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Abstract

Archdeacon [Electron. J. Combin. 22 (2015), #P1.74] defined the concept
of a Heffter array in order to provide explicit constructions of Z,-regular
biembeddings of complete graphs K, into orientable surfaces. In this
paper, we first introduce the quasi-Heffter arrays as a generalization of the
concept of Heffer array and we show that, in this context, we can define a
2-colorable embedding of Archdeacon type of the complete multipartite
graph Kvy; into an orientable surface. Then our main goal is to study
the full automorphism groups of these embeddings: here we are able to
prove, using a probabilistic approach, that, almost always, this group is
exactly Z,.

As an application of this result, given a positive integer ¢ Z 0 (mod 4),
we prove that there are, for infinitely many pairs of v and k, at least

(I1—o0(1)) (%))! non-isomorphic biembeddings of Archdeacon type of K,
whose face lengths are multiples of k. Here ¢(-) denotes Euler’s totient
function. Moreover, in case t = 1 and v is a prime, almost all these
embeddings define faces that are all of the same length kv, i.e. we have a
more than exponential number of non-isomorphic kv-gonal biembeddings

of K, of this type.

1 Introduction

An m x n partially filled (p.f., for short) array on a set {2 is an m x n matrix whose
elements belong to Q2 and where some cells can be empty. In 2015, Archdeacon (see
[1]), introduced a class of p.f. arrays which have been extensively studied: the Heffter
arrays.

Definition 1.1 A Heffter array H(m,n; h, k) is an m x n p.f. array with entries in
Zonk+1 such that:

(a) each row contains h filled cells and each column contains k filled cells,
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(b) for every x € Zong11 \ {0}, either  or —x appears in the array,
(c) the elements in every row and column sum to 0 (in Zo,gi1)-

These arrays were introduced because of their vast variety of applications and
links to other problems and concepts, such as orthogonal cycle decompositions and 2-
colorable embeddings (briefly biembeddings), see for instance [1, 4, 12]. The existence
problem of Heffter arrays has also been deeply investigated starting with [2]: we refer
to the survey [23] for the known results in this direction. This paper will focus mainly
on the connection between p.f. arrays and embeddings. To explain this link, we first
recall some basic definitions, see [21, 22].

Definition 1.2 Given a graph [' and a surface X, an embedding of I' in ¥ is a
continuous injective mapping ¢ : I' — X, where I" is viewed with the usual topology
as a 1-dimensional simplicial complex.

The connected components of ¥\ ¢(I") are said to be 1-faces. Also, with abuse
of notation, we say that a circuit F' of I' is a face (induced by the embedding ) if
Y (F') is the boundary of a -face. Then, if each 1-face is homeomorphic to an open
disc, the embedding v is called cellular. In this context, we say that two embeddings
T —= Yand v : IV — X are isomorphic if and only if there is a graph isomorphism
o : ' — I" such that o(F) is a ¢/-face if and only if F' is a -face.

Archdeacon, in his seminal paper [1], showed that, if some additional technical
conditions are satisfied, Heffter arrays provide explicit constructions of Z,-regular
biembeddings of complete graphs K, into orientable surfaces. Following [7, 8] and
[11] the embeddings defined, using this construction, via partially filled arrays, will be
denoted as embeddings of Archdeacon type or, more simply, Archdeacon embeddings.
Indeed, this kind of embedding can be considered also for more general arrays than
the Heffter’s. In [9], the authors introduced the concept of a relative Heffter array
and, in [10], it was proved that it can be used, with essentially the same construction
of [1], to embed the complete multipartite graph with v/t parts each of size ¢, denoted
by K@y, into orientable surfaces. More recently, in [7] the authors introduced a
variation of the Heffter arrays, denoted by non-zero sum Heffter arrays (see also
[6, 19, 20]) and showed that, also in this case, that embedding is well defined. In
this paper, we first provide a generalization (already reported in the survey [23],
Definition 6.56) of both the relative Heffter and the non-zero sum Heffter arrays,
and then we define the Archdeacon embedding in this more general context.

Definition 1.3 Let v = 2nk 4t be a positive integer, where t divides 2nk, and let
J be the subgroup of Z, of order t. A quasi-Heffter array A over Z, relative to J,
denoted by QH;(m,n; h, k), is an m x n p.f. array with elements in Z, such that:
(a1) each row contains h filled cells and each column contains k filled cells,
(b1) the multiset [+z | # € A] contains each element of Z, \ J exactly once.

If, moreover, also the following property holds, then A is said to be a non-zero
sum Heffter array A over Z, relative to J, and it is denoted by NH;(m,n;h, k).

(c1) The sum of the elements in every row and column is different from 0 (in Z,).
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Also, as done with the Heffter arrays and the non-zero sum Heffter arrays, a square
quasi-Heffter array will be simply denoted by QH,(n; k) or, if t = 1, by QH(n; k).

Example 1.4 Let v = 21 and let J be the subgroup of Zy; given by 7Z4; = {0, 7, 14}.
Consider the array:

—-1|/-2| 3
Ay =| 10| -=5] 6|
81 9|4

We note that the elements of [+ | z € A] are exactly Zo; \ J and hence A is a
QHz3(3;3). On the other hand, since the sum of elements in the first row is zero, A
is not an NH3(3;3).

On the other hand, if we just change the sign of the element in position (1, 1),
we obtain the array

11-2] 3
Ay =|10|-5| 6
8| 9| -4

which rows and columns all have non-zero sums. In particular, the vector of the row
sums is (2,11, 13) and the vector of the column sums is (19,2, 5) and hence A is an
NH;(3; 3).

Since the set Zsy; \ J is closed under multiplication of invertible elements of Zy;,
we can obtain a third example by simply multiplying Ay by 2. This means that the
following array, As, is also an NH3(3;3).

2| =4 6
A3 =2A,=|—-1|—-10| =9 |
-5| —3|-8

A formal definition of the Archdeacon embedding, starting from suitable quasi-
Heffter arrays, will be given in Section 2. Then, we will study the full automorphism
group of these kinds of embeddings. As remarked in [1] (see also [10]), the embeddings
of Archdeacon type are Z,-regular where, if we start from an H,(m,n;h, k), v =
2kn 4+ t. Another interesting result about these embeddings has been presented in
[8], where it was shown (by presenting a class of examples) that the automorphism
group could be strictly larger than Z,. Indeed, as an application of the interesting
class of arrays recently introduced by Buratti in [3], they exhibited, for infinitely
many values of v, an embedding of this type having a full automorphism group of
size (;), which is the largest possible size.

On the other hand, the results exposed in this paper show that these very regular
embeddings are a rarity among all of Archdeacon’s embeddings. Indeed, here, we
will first show that, if we construct the embedding starting from a QH;(m,n;h, k)
or from an NH,(m, n; h, k), almost always its full automorphism group is exactly Z,.
These two theorems will be proved in Section 3 of this paper. Then, in Section 4, we
will show that, given a positive integer t Z 0 (mod 4), there are, for infinitely many
pairs of v and k, at least (1 —o(1))(%5*)! different biembeddings of Archdeacon type
of Kuy; whose face lengths are multiples of k and whose automorphisms group is
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exactly Z,. Finally, in the last section, we will apply these results to show that we
also have (again given a positive integer ¢t # 0 (mod 4) and for infinitely many pairs

of v and k), at least (1—o0(1)) (;?:))! non-isomorphic Archdeacon embeddings of K,
whose face lengths are multiples of k. Here ¢(-) denotes the Euler’s totient function.
Moreover, if we start from quasi-Heffter arrays of type QH(n; k) and v = 2nk+1is a
prime, almost all these embeddings define only faces of length kv, i.e. we have more
than an exponential number of non-isomorphic kv-gonal Archdeacon biembeddings
of K,. Even though, perhaps, this kind of lower-bound is not unexpected, we believe
it can be of some interest also from the graph-theoretical point of view. Indeed the
number of non-isomorphic embeddings of complete graphs whose faces are of a given
length is a well-studied problem (see, for instance, [14, 18]) and in some situations,

only exponential bounds are known (see [16, 17]).

2 The Archdeacon Embedding

Following [13, 15, 24], we provide an equivalent, but purely combinatorial, definition
of graph embedding into a surface. Here, we denote by D(T") the set of all the oriented
edges of the graph I" and, given a vertex = of I, by N(I', ) the neighborhood of z
in I'.

Definition 2.1 Let I' be a connected graph. A combinatorial embedding of T" (into
an orientable surface) is a pair IT = (T, p) where p : D(I') — D(T") satisfies the
following properties:

(a) for any y € N(I', z), there exists ¢y € N(I', z) such that p(z,y) = (z,v'),
(b) we define p, as the permutation of N(I',z) such that, given y € N(T',x),
p(x,y) = (x, p(y)). Then the permutation p, is a cycle of order |N (T, x)|.

If properties (a) and (b) hold, the map p is said to be a rotation of T.

Then, as reported in [13], a combinatorial embedding II = (I, p) is equivalent to
a cellular embedding ¢ of I" into an orientable surface ¥ (see also [1], Theorem 3.1).

Example 2.2 As explained in [22], the rotation p associated with the cellular em-
bedding of Figure 1 can be obtained through the following steps.

