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Abstract

Let G be a graph. A subset D of V(G) is a dominating set of G if
every vertex in V(G) \ D is adjacent to a vertex in D. The minimum
cardinality of a dominating set of GG is called the domination number of
G. A non-empty subset S of V(G) is a safe set of G if, for a component
C of G — S and a component () of the subgraph of GG induced by S,
V(C)| < |V(Q)| whenever there is an edge of G between V(C') and
V(Q). The minimum cardinality of a safe set of G is called the safe
number of G. In this paper, we give some estimations on the domination
number of a graph G in terms of the safe number and the maximum
degree of GG, and discuss their sharpness. We also give their analogies
with respect to the “connected version” of our results.

1 Introduction

All graphs in this paper are finite, undirected and simple. Let G be a graph. Let
V(G) and E(G) denote the werter set and the edge set of G, respectively. For
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z € V(G), let Ng(z), Ng[z] and deg,(x) denote the (open) neighborhood, the closed
neighborhood and the degree of x, respectively; thus Ng(z) = {y € V(G) : xy €
E(G)}, Nglx] = Ng(x)U{z} and deg(z) = |Ng(x)|. Let A(G) denote the mazimum
degree of G; thus A(G) = max{deg,(z) : x € V(G)}. For a subset X of V(G), let
Ng(X) = (U ex Na(2)) \ X, and let G[X]| denote the subgraph of G induced by X.
For disjoint subsets X and Y of V(G), let Eg(X,Y’) denote the set of edges of G
joining X and Y. Let C(G) be the set of components of G. Let K,,, Ky,_1, P, and
C,, denote a complete graph, a star, a path and a cycle of order n, respectively.

For two subsets X and Y of V(G), X dominates Y in G if every vertex in Y \ X
is adjacent to a vertex in X. A subset D of V(G) is a dominating set of G if D
dominates V(G) in G. A dominating set D of G is called a connected dominat-
ing set if G[D] is connected. The minimum cardinality of a dominating set and a
connected dominating set of GG, denoted by v(G) and v.(G)), respectively, is called
the domination number and the connected domination number of G, respectively. A
dominating set and a connected dominating set D of GG is a y-set and a ~.-set of G,
respectively, if |D| = v(G) and |D| = ~.(G)respectively. The domination number
and the connected domination number have been widely studied not only for their
mathematical value but also for many applications, for example, in communication
networks, radio broadcasting, and school bus routing. Recent books on domination
concepts reflect the importance of these and related parameters (see [5,10-12]).

Fujita et al. [9] introduced the notion of safe sets in graphs as follows. A non-
empty subset S of V(G) is a safe set of G if |V (C)| < |V(Q)| for any C € C(G — 5)
and @Q € C(G[S]) with Eg(V(C),V(Q)) # 0. A safe set S of G is called a connected
safe set if G[S] is connected. The minimum cardinality of a safe set and a connected
safe set of G, respectively, denoted by s(G) and s.(G), respectively, is called the safe
number and the connected safe number of G, respectively. It models situations like
placing emergency refuges in a building, where the capacity of each refuge must be
large enough to serve any adjacent area.

The notion on safe sets in graphs was extended to vertex weighted graphs in [3].
In view of some real applications such as network vulnerability, this extension has
received considerable attention, especially in the algorithmic aspects of safe sets. Al-
though the scope of the above mentioned paper due to Fujita et al. [9] is not about
vertex weighted graphs, they essentially showed that computing the connected safe
number in the case (G,w) with a constant weight function w is NP-hard in gen-
eral. On the other hand, when G is a tree and w is a constant weight function,
they gave a linear time algorithm for computing the connected safe number of G.
Agueda et al. [1] provided an efficient algorithm for computing the safe number of
unweighted graphs with bounded treewidth. Furthermore, Bapat et al. [3] showed
that computing the connected weighted safe number for stars, and therefore also for
trees, is NP-hard. They also obtained an efficient algorithm computing the safe num-
ber for vertex weighted paths. Fujita et al. [8] constructed a linear time algorithm
computing the safe number for vertex weighted cycles. Some approximation algo-
rithms on safe sets were also discussed. Indeed, Ehard and Rautenbach [6] showed
a polynomial-time approximation scheme (PTAS) for the connected safe number of
vertex weighted trees. The parameterized complexity of safe set problems was inves-
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tigated by Belmonte et al. [4] and a mixed integer linear programing formulation for
safe sets was introduced by Hosteins [14]. Very recently, the notion of safe sets was
extended to digraphs by Bai et al. [2] and some algorithmic aspects were explored.
Thus, various topics on safe sets in graphs have been studied extensively.

