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Abstract

The power domination problem seeks to determine the minimum number
of phasor measurement units (PMUs) needed to monitor an electric power
network. We introduce random sensor failure before the power domina-
tion process occurs and call this the fragile power domination process.
For a given graph, PMU placement, and probability of PMU failure g,
we study the expected number of observed vertices at the termination of
the fragile power domination process. This expected value is a polyno-
mial in ¢, which we relate to fault-tolerant and PMU-defect-robust power
domination. We also study the probability that the entire graph becomes
observed and give results for some graph families.
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1 Introduction

The power domination problem, defined by Haynes et al. in [2], seeks to find the
placement of the minimum number of phasor measurement units (PMUs) needed
to monitor an electric power network. This process was simplified by Brueni and
Heath in [3]. PMUs are placed on an initial set of vertices of a graph, and vertex
observation rules define a propagation process on the graph.

Pai, Chang, and Wang [1] provided a variation to power domination which looked
for the minimum number of PMUs needed to monitor a power network in the case
where k of the PMUs will fail, called k-fault-tolerant power domination. Their work
allows the placement of only one PMU per vertex. A generalization of this problem is
PMU-defect-robust power domination which allows for multiple PMUs to be placed
at a given vertex, defined by Bjorkman, Conrad, and Flagg [4].

Fault-tolerant and PMU-defect-robust power domination study a fixed number
of PMU failures. However, actual sensor failures occur randomly. Thus, we assign
a probability of failure to the PMUs to create the fragile power domination process.
By studying a model in which PMUs have a random chance of failure, the primary
question is no longer to find the placement of a minimum number of sensors. Instead,
the expected observability of the network is studied.

In particular, we define the expected value polynomial for a graph G and PMU
placement S as a function of the PMU failure probability. This polynomial is shown
to have a direct connection to k-fault-tolerant and k-PMU-defect-robust power dom-
ination. We use this polynomial to determine the probability that the entire graph
will be observed. Methods of comparing this polynomial for different PMU place-
ments are presented, and the polynomial is calculated for families of graphs.

In Section 2, we give definitions, establish useful binomial properties, and for-
mally define relevant power domination variations. We then define the fragile power
domination process and the associated expected value polynomial, and in Section 3
explore properties of this polynomial. In Section 4, we consider the probability of
observing the entire graph. Graph families are studied in Section 5. Finally, in
Section 6 we give ideas for future work.

2 Preliminaries

To begin, necessary graph theoretic definitions and some useful properties of binomial
coefficients are established. The relevant notions of power domination, failed power
domination, fault-tolerant power domination, and PMU-defect-robust power domi-
nation are given. Finally, we introduce fragile power domination and the expected
value polynomial.
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2.1 Graph theory

A simple, undirected graph G is a set V(G) of vertices and a set E(G) of edges.
Each edge is an unordered pair of distinct vertices {z,y}, usually written zy. When
xy is an edge, x and y are said to be adjacent or neighbors. A graph H is a subgraph
of Gif V(H) CV(G) and E(H) C E(G). A graph H is an induced subgraph of G if
V(H) CV(G)and E(H) = {xy € E(G) : x,y € V(H)} and is denoted by G[V (H)].

A path from vy to veyq is a sequence of distinct vertices vy, vs, ..., v 1 such that
VUi 1s an edge for all i = 1,2,... 0. A graph G is connected if, for all u,v € V(G),
there exists a path from u to v. For a graph G that is not connected, the subgraphs
H,, ..., Hy are the connected components of G when Hi, ..., H; are connected and
have no edges between them.

A cycle from vy to vy is a sequence of distinct vertices vy, v, . .., vy such that v;v;,
is an edge for all i = 1,2,...,¢ and vyv, is an edge. The neighborhood of u € V(G),
denoted by N(u), is the set containing all neighbors of u. The closed neighborhood
of uis Nfu] = N(u) U {u}. Given an initial set S of vertices of a graph G, S is a
dominating set of G if |J,cq N[v] = V(G). A universal vertex v has N[v] = V(G).
The degree of a vertex u is deg(u) = |[N(u)|. A leaf is a vertex v with deg(v) = 1.

A subdivision of an edge xy creates a new vertex w and replaces the edge ry with

the edges zw and wy. If the edge xy is subdivided a times, vertices wy, ws, ..., w,
are added to the vertex set and the edges zwi, wiws, ..., w,_1w,, w,y replace the
edge xy.

We denote the path on n vertices by P,, the cycle on n vertices by C,,, and the
complete graph on n wvertices by K,. The wheel on n wvertices, denoted by W,, is
constructed by adding a universal vertex to C,,_1. A complete multipartite graph,
denoted by K, , ., has its vertex set partitioned into disjoint sets A;, A, ..., A
with |V;| = r;, and edge set {zy : © € A;,y € Aj,i # j}. The case of k = 2 is the
complete bipartite graph. A special case of the complete bipartite graph is the star
on n vertices, Sy, = Ki 1.

2.2 Probability notation

Let A and B be a statistical events, that is, subsets of a finite sample space. We
write Prob [A] to denote the probability that A occurs, and Prob [A : B] to denote
the probability of A given that B occurs. If X is a random variable with possible
outcomes 1, Ta, ..., T,, then {X = z;} is the event that X takes the value z; and
occurs with some probability Prob [X = xz] The expected value of the random
variable is E [X] = > 2; Prob [X = z;].

If A; and A, are events, A; V Ay denotes the event that at least one of A; or A,
occurs. Additionally, A; A Ay denotes the event that both A; and A, occur.
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2.3 Power domination

Formally, the power domination process on a graph G with initial set S C V(G)
proceeds as follows:

1. (Domination) Initialize B = U N{v].
veS
2. (Zero Forcing) While there exists v € B such that exactly one neighbor, say
u, of v is not in B, add u to B.

During the process, a vertex in B is observed and a vertex not in B is unobserved. We
denote the set of vertices observed at the termination of the power domination process
by Obs (G; S). If v causes u to join B, then v observes u. A power dominating set of
a graph G is an initial set S such that Obs (G;S) = V(G). The power domination
number of a graph G is the minimum cardinality of a power dominating set of G and
is denoted by vp (G).

