miller
and Naimi [15] developed an algorithm, implemented as a Mathematica program, to
determine whether a graph is intrinsically D4 .

We used their program and other Mathematica code developed with Naimi [16]
to prove the following theorem.

Theorem 4.2. Let G be a nIL graph of order 12. Then G is intrinsically knotted
(IK).

Proof. There are a total of 6503 maximal linklessly embeddable (maxnIL) graphs of
order 12 [20]. The search was organized according to these observations:

• If δ(G) is the minimal degree of a maxnIL graph G, then 2 ≤ δ(G). It is
straightforward to check that any nIL graph with a vertex of degree 0 or 1 is a
proper subgraph of another nIL graph of the same order.

• If G is a maxnIL graph of order 12, then δ(G) ≤ 5. This follows from [18],
where the second author and his student proved that every graph of order 12
with minimal degree at least 6 has a K6-minor and is therefore intrinsically
linked.

• When deleting a vertex from a maxnIL graph of order 12, one obtains a nIL
graph of order 11.

The previous observations show that any maxnIL graph of order 12 is an edge-
deletion subgraph of a graph obtained by adding a vertex of degree at most 5 to a
maxniIL graph of order 11. By the work of the last two authors, Ryan Odeneal, and
Naimi [17], any maxnIL graph which has a vertex of degree 2 or 3 can be obtained
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from a maxnIL of order one less by performing a clique sum with a K3 over a K2

induced subgraph, or a clique sum with a K4 over an induced K3-subgraph. We took
the list of 710 maxnIL graphs of order 11, obtained the graphs of order 12 through the
clique sum operation, and sifted out the 2273 maxnIL graphs with minimal degree
at most 3. The remaining 2230 were found by adding a vertex of degree 4 or 5,
respectively, and checking whether any nIL graphs were obtained, as well as which
ones were maximal. This was done using Naimi’s Mathematica program [16] which
decides whether a given graph is intrinsically linked by solving linear systems over
Z and Z2. Then, we took the ones that were intrinsically linked, used McKay and
Piperno’s nauty program [14] to obtain all their 1-edge deletion subgraphs up to
isomorphism, selected those which have minimum degree at least 4, and then sorted
them as IL or nIL. We repeated the process until no graphs with minimal degree 4,
respectively 5 were left.

We then used Miller and Naimi’s program [15] and verified that all the comple-
ments of the 6503 maxnIL graphs of order 12 were intrinsically D4. Since any nIL
graph of order 12 can be completed, by adding edges, to a maxnIL of order 12, it
follows that the complement of a nIL graph of order 12 contains the complement of
a maxnIL graph of order 12, and it is therefore intrinsically knotted.

Remark 7, from the article the last two authors wrote with Odeneal and Naimi,
claims that all the maxnIL graphs of order 11 are 2-apex. The authors asked whether
all the maxnIL graphs of order 12 are 2-apex. Our search for all the maxnIL graphs
of order 12 yielded the one example of a maxnIL graph of order 12 which is not
2-apex. This graph is depicted in Figure 10.
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Figure 10: The only maxnIL of order 12 which is not 2-apex.

Observation 4.3. Let G be an IL graph. Then G ∗K1 is IK.

Proof. Since the statement holds for all the members of the Petersen family, the
result follows.

In 1990, de Verdiére [5] introduced the graph invariant µ, based on spectral prop-
erties of matrices associated with a graph G. He showed that µ is monotone under
taking minors and that planarity is characterized by the inequality µ ≤ 3. Lovász
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and Schrijver showed that linkless embeddability is characterized by the inequality
µ ≤ 4 [12]. Kotlov, Lovász, and Vempala [10] conjectured that for any simple graph
G of order n, µ(G) + µ(G) ≥ n − 2. The conjecture was known to hold for planar
graphs, graphs of order at most 10, and graphs with µ(G) ≥ n−6, see [8]. In Remark
8 of [17], it is argued that the conjecture is true for graphs of order 11 as well. Given
the list of maxnIL graphs of order 12, with computer assistance, we verified that
the complements of each one of these graphs has a minor in either the K7-family,
the K3,3,1,1-family, or the E9 + e-family. The graphs in these families, described by
Goldberg, Mattman, and Naimi in [7], have all µ = 6. As µ is monotone under
taking minors, the µ value for each complement of a nIL graph of order 12 is at least
6. This shows that µ(G) + µ(G) ≥ n holds true for graphs of order n ≤ 12.