Our main aim is to illustrate the mathematical importance of the safe number.
Indeed, Fujita and Furuya [7] gave sharp bounds on the integrity of graphs, a useful
parameter of a communication network, involving the safe number. In this paper, we
seek analogous results by focusing on a relationship between the domination number
and the safe number. However, one cannot estimate the domination number by using
the safe number alone. To see this, let n be a sufficiently large integer, and 7T, be
the graph obtained from K, by subdividing all of its edges once. Then v(7},) = n
and s(T,,) = 2, and hence there is no upper bound of the domination number using
the safe number only. Furthermore, v(K,) = 1 and s(K,) = [2], and hence it is
impossible to derive a lower bound of the domination number based solely on the
safe number.

On the other hand, using both the safe number and the maximum degree, we can
construct upper and lower bounds of the domination number. Let G be a connected

graph with A(G) = 2; thus, G is either a path or a cycle. It is known that v(G) =

{&f)'-‘ Furthermore, if G is a path, then s(G) = {&f)'—‘, while if G is a cycle,
then s(G) = {@-‘ (see [9]). Thus v(G) = {&BG)I-‘ < s(G). The inequality is best
possible because v(P,) = s(P,). Inspired by the brief discussion, we proceeded to
consider the case where A(G) > 3 and obtained the following results.

Theorem 1.1 Let G be a connected graph with s(G) = s > 2 and A(G) = A > 3.
Then v(G) < |£] (sA — 25+ 3).

Theorem 1.2 Let G be a connected graph with s(G) = s > 1 and A(G) = A > 2.

Then v(G) > R

We remark that Theorems 1.1 and 1.2 provide bounds on the safe number in

terms of v(G) and A(G). These bounds are sharp in a sense, just as in Theorems 1.1
and 1.2.

For a positive integer n, we can easily verify that v(Ky,11) = 1 = Q(Z:i)l_l =

% and v(Cgpaz) =2n+1 = 2(37;:21)_1 = f((g::i:)): Hence Theorem 1.2 is
best possible.

We also give analogies of Theorems 1.1 and 1.2 for the connected domination
number and the connected safe number. Moreover, we characterize the graphs for
which equality holds in an upper bound on 7.

To state the result, we define the class G(s., A) of graphs as follows (see Figure 1).
Let s, > 1 and A > 2 be integers. Let T be a tree of order s. with A(T) < A. For
x € V(T) and ¢ with 1 < ¢ < A — degyp(x), let R,; be a path of order s., and
let y,; be an endvertex of R, ;. Let G be the graph obtained from 7" and R,; by
adding the edges zy,; (zr € V(T'), 1 <i < A —degp(z)). Let G(s., A) be the family
of such graphs G. Note that every element of G(s., A) is a tree, and in particular,
G(1,A) ={Kia} and G(s,2) = {Ps,.}. Then the following theorems hold.
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Figure 1: A graph in §(5, 3)

Theorem 1.3 Let G be a connected graph with s.(G) = s. > 1 and A(G) = A > 2.
Then v.(G) < sc(seA—2s.—A+5)—2, and the equality holds only if G is isomorphic
to a graph in G(s., A).

Theorem 1.4 Let G be a connected graph with s.(G) = s. > 2 and A(G) = A > 2.
Then ~.(G) > Z==2,

For a positive integer n, note that v.(Kz,1) = 1 = AntD)=8 _ 2sc(Kant)=3 5

=1 A(Kani1)—1
Ye(Cony1) =2n —1 = 2(";11)*3 — 222((0022;?)):13. Hence Theorem 1.4 is best possible.

