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Abstract

A point set M in a Euclidean plane is called an integral point set in
semi-general position if all the distances between the elements of M are
integers, and M does not contain collinear triples. In this paper we
improve the lower bound for the diameter of such sets in the particular
case when the characteristic of the set is of the form 4k + 1 or 4k + 2. To
achieve this, we combine hyperbolas-based and grid-based toolsets.

1 Introduction

A planar integral point set (IPS) is a set of points in the plane, such that the
distance between any pair of its points is an integer, and at least one triple of its points
is non-collinear. The latter condition is essential to avoid subsets of a straight line;
those are de-facto equivalent to subsets of integers and form a completely different
combinatorial object.

In 1945, Erdds gave an elegant proof that every IPS is finite [1,10] . He considered
an arbitrary IPS M and chose a non-collinear triple { My, My, M3} € M so that any
other point My € M lies on either the straight line M; M,, the perpendicular bisector
to the segment M; My, or one of | M, Ms|—1 hyperbolas, where |M; M| stands for the
length of the line segment M;M,. Applying the same argument to the line segment
M Ms, Erdss concluded that #M < 4 - |MyM,| - |M; M|, where #M stands for
cardinality of M.

Thus, we can easily infer the lower bound for diameter of an IPS M:

VBN
il

That was the first lower bound for the diameter ever; however, Erdés did not only
estimate the diameter, but also established the toolset for further investigation. The
core of this approach is a system of cofocal hyperbolas.

diam M >
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Using this toolset, in 2003 Solymosi proved [23] that
diam M > c-#M.

Although Solymosi did not state the value of ¢ explicitly, it can be inferred [3] from
his proof that ¢ = i.

In [3] the constant (for #M > 4) was improved to 0.3457 employing Point Packing
in a Square Problem [9,19]. In [6] the approach has been further developed, and the
constant has been tightened to 15—1 Finally, in [5] for IPS M in semi-general position
(that is an IPS with no collinear triples) it was proved that

5/4
diam M > (#TM> (1)

(assuming that the set has at least 4 points). All these lower bounds are based on
Erdés’s framework: cofocal hyperbolas.

Meanwhile in 1988, Kemnitz [13] introduced a characteristic for an IPS. The
charateristic of an IPS is the one and only squarefree integer ¢ which is comparable
with the area of the triangle formed by any triple of points from the IPS. (Indeed,
Kemnitz proved this fact for any point set with rational distances — in contrast
with IPS, those can be infinite even if they contain non-collinear triples, see [12]
for an example construction and [24] for some known limitations.) In 2000s, Kurz
introduced [15] the function d(2,n) that evaluates the minimal possible diameter of
planar IPS of cardinality n. Then Kurz employed Kemnitz’s results and found the
exact values of d(2,n) up to n = 122 by exhaustive computer search [17, Subsection
4.2]. (Taking the characteristic into consideration allows one to boost such search
significantly; this is basically because all triples of an IPS form triangles with equal
characteristic.)

For generalization to higher dimensions, we refer the reader to [21].

In the present paper, we combine the power of Erdés’s and Kemnitz’s approaches
together. Due to the squarefree nature of the characteristic, it can be of the form
4k + 1, 4k + 2 or 4k + 3, where k is integer. We prove that for a particular case of
characteristic 4k + 1 and 4k + 2 the bound (1) can be improved to

25 5/4
diam M > | — - #M .
iam M > <36 # )

In Section 2, we give all the required notions and known results. In Section 3,
we discuss some examples of integral point sets in order to demonstrate that none of
the classes 4k + 1, 4k + 2, 4k 4 3 is too exotic nor pathological. Section 4 describes
a connection between Erddés curves and the characteristic. In Section 5, we prove
some auxiliary results, and we proceed to the main one in Section 6.

2 Basic Notions and Results

In this section, we provide rigorous definitions and list some known results.
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For the sake of brevity, the following notation is used for sets of positive integers,
non-negative integers and all the integers respectively:

N={1,23,4,...}, No=Nu{0}, Ni={0,+£1,42,£3,+4,...}.
For a finite set M, we denote its cardinality by # M.