1) Givenz € {1,2,3,4,5,6,0}, we define the map p, by looking at the neighbourgs
of x in a clockwise order. For example, given x = 3 we have that p3 is the cyclic
permutation of {1,2,4,5,6,0} given by (4,1,0,2,5,6).

2) Due to property (b) of the definition of combinatorial embedding we have that
p((z,y)) = (2, p=(y))-

Clearly, these steps are enough to determine the map p. However, in this case, we
can also choose just one x € {1,2,3,4,5,6,0}, define, as above, the map p on the
oriented edges that start from z, and then define the map p for the other ones as
follows.
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Figure 1: A biembedding of K into the torus. This picture is taken from [24].

3) We note that every oriented edge of K7 can be written in the form (x+z,y+2)
where the sum is performed modulo 7. Here we set p((z + z,z +y)) = (2 +

T, 2+ pa(y))-

If we do so, we can easily check that the expression we obtain for p is independent
of the initial vertex x.

Now we show that the Archdeacon embedding can be defined also starting from
quasi-Heffter arrays. We first introduce some notation. The rows and the columns of
an m X n array A are denoted by Ry,...,R,, and by C1,...,C,, respectively. Also
we denote by £(A), E(R;), £(C;) the list of the elements of the filled cells of A, of
the i-th row and of the j-th column, respectively. Given an m x n p.f. array A, by
wr, and we; we denote a cyclic ordering of £(R;) and £(Cj), respectively and we
define by w, = wpg, o---owg,, the ordering for the rows and by w. = w¢, 0+ owe,
the ordering for the columns.

Definition 2.3 Given a quasi-Heffter array A, the orderings w, and w, are said to
be compatible if w. o w, is a cycle of order |E(A)].

Example 2.4 Let us consider the array A; of Example 1.4

11-21 3
Ay =10 =5| 6|
8| 9|4
Here we consider the cyclic orderings
wg, = (1,-2,3);

WR, = (10, —5,6);
Wry = (8,9, —4);
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and
we, = (1,10, 8);
We, = (_27 _57 9)7
Wes = (—4, 6, 3)

These orderings define, respectively, the ordering for the rows
wy = (1,-2,3)(10, —5,6)(8,9, —4)
and the ordering of the columns
we == (1,10, 8)(—2,—5,9)(—4,6, 3).
Here we have that
weow, = (1,-5,3,10,9,6,8, —2, —4)

which is a cycle of order 9 = |E(A3)|. Thus, the orderings w, and w, are compatible.
Also, note that, considering the array Az = 245 of Example 1.4, we can get compat-
ible orderings by considering w, and w, defined by wp = 2wp, and wy, = 2wc;.

Now we are ready to adapt the definition of the Archdeacon embedding, see
[1, 10], to the case of quasi-Heffter arrays.

Definition 2.5 (Archdeacon embedding) Let A be a QH;(m,n;h, k) that ad-
mits two compatible orderings w, and w.. We consider the permutation p, on
+E(A) = Zonkst \ 22 Zoppys, where 2557, 11, denotes the subgroup of Zanjs
of order t, so defined

) —we(a) ifa € E(A),
pola) = {wc(—a) if a € —£(A). 21)

Now, we define a map p on the set of oriented edges of this graph as follows

p(z, 2 +a)) = (2,2 + pola)). (2.2)

Example 2.6 Considering the array A, and the orderings w, and w. of Example
2.4, we have that, these orderings define the permutation of Zs; \ {0,7, 14}

po:=(1,2,-5,-6,3,—1,10,5,9,4,6,—10,8, -9, -2, —3, —4, —8).

Also, note that, considering the array A; = 245 of Example 1.4, we obtain the
Archdeacon embedding defined by the permutation

oh s 2p0 = (2,4,—10,-9,6,—2,—1,10,—3,8,—9,1, —5,3, —4, —6, —8, —5).

This observation suggests that the Archdeacon embedding deeply depends on the
combinatorial structure of the compatible orderings. This link will be developed in
Section 4 of this paper.
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Remark 2.7 Note that in Definitions 2.3 and 2.5 we can interchange the roles of
w, and w,.. This operation corresponds to transposing the array A and hence it does
not change the class of maps here considered.

Reasoning as in [7] and in [10] (see also Proposition 5.6 of [19]), we can prove that,
since the orderings w, and w. are compatible, the map p is a rotation of Kankse,,
t

and we get the following Theorem.

Theorem 2.8 Let A be a QH,(m,n;h, k) that admits two compatible orderings w;
and w.. Then there exists a cellular biembedding 1 of K ks, such that every edge
1s on a face whose boundary length s a multiple of h and on a face whose boundary
length is a multiple of k.

Moreover, setting v = 2nk +t, ¥ s Z,-reqular.

We are also interested in describing the faces (and the face lengths) induced by the
Archdeacon embedding under the condition of Theorem 2.8.

For this purpose, we take a p.f. array A that is a QH;(m, n; h, k) and that admits
two compatible orderings w, and w.. We consider the oriented edge (x,z + a) with
a € E(A), and let C be the column of A containing a. We denote by A. the minimum
positive integer such that 37 lEONIL i(a) = 0 in Zongye. Due to Theorem 6.4 of [7]
(see also [19]) (z,z + a) belongs to the face F} whose boundary is

Acl€(C)] -2
T, x4+ a,x+ a+wla),..., v+ Z wi(a) | . (2.3)

We also note that, denoted by XC' the sum of the elements of the column C', then A,
is the minimum positive integer such that A.(XC) = 0 in Zgu,y and Fy has length
kX.. Moreover, this face covers exactly A, edges of type (y,y+a) for some y € Zopp i+
Since the total number of such edges is 2nk + ¢, the column C' induces (2nk +t)/A.
different faces.

Let us now consider the oriented edge (z,x + a) with a & £(A) and let R be
the row contammg —a In this case, we denote by A, the minimum positive integer
such that ZMf "wi(—a) = 0 in Zappie and hence a = Z;‘;‘f(RN_l w'(—a). Then

(xz,z + a) belongs to the face F, whose boundary is

AE(R ArlE(R

T, + Z ),z + Z ), x+w (—a) | . (2.4)

Here we have that, denoted by ¥R the sum of the elements of the row R, then A, is
the minimum positive integer such that A\.(XR) = 0 in Zg,,+, and F; has length hA,..
Moreover, reasoning as for the columns, we have that the row R induces (2nk+t)/\,
different faces.

To describe the spectrum of the face lengths, we need to introduce the following
notation. Given a multiset M, we denote by M® the multiset in which each element
of M appears « times. From the above discussion, it follows that (see also [19]).
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Theorem 2.9 Let A be a QHi(m,n;h, k) that admits two compatible orderings w;
and w.. Then, set v = 2nk +t, there exists a Z,-reqular, cellular biembedding 1) of
Ky whose face lengths define the following multiset

U (kA" U U (A

c s a column of A R 1S a Tow of A

Example 2.10 We describe here the faces of the Archdeacon embedding obtained
in Example 2.6. In this case, the vector of the row sums is (2,11, 13) and the vector
of the column sums is (19,2,5). Since all the row sums and the column sums are
invertible in Zs;, we get a Zsi-regular biembedding K73 whose faces have all length
63 (i.e., a 63-gonal embedding).

We explicitly write here the face obtained by starting from the oriented edge
(0,1) and proceeding through the column Cj.

Fy:=(0,1,-10,—2,—1,9,—4,—3,7,—6,—5,5,—8,—7,3,—10,-9, 1,9, 10,

~1,7,8,-3,5,6,—5,3,4,-7,1,2, -9, —1,0,10, —3, —2,8, —5, —4,6, —7,
—6,4,—9,-8,2,10,-10,0,8,9, —2,6,7, —4,4,5,—6,2,3, —8).

3 On the Automorphism group

This section aims to study the full automorphism group (i.e. the group of all its
automorphisms) of an embedding of Archdeacon type. We first recall that also
the notions of embedding isomorphism and automorphism can be defined purely
combinatorially as follows (see Korzhik and Voss [16] page 61).

Definition 3.1 Let Il := (I', p) and II' := (I, p) be two combinatorial embeddings
of, respectively, I' and IV. We say that II is isomorphic to II' if there exists a graph
isomorphism o : I' — IV such that, for any (z,y) € D(I"), we have either

ogop(z,y)=poo(z,y) (3.1)

or
1

oop(z,y) = ()" oo(z,y) (3.2)
We also say, with abuse of notation, that ¢ is an embedding isomorphism between
IT and II'. Moreover, if equation (3.1) holds, o is said to be an orientation pre-
serving isomorphism while, if (3.2) holds, ¢ is said to be an orientation reversing
1somorphism.

Example 3.2 We consider again the embedding (K7, p) represented by Figure 1.
Due to the step (3) of its definition (see Example 2.2), p satisfies the following
property

p((z+z,24y) = (z+ 2,24 pa(y))- (3.3)
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We denote by 7, : Z; — Z7 the map 7.(x) := z + x, and, by abuse of notation, we
set 7,(x,y) := (2 + z, 2z + y). Then, property (3.3) can be written as

.0 p(z,y) = poT.(x,y).

This means that, for any z € Z7, the map 7, is an orientation preserving automor-
phism of (K7, p).