Theorem 1.1. Let G be a simple graph on 15 vertices and let G denote its comple-
ment. If G is nIK, then G is IK.

Proof. If G is 3-compliant, then either G or G has a minor with a vertex of degree
12. We assume this minor has order 13. If G has a minor H with a vertex v of degree
12, since G is nIK, by Theorem 4.3, H − v is nIL. By Theorem 4.2, H − v is IK,
thus G is IK. If G has a minor H with a vertex v of degree 12 and G is nIK, H − v
is nIL. By Theorem 4.2, H − v is IK, thus G is IK.

If G is 3-non-compliant, by Theorem 3.5, at least one of G or G has a K7 minor.
Since K7 is IK, one of G or G is intrinsically knotted.

Note that the previous result proves that Kn is not bi-nIK, for all n ≥ 15.
On the other hand K12 is bi-nIK, as the following example will demonstrate. The
graph depicted on the left in Figure 11 is self-complementary (isomorphic to its
complement). It is also 2-apex, as the deletion of the “empty” vertices yields the
planar graph on the right. As 2-apex graphs are knotlessly embeddable by results of
Blain et al. [3] and Ozawa and Tsutsumi [19], the graph on the left in Figure 11 is
nIK. It follows K12 is bi-nIK.

Figure 11: A self-complementary, 2-apex graph of order 12, and the planar
graph obtained by deleting two of its vertices.

The following is a natural question:

Question 4: Are either of K13 or K14 bi-nIK?
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Note that in the arguments leading to the proof of Theorem 3.5 and Theorem
1.1, we focused mainly on finding a K7 minor in either the graph or its complement.
Since not having a K7(resp. K6) minor is also a hereditary property, we pose the
following questions:

Question 5: What is the smallest integer 12 < n ≤ 15, such that Kn is not bi-K6-
free?

Question 6: What is the smallest integer 13 < n ≤ 18, such that Kn is not bi-K7-
free?

The upper bounds in the previous two questions are derived from a theorem of
Mader [13], which implies that any graph of order n with at least 4n − 9 edges has
a K6 minor, and any graph of order n with at least 5n − 14 edges has a K7 minor.
The lower bounds stem from the example in Figure 12(Left). This order 12 graph
has no K6 minor, and neither does its complement.
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Figure 12: (Left) A K6-free graph whose complement is also K6-free.
(Right) A maximal planar graph.

The chief argument for both the graph in Figure 12 (Left) and its complement
being K6 minor-free is the following observation:

Observation 4.4. Let G1 and G2 be K6 minor-free graphs. Then any clique sum
over Kp of G1 and G2, for 1 ≤ p ≤ 4, is K6 minor-free.

Let G denote the graph in Figure 12(Left). Notice that the vertices in S =
{v9, v10, v11, v12} form a clique (complete subgraph) in G, and that G is the clique sum
over the K4 subgraph induced by the vertices in S of the subgraphs H1, induced by
{v1, v2, v9, v10, v11, v12}, H2, induced by {v3, v4, v5, v9, v10, v11, v12}, and H3, induced
by {v6, v7, v8, v9, v10, v11, v12}. All of H1, H2, and H3 are K6 minor-free. The graph
H1 is isomorphic to K−6 (the complete graph on six vertices with one edge removed).
The graphs H2 and H3 are both isomorphic to the graph K1 ∗H, the graph obtained
by adding one vertex connected to all the vertices of the planar graph in Figure 12
(Right). By Observation 4.4, G is K6 minor-free.

Consider now the complement G. The vertices v9, v10, v11, and v12 have degrees
2, 2, 2, and 1, respectively. Moreover, their neighborhoods are complete subgraphs
in G, thus G is obtained from the subgraph M of order 8 induced by the vertices
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{v1, v2, ..., v8}, by repeated clique sums over K2, and K1. Thus, by Observation 4.4,
G is K6 minor-free, if and only if M is K6 minor-free. The graph M is isomorphic
to the highly symmetry graph K3,3 ∗E2, with E2 denoting the graph of order 2 with
no edges. Up to isomorphism, this graph has 4 different order 6 edge-contraction
minors, none of which is isomorphic to K6. Thus M is K6 minor-free, and so is G.