Definition 2.1. A planar integral point set (IPS) is a set M of non-collinear points
in the plane R? such that for any pair of points M, My € M the Euclidean distance
| M7 M,| between points M; and M, is integral. Notation: M € 9, and also M € I,
forn = #M.

When we say that a set is non-collinear, we mean that it has at least one non-
collinear triple. If we tighten the condition and require all the triples to be non-
collinear, we obtain the next definition.

Definition 2.2. A planar IPS M is said to be in semi-general position if no three
points of M are collinear. Notation: M € 91, and also M € 9, for n = #M.

In the present paper, we mostly focus on IPS in semi-general position. However,
the next restriction step can be done as follows.

Definition 2.3. A planar IPS M is said to be in general position if no three points
of M are collinear and no four points of M are concircular. Notation: M € 9, and
also M € M, for n = #M.

Definition 2.4. The diameter of an integral point set M is defined by setting

diam M = max |M;M,|.

My, MzeM

Definition 2.5. Two numbers a and b are commensurable if their ratio a/b is a
rational number.

For example, the pair (7,2/3) is commensurable, the pair (v/3/3,/12) is also
commensurable, but the pair (v/2,+/3) is not.

Definition 2.6. A number is called squarefree if its only perfect square divisor is 1.
The first squarefree numbers are: 1, 2, 3, 5, 6, 7, 10, 11, 13, ....

Definition 2.7. The characteristic of a planar IPS M is a squarefree number ¢ such
that the area of any triangle My MyMs, { My, M, M3} C M, is commensurable with
v/q- Notation: char M = gq.

The characteristic of an IPS always exists and is unique.

Definition 2.8. For any two points My, My € M € N, the line segment M; M, is
said to be an edge of M.

The following result is due to Kemnitz [13]:
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Theorem 2.9 (the Grid Theorem). A set M € 9M,, with characteristic p can be

placed on the grid
2m’ 2m ’

where a;,b; € N, and m can be taken as the length of any edge of the set M.

For the sake of completeness, we sketch the proof for the Grid Theorem below.

Proof. Let My, My € M € 9 and |M;My| = m. Set My = (—m/2,0), My =
(m/2,0). Then for any M; € M, M; = (z,y) one has |M;M;| = k € Ny, |M;M,| =
n € Ny. The point M; belongs to the intersection of two circles, whose equations are

where k +n > m.
The solution is

2m 2m

m 2 m a: \2 :I:bi\/]_o
—sfir o (n) =yl (e ) VD
y \/ 5 T 5 " om om

and the claim follows. O

Definition 2.10. Let MM, be an edge of M € 9. For an integer n, |n| < |M; M|,
we call the set of points

{MQ . |MOM1| — |MOM2| = n}
the n-th Erdds curve.

Obviously, the 0-th Erdés curve is the perpendicular bisector of M;M,, and all
the other Erddés curves are branches of cofocal hyperbolas. In Figure 1, the Erdés
curves are shown for an edge of length 3.

Thus, an edge M; M, generates 2| M; M,|—1 Erdés curves. For the sake of brevity,
Erdés curves with odd numbers are named odd Erddés curves, and the ones with even
numbers are named even Erdés curves.

Two following definitions are used to classify integral point sets with many col-
linear triples [4]:

Definition 2.11. A planar integral point sets of n points with n — 1 points on a
straight line is called a facher set.

For 9 < n < 122, the minimal possible diameter is attained at a facher set [16].

Definition 2.12. A non-facher planar integral point set situated on two parallel
straight lines is called a rails set.
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Figure 1: Erdés curves

Definition 2.13. The part of a plane between two parallel straight lines with dis-
tance p between them is called a strip of width p.

Lemma 2.14. [22] If a triangle T with minimal height p is situated in a strip, then
the width of the strip is at least p.

Lemma 2.15. [3, Lemma 4[; [6, Lemma 2.4] Let M € 9, diam M = d. Then M

15 situated in a square of side length d.

Definition 2.16. [6, Definition 2.5] A cross for points M; and M,, denoted by
cr(My, M), is the union of two straight lines: the line through M; and M,, and the
perpendicular bisector of line segment M M;.