Example 3.3 Let II := (K7x3,p) and II' := (K743, p") be the Archdeacon embed-
dings defined in Example 2.6 starting from, respectively the arrays A; and As. We
denote by ps the map po(z) = 2 of Zy; which can be seen as a graph automorphism
of K73 if we ideintify its vertices with Zo;.

Then, for any oriented edge (z,z + a) € D(K7x3), we have that

p2 o p(z,x + a) = po(z,z + po(a)) = (27, 2z + 2po(a)).
Since pp(2a) = 2po(a), this can be rewritten as
(22, 2x + py(2a)) = p'(2x,22 + 2a) = p' o po(x, x4 a)

implying that s is an orientation preserving automorphism between the Aerchdeacon
embeddings IT and II'.

Here, using the notation of [11], given an embedding II, we denote by Aut(II) the
group of all automorphisms of IT and by Aut™(IT) the group of the orientation pre-
serving automorphisms. Similarly, we denote by Auty(II) the subgroup of Aut(II) of
the automorphisms that fix 0 and by Autg (II) the group of the orientation preserv-
ing automorphisms that fix 0. We remark that, since an orientable surface admits
exactly two orientations, Aut™(Il) (respectively, Autg (I1)) is a normal subgroup of
Aut(IT) (respectively, Auto(Il)) whose index is either 1 or 2. Also, as done in Exam-
ple 3.2, we denote by 7, the translation by g, i.e. the map V(I') = Z, — V(I') = Z,
such that 7,(x) = x + ¢g. Then, when we consider a Z,-regular embedding II of T,
we identify the vertex set of I' with Z, and we assume that the translation action
is regular. Applying this convention, we have that 7, € Aut(Il) for any g € Z,.
Moreover, in the case of the Archdeacon embedding, recalling equation (2.2), the
translations also belong to Aut™(II).

Now we want to characterize some properties of the elements of Aut(II) inspired
by the work of Korzhik and Voss [16]. Indeed, in that paper, the authors provided
a very nice characterization of the automorphisms of a Z,-regular embedding of a
complete graph K,. More precisely, in the proof of their Theorem 1, they implicitly
proved the following theorem.

Theorem 3.4 ([16]) Let II be a Z,-reqular embedding of K, and let us assume that
all the translations belong to Autt(II). Then a permutation o of Z, \ {0} belongs to
Auto(I1) if and only if
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a) Set po = (x1,x9,...,2,-1) we have that either
(33'1, To, ... ,33'1),1) = (O’(l’l), 0'(33'2), RN ,0'(5[)1,,1))
or
(,Tl, To, ... 7371;71) = (U(;val), R ,O'(Zﬂg), 0'(371))

where the equalities are considered as cycle equality.
b) The permutation o is an automorphism of the additive group Z,.

Here we deal with the more complicated case of multipartite graphs K,,y; (where
m = v/t) but Propositions 3.5 and 3.7 below adapt condition (a) of Theorem 3.4 and
Proposition 3.8, even though it is much weaker, should be read in the same spirit of
Theorem 3.4 (b).

First, we deal with the elements of Auty: the following proposition was already
implicity proved in the proof of Proposition 3.3 of [11] but, for the sake of complete-
ness, we also write its proof here.

Proposition 3.5 Let II be a Z,-reqular embedding of K,,x: (where m = v/t) and
let us assume that all the translations belong to Aut*(I1). Then, given o € Autg (I1),
the following condition holds

O|N(Kmer0) = Po for some 1 <€ < (m — 1)t — 1.

Moreover, giwen 01,00 € Aut{(Il) such that o1|N(Kny0) = O2|N(Kmyi0), then
01 = 03.

Proof. Because of the definition, o € Auty (IT) implies that, for any x € N(K,,x¢,0)
ogop(0,2) =pooc(0,x).

Recalling that p(0,z) = (0, po(z)) for a suitable map py : N(Kpxt, 0) = N (K, 0),
we have that

(0,070 po() = 7 0 p(0, 2) = po 7(0, ) = (0, po 0 (). (3.4)

Since |N(Kpxt, 0)| = (m — 1)t, we can write po as the cycle (x1, 22,23, ..., Tan_1y)-
Then, setting o(z1) = x;, equation ((3.4)) implies that

(0,0(22)) = (0,0 0 po(1)) = (0, po © (1)) = (0, po(w:)) = (0, Zi41).

Therefore, we can prove, inductively, that

0(;) = Tjri
where the indices are considered modulo (m—1)¢. This means that o|y(x,..,0 = o |
and that o is fixed in N(K,,x¢,0) when the image of one element is given.
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Now we need to prove that, if two automorphisms o; and oy of Autg (II) coincide
in N(Kpnxt,0), they coincide everywhere. Set 015 = 0y 1o gy, this is equivalently to
proving that oy 5 is the identity. Given x € N(K,,xt,0) we have that o1 2(z) = = and
hence 015 belongs to the subgroup Aut} (II) of Aut™(II) of the elements that fix z.
Proceeding with the elements of Aut;{ , we prove that o1 2|n(k,, .2 15 fixed when the
image of one element is given. But now we note that 0 € N (K, ) and we have
that 012(0) = 0. It follows that

O12| N(Kpe,z) = 1d.

Since o7 and o9 coincide in N(K,,x¢,0), we also have that
0'1,2|N(Kmxt,0) =1d.
Now the thesis follows because, for m > 2,
V(Kmxi) = N(Kpxi,0) UN(Kpxi, x).
([

Example 3.6 We consider again the embedding IT = (K7, p) defined in Example 2.2
(see also Figure 1). Here we want to determine the group Autg (IT). We recall that
po is the cyclic permutation of {1,2,3,4,5,6} defined by (4,6,2,3,1,5). We want to
prove that the map o : Z; — Z; is an element of Aut] (II) where

U@%:{Oﬁxza

po(x) otherwise.

In this example it is more convenient to use the topological definition of graph em-
bedding: we need to verify that ¢ maps faces into faces. Since this map rotates
clockwise the neighbors of 0 and the faces are triangles, it maps faces through zero
into faces through zero. It is left to prove that it maps also the family of the faces
that do not contain zero, which we denote by F,,., into itself. Here we have that

T = {{6,4,3},{6,5,3},{4,2,1}, {4,3,1}, {4, 5,2}, {5, 3,2}, {5,6, 1}, {6, 1,2} }.

Applying o we have

o(Fn.) =1{2,6,1},{2,4,1},{6,3,5},{6,1,5},{6,4,3},{4,1,3},{4,2,5},{2,5,3} }.

Since this set is still F,,,, we have that o is an element of Auty(II). Moreover, since
it is a rotation around 0 it does not change the orientation and so o € Aut{ (II). But
then we also have that, for any ¢ € {1,2,...,6}, 0* € Autd (II). Finally, because of
Proposition 3.5, we obtain that

Autd (1) = {o*: €€ {1,2,...,6}}.

Now we prove a characterization, similar to that of Proposition 3.5, also for the
elements of Auty (IT) := Auto(IT) \ Autg (I1).



S. COSTA / AUSTRALAS. J. COMBIN. 93 (3) (2025), 428-460 439

Proposition 3.7 Let 11 be a Z,-regular embedding of K« (where m = v/t) and
let us assume that all the translations belong to Aut™(I1). Then, given o € Autg (1),
set po = (1,22, ..., T(m-1)t), and reading the indices modulo (m — 1)t, the following
condition holds

o(z;) = x¢—j for some L € {1,...,(m — 1)t}.

Moreover, given o1,00 € Auty(II) such that o1|N(Kyy0) = O2|N(Knxe0), then
01 = 03.

Proof. Because of the definition, o € Aut, (II) implies that, for any € N (K4, 0),
ogop(0,z)=p too(0,x).

Recalling that p(0,z) = (0, po(x)) for a suitable map py : N(Kyxt, 0) = N(Kpxi, 0),
we have that

(0,00 po(x)) =0 0p(0,2) =p toc(0,2)=(0,p," 00(x)). (3.5)

Since |N(Kynxe, 0)] = (m — 1)t, we can write po as the cycle (z1, %2, 23, ..., T(m-1)t)-
Then, setting o(x) = x;, equation ((3.5)) implies that

(0, 0(2)) = (0,0 0 po(w1)) = (0, py " © o (1)) = (0, p " (x:)) = (0, i1).

Therefore, we can prove, inductively, that

0(2j) = T(i+1)—j
where the indices are considered modulo (m — 1)t.

Finally, proceeding as in the proof of Proposition 3.5, we obtain that, if two auto-
morphisms o7 and o9 of Auty (II) coincide in N (K¢, 0), they coincide everywhere.
Here, in order to apply the arguments of the proof of Proposition 3.5, it suffices to
note that, because of equation (3.2), 072 0 0y € Autg (II) O

Proposition 3.8 Let A be a QHi(m, n; h, k) that admits two compatible orderings w,
and w.. Let I1 be the Archdeacon embedding of Kzt , defined by A (see Definition

2.5). Then, given o € Auty(Il) and x € E(A), the following condition holds

{we(o(2)),w; (0(2))} if o(x) € E(A),
{-wil(=o(@)), ~w(=0(2))} if o(z) € —E(A).