Failed power domination is a related, reversed, notion to power domination in-
troduced by Glasser et al. in [5] and will be very useful throughout this work.

Definition 2.1. The failed power domination number of a graph G is the cardinality
of a largest set F' C V(G) such that Obs (G; F') # V(G). This maximum cardinality
is denoted by 7p (G).

Fault-tolerant power domination was introduced in [1] in order to account for
PMU failure when determining minimum power dominating sets. We will think of
multisets as sets where the multiplicity of an element is the number of times the
element is repeated.

Definition 2.2. For a graph G and an integer k with 0 < k < |V(G)], a set
S C V(Q) is called a k-fault-tolerant power dominating set of G if S\ F is still a
power dominating set of G for any subset F' C S with |F| < k. The k-fault-tolerant
power domination number is the minimum cardinality of a k-fault-tolerant power
dominating set of G.

PMU-defect-robust power domination was introduced in [4] to extend vertex-fault
tolerant power domination into multiset PMU placements.

Definition 2.3. Let G be a graph, £k > 0 be an integer, and S be a set or multiset
whose elements are in V(G). The set or multiset S is a k-PMU-defect-robust power
dominating set (k-rPDS) if for any submultiset F' with |F| = k, S\ F contains
a power dominating set of vertices. The minimum cardinality of a k-rPDS is the
k-PMU-defect-robust power domination number.

2.4 Fragile power domination

The fragile power domination process is a variation of the power domination process
with the addition that before the domination step, each PMU fails independently
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with probability q. We utilize the same notation and terminology as the power
domination process, given in the previous section, with suitable modifications.

Definition 2.4. The fragile power domination process on a graph G with initial set
or multiset of vertices S is as follows:

0. (Sensor Failure) Let S* = @. For each v € S, add v to S* with probability
1 — q. Note that each v € S is added to S* as independent random events.
1. (Domination) Initialize B = U Nlv
veES*
2. (Zero Forcing) While there exists v € B such that exactly one neighbor, say
u, of v is not in B, add u to B.

Given initial PMU placement S, the set or multiset S* is the random collec-
tion of vertices which did not fail with probability 1 — g. We denote the set of
vertices observed at the termination of the fragile power domination process by
Obs (G; S, q). Observe that |Obs(G; S, q)| is a random variable and Obs (G;S) =
Obs (G; S,0). Moreover, for a fixed set or multiset of vertices S, the expected value
of | Obs (G} S, q) | is a polynomial in g¢.

Definition 2.5. For a given graph G, set or multiset of vertices S, and probability
of PMU failure ¢, we define the expected value polynomial to be

£(G;S,q) = E[[Obs (G55, 9) ],
the expected value of the random variable | Obs (G; S, q) |.

This polynomial will serve as a central tool for investigating fragile power domi-
nation.

Observation 2.6. £ (G;S,q), as a polynomial in q with degree at most |S|, can be
calculated via:

E(G;8,q) =Y _ |Obs (G W) |¢\WI(1 - g)™!.
wcs

In the next example we explore € (G; S, q) for all 2-multisets of a specific graph.

Example 2.7. Let G be the graph G in Fig. 1. Note that yp (G) = 2. The 28
unique placements of 2 PMUs; corresponding to the 28 multisets of 2 vertices, result
in 10 distinct expected value functions, which are plotted in Fig. 1:

G; S, q

) = — ¢)? when S = {2,2},{3,3},{6,6} or {7,7},
G:8,q) = 4(1 — q)g + 3(1 —
) =
)=

)

q)? when S = {2,3} or {6, 7},

G;S,q )
)

41 —q)q+4(1—g¢q

E(
E(
E( 2 when S = {2,6},{2,7},{3,6}, or {3,7},
E(

G; S, q —q)* when S = {1,1},
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o £(G;S,q) =5(1—q)g+5(1 —q)* when S = {1,2},{1,3},{1,6}, or {1,7},
o £(G;S,q) =T7(1—q)q+5(1 —q)* when S = {2,4},{3,4},{5,6}, or {5,7},
e £(G;S,q) =8(1—q)g+5(1 —q)* when S = {1,4} or {1,5},
e £(G;S,q) =10(1 — q)qg + 5(1 — q)? when S = {4,4} or {5,5},
e £(G;S,q) =7(1—¢q)q+7(1 —q)* when S = {2,5},{3,5},{4,6}, or {4,7}, and
e £(G;8,q) =10(1 — q)qg+ 7(1 — q)* when S = {4,5}.
- - &£(G;{4,5},q
— &(G;{2,5},¢
6 | E(G;{4,4},q
E(G;{1,4},q
- - £(G;{2,4},q
E(G;{1,2},q
(1) < o
(=) P12
OVANFOR-E
(O—) <
w0
(3) D 2
07

Figure 1: A graph G and all distinct £ (G; S, q) for 2-multisets S containing ver-
tices of G.

Overall, the power dominating set {4, 5} is expected to observe more vertices than
any other placement of two PMUs. The only other power dominating sets of size
two are {2,5}, {3,5}, {4,6}, and {4, 7}, all of which have the same expected value
polynomial. Notice that for ¢ € (2/5,1) the placement of {4, 4}, a failed power domi-
nating set, is expected to observe more vertices than the placement of {2,5}, a power
dominating set. We will explore the intersection of the expected value polynomials
for power dominating sets and failed power dominating sets in Section 3.3.

Example 2.7 demonstrates € (G} S, q) for different PMU placements S and a range
of g values. A natural baseline comparison for these polynomials is a placement of
PMUs for which the observed vertices are roughly evenly distributed. For instance,
let G be a graph on n vertices and let S be a power dominating set of G such that

for any W C S, it holds that | Obs (G; W) | = |W|7PL(G) We calculate

E(G;S,q) = Z | Obs (G; W) |q|S\W|(1 — )W

wWcs

= Z <|W| #(G)) g @O-WI(1 — VI,

wcs



B. BJORKMAN ET AL. / AUSTRALAS. J. COMBIN. 94 (1) (2026), 1-24 7

The fprG term is independent of the set W and can be factored out of the sum. As
the specific set W does not impact the sum, we re-index the sum over all possible

sizes of W C S. There are %|DVE/C|;> such sets for each possible |IW|. Then we use
the expected value of a binomial random variable to find
n 7p(G)
E(G;S,q) Z |W|( ) (@=Wl1 — ¢)WI
“or@ 2=
= (@009
7 (G) TP q
=n(l—-q).