Lemma 2.17. [6, Theorem 5.9] Each set M € 9M,, such that for some My, My € M
equality |MiMs| = 1 holds, consists of n — 1 points, including My and Ms, on a
straight line, and one point out of the line, on the perpendicular bisector of line
segment My M.

Our attention will be mostly restricted to planar integral point sets with charac-
teristic of the form 4k + 1 and 4k + 2 in semi;g;eneral position. E}ms, if an IPS M
satisfies these conditions, we write that M € 9, and also M € 9 for n = #M.

3 Integral Point Sets with Various Characteristics

Let us demonstrate that the classes 4k + 1, 4k + 2 nor 4k + 3 are neither too
exotic nor pathological. In order to do this, we provide important examples of IPS
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Figure 2: IPS of cardinality 16 and diameter 2189

for each class.
For convenience, we use the notation [3,7,8]: /p/q * {(x1,31),---, (Tn:Yn)},
which means that each abscissa is multiplied by 1/q and each ordinate is multiplied

by B/4, ie.
Vil (o) ot = { (2 200) o (2 2 L

q q q q

where ¢ is the characteristic of the IPS. Such notation is made possible by the Grid
Theorem. Note that we use the asterisk instead of the centered dot to emphasize that
we do not mean the usual coordinatewise multiplication; instead, the denominator
is appended to both coordinates, but the square root multiplier is appended only to
the second one.

When we think about IPS with characteristic 4k + 1, the very first example that
comes to our mind is the Egyptian triangle, that is the triangle with sides (3;4;5).
The Egyptian triangle is obviously an IPS with characteristic 1 =4 -0+ 1.

Facher sets with characteristic 1, that are called semi-crabs, are investigated in [2].
There are also significantly more complex IPS with characteristic 1; for those from
M, we refer the reader to [18].

Figure 2 shows a rails IPS of characteristic 385 = 4 - 96 + 1 presented in [4]. Its
coordinates are

V/385/2 % {(+1105,48), (£2189; 0), (£1587; 0), (+1269: 0),
(£763;0), (£623;0), (£529: 0), (£339; 0)}.

In [14], the first ever known planar integral point set M; € M, is given, see
Figure 3. Its coordinates are

V/2002/2227 % {(0;0), (2227 - 10;0), (26127018; 932064), (32142553; 411864),
(17615968; 238464), (7344908; 411864), (19079044; 54168)},
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Figure 3: The heptagon in general position

and char M; = 2002 = 4 - 500 + 2.

It is noticeable that the second example of an IPS from 91, given in the same
article has the same characteristic.

Also the largest known rails IPS presented in [20] with 104 points on one straight
line and the rest 2 on another (that gives the cardinality of 106) has the characteristic
of 154 = 4-38+2. (We do not list the coordinates of that set here due to its diameter
which is 2745754098774581800288844387372160.)

As for characteristic 4k + 3, we should mention that the upper bound for the
minimal diameter of planar integral point set given in [11] employs IPS with char-
acteristic 3. Moreover, all the IPS of minimal possible diameter provided in [11, §5,
Figure 1] (for cardinalities from 3 to 9) have characteristic of form 4k + 3.

For the sake of completeness, in Figure 4 we give an example of rails set with 3
points on one line and 8 points on the other (first presented in [4, Figure 1]) whose
characteristic is

255255 =3-5-7-11-13-17=4-63813+ 3
and whose coordinates are

Pss = V255255/2 x {(1767; —3); (2791; —3); (4071; —3);
(—306;0); (0;0); (1798;0); (2304;0); (2760; 0); (3534; 0); (4040; 0); (4558;0) }.
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Figure 4: The rails set with characteristic 255255

4 Erdds Curves and Characteristic

Lemma 4.1. Any set M = {A, B,C} € M3 with edge |AB| = m, where |[AC| —
|BC|=m —s, m,s € N, s is an odd number and s < m, has a characteristic of the
formp =4k + 3, k € Ny.