In particular if we set, by convention, w,(y) = —w,(—y) and w.(y) = —w.(—y) when
y € —E(A), also the following, weaker, condition is realized

0(z + we(x)) = 0(2) € {we(o(2)),w,  (0()), —we* (—o(2)), —wr (=0 (2))}.  (3.7)

o(x+w.(x)) —o(x) € { (3.6)
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Proof. Given x € E(A), one of the two faces that contain the edge (0, z) is, according
to equation (2.3), of the form

Fy= (02,2 +we(z), 2 + we(x) + w2(x), ..., —w. (z)).

Since o € Auty(II), it maps faces onto faces. Therefore the face o(F}), that contains
the edge (0,0(x)), is of the form

o(Fy) = (0,0(z),0(z + we(z)), 0(x + we(x) + wWi(2)),...,0(—w, (1))).

We observe that, due to equations (2.3) and (2.4), the oriented edge (0, z) belongs
to exactly two faces among the following ones:

1) (0,2,2 + we(2), 2 + we(2) + W2(2),...,—w 1(2)), this face is obtained setting
x =0 and a = z in equation (2.3),

2) (0,2, 24w, (2),...,—w?(2) —w(2), —w,(2)), this face is obtained setting z = 2
and a = —z in equation (2.4),

3) (0,2,2 —w  (—2),...,we(—2) + w?(—2),w.(—2)), this face is obtained setting
x =z and a = —z in equation (2.3),

4) (0,2, z2—wp(—2), z2—w,(—2) —w?(—2),...,w, (—=2)), this face is obtained setting

x =0 and a = z in equation (2.4),

according to whether z € £(A) (cases 1 and 2) or z € —&(A) (cases 3 and 4). It
follows that the difference o(x + w.(z)) — o(x) belongs to the set

{we(o(x)),w,  (o(2))} if o(z) € E(A)
and to the set
{—w  (=o(2)), —wi(—0o(2))} if o(z) € —E(A).
O

Given a p.f. array A, by skel(A) we denote the skeleton of A, that is the set of the
filled positions of A. Similarly, given the orderings w, and w, for the rows and the
columns of A, we denote with «, and «, the induced permutations on the skeleton.
We remark that w, and w. are compatible if and only if «,. o a. is a cycle of order
|E(A)|. In this case, we say, with abuse of notation, that «, and «. are compatible
orderings of skel(A). If the elements of £E(A) are all distinct, given 2 € £&£(A)
we define its position p(z) as the cell (4, j) such that a;; = £x; we also set, by
convention, p(z) to be co whenever x ¢ £E(A). Using this notation we have that
arop=pow,and a,op=pow,.

Now we want to estimate the probability that there exists an automorphism o
that satisfies the conditions of Propositions 3.5 and 3.8 (or 3.7 and 3.8 when o is an
orientation reversing automorphism) for a given value of . Since this computation is
quite technical, we split it into the following three lemmas according to whether o is
an orientation reversing or preserving automorphism and, in the latter case, according
to the value of £. Moreover, since we are more interested in the asymptotic behavior
of those estimations and since in our applications (see Sections 4 and 5) we always
have that h,k > 3, we consider here QH,;(m, n; h, k) such that h,k > 3.
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Lemma 3.9 Let B be a set of cells of an m X n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column and let us assume it admits
two compatible orderings o, and a.. Given Q C Zopgry such that [z | x € Q]

, 2nk
contains each element of Zopg1t \ ( nt+t)

of all the QHy(m,n;h, k), A, such that:
a) skel(A) = B,
b) E(A) = Q.

Lo+t €xactly once, we consider the set A

Let us choose, uniformly at random, A € A and let us denote by w, and w. the com-
patible orderings of A that correspond to o, and ., by II the Archdeacon embedding
of Kaniiey, defined by A (see Definition 2.5), and by p the corresponding rotation.
Let us talso, fix 0 € {1,...,2nk — 1} such that ¢ # nk when nk is odd.

Then the probability that there exists o € Autg (1) such that OIN(K e, 0) = b,

for a fixed t is O <w>

Proof. ~ We note that, if there exists an automorphism ¢ whose restriction to
N(Kzntt,,0) is pf, then 0|y o, ) = pf. Hence we have that
t 3 X

P(3 o € Aut (1) : O-|N(K2nltc+txt»0) =pb) <P(3 o € Autd (1) : J|N(Kzn1§+zxt,0) = 2.

Therefore, in the following, we can assume that ¢ is an even integer in {1, ...,2nk—1}
and that there exists an automorphism o whose restriction to N (K znkte,,,0) is pf.
t

Then, according to condition (3.7) of Proposition 3.8, we must have that

o(2 +we(r)) — po(@) € {welpo(@)), i (po(@)), —wi (—po()), —wr(—po())} (3.8)

whenever = € E£(A). We note that, when = + w.(z) € £E(A), o(r + we(x)) =
pb(x +w.(z)) and hence, for such z, the realization of relation (3.8) only depends on
the elements of A. Therefore we consider the following, weaker, condition

0=0if r + w.(x) & £E(A),

po@ + we(z)) — po(2) € {we(pp(@)), wy H(5(2)), —wi (—=pp(@)), —wr(—ph(@))}
otherwise.
(3.9)
Clearly, the probability that condition (3.9) holds is greater than the probability that
condition (3.8) holds.

Now we assume, without loss of generality, that 1 € £(A) and we want to provide
an upper bound on the probability that (3.9) holds. We begin by upper-bounding
the probability that (3.9) holds for z = 1. Here it will be more convenient to extend
again that event by considering the following three ones.

E1l) 1+ w.(1) & £E(A) or 1 4+ w.(1) is one of the following values

{1 we(1)},



£2)

E3)
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0(1 4 w(1)) is in one of the following positions
{p(1), ac(p(1)), p(p6(1)), ce(p(ph (1)), i (p(pG(1))), @ (p(p6(1))), ar (p(p6(1)))}

this event is condition (3.8), i.e.

(1 +we(1)) = po(1) € {welpo(1)),wr ' (po(1)), —wz ' (=pp(1)), —wr(=ph(1)}-

Using this notation, we want to bound the probability that E1 or E3 occur: here
the auxiliary event £2 has been introduced for convenience reasons. Indeed, we note

that

F1UE3=F1U(FE1NE3)C F1U(E1N E2)U((E1NE2)N E3).

This implies that, if (3.9) holds for # = 1, then either E1 holds, or E1 does not
hold and E2 holds, or £1 and E2 do not hold and E3 does. Now we evaluate the
probability of each of these cases: their sum will provide an upper bound to the
probability that (3.9) holds.

1)

Estimation of P(E1): We have |E(A)\{1}| = nk—1 possible choices for w,.(1)
and hence nk — 1 possible values for 1 4+ w.(1). Among these values, at most
t+1 give elements of (Z,\ (£E€(A)))U£{1,w.(1)} since 1+w.(1) & {0, 1, w.(1)}.
Therefore

t+1
P(E1) < .
( )_nk’—l

Estimation of P(E2|E1): Since we are assuming E1, E2|E1 is equivalent to
require that p(p§(1 + w.(1))) is in

{p(1), ae(p(1)), p(p5(1)), cc(p(ph(1))), o (p(PG(1)), ez (p(PG(1))), e (p(p6(1)))}-

Note that p(ph(1 + we(1))) depends on the position of 1 + w.(1). Indeed, due
to Definition 2.5, and since ¢ is even, we have that,

¢/2 -
Pt (1 4+ (1))) = {(ac 0 ar) (B + D)) I L+ wel1) € E(4),
(a0 ) (p(1 + we(1))) if 1 +we(1) € —E(A).
Moreover, since 1 + w.(1) & +{1,w.(1)}, the position of 1 + w.(1) varies, uni-
formly at random among the other nk — 2 possible ones. This means that £2
is satisfied for at most 7 positions of 1 + w.(1) while we have nk — 2 possible
choices for p(1 + w.(1)). Therefore

7

P(E2|E1) < .
(£2] >_nkz—2

Estimation of P(E3|(E2,E1)): Since E2 does not hold, p(ph(1 + w.(1))) ¢
{p(1), ac(p(1))}. In this case, since ¢ is even and because of Definition 2.5, pg
maps E(A) onto £(A) and —E(A) onto —E(A). Therefore, p(p§(1 + w.(1))) =



S. COSTA / AUSTRALAS. J. COMBIN. 93 (3) (2025), 428-460 443

(1 + we(1)) would imply p§(1 + we(1)) = 1 + w.(1) that is not possible since
0+ 0. Tt follows that p(p§(1 + w.(1))) # p(1 + w.(1)).

Hence the value of pf(1 + w.(1)) varies uniformly at random among nk — 3
possible ones. Moreover, since E2 does not hold, we also have that p(p§(1 +
we(1))) does not belong to

{p(po(1)), ac(p(ph(1))), oz (p(p5 (1)), o (p(p5(1))), e (p(p5 (1)) }-
Hence pf(1 + w.(1)) is independent from the values of
{p0(1), welpo(1)), w7 (p6(1)), —wg (—=p(1)), —wr(—po(1)) }-

Once these 5 values have been given, we have at most 4 values of p§(1 + w,.(1))
that satisfy condition (3.9). Here we still have at least nk — 8 possible values
for p§(1 + we(1)). Therefore

P(E3|(E2, BT)) <

nk — 8
Summing up, the probability that

(1 +we(1) = (1) € {welph(1)), wr ' (ph(1)), —wz ' (=po(1)), —wr(=p5(1)}

is at most of - for some constant ¢; that does not depend on n and k.