In Section 2, we introduce some known results and prepare useful lemmas. In
Section 3, we prove Theorems 1.1 and 1.2, and in Subsection 3.1, we discuss the
sharpness of Theorem 1.1. In Section 4, we prove Theorems 1.3 and 1.4.

2 Preliminaries

In this section, we list some results which will be used in what follows. We start with
general bounds for the (connected) safe number.

Theorem 2.1 (Fujita et al. [9]) For a connected graph G, s(G) <s.(G) < (@}

Theorem 2.2 (Fujita et al. [9]) For a tree T, s.(T) < (@1

Next we introduce general upper bounds of the (connected) domination number
and related results. The following lemma is well-known.

Lemma 2.3 (Ore [15]) Let H be a graph having no isolated vertices. Then~y(H) <
[V (H)|

2

Lemma 2.4 Let H be a graph of odd order, and let H' be a subgraph of H having
no isolated vertices. Then v(H') < %

Proof. By Lemma 2.3, v(H') < |V(f/)‘ < |V(2H)|. Since |V (H)| is odd, this implies

V(H)|-1
that y(H') < % O
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Lemma 2.5 (Hedetniemi and Laskar [13]) Let G be a connected graph. Then
7e(G) < V(G)] = A(G).

Lemma 2.6 (Sampathkumar and Walikar [16]) Let T' be a tree of order at
least 3, and suppose that T has exactly [ leaves. Then 7.(G) = |V (G)| — L.

The following lemma plays a key role in some of our arguments.

Lemma 2.7 Let G be a connected graph, and let X be a subset of V(G) such that
G[X] is connected. Then

> INa(2)\ X| < A(G)IX] - 2IX] +2,

zeX
and the equality holds only if G[X] is a tree and deg.(z) = A(G) for every x € X.
Proof. Since G[X] is connected, we can take a spanning tree 7" of G[X]. Then

> INa(z) N X| =2|B(GIX])| = 2|E(T)| = 2(|X| - 1). (2.1)

zeX

Since A(G) > degqs(z) = |[Ng(x) N X| + |Ng(z) \ X| for all z € X, it follows from
(2.1) that

A(G)|X| = ) degg(x)

zeX
=D INa(r) N X[+ [Na(x) \ X|
rzeX reX
>2(]X| = 1)+ ) [Na(2)\ XI. (2.2)
zeX
This leads to >y [Ne(z) \ X| < A(G)|X| — 2|X| + 2. Considering (2.1), the
equality in (2.2) holds only if G[X]| =T (i.e., G[X] is a tree) and deg.(x) = A(G)
for every x € X. O

3 Domination number versus safe number

In this section, we prove Theorems 1.1 and 1.2 and discuss their sharpness.

Proof of Theorem 1.1. Let S be a safe set of G with |S| = s(G). Let Sy be the set of
isolated vertices of G[S], and let Dy be a 7y-set of G[S'\ S1]. For each C' € C(G — 5),
let D¢e be a y-set of C. Let

D = DyU U De
CeC(G-S)

Claim 1 The set D is a dominating set of G.
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Proof of Claim 1. It is clear that D is a dominating set of G — S7. Let x € 5;.
It suffices to show that D dominates {x} in G. Since G is connected and |V (G)| >
A(G) > 3, there exists a vertex y € Ng(x). By the definition of Sy, y ¢ S. Since S
is a safe set of G and G[{z}| € C(G[5]), this implies that G[{y}] € C(G — 5), and
hence y € D. Hence D dominates {z} in G. (W)

For each C' € C(G — 5), since G is connected and S # (), there exists a vertex
zco € S such that Ng(xe) NV(C) # 0. Fix a vertex = € S. Let

e C,={CeCG-29):xc=ux},

e ={cee,: V() =1}

P ={Ccee,: |V(C) =0 (mod 2)}, and

o =¢,\ (P ue?) (={Cee, V() =3, |V(C) =1 (mod 2)}).
Note that

e+ 1@ ye®| =|e,| < |Nalz)\ 8. (3.1)