5 k-Non-Compliant Graphs

Theorem 5.1. A graph G or its complement G has a minor H where ∆(H) ≥
|V (G)| − k = n− k if and only if min(γc(G), γc(G)) ≤ k.

Proof. The statement follows from the definitions if k = 1, or G is disconnected. For
the direct implication, without loss of generality, let H be a minor of G and s ∈ V (H)
be such that degH(s) = n−k. Let S ⊂ V (G) be exactly the set of vertices contracted
through edges in G to produce s ∈ V (H). We note that G[S] is connected. Define

NS = {u ∈ V (G) \ S | ∃ v ∈ S : (u, v) ∈ E(G)}.

By assumption, |NS| ≥ n− k. If NS = V (G) \ S, then S is a connected dominating
set of size at most k, implying γc(G) ≤ k.

If NS ( V (G) \ S, then T = V (G) \ (S tNS) is non-empty such that (in G) no
vertex in S is adjacent to a vertex in T . This means G[StT ] is connected. Moreover,
if every vertex u ∈ NS = V (G) \ (S t T ) is adjacent in the complement G to some
v ∈ S t T , then S t T is a connected dominating set and γc(G) ≤ k.

So, say there exists some u0 ∈ NS such that (u0, v) ∈ E(G) for every v ∈ S t T.
Let S ′ := S t {u0}. Note that G[S ′] is connected, and since T was nonempty, we
have |S ′| ≤ k. Because u0 ∈ S ′, we find S ′ is a connected dominating set of G. We
conclude, in this third case γc(G) ≤ k.

Towards the reverse implication, without loss of generality, let γc(G) ≤ k. Let
S ⊂ V (G) be a connected dominating set of G such that |S| ≤ k. A minor H with
∆(H) ≥ n− k is obtained from G by contracting the edges of any spanning tree of
the connected subgraph G[S].

Define f : N → N so that f(n) is the largest number such that for all graphs G
of order n, G or G has a minor H with ∆(H) ≥ f(n). The first few values of f(n)
are f(1) = 0, f(2) = 1, f(3) = 2, f(4) = 2, f(5) = 2. Note that n− f(n) corresponds
to the minimum value of k such that all graphs G of order n are k-compliant. The
construction in Proposition 2.6 shows that {n− f(n)} is a non-decreasing sequence.

Theorem 5.2. For n ≥ 15,

n−
⌊
n+ 1

4

⌋
≤ f(n).

Proof. If G is 3-compliant, the inequality holds since

n−
⌊
n+ 1

4

⌋
≤ n− 3 ≤ f(n), for all n ≥ 15.
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Assume G is 3-non-compliant. Then γc(G)+γc(G) ≤ δ∗(G)+2 by Theorem 5 in [11].
If δ∗(G) 6= 6, by Theorem 7 in [11], γc(G) +γc(G) < δ∗(G) + 2. Since δ∗(G) ≤ bn−1

2
c,

then

γc(G) + γc(G) <

⌊
n− 1

2

⌋
+ 2,

or equivalently

γc(G) + γc(G) ≤
⌊
n− 1

2

⌋
+ 1.

It follows that

min(γc(G), γc(G)) ≤
⌊bn−1

2
c+ 1

2

⌋
=

⌊
n+ 1

4

⌋
.

By Theorem 5.1,

n−
⌊
n+ 1

4

⌋
≤ f(n).

If δ∗(G) = 6, since G is 3-non-compliant, then γc(G) = γc(G) = 4. By Theorem 5.1,
f(n) ≥ n− 4. For n ≥ 15,

⌊
n+1
4

⌋
≥ 4 and it follows that f(n) ≥ n−

⌊
n+1
4

⌋
.

Remark 5.3. Note that n−
⌊
n+1
4

⌋
= n− 3, for n = 13, 14. So the bound n ≥ 15 is

necessary, by Theorems 1.3 and 1.4.