Now we choose a position (i,) € B = skel(A) that does not belong to

{p(1); ae(p(1)), p(1 + we(1)), p(o (1 + we(1))), p(p5(1)), e(p(p5 (1))
o (p(p6(1))), g (p(p5(1))), ar (p(p6(1))) -

We name by z the element in position (7,7). Since condition (3.9) must hold for
any v € £(A), now we assume that it holds for z = 1 and we want to provide an
upper-bound to the probability that it is satisfied also by x = Z. Here we proceed as
for x = 1. We consider three events defined in a similar way as the ones of the case
x = 1: we do not use exactly E1, E2, and E3 because we are assuming that (3.9)
holds for x = 1.

E1l) T+ w.(Z) & £E(A) or T + w.(T) is one of the following values
{7, wel(@), 1, we(1), 1+ we(1), 0 (1 + we(1)), p(1), welpp (1)),
wy (po(1)),w (= (1)), wr(—p6(1)) 1,

E2) 0(Z + w.(Z)) is in one of the following positions (that are the ones involved in
the events E1, E2, and E3)

{p(1), ac(p(1)), p(1 + we(1)), plo (1 + we(1))), ce(p(p(1))),
a;  (p(ph(1))), o (p(p6(1))), e (p(pG (1))}

or in one of the following ones (that depend on p(Z))
.

{p(@), ac(p(2)), (P5 (@), c(p(Ph(@))), 07 ((05())), e (p(P6(2))), ar (p(P6(2)))
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E3') this event is condition (3.8), i.e.

0 (2 +we(7)) = py() € {welph(2)), w; (P (2)), —w ' (—po(2)), —wi(—pp(2))}-
We observe that (3.9) holds for x = Z, then either £1’ holds, or E1’ does not hold
and E2' holds, or E1" and E2' do not hold and E3’ does. Here, reasoning as in the
case r = 1, we obtain that the sum of these probabilities is at most of = for some
constant ¢, that does not depend on n and k.

Since (3.9) must hold both for x = 1 and for x = &, the probability that there

exists an automorphism o whose restriction to N(Kznes:,,,0) coincides with pf is,
t

considering ¢ fixed, O <m) a

Lemma 3.10 Let B be a set of cells of an m x n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column and let us assume it admits
two compatible orderings o, and a.. Giwven Q C Zopgt such that [z | x € Q]

contains each element of ZLopkis \ (2n]z+t) Zonkt+t exactly once, we consider the set A

of all the QH,(m,n;h, k), A, such that:
a) skel(A) = B,
b) E(A) = Q.

Let us choose, uniformly at random, A € A and let us denote by w, and w. the com-
patible orderings of A that correspond to «, and ., by Il the Archdeacon embedding
of Konise,, defined by A (see Definition 2.5), and by p the corresponding rotation.

t

Then the probability that there exists o € Auty (II) such that o|N(k .., L0 = Pk,
mbit,
18, considering t fized, O (W)

Proof. Because of Lemma 3.10, we can assume nk to be odd. In this case pg*
interchanges £(A) with —£(A) and vice versa. More precisely, due to Definition 2.5,
we have that

—w, 0 (wy 0w ) ™=D/2(2) if 2
pgk(z):{ c ( T c) ( ) f eé’(A), (310)

Wy 0 (we 0w, ) MFD2(—2) if z € —E(A).
Here we consider the set of the positions P of B defined by
Pi={(i,j) € B:aco (a0 a) ™ V(i j) = (i,5)}

If we take z € £(A), then, because of equation (3.10), we have that p(z) = p(ps*¥(z))
implies p(z) € P. On the other hand, if z belongs to —E(A) and p(z) = p(py*(2)),
since pi* interchanges £(A) with —&(A), it follows that —z = p§*(z). Here, since pg
has order 2nk, pi* is an involution. Therefore we also have that z = pi¥(—z) and,
since —z € £(A), that

p(2) = p(pg"(=2)) = ac o (ay 0 ar) "™ D2 (p(—2)) = ac o (ar 0 ae) ™V (p(2)).
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This means that p(z) = p(py*(z)) implies, for any z € +£E(A), that p(z) € P.

Now we divide the proof of this Lemma into two cases according to the cardinality
of P.

CASE 1: |P| < 10. Here we proceed as in the proof of Lemma 3.9. We just modify
the events £2 and E2' as follows:

1) in the event E2 we also allow the possibility that 1 4 w.(1) € P,

2) similarly, also in the event E2’, we add the possibility that T + w.(Z) € P.

Here, the estimation of P(E'1) can be done in exactly the same way as Lemma 3.9.

We also note that the new event E2 is satisfied by at most other 9 positions of
1+ w.(1). Hence we obtain the following upper-bound

16
nk —2°

P(E2|E1) <

Then, during the estimation of P(E3|E2, E1), we can assume 1 + w.(1) € P that
implies

P(p5" (1 +we(1))) # p(1 + we(1)).
Therefore we obtain the same upper-bound of Lemma 3.9 for P(E3|E2, E1).
Since these arguments work also for the estimation of P(E2'|E1’) and P(E3'|E2/,E1’),
we obtain that, if |P| < 10, the probability that there exists o € Autg (IT) such that
O|N(K yus . 0) = Pk is, considering ¢ fixed, O (ﬁ
CASE 2: |P| > 10. In this case we consider the set of the positions B of B such
that

B:={(i,j) € B: aco (a0 o)™ V(i j) # aci, j)}.
We claim that P C B.

Here, since k > 3 > 2, we have that (i, ) # a.(7, 7). Therefore any (i, j) € P is such
that

aco (a0 O‘C)(nk_l)m(@j) = (i,7) # ac(i,j)
that is (¢,7) € B and hence P C B.

This means that |B| > |P| > 10. Now we proceed as in the proof of Lemma 3.10
with the following changes:

1) it is not restrictive, in this estimation, to assume that 1 € B,
2) in the event E3 we consider condition (3.6) of Proposition 3.8 instead of (3.7).
Since pi¥ interchanges £(A) and —&(A), the event E3 is here

(1 +we(1) = p5"(1) € {—wz ' (=p5" (1)), —wr(—=p5" (1)},

3) since |B| > 10, T can be chosen in B,
4) we consider, also in the event E3’, condition (3.6) of Proposition 3.8 instead of
(3.7).
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Here we have that the same estimations of Lemma 3.9 for P(E1) and P(E2|E1) still
hold. For the event (E3|E2, E1), instead, we provide the following upper-bound.

3) Estimation of P(E3|E2,E1): In this case we can assume that p(pp*(1 +
we(1))) = p(1 4+ we(1)), otherwise we can apply the same argument of Lemma
3.9. Since pp¥ interchanges £(A) and —&(A), we have that pi*(1 + w.(1)) =
—1 — w,(1) and hence condition (3.6) of Proposition 3.8 becomes

—1—we(1) = p5*(1) € {~w ' (=p5" (1)), —wr(=p5" (1))} (3.11)

Here we note that, since we are assuming h, k > 3, we have that w.(1) # w_ (1)
and w.(1) # w,(1). Tt follows that, when p(pg*(1)) = p(1), (3.11) can not be
satisfied. Indeed, in this case we would have that pj*(1) = —1 and condition

(3.11) becomes
we(1) € {w (1), wr (1)}

Hence we can assume that p(pa¥(1)) # p(1). Furthermore, since 1 € B, we also

have that p(sf(1) # ac(p(1)):

Therefore, we can assume p(pi*(1)) ¢ {p( ), a.(p(1))} and, since E2 does not
hold, we also have that p(p§ ( )) # p(pa¥(1 + we(1))). This implies that the
value of pp¥(1) varies, uniformly at 1"andom7 among

—E(A)\ {1, w(1), 1 +we(1)}.

Moreover, since h, k > 3 > 2, we also have that

p(pg*(1)) & {a (p(ph"(1))), cr (p(pg*(1)))}-

Hence pp*(1) is independent from the values of

{~w (=" (1)), —wr(=pp" (1))}

Once these two values have been given, we have at most 2 values of p¥(1) that
satisfy condition (3.9). Here we still have at least nk — 5 possible values for

pi*(1). Therefore
2

P(E3|(FZ, BT) < ———.

Since the same arguments work also for the estimation of P(E3/|E2/, E1'), we obtain
that, also when |P| > 10, the probability that there exists o € Autg (IT) such that

U\N(KMWO) = pip¥, is, considering t fixed, O <(nk) O
Let A be a quasi Heffter array that admits compatible orderings w, and w,, and let us
consider the associated rotation pg = (1, ..., Touk). Since py is a cyclic permutation,
we can assume that p(x) is minimal, with respect to the lexicographic order, among
the positions of skel(A) and that 27 € £(A). Then, because of Proposition 3.7, the
elements of Aut, can be expressed on N (K nksn) s 0) as a function of the map pg

(and of a suitable integer ¢) and these elements are involutions. Hence we can adapt
the proof of Lemma 3.10 to obtain the following statement.
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Lemma 3.11 Let B be a set of cells of an m x n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column and let us assume it admits
two compatible orderings o, and a.. Given Q C Zopgry such that [z | x € Q]

, 2nk
contains each element of Zopg1t \ ( nt+t)

of all the QHy(m,n;h, k), A, such that:

Lo+t €xactly once, we consider the set A

a) skel(A) = B,
b) E(A) = Q.