Since s > 2, 3° . ow [De| = |Gg(gl)| < S‘GTS”U‘ For C € 2 U ey, since S is a safe
set of G, it follows from Lemma 2.3 that |D¢| < @ < 5. This implies that
> cee®yue® | Del < M Since G[S'\ S1] has no isolated vertex, it follows from
Lemma 2.3 that |Dg| = v(G[S \ S1]) < w < 5. Consequently, by Lemma 2.7,
Claim 1 and (3.1),

Y(G) < Dol + ) Y. Dl

zeS \ceeMuel? el

5 sle] sje® uel?
< —
-2 +; ( 2 + 2

S
<t (1+Z|Ne<x>\8|)

xresS

_ s+ (AlS] — 2/5] +2))
- 2

s(sA —2s+ 3)

2 7
which proves the theorem for the case where s is even.
Thus we may assume that s is odd, and it suffices to show that

s—1)(sA —2s+3)

(
7(G) < ) :
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1)
Fix x € S. Since s > 3, > |Dc| = |G;(L«1)| < % For C' € €, since

S is a safe set of G and |V(C)] is even, |[V(C)| < s — 1, and so |D¢| < @ <

%. For C' € G;(Eg), since S is a safe set of G, it follows from Lemma 2.3 that
@) o3

|De| < % < % This implies that Zceef)ue(ﬁ |D¢| < % Since

S| (= s) is odd and G[S'\ 5] has no isolated vertex, it follows from Lemma 2.4 that

|Do| = v(G[S'\ S1]) < m% = ==L Consequently, by Lemma 2.7, Claim 1 and (3.1),

Y(G) < Dol + >, Dl

veS \ceetMueluel”)

s—1 (s—1neP|  (s—1)eP ued?
T+Z( +

a zeS 2 2
<214 Y INalo)\ 8]
a 2 zeS o
o =D+ (AlS] = 2[5] +2))
- 2
(s —=1)(sA—25+3)
5 :
This completes the proof of Theorem 1.1. Il

Proof of Theorem 1.2. Let D be a ~-set of G. Then

| Nelz]

zeD

V(G| = <D (dg(z) +1) < 7(G)(A +1).

zeD

This together with Theorem 2.1 implies that
5 < PV(G)IW < V(@) +1 _4(G)(A+1)+1

2 - 2 ’
as desired. O

3.1 Examples

In this subsection, we first construct graphs which attain the equality of Theorem 1.1
for the case where s > 3 is odd. Let A > 3 be an integer, and let n = % Let A,
be the graph such that

V(Ag) ={u; : 1 <i<n}U{v;:0<i<n} and
E(Ay) ={uwuiyr : 1 <i<n—1}U{uve} U{ww; : 1 <i < n}

(see Figure 2).
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Figure 2: Graph A,

Lemma 3.1 The following statements hold:
(i) We have v(Ag) = v(As — vg) = n.
(ii) If a dominating set D of A contains vy, then |D| > n + 1.

Proof. Let D be a dominating set of A,. Since D dominates {v; : 1 <i < n} in A,
D n{ug,v;} # 0 for every i (1 <7< n), and so

U (Dﬂ{ui,vi})‘ = Y IDN{us,vi}| = n. (3.2)

1<i<n 1<i<n

In particular, we have v(Ay) > |D| > n. Arguing similarly, we also have v(As—vg) >
n. On the other hand, since {u; : 1 <i < n} is a dominating set of A, and Ay — vy,
v(As) < n and y(As — v9) < n, which proves (i). Furthermore, if vy € D, then by
(3.2), |D| = (D n{vo}) U (Ujcicn(D N{us,vi}))| > 14 n, which proves (ii). O

Let Hy be a copy of A, and let X = {(z,7) : x € V(Hp), 1 <i < A—degy (v)}.
Take |X| vertex-disjoint copies H,; ((z,i) € X) of A,. For each (z,i) € X, let v, ; be
the vertex H,; corresponding to vy. Let G5 o be the graph obtained from H, and
H,; by adding edges zv,; ((x,i) € X). Then G, a is connected and A(G5a) = A.
Hence the following proposition shows the sharpness of Theorem 1.1 for the case
where s is odd.