In this sense, £ (G} S, ¢) being linear in g corresponds to a roughly evenly distributed
PMU covering of GG. This notion is formalized in Proposition 3.2.

3 Properties of the expected value polynomial

As in power domination, fragile power domination on a disconnected graph G can
be observed as the sub-problems on the connected components of G. Particularly,
given a graph GG with connected components Hi, ..., H; and initial set or multiset
of vertices S, € (G; S, q) = Zle E(H; V(H;) NS, q). Thus, from now on, all graphs

are assumed to be connected.

3.1 Linearity
With € (G; S, q) having degree at most |S|, it is trivial to show that when |[S| =1
then &€ (G; S, q) is a linear function of q.

Observation 3.1. For a graph G on n vertices with vp (G) > 1, a power dominating
set or multiset S, and probability of PMU failure q, € (G; S, q) > n(1—q)"®l. Equality
holds when |S| =1, resulting in a linear € (G; S, q).

To see this, notice

E(G;8,q) = > |Obs (G W) |¢WI(1 — )W

wcs
‘S‘ + Z q\S\W\ |W|
wcs

The following yields another condition for when & (G; S, q) is linear.
Proposition 3.2. Let G be a graph, S C V(G) be a set, and q be a probability of
PMU failure. If for every X C S,

|Obs (G; X) | =) |Obs (G; {o}) ],

veX

then € (G;S,q) = | Obs (G;S)|(1 — q).
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Proof. We show this by induction. Observe that |S| = 1 is immediate.

Now suppose the claim holds for vertex sets of size k — 1 and let S C V(G) be of
size k such that
| Obs (G5 X) | =) | Obs (G; {v}) |
veX

for every X C S. Fixv e S and let Y = S\ {v}. Then £ (G; S, q) is equal to

g |Obs(G;W) [¢"WI(1—g)™+ (1—¢) > | Obs (G; W U {v})] ¢"WI(1—¢)"]

wcy WcCy

and using the assumption on S we can split |Obs (G; W U {v})| = |Obs (G; W) | +
| Obs (G; {v}) |, resulting in

> |0bs (G W) [ ¢ W1 — )™+ (1—¢) > |Obs (G; {v}) [¢"(1 = )™

wCy WCy
by combining the ¢ and 1 — ¢ sums. This is now equal to

Y|
Y —i i
E(GY,q)+ (1 — q)‘ Obs (G;{v}) ‘ Z (l . |>qy (1—1¢q)"
i=0
Then by the inductive hypothesis € (G;Y,q) = (1 — ¢)|Obs(G; S\ {v})| and so
applying the binomial theorem yields

(1—q)[Obs (G; S\ {v}) |+ (1 — q)| Obs (G; {v}) | = | Obs (G; ) [(1 —q). O

We now construct a family of graphs for which the unique minimum power dom-
inating set satisfies the assumption of Proposition 3.2. Start with the complete
multipartite graph K, ,, , with & > 2 and r; > 2 for all 4, and vertex partitions
Aq, Ay, ..., A, For each partition A;, add a vertex a; adjacent to all vertices in A;.
Then for each a; add two adjacent leaves. If desired, subdivide any edge incident
to a; any number of times. The set {ay,as,...,a;} is the unique minimum power
dominating set and satisfies the hypothesis of Proposition 3.2. The family of graphs
constructed from K 5 is shown in Fig. 2. This family of graphs demonstrates Propo-

sition 3.2, where for all v € S, the set Obs (G;{v}) is disjoint from Obs (G;{w}) for

allwe S\ v.
SoRe Sdohs

Figure 2: The family of graphs built from K2 where the minimum power domi-
nating set {a1, ag} satisfies Proposition 3.2. The dotted lines indicate edges that
may be subdivided.

Proposition 3.2 does not only hold when the vertices in S observe disjoint sets of
vertices. Let G = K;3 and S = {x,y} where x and y have degree 1. We calculate
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E(G;S,q) = 4(1 — q), and notice that |Obs (G;{z})| 4+ |Obs(G;{y})| =2+2 =
4 =1]0bs (G;S)| but Obs (G;{z}) U Obs (G;{y}) # Obs (G;{x,y}). In fact, we can
construct a family of graphs for which the unique minimum power dominating sets
satisfies the assumption of Proposition 3.2 and the sets of observed vertices associated
with each PMU overlap. Start with the graph shown in Fig. 3. Add k leaves adjacent
to vertex v. Notice that S = {v,w} is the unique minimum power dominating set,

and that £ (G;S,q) = (8+k)(1 —q).

Figure 3: The base graph where the minimum power dominating set {v, w} satis-
fies Proposition 3.2.

A consequence of the proof of Proposition 3.2 is a condition for when the degree
of the expected value polynomial does not change after a vertex is added to a given
PMU placement.

Corollary 3.3. Let G be a graph and let q be a probability of PMU failure. Let S be a
set or multiset of vertices andv € V(G)\S. If for all W C S, |Obs (G; W U {v})| =
| Obs (G; W) | + | Obs (G; {v}) |, then £(G;S,q) and € (G; S U{v},q) are the same

degree.

A natural question to ask is whether, for all ¢, a power dominating set is better
or worse than the linear expected value given by Proposition 3.2. When ¢ is large, it
is important that each PMU individually observes as many vertices as possible. One
way to formalize this idea is through the following definition.

Definition 3.4. Let GG be a graph and let S be a set or multiset of the vertices of G.

Then we call S a local cover of G if for every x € V(G), there exists a vertex v € S
such that = € Obs (G; {v}).

The notion of a local cover gives an alternative to Proposition 3.2.

Proposition 3.5. Let G be a graph on n vertices and let q be a probability of
PMU failure. If S is a local cover of G' = G[Obs (G S)], then € (G;S,q) >
| Obs (G5 S) [(1 — q) for all q. In particular, if S is a power dominating set then
E(G;S,q) >n(1l—q) forall g.