Let us choose, uniformly at random, A € A and let us denote by w, and w. the
compatible orderings of A that correspond to o, and o, by Il the Archdeacon em-
bedding of K%M defined by A (see Definition 2.5), and by p the corresponding
rotation. We also set py = (x1,xa, ..., Tonx) where p(xq) is minimal, with respect to
the lexicographic order, among the positions of B and x; € Q.

Then, for a fived € € {1,...,2nk}, the probability that there exists o € Auty (II)

such that o(x;) = x4_;, is, considering t fized, O <—(ni)2 .

Proof. We divide the proof into two cases according to the parity of ¢.

CASE 1: (is even. Here ¢ is an involution that maps £(A) in £(A) and —€(A) in
—E&(A). Therefore p(o(x;)) = p(z;) implies x; = o(x;) = z,_; and 2i = £ (mod 2nk)
that is i € {¢/2,nk + ¢/2}. Hence, if we consider the set P defined by

P = {plya)s Hniser))

we have that p(o(z)) = p(z) implies p(z) € P whenever z € ££(A). Note that,
since the position of x; has been fixed and because of Definition 2.5, however we
take ¢ € {1,...,2nk}, the position of z; only depends on B, «a, and .. It follows
that the set P is well defined once B, «, and «, are given. This means that, since
|P| =2 < 10, we can proceed as in the proof of CASE 1 of Lemma 3.10.

CASE 2: ¢ is odd. In this case o is an involution that interchanges £(A) and
—&(A). Here, we consider the set P defined by

P={p(x;): i€{l,...,2nk} and z; = —o(z;) = —x¢_;}.

Note that the set of pairs (4, j) such that ; = —z; are those for which p(x;) = p(z;)
and ¢ # j. Since the position of z; has been fixed, and because of Definition 2.5,
this set of pairs (and the positions of the corresponding z; and z;) is well defined
once we know B, «, and «,. This means that also P is well defined when B, «, and
a. are given. Therefore we can proceed, exactly as in the proof of Lemma 3.10, by
considering two cases according to the cardinality of P.

In all cases, we obtain that the probability that there exists o € Aut, (II) such that
o(z;) = we_;, is, considering ¢ fixed, O (ﬁ) O
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Theorem 3.12 Let B be a set of cells of an m X n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column and let us assume it admits
two compatible orderings o, and a.. Given Q C Zopgry such that [z | x € Q]

, 2nk
contains each element of Zopg1t \ ( nt+t)

of all the QHy(m,n;h, k), A, such that:
a) skel(A) = B,

Lo+t €xactly once, we consider the set A

b) £(A) = Q.

Let us choose, uniformly at random, A € A, let us denote by w, and w,. the compatible
orderings of A that correspond to o, and o, and by Il the Archdeacon embedding of
Konkse, defined by A (see Definition 2.5).

Then the probability that there exists o € Aut(Il) that is not a translation (i.e.
that Aut(Il) # Zaonkst) 18, considering t fized, O (n—lk)

Proof. We note that the existence of o € Aut(II) that is not a translation is equivalent
to the existence of o € Auty(II) different from the identity. So we will show that the
probability that there exists o € Auty(Il) different from the identity is, considering
t fixed, O ().

For this purpose, first, we evaluate the expected value E(X) of the random variable
X given by the cardinality of Autg (IT) \ {id}.

Here we denote by p the rotation corresponding to the embedding II. Due to Propo-
sition 3.5, for each such automorphism o there is 1 < ¢ < 2nk — 1 such that
O N(K asr 0 = pb. Therefore, because of the linearity of the expected value

& X

2nk—1

E(X) = Y Bl{r € Autf (1) 0lxcspec, 0 = rE}):
(=1

Moreover, again due to Proposition 3.5, we have that, for each ¢ € {1,...,2nk — 1},

there exists at most one automorphism o such that o|y,,,., 0 = pb. Therefore
—t X

]E(HU € AUta—(H) : 0_|N(K2n/§+txt70) = P€}|) = ]P)(El QS AUtS_(H> : O-|N(K2nltc+t ) = pé)

Due to Lemmas 3.9 and 3.10, we have that, considering ¢ fixed, there exists a constant
c such that

. p— Z C - 1
IP(EI o E AutS_(H) : O‘lN(K%“,O) = Po) < (nk)2 =0 ((nk)2> .

Summing up, we have that

(2nk —1)c ¢ 1
=00 = S <55 =0 (o)

for some constant ¢’ independent from n and k.
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Similarly, denoted by E(Y') the expected value of the random variable Y given by
the number of automorphisms in Aut, (II), as a consequence of Lemma 3.11 and
considering t fixed, we have that there exists a constant ¢’ independent from n and
k such that

EX)+EY)=EX+Y)< C—”:O(L).

nk nk
Since
P(Auty(I1) # {id}) < B(X +Y)
it follows that also P(Auto(Il) # {id}) < % =0 (). O

Now we prove that a similar theorem holds also if we consider non-zero Heffter
arrays instead of quasi-Heffter ones. First, we need to prove that, asymptotically in
h and k, almost all the QH are actually NH.

Lemma 3.13 Let B be a set of cells of an m x n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column. Given 2 C Zopgss Such
that [£x | x € Q] contains each element of Zongtt \ (2n1§+t)
consider the set A of all the QHy(m,n;h, k), A, such that:
a) skel(A) = B,
b) E(A) = Q.

Let us choose, uniformly at random, A € A, then the probability that A is an
NH;(m,n; h, k) is at least

(=i ) = o) -0 ()

Here we observe that, since h,k > 3, then 0 <1 — (mhf?hfl) + nk—?kﬂ))'

Zioni+¢ exactly once, we

Proof. We denote by E1 the event that the array A is an NH,(m,n;h, k). Due to
the proof of Theorem 4.2 of [7] we have that, if we choose uniformly at random an
element of A, then the expected value of the variable X defined by the number of
rows and columns that sum to zero is

E(X) < (mh_ﬂgh_l) +nk:—?k:—1)>'

Since P(E1) > 1 — E(X) we have that
e > - (G )~ 10 (7) -0 (5).

Theorem 3.14 Let B be a set of cells of an m X n array that contains exactly h > 3
cells in each row and exactly k > 3 cells in each column and let us assume it admits

two compatible orderings o, and a.. Given @ C Zopgt such that [z | x € Q]

. 2nk+t
contains each element of Zopk+s \ %

of all the NHy(m,n; h, k), D, such that:

O

Lioni+t exactly once, we consider the set D
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a) skel(D) = B,

b) E(D) = Q.
Let us choose, uniformly at random, D € D, let us denote by w, and w. the compatible
orderings of D that correspond to «, and o, and by I1 the Archdeacon embedding of
Konire o, defined by D (see Definition 2.5).

Then the probability that there exists o € Aut(1l) that is not a translation (i.e.
that Aut(I1) # Zonkyi) 1S, considering t fized,

° ()

Proof. We consider here the set A of the quasi-Heffter arrays defined, as in Theorem
3.12, on the same skeleton B and on the same support €2 of D. To evaluate the
required probability we define the following events:

E1l) Given A € A, A also belongs to D,
E2) Given A € A there exists o € Aut(II) that is not a translation.
Due to Lemma 3.13 we have that

m

e > - (G ) <10 () -0 (5).

Here we recall that, since h,k > 3, then 0 < 1 — (mh:?hfl) + nkf?k71)>'

Moreover, because of Theorem 3.12, we have that, considering t fixed,

P(E2) = O (n—1k> |

Using these notations the probability we need is P(E2|E1) and hence

P(E2N E1) _ P(E2) O (L) 1
P(E2|E1) = < = i —0(=).
(E2[EL) P(E1) ~P(E1L) 1-0(3)-0(3) nk
Here the last equality holds because of the positivity of 1 — <mh_"("°h_1) + nk—?k—l))'

4 Crazy Knight’s Tour Problem

Looking for compatible orderings for Heffter array leads us to consider the following
problem introduced in [5] (see also Remark 5.5 of [19]). Given an m x n p.f. array
A, by r; we denote the orientation of the i-th row, precisely r; = 1 if it is from left
to right and r; = —1 if it is from right to left. Analogously, for the j-th column,
if its orientation c¢; is from top to bottom then c¢; = 1 otherwise ¢; = —1. Assume
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that an orientation R = (r1,...,7,) and C = (c1,...,¢,) is fixed. Given an ini-
tial filled cell (iy,71) consider the sequence Lg ¢ (i1, j1) = ((i1, j1), (32, j2), - - -, (3¢, o),
(4641, jes1), - --) where joiq is the column index of the filled cell (i, joi1) of the row
R;, next to (i, je) in the orientation r;,, and where i,y is the row index of the filled
cell of the column Cj,,, next to (i, je41) in the orientation c;, .
The problem proposed in [5] is the following.

