AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 93(2) (2025), Pages 224273

Bulgarian Solitaire: A new representation
for depth generating functions

A.J. HARRIS

University of Minnesota
Minneapolis, MN, 55455, U.S.A.

SoN NGUYEN

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA, 02139, U.S.A.

Abstract

Bulgarian Solitaire is an interesting self-map on the set of integer parti-
tions of a fixed number n. As a finite dynamical system, its long-term
behavior is well-understood, having cycles parametrized by necklaces of
beads with two colors, black B and white W. However, the behavior of
the transient elements within each orbit is much less understood. Recent
work of Pham considered the orbits corresponding to a family of neck-
laces P’ that are concatenations of ¢ copies of a fixed primitive necklace
P. She proved a striking limiting behavior as ¢ goes to infinity: the level
statistic for the orbit, counting how many steps it takes a partition to
reach the cycle, has a limiting distribution, whose generating function
Hp(x) is rational. Pham also conjectured that Hp(z) and Hp«(x) have
the same denominator whenever P* is obtained from P by reading it
backwards and swapping B and W.

Here we introduce a new representation of Bulgarian Solitaire that is
convenient for the study of these generating functions. We then use it to
prove two instances of Pham’s conjecture, showing that

HBWBWB---WB(JC) = HWBWBW---BW(l")

and that Hpwww..w(z), Hgpp..pw(z) share the same denominator.

1 Introduction

The game of Bulgarian Solitaire (BS) was introduced sometime in the late 20th
century, and popularized by Martin Gardner in 1983. The game itself is very simple.
A player starts with n cards divided into a number of piles in weakly descending
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order. Now keep repeating the Bulgarian Solitaire move [ defined as follows: take
one card from each pile, form a new pile and put the piles in weakly descending
order. The game ends when a configuration of cards is repeated.

Observe that the order of the piles does not matter. Thus, we can sort the piles in
weakly descending order. Hence, the game can naturally be represented by partitions
and Young diagrams, where in each move, we remove the first column and reinsert
it as a new row as shown in Figure 1.

(7) 47 47 3? ]‘) (67 5? 87 37 2)

Figure 1: Bulgarian Solitaire move

The BS move 8 forms a dynamical system on the set X of all partitions. In
this system, there exist partitions A such that A\ = §™(\) for some m > 0. We call
such partitions the cycle elements. For such partitions A, let m > 0 be the smallest
number such that A = $™()\). Then, the elements {\, 3(\),..., 3" }(\)} form a
cycle C. Note that a BS system may have more than one cycle. For example, Figure
2 shows an example of the Bulgarian Solitaire moves on partitions of 8 in which the
directed edges connect A to S(A). As can be seen in the example, we have two cycles
{(3,2,2,1),(4,2,1,1),(4,3,1),(3,3,2)} and {(3,3,1,1),(4,2,2)}.

For a partition p that is not a cycle element, there exists m > 0 such that ™ (u)
is a cycle element. Let C be the cycle that contains 5™(u), then we say that p is
in the orbit of C. In other words, we can think of C as a basin of attraction, and
every element in the orbit of C will be mapped into the basin after finitely many
applications of 3.

A detailed study of the cycles can be found in [1]. In particular, suppose (7;) <
n < (m; 1), Brandt showed that the number of cycles equals the number of circular
words of length m with n — (T;) letters m and (m; 1) —n letters m — 1. Drensky later
reinterpreted these circular words as (black-white) necklaces and gave a bijection
between the set of cycles C and the set of necklaces([2, Theorem 2]). A necklace
N is an equivalence class of sequences of letters { B, W} under cyclic rotation. The
bijection from the set of necklaces of length m with n — (T;) B’s to the set of cycle
elements in the BS system with n cards is defined by

(bl,bg,...,bm)—>(m—1+31,m—2+32,...,sm)

where
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(3,2,2,1) (4,2,1,1)
(3,3,1,1) (3,3,2) (4,3,1)
(4,2,2) (4,4) (5,2,1)
(5,3) (5,1,1,1) (3,2,1,1,1) (6,2)
(4,1,1,1,1) (6,1,1) (2,2,2,1,1) (3,1,1,1,1,1) (7,1)
(2,2,2,2) (2,2,1,1,1,1) (2,1,1,1,1,1,1) ®)
(1,1,1,1,1,1,1,1)
Figure 2: Example for n =8
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Figure 3: Necklaces and cycle elements
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Figure 3 gives a visualization of the bijection from necklaces of length 4 with 2
B’s to the cycle elements of the system for n = 8.
For each necklace N, let Cy be the set of cycle elements corresponding to necklaces
in the equivalence class IV, and let the orbit Oy of Cn be the set

{\ | B*(\) € Cy for some &k > 0}.