Proof. Note that £ (G;S,q) = Z Prob[v is observed]. Since S is a local cover of
veV(G)
G', there is at least one w € S such that v € Obs (G, 5) for every v € G'. In this
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way, the following inequality holds:

Z Prob|v is observed] = Z Prob[v is observed]
veV(GQ) veV(G")
> Y (1—q) = V(@)1 - a).
VeV (G

When S is a power dominating set of G, then G’ = G and thereby £ (G;S,q) >
n(l —q).

U

The following is an immediate corollary for dominating sets.

Corollary 3.6. For a graph G on n vertices, dominating set D of G, and probability
of PMU failure q, £ (G; D, q) > n(1 —q) for all q.

Notice that the converse of Proposition 3.5 is not true. This can be seen by the
graph G in Fig. 4. For this graph,

E(Gi{a,b,c},q) = 16(1 — q)° +40g(1 — q)* + 23¢*(1 — q).

For all ¢ € [0,1], £ (G;{a,b,c},q) > 16(1 — q), but {a,b, c} is not a local cover of G
as x is not observed by any individual vertex in {a, b, c}. Moreover, being a k-rPDS
for £ > 1 does not guarantee being a local cover. For example, the set of leaves of
G is a 1-rPDS because a set consisting of any six of the seven leaves forms a power
dominating set, but vertex z is not in Obs (G;{v}) for any leaf v of G. In fact, the
only minimum local covers of G are {a,b, c,z} and {a,b, c,y}.

Figure 4: A graph G with a minimum power dominating set S = {a,b,c} for
which € (G; S,q) > n(1 — q) for ¢ € [0,1], but S is not a local cover.

3.2 Coefficients

In this section, we will explore the relationship between the structure of the expected
value polynomial and and properties of its fixed PMU placements. Specifically, we
show a correspondence between the coefficients of £ (G; S, q¢) and whether the PMU
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placement S is PMU-defect-robust or fault-tolerant. We also show a connection
to the failed power domination number. We begin with the following result which
calculates the coefficients of £ (G; S, ¢) in standard form.

Lemma 3.7. Let G be a graph and q a probability of PMU failure. Let S be a set or
multiset of vertices and r € {0,...,|S|}. Then the coefficient of ¢'°I=" in € (G; S, q)

s > (_1)|W|—r(|vf|)|0bs (G;W) .

WCS:
[W|>r

Proof. Let G be a graph. Notice

£(G;S,q) =Y |Obs (G; W) [¢*\WI(1 — q)V

wWcs
124
_ Z |Obs (G5 W) ’q|S\W|Z <|W|)
WcCSs
144
=5 S u (M) ovs iy s
WCS =0

and so we contribute to the coefficient of ¢/°I=" whenever |W| > r and i = |[W| — r.
Hence the coefficient of ¢/°/=" in £ (G} S, q) is

> <—1>'W“('W')|Obs (G| s

WCS:
[W|>r

Lemma 3.7 gives a complete characterization of k-PMU-defect-robust power dom-
inating sets or multisets.

Theorem 3.8. Let G be a graph on n vertices, q be a probability of PMU failure, and
the set or multiset of vertices B be an initial placement of PMUs with |B| = b. Then
B is a k-PMU-defect-robust power dominating set of G if and only if £ (G; B, q) has
the form

E(G;B,q) =n—¢"""h(q)

for some polynomial h(q).

Proof. First assume B is a k-rPDS. Consider £ (G; B, q) from the perspective of
expected number of vertices not observed and see
€(G;B,q) = E[|Obs (G; 5, q) ]
=E[V(G)] = [V(G) \ Obs (G; 5, q) |]

=n— Y (n—|0bs(G;W,q)[)(1— q)"Ig"=".

WCS
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Since S is a k-rPDS, Obs (G; W, q) = V(G) for all W C S with |[W| > |S| — k — 1.

Hence,

E(G;B.g)=n— Y (n—|O0bs(G;W,q)|)(1 —q)"lg*=1"

WCs:
[WI<|S|—k—1

=n—¢"" Y (n—[Obs(G;W,q)[)(1 — )"l WImE=1,
WCS:
WI<|S|—k-1
Note that |S| — |W| —k — 1 > 0, so the summation is thereby a polynomial in gq.
Next assume that £ (G; B, q) = n — ¢""'h(q). Note that

n— Z Prob [v is not observed] = € (G; B, q) = n — ¢""h(q).
veV(G)
Thus,
Z Prob [v is not observed] = ¢"**h(q).
veV(G)
That is, we can factor ¢**! from each term in the sum. Thus, for any vertex, we see

that at least &£ + 1 PMUs must fail in order for the vertex to be unobserved. This
means that any & PMUs can fail and the vertex is observed, so S is a k-rPDS. [

Notice that a set which is k-fault-tolerant is also k-PMU-defect-robust, and so
Theorem 3.8 gives us the following corollary.

Corollary 3.9. Let G be a graph on n vertices, q be a probability of PMU failure,
and the set S C V(G) be an initial placement of PMUs. Then S is a k-fault-tolerant
power dominating set of G if and only if £ (G; S, q) has the form

E£(G;8,q9) =n—q""'h(q)
for some polynomial h(q).

The largest set that can be used in k-fault-tolerant power domination is the entire
vertex set. This means that V(G) determines the largest possible k for which G can
be k-fault-tolerant. We can determine this k using the expected value polynomial.

Proposition 3.10. Let G be a graph on n vertices and let q be a probability of PMU
failure. Writing € (G;V (G),q) = n — ¢***h(q) for some polynomial h(q) containing
a nonzero constant term, it follows that k is the largest possible k for which G can
be k-fault-tolerant.

Notice that if the entire vertex set is at most k-PMU-defect-robust, then there
must exist some failed power dominating set F' with |F| = n—k — 1. Then by Theo-
rem 3.8, we obtain a similar structural constraint on the expected value polynomial
in terms of the failed power domination number.