Crazy Knight’s Tour Problem. Given a p.f. array A, do there exist R and C
such that the list Lz ¢ covers all the filled cells of A?

The Crazy Knight’s Tour Problem for a given array A is denoted by P(A). Also,
given a filled cell (7,7), if Lgre(4, ) covers all the filled positions of A we say that
(R,C) is a solution of P(A). The relationship between the Crazy Knight’s Tour
Problem and quasi-Heffter arrays is explained by the following result, see [5, 10].

Theorem 4.1 Let A be a QHy(m,n; h, k) such that P(A) admits a solution (R,C).
Then there exists a cellular biembedding v of K amk+t,,, such that every edge is on a
face whose boundary length is a multiple of h and on a face whose boundary length
is a multiple of k.

Moreover, setting v = 2nk +t, ¢ s Z,-reqular.

Remark 4.2 If Ais a QH;(m,n; h, k) such that P(A) admits a solution (R,C), then
A also admits two compatible orderings w,. and w, that can be determined as follows.
We first define the natural ordering of a row (column) of A as the ordering from left
to right (from top to bottom). Then, for each row R (column C'), we consider wgr
to be the natural ordering if r; = 1 (respectively ¢; = 1) and its inverse otherwise.
As usual we set w, = wg, 0+ -owg, and w, = we, © -+ 0w, and, since (R,C)
is a solution, w, and w. are compatibile. Moreover, the embedding obtained using
(R,C) via Theorem 4.1 is exactly the Archdeacon embedding of K CLTSE defined by

Definition 2.5.

Now, to present the results of this section we need some other definitions and
notations. Given an n x n p.f. array A, for i € {1,...,n} we define the i-th diagonal
of A as follows

D;={(,1),(i+1,2),...,(i—1,n)}.

Here all the arithmetic on the row and column indices is performed modulo n, where
{1,2,...,n} is the set of reduced residues. The diagonals D; 1, D;ia,..., Diyy are
called k consecutive diagonals.

Definition 4.3 Let n, k be integers such that n > k > 1. An n x n p.f. array A is
said to be:

1) k-diagonal if the non-empty cells of A are exactly those of k diagonals,

2) cyclically k-diagonal if the non-empty cells of A are exactly those of k consec-
utive diagonals.

We recall the following results about solutions of P(A).
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Proposition 4.4 ([5]) Given a cyclically k-diagonal QHy(n; k), A, there exists a
solution (R,C) of P(A) in the following cases:

1) if nk is odd, n > k > 3, and ged(n,k —1) =1,

2) if nk is odd, n >k, and 3 < k < 200,

3) if nk is odd, n >k >3, andn > (k—2)(k —1).

In all these cases A also admits a pair of compatible orderings.

Remark 4.5 Let n and k be positive integers that satisfy one of the conditions of
Proposition 4.4 and let us assume exists a QHy(n; k). Then we must have ¢ # 0
(mod 4). Indeed nk is odd and, for definition, t|2nk.

We note that, if we fix the set B of cells that belong to k£ diagonals inside an
n x n array and a set 2 of nk distinct elements, we have (nk)! ways to fill B with
the elements of {2. Hence we obtain the following corollary.

Corollary 4.6 Lett # 0 (mod 4) be a fized positive integer and let n and k be as
in Proposition 4.4 and such that t|2nk and let B be a set of cells of an n X n array
defined by the diagonals D1 UDyU...UDy. Given Q C Zaopgyy such that [£z | x € Q]
. (2nk+t)
contains each element of Lopgis \

F of all the QHy(n; k), A, such that:
a) skel(A) = B,
b) E(A) =Q,
c) the embedding obtained using (R,C) via Theorem 4.1 has Zopgye as its full
automorphism group.

Then
Fl = <1 ~0 (n—lk)) (nk)!

Moreover, it follows from Lemma 3.13 and Theorem 3.14, that:

+— Lonk+t evactly once, we consider the family

Corollary 4.7 Lett # 0 (mod 4) be a fized positive integer and let n and k be as
in Proposition 4.4 and such that t|2nk and let B be a set of cells of an n X n array
defined by the diagonals D1 UDyU...UDy. Given Q C Zopgty such that [£z | x € Q]
. (2nk+t)
contains each element of Zopgys \

t
F of all the NHy(n; k), A, such that:
a) skel(A) = B,
b) E(A) =Q,
c) the embedding obtained using (R,C) via Theorem 4.1 has Zopgye as its full
automorphism group.

Lonk+t exactly once, we consider the family

Then the cardinality of F is at least

(- Gimn)) 0o () owr= (-0 (1)) (-0 () o

where the term (1 -0 (%)) is strictly positive for any k > 3.
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Note that we do not know, a priori, that the embeddings here defined are distinct.
In the following, we will prove that these embeddings are indeed different from each
other. Because of Proposition 2.16 of [11], we have that:

Proposition 4.8 Let A and B be QH;(m,n;h, k) such that E(A) = E(B). Assume
that both A and B admit compatible orderings and denote them, respectively, by
(wh,w) and by (WP, wB). Then (WA, wA) and (WP, w?B) determine (via Theorem

2.5) the same embedding of Kamxie , if and only if w? = wP and w? = wB.

Proposition 4.9 Let A and B be cyclically k-diagonals QHy(n; k) such that E(A) =
E(B), skel(A) = skel(B) = Dy UDyU...U Dy, and n > k. Assume that both P(A)
and P(B) admit solutions denoted, respectively, by (Ra,Ca) and by (Rp,Cp) where
Ra=Rp=(1,...,1),Cy=(c},...,c?) and Cg = (cB,...,cP).

Then (R4,Ca) and (Rp,Cg) determine (via Theorem 2.5 or, equivalently, Theo-
rem 4.1) the same embedding of K2n1§+t><t if and only if there exists £ € {0,...,n—1}

such that:

a) denoted by a;; (respectively b; ;) the element in position (i, j) of A (respectively
B), we have a; j = biy¢ jte,

A_ .B
b) ;' = ¢y,
where, in both conditions, the indices are considered modulo n.

Proof. Let us assume that conditions a and b hold for some ¢ € {0,...,n—1}. Then,
denoted by w? and w the compatible orderings of A induced by (R 4,C4) and by w?
and w? the compatible orderings of B induced by (Rp,Cp), we have that w? = w?
and w? = wP. Therefore, due to Proposition 4.8, (R,Ca) and (Rp,Cp) determine

(via Theorem 2.5) the same embeddings of K znete .

In the following we will assume that (Ra,C4) and (Rp,Cp) determine (via Theorem
4.1) the same embeddings of K CATSEI and we need to prove that conditions a and
b hold true. Since £(A) = &(B), we can assume, without loss of generality that
1 € £(A) = E(B). Moreover, up to a translation of the elements of A (i.e. considering
the array A’ defined by a; ; = a;—, ;- for some p € {0,...,n — 1}, where the index
are taken modulo n) and of B, we can assume that 1 is in the first column in both
A and B, that is 1 = a;1 = bi’,l-

Now we prove, inductively, that £(C') = E(CP) for any j € {1,...,n}.
BASE STEP: We note that

E(C1) = {1,w (1), (W)*(1),.... (@H* (1)}

and
5(OIB) = {17WCB(1)7 (w§)2(1)7 KR (ch)k_l(l)}'

Due to Proposition 4.8, we also have that w? = w? and hence £(C{') = £(CP).
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INDUCTIVE STEP: Here we assume that £(C#') = £(CP) for any j € {1,...,m}
and we prove that £(CZ ;) = E(CE. ) where m 4+ 1 < n. We note that, since P(A)
and P(B) admit solutions, due to Corollary 2.8 of [5], k is odd and it must be at
least 3 since when & = 1 the maps w?, w?, wZ w? all coincide all with the identity
and can not define compatible orderings. Since £(C4) = £(CE) and k > 3, there
is 7 € £(CA) = £(CB) such that T € {am.m,bmm} and hence Z is not in position
(m,m) in both the arrays A and B. Since R4 = (1,...,1) = Rp, we have that
w(z) € E(CA. ) and wP(Z) € E(CE ;). Moreover, because of Proposition 4.8, we
also have that w/! = w? and hence w(z) = wP(z) =y € E(CL,)NECE,,).

Here we note that

E(Cria) = {5,00@), (W@, -, (W) ()}

and
E(Cra) = {70’ (@), @) (@). - (W) @)}
Due again to Proposition 4.8, we also have that w? = w” and hence £(C},,) =
(AL
It follows that £(C#) = E(CP) for any j € {1,...,n}.
Now we consider z € £(A) = £(B). Since the columns of A and B, considered

as sets of elements coincide, we must have that z = a;; and Z = by ; for some
i,i',5 € {1,...,n}. We note that

E(RY) = {2,w](2), W)*(3), ... (W) (D)}

and

E(R) = {20 (2), (W)*(2),... (W) (D)}

c C

However, due to Proposition 4.8, we have that w? = w? and hence £(R{) = E(RE).
Since £(C') = £(CP) for any j € {1,...,n} and every elements of £(A) and £(B)
appears only once in A and B, this is possible only if R and R% intersect the same
columns, that means ¢ = /. Due to the arbitrariness of Z we have proved that,
assuming 1 belongs to the first column of both A and B and that (Ra,C4) and
(Rp,Cp) determine (via Theorem 4.1) the same embeddings of K kst the array

A must be equal to the array B. Moreover, it follows from Proposition 4.8 that

w? = wP and hence, under the same assumptions, ¢ = c?.