For each element A in Oy, let

level(\) = min{k : B*(\) € Cn}

and define the level size generating function of N to be

AeON

DN([L’) _ Z xlevel()\)‘
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We call P a primitive necklace if it cannot be written as a concatenation P =
NY = NN...N with ¢ > 2. For example, BBWW is a primitive necklace while
BWBW = (BW)? is not. Our main results concern the limit of the generating
function of P’ as ¢ — oo for primitive necklaces P, that is

Hp(x) = Zh—>r£o Dpe(x).

Eriksson and Jonsson proved in [3, Section 4] that such a limit exists when P = W,
and
(1—=)?

1—3z+a?
Pham then proved in [5, Theorem 1.1, 1.2] that for all primitive necklaces P with
|P| > 2, such a limit Hp(z) exists. Furthermore, for |P| > 3, Hp(z) is a rational
function having denominator polynomial of degree at most | P| and numerator degree
at most 2|P|. For example, she showed that

(1 —2)*(3x +2)
3 —3x2 —x+1

ng(l‘) =

and
(1 —z)(a® — 32? — 4z — 3)

203 + 22— 1 '
Further computations led Pham to an interesting conjecture in her thesis [4]. For a
primitive necklace P, the dual necklace P* is constructed as follows: first reverse the
order of the letters in P, then replace all letters B by W and vice versa. She made
the following conjecture.

HBWB<37) = HWBW(iU) =

Conjecture 1.1. For all primitive necklaces P, the rational functions Hp(x) and
Hps(x) can be written with the same denominator of degree |P| = |P*|.

In this paper, we introduce a new representation of Bulgarian Solitaire and then
use it to prove the following special cases of Conjecture 1.1.
Theorem 1.2. For k > 1, one has Hpuy pyr(z) = Hypwye () .
Theorem 1.3. For k > 1, the functions Hgyx () and Hyygr(x) can both be written

over the same denominator which is a polynomial of degree k + 1.

The paper is outlined as follows. In Section 2, we review some basic definitions
and introduce our new representation. In Section 3, we introduce fuses and pre-fuses,
which will be important to our proof. Finally, we prove Theorem 1.2 in Section 4
and Theorem 1.3 in Section 5.

2 Set up

2.1 Reversed Bulgarian Solitaire

It is actually more convenient to study the reversed Bulgarian Solitaire move rather
than the (forward) Bulgarian Solitaire move. We give two analogous definitions of
the reversed BS move below.
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Definition 2.1 (Reversed Bulgarian Solitaire move). For an element A, a reversed
Bulgarian Solitaire move R; maps A to R;(\) as follows

e For Young diagrams: take out the jth row and insert it as the leftmost column.

e For a partition: take out the jth part and distribute it into the other parts, one
for each. Note that if A\; > ¢(X) — 1, then each of the remaining cards forms a
pile of size one.

For our move to make sense, the jth part needs to be as least /() — 1. Thus,
the reversed BS moves are only defined for such parts. If R; is defined, we say
the jth part is playable. Figure 4 shows an example of A = (5,3,3,2), R1(\) and
R3(\). Note that in the example, Ry(A) is also defined; however, since Ay = A3,
Ry(N\) and R3(\) are the same. In general, for our convenience in later sections, if
Ai = Aij1 = ... = Aj, then R;, Ri1q, ..., R; gives the same result, and hence it is
sufficient to only play R;(\). Finally, in the example, R4()) is not defined since
M=2<3=/4\) -1

—

~_ ]

Figure 4: Reversed BS moves

2.2 New representation

Now we define our new representation of Bulgarian Solitaire.

Definition 2.2. Given a partition A = (A} > Ay > -+ > )(), we will instead view it
as an infinite sequence A = (Ay, Ag, ..., Ar,0,0,...) of nonnegative integers that are
eventually zero. For a partition A, define uy = (pq, pi2, .. .) by

pi =N — Nig1.