Corollary 3.11. For a graph G on n vertices such that € (G;V(G),q) has the form
n—q"h(q) with h(q) containing a nonzero constant term, we have ¥p (G) = n—k—1.
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3.3 Comparisons

Now we will use the expected value polynomial as a tool to compare PMU placements.
We examine what happens when a PMU is added to an existing placement. Then
we compare failed power dominating sets to power dominating sets of the same size.

Lemma 3.12. Let G be a graph, S a set or multiset of vertices of G, and q a
probability of PMU failure. Given a vertex v € V(G), it holds that € (G;S,q) <
£(G;5U{v},q).

Proof. By definition, &€ (G; S U {v}, q) equals

D 10Dbs (G:W) [gHHHL — )Ty [ Obs (G5 W U {o}) [¢5\(1 — )™,

WwcCs WcCs

where the first sum corresponds to subsets or submultisets of S, and the second
sum to those which add v. Note that the first sum reduces to ¢ & (G; S, ¢) and the

second sum reduces to (1 — q) Z | Obs (G; W U {v}) | * ¢*\WI(1 — ¢)"™!. The set
WwCs

W U {v} observes all the vertices observed by the set W, so |Obs (G;W U {v})| >

| Obs (G; W) |. Thus,

E(G; SU{v},q) 2 ¢€ (G5 S, q) + (1 —q)€ (G S, q)
=£(G;S,q). O

Restricting S to be a set results in the following upper bound for the expected

value polynomial.

Corollary 3.13. Let G be a graph, S C V(G) a set, and q a probability of PMU
failure. Then &€ (G; S, q) < E(G;V(G),q).

We now compare a fixed set or multiset of vertices S to those of size |S| + 1,
including ones which do not contain S. Consider the graph G in Fig. 5. The best
placement of 1 PMU is {6} for all values of ¢ € [0, 1]. Considering sets and multisets
S with |S| = 2 and {6} C S we calculate the following expected value polynomials:

o £(G;S,q) =10q(1 —q) + 7(1 — ¢)> when S = {2,6},{3,6},{6,9}, or {6,10},
e £(G;8,q) =9q(1 —q) +9(1 — ¢)> when S = {1,6}, {4,6},{6,8}, or {6,11},
e £(G;S,q) =14¢(1 — q) + 7(1 — q)*> when S = {6,6}, and
e £(G;S,q) =13¢(1 —q) +9(1 — q)> when S = {5,6} or {6,7}.

The placement {5,7}, corresponding to & (G;S,q) = 12q(1 — q) + 11(1 — ¢)?, is
expected to observe more vertices of G for ¢ € [0, 2/3) than any other 2-set or multiset,
including those containing vertex 6. Therefore, even if a set or multiset of vertices
S is the best PMU placement using |S| PMUs for all values of ¢, it is not the case
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Figure 5: Small graph G on 11 vertices.

that the best PMU placement using |S| + 1 PMUs is of the form S U {v} for some
v e V(G).

It is natural to believe that once |S| > vp (G), then & (G; S, q) will always be
bounded above by a power dominating set. Unfortunately, the following describes
how this is not always the case.

Theorem 3.14. For any q. € (0,1) N Q, there exists a graph G, failed power dom-
inating set F', and power dominating set S with |F| = |S| such that € (G; F,q) <
E(G;S,q) forall0 < q<q. and E(G;S,q) < E(G; F,q) for all ¢. <q < 1.

Figure 6: The family of graphs G,; where the edge s15,41 was subdivided a
times and the edge f1f,+1 was subdivided b times. Note that {so, s1} is a power
dominating set and { fo, f1} is a failed power dominating set.

Proof. Consider the graph G,; as in Fig. 6 where the edge s;1s,41 is subdivided
a > 1 times and the edge fify.1 is subdivided b > 1 times. It can be verified that
S = {sg,s1} is a power dominating set that observes all 10 + a + b vertices and
F ={fo, f1} is a failed power dominating set that observes only 6 + b vertices. We
show that a and b can be chosen so that the unique intersection of £ (Gp; S, q) and
E (Gap; F,q) is any g, € (0,1) N Q. Observe that

E(Gap; S,q) = (104 a+0)(1 —q)* + (124 a)(1 — q)q
and

E(Gapi Frq) = (6+0)(1—q)* + (6+b)(1 —q)q.
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Let g(q) = £ (Gap; S,q) — E (Gap; F,q) and notice g can be simplified to

9(q) = (g =1)((b—2)g — (a +4)).

In this form, it can be seen that the zeros of g are 1 and “+§. Then given any
€ (0,1) NQ, choose positive integers a and b such that ¢, = $.

Since S is a power dominating set and F is a failed power dominating set,
E (Gap; F,0) < €(Gqp;5,0). Then for all 0 < ¢ < ¢, it follows that & (Gap; F q) <
E (Gap; S, q). Since g(q) is a quadratic whose roots are 92 and 1, it necessarily fol-
lows that € (Gap; S, q) < € (Gap; Flq) for 45 < ¢ < 1. O

4 Probability of observing the entire graph

Given a graph G, an initial placement of PMUs S, and a probability ¢ of PMU
failure, we now investigate the probability that the entire vertex set will be observed
at the termination of the fragile power domination process. Corollary 3.13 shows
that when restricting to sets as PMU placements, the best probability of observing
the entire graph G occurs when S = V(G). We examine this in Section 4.1. We then
consider how the probability of observing the entire graph is related to the failed
power domination number and the k-PMU-defect-robust power domination number
in Section 4.2. We conclude with examples and calculate the exact probability for
stars in Section 4.3.

4.1 Using the entire the vertex set

If a PMU is placed on every vertex, the probability that this placement observes
the entire graph is connected to the total number of power dominating sets. In [6],
Brimkov, et. al. introduced the power domination polynomial as a tool to count the
number of power dominating sets of a graph.

Definition 4.1. Given a graph G on n vertices, let p(G; i) be the number of power
dominating sets of size i. Define the power domination polynomial as

z) = ZP(G; i)z

Using power domination polynomial notation, the probability of observing the
entire graph with a PMU placed on every vertex is as follows.

Observation 4.2. Let G be a graph on n vertices and q be a probability of PMU
failure. Then,

Prob || Obs (G; V(G), ¢ ] Zsz n=i(1 — q)i.
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If ¢ > 7p (G) then all subsets of V(G) of with i vertices are power dominating
sets. This gives a lower bound for the probability that V' (G) observes the entire
graph.