Proposition 3.2 We have s(Gs;a) = s and 7(Gsa) = w.

Proof. Since s = 2n + 1, we have

X[ = ) (A—degy,(z)) = A|V(Hy)| — 2| E(Ho)| = sA = 2(s = 1) > s + 2.
z€V (Hp)

(3.3)

We first prove that s(Gsa) = s. Since V(Hy) is a safe set of G5, we have
s(Gsa) < |V(Hp)| = s. Let S be a safe set of G5 a. It suffices to show that |[S| > s.
I£ SNV (H,;) # 0 for all (z,4) € X, then by (3.3), [S| > >_, yex [SNV (Hyy)| > s+2.
Thus we may assume that S N V(H,,;) = 0 for some (z,i7) € X. Then there exists
C € C(Gsa — S) with V(H, ;) C V(C). Since G a is connected and S is a safe set
of G a, this implies that s = |V(H, ;)| < |[V(C)| < |5], as desired.

—(5_1)(5§_25+3). In view Theorem 1.1 and the first
(s—1)(sA—25+3) Take
PR

Next we prove that 7(Gsa) =
statement of the proposition, it suffices to show that v(G;a) >
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Figure 3: Graph Ba,

a y-set D of G a so that |D \ V(Hy)| is as small as possible. Suppose that v,; € D
for some (z,i) € X. Then DNV (H,,;) is a dominating set of H, ;. Together with
Lemma 3.1(ii), this implies that |D N V(H,;)| > n+ 1. Let D,; be a 7-set of
H,;. By Lemma 3.1(i), |D,;| = n. Let D' = (D \ V(H,;)) U D,; U {xz}. Then
D' is a dominating set of Gsa and |D'| < (|D| — |[D NV (H,;)|) + |Deal +1 <
Y(Gsa) —(n+1)+n+1=7(Gsa), and hence D' is a y-set of G5 A. However,
\D\V(Hy)|—|D'\V(Hy)| = |DNV(Hy;)|— |D'NV(H,;)| > (n+1) —n > 0, which
contradicts the minimality of |D \ V(H,)|. Thus v,; ¢ D for all (z,i) € X. Then
D NV(Hy) is a dominating set of Hy. Furthermore, DNV (H, ;) is a dominating set
of H,; — v, for each (x,i) € X. Hence by Lemma 3.1(i) and (3.3),

W(GS,A) = ‘D‘
= [DNV(Ho)+ Y [DNV(H,,)
(z,i)€X
> n+(sA—2s+2)n
(s —1)(sA —2s + 3)
2 )
as desired. 0

On the other hand, the inequality (G) < ('5_1)(53—_2‘”3) does not hold for even
s. Let A > 3 be an integer, and p > 2 be an integer such that p is even for the case
A is even. Let s = p(A 4 1). Note that s is even regardless of the parity of p. Let
Ba be the graph such that

V(Bayp) ={uj:1<i<plu{v);:1<i<p, 1<j<A}and
E(Bay) ={uj;: 1 <i<p, 1<j S APU{vjpv),,:1<i<p—13

(see Figure 3). Since the distance between any pair of vertices in {u} : 1 < i < p} is
at least 3 in Ba ,, we obtain the following lemma, for which the proof is omitted.

Lemma 3.3 If a subset D of V(Ba,) dominates {u; : 1 < i < p} in Ba,, then
D] = p.

Let 3 =A{(i,5,k) 1 <i<p 1 <j<A 1<k<A —degBAyp(vl’-J)}. Take
|J| vertex-disjoint copies H; ;i ((7,j,k) € J) of Agy1 — v, where A,y is the graph
defined in the first paragraph of the subsection. For each (7,7, k) € J, let w; j; be
the vertex H; ;j, corresponding to u;. Let G’y , be the graph obtained from Ba j, and
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H;jr ((4, 4, k) € J) by adding edges v; ju; jx ((7, j, k) € J). Then G, , is connected and
A(G)y,) = A. Furthermore, arguing similarly as in the proof of the first statement
of Proposition 3.2, we have s(Gy ) = p(A + 1) (= s). Since

s(sA — 25+ 2) (s—1)(sA—2s+3) 2p+s(A—-3)+3
2 e 2 - 2

> 0,

the following proposition shows that the inequality v(G) < (S_lm%”?’) does not
hold for the case where G = G’y , and s = p(A + 1), and the bound on Theorem 1.1
is asymptotically sharp for even s.