Equivalently we have that conditions a and b hold assuming that (R4,Ca) and

(Rp,Cp) determine (via Theorem 4.1) the same embedding of Kank+e . O
t

We remark that the solutions (Ra4,Ca) of the problems P(A) listed in Proposition
4.4, have all Ry = (1,...,1). As usual, we set C4 = (c{!,...,¢/}). Then the solutions
at points 1 and 3 of Proposition 4.4 (and the ones at point 2 when n is big enough)
are such that there is no ¢ # 0 for which ¢ = ¢\, for all i € {1,...,n} where
the sum is considered modulo n. We also remark that, here, we are interested in
asymptotic estimation and, when 3 < k£ < 200, requiring that n is big enough is
equivalent to requiring that nk is big enough.
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Therefore, applying Proposition 4.9 to the Corollaries 4.6 and 4.7, we obtain the
following:

Corollary 4.10 Lett # 0 (mod 4) be a fized positive integer and let n and k < n be
as in Proposition 4.4 and such that t|2nk. Then the number of distinct biembeddings
IT of Kanktr,, such that:

a) Aut(Il) = Zopgss,

b) the faces determined by I1 have lengths multiples of k,

(o)

Corollary 4.11 Lett # 0 (mod 4) be a fized positive integer and let n and k < n be
as in Proposition 4.4 and such that t|2nk. Then the number of distinct biembeddings
I of Kankst,, such that:

a) Aut(Il) = Zopkas,

18 at least

b) the faces determined by 11 have lengths multiples of k strictly greater than k,

1s at least

(- Gemimn)) (o () Jimor= (-0 (3)) (-0 () o

where the term (1 -0 (l)) 18 strictly positive for any k > 3.

i
Moreover, if v = 2nk 4+t is a prime (that can occur only if t = 1), all these

biembeddings of K, are kv-gonal.

5 Non-isomorphic embeddings

The goal of this section is to determine a lower bound on the number of non-
isomorphic Archdeacon embeddings of K 2kt g Following the procedure of [11],
it is possible to provide a first bound that involves the cardinality of Autj. Even
though we will then improve this result, we believe it is interesting to explicitly report
it since this has been the starting point of the present investigation. We will first
recall, without proving, Proposition 3.4 of [11] and then we will state some bounds as
its consequences. In the second part of this section, we will provide an improvement

of these results whose proof will be completely independent.

Proposition 5.1 (Proposition 3.4 [11]) Let F = {Il, : a € A} be a family of
Zo,-regular distinct embeddings of K,,x: where v = mt and m > 2. Then, if 11, is
isomorphic to Iy for any o € A, we have that

| F| < 2|Auto(Tp)| - [N (Kpxt, 0)] < 4N (Kpxs, 0)]2 = 4((m — 1)t)%

Moreover, if for any o € A and any g € Z,, the translation 7, belongs to Aut™(Il,),
then

7| < 2| Autg (To)| - [N (Kmxe, 0)] < 2N (Kinxe, 0)]* = 2((m — 1)t)%.
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Since in our case we have that Auty (Ily) = Auto(Ilp) = id and |N(Kzakse,,,0)] =
t
2nk, we can state the following corollaries.

Corollary 5.2 Lett £ 0 (mod 4) be a fized positive integer and let n and k < n
be as in Proposition 4.4 and such that t|2nk. Then the number of non-isomorphic
biembeddings 11 of Kank+e, such that:

a) Aut(I1) = Zopks,

b) the faces determined by I1 have lengths multiples of k,

(o3

Corollary 5.3 Lett # 0 (mod 4) be a fized positive integer and let n and k < n
be as in Proposition 4.4 and such that t|2nk. Then the number of non-isomorphic
biembeddings 11 of Kankte , such that:

1s at least on the order of

a) Aut(Il) = Zopks,
b) the faces determined by 11 have lengths multiples of k strictly greater than k,

s at least of order

(= Getimm)) (o Ge)) st = (-0 () (-0 () 6

where the term (1 -0 (%)) 18 strictly positive for any k > 3.

Moreover, if v = 2nk +t is a prime (that can occur only if t = 1), all these
biembeddings of K, are kv-gonal.

Now we see how, exploiting our result on the cardinality of Auty, we can improve
these bounds with a computation that is independent of the results of [11].

Lemma 5.4 LetII and IT' be two Z,-reqular embeddings of K,,«; that are isomorphic
through the isomorphism o. Given g € Z, we set ¢gg:= 00 (15) 7 0 (071) 0 ().
Then ¢, 4 = 1d if and only if the following diagram commutes

n—=1r

l"'g lTﬁ (9)

n—2-1r

In particular, identifying V(K x:) with Z,, we have that ¢, = id for any g € 7Z,
if and only if o is a group automorphism of Z,.
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Proof. Because of the definition we have that ¢, , = go(7,) to(c™ 1) 0T, (g). Therefore
$oq = id is equivalent to

-1 _ -1
Tg©CO =0 OTU(g);

and to
00Ty = Ty(g) © 0. (5.1)

i.e. the diagram commutes.

Equation (5.1) can be also written as

o(z +g) = (o(z) + a(9)). (5.2)

Note that, if equation (5.2) holds for any g € Z,, it means that ¢ is a group auto-
morphism of Z,. O

To state a refinement of Proposition 5.1, we recall that the number of automorphisms
of Z, is ¢(v), where ¢(-) is Euler’s totient function.

Proposition 5.5 Let F = {Il, : a € A} be a family of Z,-reqular distinct embed-
dings of Kx¢ where v =mt. Then, if Il, is isomorphic to Iy for any a € A and if
Auty(Tly) = {id}, we have that

[ Fl < 2¢(v).

Proof. We can assume Il € F and let us denote by o, an isomorphism between
IT, and Il that fixes 0. Note that this isomorphism exists since F is a family of
Z,-regular embeddings.

Now we prove that, for any a € A and any g € Z,, ¢, 4 is an element of Auty(Ily).
Since ¢y, 4 is a composition of isomorphisms, it is an embedding isomorphism. It is
also easy to see that ¢, , : Iy — IIj and hence it is an element of Aut(Il,). Because
of the definition, we have that

Pra,g(0) = 0a 0 (79) 71 0 (0,1) © T ()(0) =

Oa © (7—9)_1 ° (0;1)(0(1(9)) =0q© (Tg)_l(g) = 04(0) =0.

This means that ¢, , is an element of Auty(Ilp). On the other hand, we know that
Auty(Ily) = {id} and hence ¢, , = id for any g € Z,. Due to Lemma 5.4, this
implies that o, is a group automorphism of 7Z,,.

Let now assume, by contradiction, that |F| > 2¢(v). Since the number of automor-
phisms of Z, is ¢(v) and each o, is an automorphism of Z,, due to the pigeonhole
principle, there exists Il;, Il and 113 that are isomorphic to IIy through the same map
o : 2y — 7Z,. Hence we would have that the identity is an isomorphism both from
Iy = (Kpmxt, p1) to o = (Kpxe, p2) and from Iy = (K, p1) to s = (Kpxe, p3)-
It follows from Definition 2.1 that py, ps € {p1,p;'}. But this means that either
II; = II, or II; = II3 or Il = II5. In each of these cases, we would obtain that the
elements of F are not all distinct which contradicts the hypotheses. a
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Remark 5.6 Note that Proposition 5.5 is always an improvement of Proposition
5.1. Indeed, set v = mt, we have that the elements of mZ, are not invertible and
hence

¢(v) = {r € Z, : x is invertible}| < |Z, \ mZ,| =v —t = (m — 1)t.

But this means that 2¢(v) < 2(m — 1)t = 2| N (K¢, 0)] that is the bound of Propo-
sition 5.1 assuming that |Auty| = {id}.
As a consequence of Proposition 5.5, we obtain the following theorems.

Theorem 5.7 Let t # 0 (mod 4) be a fized positive integer and let n and k < n
be as in Proposition 4.4 and such that t|2nk. Then the number of non-isomorphic
biembeddings 11 of Kank+e, such that:

a) AUt(H) = Zan‘-l—t;
b) the faces determined by 11 have lengths multiples of k,

is, setting v = 2nk +t, at least on the order of

Theorem 5.8 Let t # 0 (mod 4) be a fized positive integer and let n and k < n
be as in Proposition 4.4 and such that t|2nk. Then the number of non-isomorphic
biembeddings 11 of Kanite,, such that:

a) Aut(I1) = Zopkas,
b) the faces determined by 11 have lengths multiples of k strictly greater than k,

18, setting v = 2nk +t, at least on the order of

(- Gr=i=m)) (-0 () s -

(o (D)o

where the term (1 -0 (%)) 15 strictly positive for any k > 3.

Moreover, if v is a prime (that can occur only if t = 1), all these biembeddings of
K, are kv-gonal.
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