Proposition 4.3. Let G be a graph on n vertices with 7p (G) = f and let q be a
probability of PMU failure. Then

Prob || Obs (G;V(G),q) | = n} > i (7;) "1 —q)".

i=f+1

For a connected graph on at least 3 vertices, p(G;i) = (TZL) forn—2<i<n |6,
Corollary 4]. Moreover, any such graph has 7, (G) < n — 3. This gives the following
lower bound.

Corollary 4.4. Let G be a connected graph on n > 3 vertices and let q be a probability
of PMU failure. Then

Prob [|Obs (G;V(G), q) | = n] > (n " 2) A1 — "2+ ng(1 — )"+ (1 — )"

4.2 Relating to other power domination parameters

In this section we produce estimates for observing the entire graph using the failed
power domination number and the k-PMU-defect-robust power domination number.
We now introduce a specialized case of a bound on the tails of random variables.

Theorem 4.5 (Hoeffding’s Inequality, [9, Theorem 1]). Let Xi,...,X,, be inde-
pendent Bernoulli random variables, and let X = ", X;. Then for any t > 0,
Prob [X <E[X] —t] < e 2/m.

It now suffices to observe that if S is an initial PMU placement and g =1 —p €
(0,1) is a probability of PMU failure, then |S*| is distributed as a Binomial(]S|, p)
random variable. In particular, for each v € S, we can define a Bernoulli random
variable S, such that S, = 1 with probability p, S, = 0 otherwise, and [S*| =
Y ves Sv- This leads to the following.

Proposition 4.6. Let G be a graph on n vertices, let S be a set of vertices, and let
q € (0,1) be a probability of PMU failure. If |S| > 7p(G)/(1 — q), then

Prob [| Obs(G; S, q)| =n] > 1 —exp(— 2|S|<1 —q— 71;;?))2)

Proof. Observe
Prob [| Obs (G; S, q) | = n] > Prob [|S*| > 7p(G) 4+ 1] =1 — Prob [|S*| < 7,(G)].

The result now follows from Hoeffding’s Inequality by taking ¢t = (1 —q)|S| —7p(G).
O
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This bound can be slightly improved asymptotically by, for instance, the bound
derived in [7, Theorem 1].

Proposition 4.7. Let G be a graph on n vertices, let S be a set of vertices, and let
q € (0,1) be a probability of PMU failure. Define H(a,p) = aln? + (1 — a) lnﬁ
to be the relative entropy between the Bernoulli(a) and Bernoulli(p) distributions. If
51> 7p(G)/(1 = q), then

Prob [[Obs(G;S,qH:n} > 1—exp<— |S]H(7Téf),1—q>).

For an estimate of Prob [|S*| < 7p(G)] when [S| < 7p(G)/(1 — g), we turn to
estimating the binomial distribution by the normal distribution.

Theorem 4.8 (De Moivre-Laplace Theorem). Let ¢ = 1 —p € [0,1], and let X be
a Binomial(m,p) random variable. Let ®(z) = % [ e~ dt denote the standard

normal cumulative distribution function. For fived z; and zs,

: X —mp
< < 2| = _ .
nh_}rg@ Prob [zl S g S 22} D (29) — P(2z1)
In the context of our problem p and ¢ are fixed, so let z; = —|S|p/+/|S|pg and
z = (Vp(G) — |S|p) /+/|S|pg. Then since 0 < |S*],
S* — 1|8
Prob [|S*| < 7p(G)] = Prob [zl < 157 = 15lp < Zgi| ~D(z9) — D(z)

VISlpg

up to some error term 2¢. Note that we have an error contribution of up to € from
each of the two approximations ®(z;) and ®(z,). In fact, the Berry-Esseen theorem
[8] actually gives a bound on . Namely, ¢ < C(p? + ¢*)/+/|S|pq where C < 0.4748
is some positive constant. The calculation of this term is standard once observing
(1S*| = ISIp)//1Slpa = (IS|pq) 23 ,cs(Sy — p) where S, = 1 with probability
p=1-—q.

Putting this all together,

Prob U Obs (G; S,q) | = n] > 1 —@(M) +q)( —|Slp ) _ .9496(p? —l—q?).

VIS|pq V/ISIpq V|S|pq

Notice that @(ﬂ> — 0 and 2UBEHD) () g |S| — oo. Moreover,

v/ 1SIpg v/ 1SIpa

Ip(@) ISP _ . _ B
(I>< = > — 0 exactly when p > 7,(G)/|S|, i.e., when |S| > 7,(G)/(1 — q).

Indeed, if (1 — ¢)|5], the expected number of PMUs which do not fail, is larger than
the failed power domination number, then we expect the entire graph to be observed.

A higher probability of observing the entire graph is related to PMU-defect-robust
power domination. A k-rPDS is a good choice for a PMU placement because any k
PMUs can fail and not compromise the observability of the graph.
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Theorem 4.9. Given a graph G on n vertices, a k-PMU-defect-robust power dom-
inating set or multiset S, and a probability of PMU failure q, the probability that S
observes the entire graph G is

|S|—k—1

Prob |Obs(G;S,Q)|:n]21_ Z (

1=0

B

2

o

Equality holds when |S| — k = ~vp (G).

Proof. Let S be a k-rPDS, then all subsets or submultisets W C S with |W| > |S|—k
are power dominating sets. The probability that S observes all of G is at least the
probability that |WW| > |S| —k, or one minus the probability that |[W| < |S| —k. The
inequality then follows.

Note that if |S| — k = vp (G), then W C S is a power dominating set if and only
if [W| > |S| — k and so equality holds. O

4.3 Examples calculating the probability of entire network observance

Consider the complete bipartite graph K33 and probability of PMU failure ¢ = 0.1.
Proposition 4.7 yields at least a 64% chance of complete network observance, that

is, Prob [| Obs (K33;5,0.1)| = 6} > 0.64. Note that any set of 2 distinct vertices
of K33 forms a 0-rPDS power dominating set, so Theorem 4.9 yields at least an
81% chance of complete network observance, that is, Prob || Obs (K33;5,0.1)| =

6} > 0.81. Similarly, for any 3-set S’, Proposition 4.7 yields at least a 93.925%

chance of complete network observance. Since a 3-set is necessarily a 1-tPDS of
K33, Theorem 4.9 yields at least a 97.2% chance of complete network observance.