Proof. Let |BC| = n. Then, from the triangle inequality |AC| < |AB| + |BC/|, we
have that |[AC| = m+n—s, s € Nand s < m. By the Grid Theorem, we can assume
that A = (-%4;0), B = (%;0), and C = (5=; Zimﬁ) We find the distance between
points A and C', and points B and C' in coordinates, and form a system of equations

a+m?2)2+4pb?
SR
V/ (a—m2)24pb2
T am = n.

Multiplying each equation by 2m and squaring both sides, we obtain
(a+m?)?+pb*> = 4m*(m+n — s)?, @)
(a —m?)?+pb®> = 4m?n>.

Subtract the second equation from the first one:

(a+m*)? — (a —m*)? = 4m?*(m +n — s)? — 4m?n?,

dmPa = 4m*((m +n — s)* — n?),

a=(m—s)(m+2n—s). (3)

Substitute the expression (3) into the second equation of (2):

((m — s)(m +2n — s) —m?)? + pb* = 4m*n>.
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This immediately gives
pb® = s(2m + 2n — 5)(2n — s)(2m — s). (4)

Since s is assumed to be odd, let s = 2¢t + 1, where t € Ny. Then equation (4) can
be rewritten as:

pb* = (2t +1)(2m +2n — 2t —1)(2n — 2t — 1)(2m — 2t — 1)

or
pb? +1 = 4(—4t* + 8t3m + 8t3n — 83 — 4t?m? — 12t*mn + 12t>m —
—4t*n? 4+ 12t?n — 6t + 4tm>*n — 4tmn? — 12tmn + 6tm — (5)
—4tn® + 6tn — 2t + 2m*n — m? + 2mn® — 3mn + m — n® + n).

If equation (5) has integer solutions, then both p and b are odd. The right-hand side

is divisible by 4, which implies that pb> = 3mod 4. Since b*> = 1(mod4), it follows
that p =4k + 3, k € No. n

The next theorem follows immediately.

Theorem 4.2 (The Weeding Theorem I). Let M = {M;, My, M3} € M3 be an IPS
with a characteristic different from 4k + 3, k € Ny, ant let M3 belong to the n-th
Erdds curve of the edge MiMs. Then, n and the length of MMy have the same
parity.

Proof. Let |MiMy| = m, m € N, and n = |MyM;| — |MyMs|. If m is odd, then
by Lemma 4.1, the difference n = |M;Mjs| — |MyMj3| equals m — s, where s is even.
Thus, n is odd. If m is even, then n = |MyMs| — |MsMs| = m — s is even, as a
difference of two even numbers. O

The case when the length of an edge is even is slightly more specific and allows
a more precise statement.

Lemma 4.3. Every set M = {A, B,C} € M3 with an even edge |AB| = 2q, where
|AC| — |BC| =2q—s, q,s € N, s is odd and s < 2q, has a characteristic of the form
p=8k+7, keNy.

Proof. Let us set m = 2q in the Lemma 4.1. Then equation (4) turns into
pb® = s5(4q +2n — 5)(2n — s)(4q — s). (6)
Taking into account that s = 2t + 1, t € Ny, we bring equation (6) to the form:
pb® = (2t +1)(4q +2n — 2t — 1)(2n — 2t — 1)(4qg — 2t — 1)

or, after expansion,

pb? +1 = 8(—=2t* + 8t3q + 4t3n — 413 — 812> — 12t3qn + 12t%q —
—2t>n?% + 6t%n — 3t? + 8tg*n — 4tqn® — 12tqn + 6tq —
—2tn? + 3tn — t + 4¢*n — 2¢® + 2qn* — 3qn + q) — (7)
—4n(n —1).
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Among two consecutive natural numbers, exactly one is even, so 4n(n — 1) = 0
(mod 8). Thus, the right-hand side of equation (7) is a multiple of 8. Then pb? = 7
(mod 8). A necessary condition for the existence of an integer solution to equation (7)
is that numbers p and b must be odd. Since b*> =1 (mod 8), it follows that p = 8k+7,
k € No. O

Theorem 4.4 (The Weeding Theorem II). Let an IPS M = {My, My, M3} € M;
have an even edge length | My M,|, and let point M3 lie on an odd Erdds curve of edge
MiMsy. Then char M = 8k + 7, k € Ng.