Note that Theorem 5.2 shows that all graphs of order n ≤ 18 are 4-compliant.
On the other hand, QR61 is 4-non-compliant. This begs the question:

Question 7: What is the smallest order of a k-non-compliant graph, for k ≥ 4?

One can check that four is the smallest order of a 1-non-compliant graph (C4, the
4-cycle), and five is the smallest order of a 2-non-compliant graph (C5, the 5-cycle).
Corollary 2.4 shows that 13 is the smallest order for a 3-non-compliant graph.

Theorem 5.4 (Karami et al. [11]). If G and G are both connected of order n ≥ 7,
then

γc(G) · γc(G) ≤ 2n− 4,

with equality if and only if G or G is a path or a cycle.

Corollary 5.5. For n ≥ 7, we have

min{γc(G), γc(G)} ≤
⌈√

2n− 4
⌉
− 1, and equivalently n−

⌈√
2n− 4

⌉
+ 1 ≤ f(n).

Proof. If either G or G are disconnected, then G is 2-compliant and the corollary
holds. If n ≥ 7 and G is a path or a cycle, then γc(G) = n− 2 and γc(G) = 2. Then
min{γc(G), γc(G)} = 2 ≤

⌈√
2n− 4

⌉
−1. For G not a path or a cycle, by Theorem 5.4,

γc(G) · γc(G) < 2n− 4. Assume γc(G), γc(G) >
⌈√

2n− 4
⌉
− 1. Then γc(G), γc(G) ≥⌈√

2n− 4
⌉
, and γc(G) · γc(G) ≥

( ⌈√
2n− 4

⌉ )2 ≥ 2n− 4, a contradiction.

Remark 5.6. This bound is a strict improvement over Theorem 5.2 for n ≥ 31.
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A Three-non-compliant graphs of order 15

E(G1) ={(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (3, 5), (3, 8), (3, 9), (3, 10),
(3, 11), (3, 14), (3, 15), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (5, 7), (5, 10), (5, 11), (5, 12), (5, 13), (5, 14),

(5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13), (9, 11), (10, 12),

(10, 14), (10, 15), (11, 13), (11, 14), (11, 15), (12, 14), (12, 15), (13, 14), (13, 15), (14, 15)}

E(G2) ={(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (3, 5), (3, 8), (3, 9), (3, 10),
(3, 11), (3, 14), (3, 15), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (5, 7), (5, 10), (5, 11), (5, 12), (5, 13), (5, 14), (5, 15),

(6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13), (9, 11), (10, 12), (10, 14),

(10, 15), (11, 13), (11, 14), (11, 15), (12, 14), (12, 15), (13, 14), (13, 15)}

E(G3) ={(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5), (3, 8),
(3, 9), (3, 10), (3, 11), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (4, 15), (5, 7), (5, 10), (5, 11), (5, 12), (5, 13),

(6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13), (8, 14), (8, 15), (9, 11),

(9, 14), (9, 15), (10, 12), (10, 14), (10, 15), (11, 13), (13, 14), (13, 15)}

E(G4) ={(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13),
(3, 5), (3, 8), (3, 9), (3, 10), (3, 11), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (4, 15), (5, 7), (5, 10), (5, 11),

(5, 12), (5, 13), (5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (6, 15), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10),

(8, 13), (8, 14), (9, 11), (9, 14), (10, 12), (10, 14), (10, 15), (11, 13), (13, 14)}

E(G5) ={(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (3, 5), (3, 8), (3, 9),
(3, 10), (3, 11), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (4, 15), (5, 7), (5, 10), (5, 11), (5, 12), (5, 13),

(6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13), (8, 14), (8, 15), (9, 11),

(9, 14), (9, 15), (10, 12), (10, 14), (10, 15), (11, 13), (13, 14), (13, 15)}

E(G6) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (3, 14), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (5, 7), (5, 10), (5, 11), (5, 12),

(5, 13), (5, 14), (5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10),

(8, 13), (9, 11), (9, 15), (10, 12), (10, 14), (11, 13), (11, 14), (12, 14), (12, 15), (13, 14), (13, 15), (14, 15)}