We now determine the probability of observing the entire star .S, given any PMU
placement.

Proposition 4.10. Let S,, denote the star with universal vertex vy and let q be a
probability of PMU failure. Then for any set S C V(S,), Prob [|Obs (S,; S, q) | = n]

18 equal to

((1-q)", ifvo g S and|S|=n—2
(1— )1+ [S]q(1 — ¢)I1, ifvo @ S and |S| =n—1
1 —q, if vg € S and |S| <n—2
1—qg+q(l—q)5 1, ifvo €S and |S| =n—1
1—q+q(1 =)+ (IS| = 1)1 = ¢)1572, ifvg € S and |S| =n

0, otherwise.

\

Proof. First suppose vg € S. If S does not have at least n — 2 leaves, then S, can
never be fully observed. If |S| = n — 2, then we need every vertex to fully observe
S,,, which occurs with probability (1 — ¢)!°l. If |S| = n — 1, then to fully observe S,
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either no PMUs fail or one PMU fails. These are disjoint events which occur with
probabilities (1 — ¢)°! and |S|q(1 — ¢)!¥I=! respectively.

Now suppose vg € S. If |S| < n — 2 then the only way that S, is fully observed
is if v € S*, which occurs with probability 1 —q. If |S| = n — 1, the probability that
S, is fully observed is equal to

Prob [Uo e S*v {UO Q S* A ‘S*’ =n — 2}} — (1 _ q) _|_q(1 _ q)\S\*l'
Finally, if |S| = n then the probability that S, is fully observed is equal to

Prob [vg € 5*V {vg & S* A |S*| > n — 2}]
=(1—¢q)+qProb [(|S*|=n—-2V[S*|=n—1):vy & 5"
=(1—a) +a((IS] = Da(l = )" + (1 = ¢)*I").

Therefore the result holds. O

We now apply this theorem by way of example. Consider the star Soy and prob-
ability of PMU failure ¢ = 0.1 with initial PMU placement S = V(Sy). Then
Proposition 4.10 yields an approximate 94.20% chance of complete network obser-
vance, that is, Prob [| Obs (S20; V(S20),q) | = 20} ~ 0.9420. Hence, it is not possible
to utilize sets of vertices in order to obtain any higher probability of observing the
entire graph. However, if we instead place two PMUs on the universal vertex vy to
create a 1-rTPDS, Theorem 4.9 yields a 99% chance of complete network observance.
It is only with multisets that one can achieve over 95% chance of complete network
observance, and with substantially fewer PMUs.

5 The expected value polynomial for graph families

We determine the expected value polynomial for a PMU placement for the following
graph families: a generalization of barbell graphs, stars, and complete multipartite
graphs.

5.1 Generalized barbells

Given a graph G, let G denote the complement of G where V(G) = V(G) and
B(G) ={zy 2y & E(G)}.

Lemma 5.1. Let G € {C,,, W,,, K,,, Cp 10 : n > 3}. Construct H from G by attaching
a leaf to an arbitrary vertex of G. Then for any v € V(G), {v} is a power dominating
set for H.

Proof. Throughout what follows, let x be the leaf attached to some vertex of G.

If G = K,, then any vertex v € V(G) dominates V(G) and observes z in either
the domination step or at most one zero forcing step.
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If G = C,, then any v € V(G) is a power dominating set for C,,, and the power
domination process is unaffected by attaching . Then x becomes observed after at
most one additional zero forcing step.

When G = W, the leaf x can be adjacent to either the cycle or the universal
vertex. If z is adjacent to the cycle, then for any v € V(G) the center of the
wheel is observed in domination step, after which the G = C,, case is recovered. If
x is adjacent to the universal vertex, power domination proceeds as on W, before
observing x in at most one additional step.

Finally, let G = C,1, label the vertices of G cyclically vy, ..., v,—1 with indices
modulo n, and by symmetry assume x is adjacent to vy in H. Let v; € V(G) be
arbitrary. If ¢« = 0 then we recover the case of 7 (m) from [5]. Otherwise, notice
that v; dominates everything except v;_; and v; ;. Then there are three unobserved
vertices remaining. At least one of v;_5 or v;, 5 is not adjacent to x, without loss of
generality say v; o is not adjacent to x. Then v; 5 observes v;_; as its only unobserved
neighbor. Finally, one of v;_; or v;_5 is not a neighbor of x and hence observes v;,.
Since all of V(G) has been observed, x becomes observed. O

We now introduce the generalized barbell graph.

Definition 5.2. Let G, G5 be graphs and pick z; € V(Gy), x2 € V(G3). Add the
edge z1x5 and subdivide it m > 0 times. The resultant graph is a generalized barbell
graph, denoted by B(G1,z1, Gy, T2, m).

Figure 7: The generalized barbell graph B(Ws, z1, Cg, 22, 3).

The m vertices of a generalized barbell graph B(G1, 21, G, x2, m) between x; and
xo are referred to as the central path of the graph. If m = 0, then G; and G5 are
connected by an edge, and the central path is empty. Note that B(K,, z1, K,, x2,0)
for any z1, x5 is the usual barbell graph. Fig. 7 demonstrates the generalized barbell
graph G(Ws,x1,Cg,72,3). We now determine the expected value polynomial for
certain generalized barbell graphs.

Proposition 5.3. Let G1,Gy € {Ky, K,, W,,, Cy, Cprya - 1 > 3} with |V(G1)| = £ and
|V (G2)| = n, and construct the generalized barbell graph G = B(G1, x1, Ga, x5, m) for
any z; € V(G;). Let Sys1 be a subset or submultiset of V(G) containing r vertices
from G4, s vertices from the central path, and t vertices from Go. Note if m = 0
then s = 0 necessarily. Then for a given probability of PMU failure q, € (G5 Sys.t,q)
15 given by

(l+m~+n)(1—¢")(1—=¢")+(l+m+1)(1—q¢")¢" +(m+n+1)¢" (1—¢")+(m+2)¢" T (1—¢%).
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Proof. Partition S,,; = R U S UT as disjoint vertex subsets of size r,s, and ¢
corresponding to (1, the central path, and G5 respectively. Denote by R* the random
set which contain a vertex v € R with probability 1 — ¢, and similarly write S* and
T*. Notice that if |R*| > 1 then by Lemma 5.1, Gy, the central path, and x5 will be
observed. Similarly, if |7 > 1 then Gs, the central path, and z; will be observed.