Proof. Indeed, let | My M,| = 2q, ¢ € N. For the n-th Erdés curve we have |M; M3| —
|MyMs| = n. According to Lemma 4.3, the difference n = | M; M3|— | My Ms| = 2q—s,
where s is odd, is also odd and char M = 8k + 7, k € Nj. n

5 Auxiliary Results

Lemma 5.1. Every set M € 9, with an edge | My M| = 2 has the cardinality n = 3.

Proof. Let M € ﬁ; and My, My; € M. Then all points in the set M lie on
cr(My, My). Otherwise, according to Lemma 4.3, char M = 8k + 7, k € N.
Suppose, to the contrary, that M = M, My, M3, My € ﬁ;. We employ the
Grid Theorem and set M;(—1;0), M(1;0),0(0;0). Then M; and M, lie on the
perpendicular bisector to M; M. Since the distance |M3M,| is an integer, the area of
triangle M; M3M, is a rational number. By Definition 2.7, this means that char M =
1. Then by the Grid Theorem we have Mj3(0;¢/4). Without loss of generality, let us
assume that ¢t € N. Let |M;M;| = s. Applying the Pythagorean theorem to triangle

OM, Ms, we obtain
t2
14+ — =4
T
or equivalently,

16s* — t* = 16. (8)

To find the solutions to equation (8) in positive integers, we introduce the substitu-
tion: ¢t = 4k, k € N. Then equation (8) takes the form:

s — k=1 (9)
Factorising the left-hand side of equation (9) yields:

(s—k)(s+k) =1.

Since s, k € N, the number 1 can be represented as the product of two integers in two
ways: 11 and —1-(—1). In the first case, (s — k) = 1 and (s + k) = 1, which gives
s =1,k = 0. This contradicts the fact that k& € N. In the second case, (s — k) = —1
and (s + k) = —1, which gives s = —1, k = 0. This also contradicts s,k € N.

Thus, equation (8) has no positive integer solutions. This contradiction completes
the proof. n
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The following result is a key element for bounds presented in [23] and [5]:

Lemma 5.2. [23, Observation 1] If a triangle T' has integer side lengths a < b < ¢,
then its minimal height m is at least (a — i)l/Q.
If we exclude characteristics of the form 4k + 3, this Solymosi’s result can be

sharpened slightly.

Lemma 5.3. Any triangle with sides a < b < ¢, wherec=a+b—1 and a,b,c € N,
has the characteristic of the form p =4k + 3, k € Ny.

Proof. Consider the triangle ABC and let |BC| = a, |AC| = b. Using the triangle
inequality |AB| < |BC|+ |AC|, we can represent the length of side AB as |[AB| =
a+b—s,s € Nands <a. Fors =1, the conditions of Lemma 4.1 are satisfied:
s is odd and s < a. Therefore, the triangle with sides a, b, and ¢ = a + b — 1 has a
characteristic of the form p = 4k + 3, k € Nj. O]

Lemma 5.4. Let a triangle ABC' have the characteristic different from 4k + 3,
k € Ny, with a < b < c¢. Then the smallest height of the triangle ABC' is at least
(2a —1)1/2,

Proof. By Lemma 5.3, a triangle with a side ¢ = a+b—1 cannot have a characteristic
different from 4k + 3, k € Ny. Therefore, in a triangle with integer sides, we have
a+b>c+2.

The height h of the triangle ABC', dropped onto side ¢, can be found from the
formula for its area: S = hc/2, which gives h = 2S5/c. To find the area of the triangle,
we use the Heron’s formula in the following form:

1
S = 1\/4a202 — (24 a% —1?)2.

Then

2 S
2 _ 2 2 2 2 72)2
h? = (4—6-\/4a202—(02+a2—b2)2> —4—02~(4a & — (P +a®—b)?)
2 2 2\ 2

9 cc+a”—>
=a*——— ) . (10
¢-(S5570) o)
From three heights of the triangle, the smallest one is that dropped onto its

largest side. For fixed sides a and b, let us set ¢ = a + b — 2. Then

A +a? -1 a+b c+2
- =c+ (a—b)=c+
c c

(a—10b) =
2

c+(1+—) (a—b)<ct+a—-b=2a-1
c

and this equality is possible when a = b. We rewrite expression (10) as follows:

2a — 1\°
h22a2—<a2 ) =a*—(a—1)?*=a*—-ad*+2a—1=2a—1.