Proposition 3.4 We have y(G) ) > < s(sA— 25+2) +p.

Proof. Since 37, degp, (v);) = Zl<]<A degp, (v,;) = A+ 1 and for each i
with 2 <i<p-—1, Zl<j<AdegBA (vi;) = A+2, we have

Il = Z (A —degp, (vi;) = pA% — (p(A +2) —2). (3.4)
1<i<p
1<j<A

Let D be a y-set of Gy ,. Fix (4,7,k) € J. Note that H, ;; has exactly M
(= 3) leaves, and they are also leaves of Gy ,. Since the distance between two
1eaves of Hijr in G, is at least 3, we have |D N V(Hijk)| > 5. Furthermore,
since Ney (u) = Np,,(uj) for every @ with 1 < i < p, DN V(Ba,) dominates
{uf 1< S p} in Gap. This together with Lemma 3.3 leads to |D NV(Bay)| > p.

Consequently, it follows from (3.4) that

Y(Gr,) = |D
= [DNV(Bay)l+ > |DNV(H )l
(3,7,k)€T
> pt (pA2 (p(A+2) —2))
S(SA —25+2)
= + D,
2
as desired. O

We here propose the following open problem.

Problem 1 For an even integer s > 2 and an integer A > 3, determine the minimum
value f(s,A) such that v(G) < f(s,A) for every connected graph G with s(G) = s
and A(G) = A.
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4 Connected domination number versus connected safe
number

We start with some properties of graphs in G(s., A).

Lemma 4.1 Let s, > 1 and A > 2 be integers, and let G € G(s.,A). Then the
following hold.

(i) We have A(G) = A and s.(G) = s..
(ii) We have 7.(G) = s.(s.A —2s, — A +5) — 2.

Proof. Let T, R,,; and y,,; be as in the definition of G, and let X = {(x,i) : z €
V(T), 1 <i< A —deggp(x)}. If s. =1, then G is a star of A leaves, and hence
A(G) = A and s.(G) = 7.(G) = 1. Thus we may assume that |V (T)| = s. > 2.

For each (x,7) € X, since |V (R, ;)| = s. > 2, there exists an endvertex z,; of R, ;
other than y, ;. Then {z,, : (z,7) € X} is the set of leaves of G.

(i) By the definition of G, it is clear that A(G) = A.

Since V(T') is a connected safe set of G, we have s.(G) < |[V(T)| = s.. Let
S be a connected safe set of G with |S| = s.(G). It suffices to show that
|S] > s.. If A =2, then G ~ P, and so s.(G) = s.. Thus we may assume
that A > 3. Suppose that a leaf x of T" does not belong to S. Since S is a
connected safe set of G and A — degi(x) >3 —-1=2, SNV(R,;) = 0 for
some ¢ € {1,2}, say SNV (R,1) = (. Then there exists a component C' of
G — S with V(R, 1) C V(C), and hence |S| > |V(C)| > |[V(Rs1)| = S.. Thus
we may assume that all leaves of T" belong to S. Since G is a tree, this leads
to V(T') C S, and so |S| > |[V(T)| = s., as desired.

(ii) Since T is a tree of order s,

U= 3 (A degp(n) = 5.8 —2B(T)| = 5,5 —2s.— 1) (4.1)
zeV(T)
Since V(@) is the disjoint union of V(T') and V (R, ;) ((x,i) € X), it follows
from (4.1) that
\V(G)| = |V(T)| + Z \V(Ryi)| = se+ 8| X| = sc(scA — 25, + 3).
(z,i)eX
Since G is a tree, this together with Lemma 2.6 and (4.1) implies that
1(G) = [V(G)] - [X]
= Se(8cA —28.+3) — (s.A —2s.+2)
= 8c(SeA —2s.—A+5)—2,

as desired. 0
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Proof of Theorem 1.3. Recall that §(1,A) = {Kya}. If s, = 1, then G ~ K a,
and so 7.(G) = 1, as desired. Thus we may assume that s. > 2.