On the other hand, if |R*| = |T*| = 0 but |S*| > 0, then the entire central path,
x1, and x9 will be observed. Hence, we can expand & (G; S, s+, ¢) using the definition
of expected value to obtain

(¢ +m+n)Prob [Fv € R*AJv € T*| + ({ +m+ 1) Prob [Fv € R*A Av € T*|+
(m+n+1)Prob[ Av € R* AJv € T*] + (m+2)Prob [ Av € R*A Av € T* AJv € 5.

The result follows from some basic probability calculations. O]

5.2 Stars

We now calculate the expected value polynomial for stars. First, we note that for
any graph G, S C V(G), and probability of PMU failure ¢, we can write

E(G;S,q) =1V(G)| — Z Prob [v is not observed] .
veV(G)

Theorem 5.4. Let S, denote the star on n vertices with center vertex c. If S is a
set of vertices containing { leaves, define the following:

11 1V P —
o4 CES- P 1—(1—gq) ¢ n'l v — 1—(1—q)" ¢ n-2
1 otherwise 1 otherwise 1 otherwise.
If q s a probability of PMU failure, then
E(Su: S q) =n— (¢*1+€CX + (n—(—-1)CY).

Proof. We consider Prob|v is not observed] for each vertex in turn. The center vertex
is only unobserved if every PMU fails, giving ¢//. For a leaf v with a sensor, v is not
observed only if all of the following occur:

1. its own sensor fails,
2. any PMU on the center fails, and
3. v is not observed via a zero forcing step.

Observe that 1. occurs with probability ¢ and 2. occurs with probability 1 if there
is no such sensor or ¢ if there is such a sensor. For 3., note that in this case, all
leaves must have started with a PMU and all must have failed, which occurs with
probability 1 — (1 — ¢)*~*. We obtain

Prob [v is not observed] = ¢C'X.

For a leaf v without a sensor, v is not observed if either one of the following occur:
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1. any PMU on the center fails, or

2. v is not observed via a zero forcing step.

Note that 1. occurs with probability C'. For 2., either there is no zero forcing step
possible or all remaining leaves have a PMU, i.e. { =n — 2 and we do not have the
case that all leaf PMUs succeed. That is, this occurs with probability 1 or 1—(1—q)*.
We obtain

Prob [v is not observed] = CY. O

5.3 Complete multipartite graphs

We now calculate the expected value polynomial for complete multipartite graphs
with parts of size at least 2, using a similar method as in the previous section.

Theorem 5.5. Let G = K,, ,, with k > 2 and r; > 2 for all i, let S C V(G)
be a set such that S contains {; vertices from the ith partition of G, and let q be a
probability of PMU failure. Denote £ = |S|. Then

k

E(G:S,q) =V =Y D ¢ X+ D ¢y,

j:1 UESQAJ‘ UE?QAJ'
where for allv € S, v € A; for some j we define

Xy = b =at b :rj.
’ 1 otherwise

and for allv & S, v € A; for some j we define

1—(1—q)£3 gj:T'j—l
Y, ;= .
1 otherwise

Proof. We consider Prob[v is observed] = 1 — Prob[v is not observed] for each v €
V(G).
If v € SN Aj, then v is not observed if all of the following occur:

1. the PMU at v fails,

2. v is not observed in the domination step, that is, every PMU in A; for ¢ # j
fails, and

3. v is not observed via a zero forcing step.

Observe that 1. occurs with probability ¢ and 2. occurs with probability ¢*~%. For 3.,
the only way that v can be observed in a zero forcing step is if all other vertices in
A; have a succeeding PMU, i.e., {; = r;, so in this case Prob[v is not observed] =
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1 — (1 —¢)%~'. If that is not possible, then we do not have ¢; = r; and v cannot
ever be observed via a zero forcing step, which gives Prob[v is not observed] = 1. As
each of these sensor failures occur independently, we obtain

Prob[v is not observed] = ¢ X, ;.

IfvesSn A;, then v is not observed if v is not observed in the domination step,
that is, every PMU in A; for i # j fails, and v is not observed via a zero forcing step.
In a similar way to the previous case, we obtain

Prob[v is not observed] = ¢" Y, ;. O

6 Future work

In this paper, we introduced the concept of power domination with random sensor
failure and tools to study the fragile power domination process. Many of our results
depend on particular PMU placements or specific graphs. We demonstrated connec-
tions to power domination variations such as failed power domination, fault-tolerant
power domination, and PMU-defect-robust power domination. Are there more gen-
eral structural conditions or other graph parameters that could be used to study
fragile power domination?

In [2], it is shown one can always find a power dominating set with vertices all
having degree three or higher. Fig. 1 suggests that, when choosing PMU placements,
high degree vertices may be a better choice. Particularly, the set {4,4} containing two
vertices of degree 4 observes more vertices than the set {2,5} containing a leaf and
a degree 4 vertex for some values of ¢. Is this a behavior that can be characterized?
Is there a relationship between the degrees of vertices in a PMU placement and the
expected value polynomial? An easy result to see is that if a single PMU is placed
at the vertex of lowest degree, we obtain £ (G;S,q) > (6(G) + 1)(1 — q) as only the
closed neighborhood of said vertex is observed.

In Theorem 3.14, we demonstrated a family of graphs for which the intersection
of the expected value polynomials for failed power dominating sets and power domi-
nating sets can occur at any rational probability. What can be said about the graph
structures that realize this phenomenon?

We utilized the power domination polynomial from [6] to study the probability

of observing the entire graph in Section 4. There are also results on graph products
presented in [6] that might be extendable to fragile power domination.
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