E(G7) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (4, 15), (5, 7), (5, 10), (5, 11),

(5, 12), (5, 13), (5, 15), (6, 8), (6, 11), 6, 12), (6, 13), (6, 15), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15),

(8, 10), (8, 13), (8, 14), (9, 11), (9, 14), (10, 12), (10, 14), (10, 15), (11, 13), (13, 14)}

E(G8) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (3, 14), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (5, 7), (5, 10), (5, 11), (5, 12),

(5, 13), (5, 14), (5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13),

(9, 11), (9, 15), (10, 12), (10, 14), (11, 13), (11, 14), (12, 14), (12, 15), (13, 14), (13, 15)}
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E(G9) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (3, 14), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (5, 7), (5, 10), (5, 11), (5, 12),

(5, 13), (5, 14), (5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (8, 10), (8, 13), (9, 11),

(9, 15), (10, 12), (10, 14), (11, 13), (11, 14), (12, 14), (12, 15), (13, 14), (13, 15), (14, 15)}

E(G10) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (3, 15), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (4, 15), (5, 7), (5, 10),

(5, 11), (5, 12), (5, 13), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10), (8, 13),

(8, 14), (9, 11), (9, 14), (10, 12), (10, 14), (11, 13), (11, 15), (13, 14), (14, 15)}

E(G11) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (2, 15), (3, 5),
(3, 8), (3, 9), (3, 10), (3, 11), (3, 14), (3, 15), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 15), (5, 7), (5, 10),

(5, 11), (5, 12), (5, 13), (5, 14), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (7, 15), (8, 10),

(8, 13), (9, 11), (9, 15), (10, 12), (10, 14), (11, 13), (11, 14), (11, 15), (12, 14), (13, 14)}

E(G12) = {(1, 3), (1, 6), (1, 7), (1, 8), (1, 9), (1, 12), (1, 15), (2, 4), (2, 7), (2, 8), (2, 9), (2, 10), (2, 13), (3, 5), (3, 8),
(3, 9), (3, 10), (3, 11), (3, 15), (4, 6), (4, 9), (4, 10), (4, 11), (4, 12), (4, 14), (5, 7), (5, 10), (5, 11), (5, 12),

(5, 13), (5, 15), (6, 8), (6, 11), (6, 12), (6, 13), (7, 9), (7, 12), (7, 13), (7, 14), (8, 10), (8, 13), (8, 14), (8, 15),

(9, 11), (9, 14), (9, 15), (10, 12), (10, 14), (10, 15), (11, 13), (11, 15), (13, 14)}

E(G13) = {(1, 2), (1, 4), (1, 5), (1, 10), (1, 11), (1, 13), (1, 14), (2, 3), (2, 5), (2, 6), (2, 11), (2, 12), (2, 14), (3, 4), (3, 6),
(3, 7), (3, 12), (3, 13), (3, 14), (3, 15), (4, 5), (4, 7), (4, 8), (4, 13), (5, 6), (5, 8), (5, 9), (5, 14), (6, 7), (6, 9),

(6, 10), (6, 14), (7, 8), (7, 10), (7, 11), (8, 9), (8, 11), (8, 12), (8, 15), (9, 10), (9, 12), (9, 13), (9, 15), (10, 11),

(10, 13), (11, 12), (11, 14), (11, 15), (12, 13), (12, 15), (13, 15), (14, 15)}

E(G14) = {(1, 2), (1, 4), (1, 5), (1, 10), (1, 11), (1, 13), (1, 14), (2, 3), (2, 5), (2, 6), (2, 11), (2, 12), (2, 14), (2, 15), (3, 4),
(3, 6), (3, 7), (3, 12), (3, 13), (3, 14), (4, 5), (4, 7), (4, 8), (4, 13), (4, 14), (4, 15), (5, 6), (5, 8), (5, 9), (5, 15),

(6, 7), (6, 9), (6, 10), (6, 14), (6, 15), (7, 8), (7, 10), (7, 11), (7, 15), (8, 9), (8, 11), (8, 12), (8, 14), (9, 10),

(9, 12), (9, 13), (9, 14), (10, 11), (10, 13), (11, 12), (12, 13), (12, 15), (13, 15)}
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