Let S be a connected safe set of G with |S| = s.. Since G[S] is connected, it
follows from Lemma 2.7 that

C(G = 9)[ <D INa(x)\ S| < scA — 25, + 2. (4.2)

zesS

Since S is a connected safe set of G,
V()| < |S| = s, for every C € C(G — S). (4.3)

For each C' € C(G — 5), let uc be a vertex of C' such that Ng(uc) NS # 0. For
each C' € C(G — 9), we define a subset Do of V(C) as follows: If |[V(C)| = 1, let
Do = 0; if |V(C)| > 2, take a connected dominating set D¢ of C' so that

(D1) uc € D¢, and
(D2) subject to (D1), |D¢| is as small as possible.

Note that Do = {uc} if C € C(G — S) satisfies |V (C)| = 2. For each C € C(G — 9),
if [V(C)] <2, then |D¢| <1 <s.—1;if [V(C)| > 3, then by Lemma 2.5 and (4.3),
we have |Do| < 7.(C)+1 < (|V(C)| — A(C)) +1 < (s. — 2) + 1. In either case, we
obtain

|De| < s. — 1 for every C € C(G — S). (4.4)

Claim 2 Let C € C(G — S). If |D¢| = s. — 1, then C is a path of order s, and uc
is an endvertex of C'.

Proof of Claim 2. Suppose that |D¢| = s, — 1. If |[V(C)| < 2, then s, — 1 =
|De| <1 < s.—1 and this forces |V (C)| = s. = 2, and so C is a path of order
s¢ (= 2). Thus we may assume that [V (C)| > 3. Then s, — 1 = |D¢| < 7.(C)+1 <
(IV(C)| —A(C)) +1 < (s, —2) 4+ 1. This forces |V(C)| = sc and A(C) =2. If C'is
either a cycle, or a path and u¢ is not an endvertex of C', then there exists a connected
dominating set D¢ of C' such that u¢ € Do and |Dg| = |V(C)| =2 = s, —2 < | D¢,
which contradicts (D2). Since A(C') = 2, it follows that C' is a path and u¢ is an
endvertex of C. (M)

We can easily check that D := SU(Ugce(_s) Do) is a connected dominating set
of G. By (4.2) and (4.4),

7e(G) < |D
=I5+ Y Ipe
Ccee(G-S5)
< se+[C(G = 9)|(sc — 1)
< Se+ (8eA =28, +2)(s. — 1)
= Sc(ScA — 25, — A +5) — 2. (4.5)
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We will use Lemma 4.1 to complete the proof of Theorem 1.3. Suppose that the
equality (4.5) holds. We prove that G is isomorphic to a graph in G(s., A).

By (4.2), [€(G = 5)| = > .cs|Na(z) \ S| = scA — 25, + 2. In particular, for
each C' € C(G — 95), Ec(V(C)\ {uc},S) = 0 and |Ng(uc) N'S| = 1. Furthermore,
it follows from Lemma 2.7 that G[S] is a tree and deg,(z) = A for every z € S.
This implies that [{C' € C(G — S) : Ng(z) NV (C) # 0} = A — deg(x) for every
x € S. By (4.4), |D¢| = s. — 1 for every C' € C(G — S). This together with Claim 2
implies that C' is a path of order s, and u¢ is an endvertex of C'. Consequently, G is
isomorphic to a graph in G(s., A).

This completes the proof of Theorem 1.3. 0

Proof of Theorem 1.4. Let D be a v.-set of G. Then by Lemma 2.7,

V(G) < DI+ ) [Na(x)\ D < D] + (A|D] = 2|D| +2) = 7(G)(A — 1) + 2.

zeD

This together with Theorem 2.1 implies that

o [VQU) MG 2GS 1) 18
A

2 - 2 ’

as desired. O
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