Thus, the smallest height of the triangle with characteristic different from 4k + 3
is at least (2a — 1)1/2. O
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g(l)rollary 5.5. In a triangle ABC with sides 3 < a < b < ¢, where A,B,C C M €
OM,, the smallest height is at least (2a — 1)/2.

Proof. For a > 3 the inequality

1/2 5 V5 1/2

(2a —1)"7* > ﬁa

holds, and the difference between the left and right-hand sides increases with increas-
ing a. [l

6 The Main Bound

The following result is a classical Erdés-style intersection-enumeration lemma,
empowered by our Weeding Theorem 1.

Lemma 6.1. Let My, My, M3, M, C M € ﬁ; (points My and Mz may coincide,
while the others are distinct), where n > 4. Then #M < |MyM,| - |MsM,| — 2.

Proof. Consider three cases: two even edges, two odd edges and two edges with
different parity.

Case 1. Suppose that both edges M;Ms; and M3M, have even lengths. Then, for
each point N € M, one of the following conditions is satisfied:

a) N belongs to cr(Mj, Ms), which implies that there are no more than 4 points
(no more than 2 on each of the lines);

b) N belongs to cr(Ms, My), which implies that there are no more than 4 points
(no more than 2 on each of the lines);

¢) N belongs to the intersection of one of the (|M;M,|/2 — 1) hyperbolas with
one of the (|M3My4|/2 — 1) hyperbolas, which implies that there are no more than
A(|M, Mol /2 — 1)(|MsM,]/2 — 1) points.

Assuming that the edges M;M; and M3;M, have even lengths, we infer that
| My Ms| > 4 and |M3My| > 4. Then,

4 (—|M12M2| - 1) (—'M?’ZM‘*' - 1) +4+4

g (M| [Ms M| (MM [MaMa] N L,y
4 2 2

— | MyMs| - My My — 2|MyMs| — 2| My My + 4 + 4 + 4

< | My Ms| - |MsMy| — 4 < | My My| - | M3My| — 2.

Case 2. Suppose that both edges MM, and M3M, have odd lengths. Then, for
each point N € M, one of the following conditions is satisfied:

a) N belongs to cr(Mj, Ms), which implies that there are no more than 2 points
(otherwise, char M = 4k + 3);
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b) N belongs to cr(Ms, My), which implies that there are no more than 2 points;

c) N belongs to the intersection of one of (|M;Ms| —1)/2 hyperbolas with one of
(|MsM,| — 1)/2 hyperbolas, which implies that there are no more than (|M;Ms| —
1)(|M3M,| — 1) points.

Assuming that the edges M;M, and M3zM, have odd lengths, we infer that
|MiMs| > 3 and |M3M,| > 3. Then,

(|MiMy| — 1)(|MsMy| — 1)+ 242 = |MiMy|- |MsMy| — | My M| — | M3M,| + 4
S |M1M2| . |M3M4| — 2.

Case 3. Suppose that the lengths of edges M; My and M3M, are different. Without

loss of generality suppose the edge M; M, has even length while edge M3M,4 has odd

length. Then, for each point N € M, one of the following conditions is satisfied:

a) N belongs to cr(Mj, Ms), which implies that there are no more than 4 points
(no more than 2 on each of the lines);

b) N belongs to cr(Ms, My), which implies that there are no more than 2 points
(otherwise char M = 4k + 3);

c) N belongs to the intersection of one of (|M;Ms|/2 — 1) hyperbolas with one of
(|MsMy|—1)/2 hyperbolas, which implies that there are no more than 4(|M; Ms|/2 —
1)(|M3My| — 1)/2 points.

From the parity assumption for edges M; My and M3M, we can infer that | M; M,|
> 4 and |M3M,| > 3. Then,

My M MsM,y| — 1
4(%—1) <|ST4|)+2+4

= (|MyMy| = 2)(|MsMy| = 1) + 6
- |M1M2| . ‘M3M4| - ’MlMQ‘ - 2‘M3M4| -+ 2 + 6
< | My Ms| - |M3My| — 2.

This proves the assertion. ]

The following function was introduced in [17]

d(2,n) = min diam M,
MemMmy,

and some values were given:
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d2,3) = 1,

d(2,4) = 4,

d(2,5) = d(2,6) =38,

2,7 = 33,

d(2,8) = d(2,9) = 56,

d(2,10) = ---=d(2,12) = 105,
d(2,13) = d(2,14) = 532, (11)
d(2,15) = ---=d(2,18) = 735,
d(2,19) = ---=d(2,24) = 1995,
d(2,25) = ---=d(2,27) = 9555,
d(2,28) = 10672,

d(2,29) = ---=d(2,36) = 13975,
d(2,37) > 20 000.

Now we are finally ready to prove our main result. It improves the bound (1) in
our special case.

Theorem 6.2. Let M € ﬁ;, i.e., M is a set in semi-general position with charac-
teristic different from 4k + 3, k € Ng. Then, for every integer n > 3, the inequality

5/4
diam M > (20
36

holds.

Proof. For n = 3, we have diam M > 3 (achieved by an isosceles triangle with sides
2, 3, 3), and the assertion is obvious.

Let us consider M € ﬁ;, n > 4, diam M = p.

Choose points My, My, M3, My € M (points My and M3 may coincide, while the
others must be pairwise distinct) such that

min ’AB’ = |]\4-1]\42|7
A,BeM

min  |AB| = |MsM,| = m.
A,BEM\M;
Iftm< gp2/5, then by Lemma 6.1,

n < |MyMy| - |MsMy| —2 < §p4/5 —2

5/4 5/4
. 25(n + 2) S (%n
36 36

which is exactly the assertion of the theorem.

or equivalently
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If n > 4 and p < 10, then the claim of the theorem follows immediately from (11).
So now we have to consider m > 2p?/% > 3. Then for any points A, B € M \ M, we
have |AB| > £p?/5. By Corollary 5.5 and Lemma 2.14, no three points from M \ M,
lie in a strip of width
Ve S e s
V3 5
By Lemma 2.15, the set M lies in a square with side length p. We cover this

square by q strips, ’i; <gqg< TL\//; + 1, such that the width of each strip does not

exceed /2 - p'/5. Each of the obtained strips contains no more than two points from

M\ M, so
4/5

D 2p
n<2(>—=+1)+1=
- (ﬁ > V2

From inequality (12), we obtain

p> (n_3>5/4. (13)

4/5
+3=V2p"° 43 (12)

V2

According to the results (11), for 3 < n < 36 the assertion follows. Moreover, it
is known that for all 37 < n < 74, we have d(2,n) > 20 000 and our estimate on the

diameter also holds. Indeed, d(2,7*) > (£ - 74) 5% 10655. This estimate is weaker
than the available numerical results. Therefore, from now on, we can assume that
n > 74

For estimation (13) and n > 74, we have

. n_3 5/4> 25—n5/4
P=\"2 =\ 36 '

Thus, for any n > 3 the inequality diam M > (%)S/ * holds. O]

7 Conclusion

The bound proved above (as well as (1)) may appear to be far from the precise
values of d(2,n). However, it is easy to see that values of d(2;n) tend to repeat often;
thus, it is rather not unrealistic that the bounds may converge to the precise values.

Also, we should notice that our approach and specifically Weeding Theorems do
not require semi-general position and can be applied to tighten the bound from |[6]
in the special case of characteristic 4k + 1 or 4k 4+ 2. However, we are not ready to
accept this tedious challenge yet.

Another research area that is able to utilize our results fruitfully is the maximiza-
tion of IPS. The Weeding Theorems I and II can sometimes make the exhaustive
search up to four times faster.
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