In addition, if the jth part of A is playable and 1; # 0, we put a bar above ;. Note
that p is also an infinite sequence of nonnegative integers that are eventually zero.
Call this set of sequences BSg,.

For example, for A = (5,3,3,2,0,0,...) (as in Figure 4), we have uy = (2,0,1,2,0,0,...).
When the context is clear, we may omit the subscript A. Observe that we can easily
recover \ from p, by the following formula:

Ai = Z ME-
k=i
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It is also not difficult to determine which part of u is playable.

Lemma 2.3. Consider a sequence p € BSqn, and let £ be the largest index such that
e > 0. There is a bar above p; if and only if u; # 0 and Zi:; e >0 —1.

Proof. This follows directly from the fact that the jth part of a partition A is playable
if and only if its size is at least ¢(\) — 1. O

From now on, we will refer to partitions A by their new representation p :=
instead of the standard partition representation. Furthermore, when we refer to an
element p in BSy,, we assume that the bars in p satisfy the conditions in Lemma
2.3.

The following lemma shows how this new representation behaves under the re-
versed BS moves. Unlike the standard partition representation, where each BS move
R; changes every part of the partition, in the new representation, one only need to
zooms into the vicinity of p;.

Lemma 2.4. For any X such that the jth part of A is playable, let X' = R;(X\), i = py
and ' = py. Then the parts u;, for i > 1, are determined by the parts of p in two
steps: 1) construct i by

0 ifi<j—1
pi = pj1+py o ifi=j—1
Hit+1 ZfZZjv

then 2) add 1 to y .
The bars on the parts of i/ are determined as follows. For i <Jj—1, put a bar
above pl if pi #0. Fori > j, put a bar above p if . # 0 and ZZ:J' iy < 3.

When the context is clear, we will denote 1/ = R;(p).

Proof. We distribute 1 to each part, so the difference between 2 consecutive parts
stay the same except between \;_; and \}. Since A} = Aj;1 +1, we have )} — X =
Aj—1 — Ajp1 = pj—1 + pj. However, observe that we add 1 to the A;-th part but none
to the (\; + 1)-st part, so the difference is increased by 1. Finally, to determine the
bars, observe that \; is the length of X'. Thus, for the ith part of X’ to be playable,
Ai > Aj — 1, which means \; > \; — 2. This is obviously true for i < j, and is
equivalent to the condition ), _ s <3fori > j. O]

For example, in Figure 4, u = (2,0,1,2,0,0,...),so Ri(n) = (0,1,2,0,1,0,0,...)
and Rs(u) = (2,1,3,0,0,...).

2.3 The system in the limit

Let us now shift to our main concern of the paper, the limiting version of the Bul-
garian Solitaire system. We will start with an example with the primitive necklace
P = BWW and its powers P!, P2 P3 ...
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Figure 5: Digraph Ogpw

Figures 5, 6, and 7 show the digraphs for reverse BS orbits Ogwwy1, Omww)z,
OBww)3, respectively. Observe that their sets of cycle elements, or cycle sets for
short,

(¢, eV, c\Vy & {WwB, WBW, BWW},
(c? c? cPy & {(WWBWWB, WBWWBW, BWWBWW}
(c®.c® N« {(WWBWWBWWB, WBWWBWWBW, BWWBWWBWW}

are in bijection to the words within a cyclic equivalence class of necklaces of the form
P! for £ = 1,2,3. Note that these bijections appear to extend to natural inclusions
of digraphs

O(BWW)l — O(wa)Q — O(BWW)3 — e

Furthermore, the first three levels of Ogww)2 and Ogwwys are isomorphic.
Indeed, Pham [5] showed that for any m, one can find L(m) large enough such

that the first m levels of Oy are isomorphic for all £ > L(m). In other

words, Opwwye converges to a digraph Opww)~ = limg Opww). The cycle
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Figure 6: Part of the digraph O(gy w2

set of Opwwy= is {C1,Cs, Cs} = {(WWB)>, (WBW)>, (BWW)>}. Observe that
C, = (WWB)>®, Cy = (WBW)*®, and C5 = (BWW)® are infinite sequences with
period 3.

Pham generalized this idea to every primitive necklace P of length |P| = n.
She showed in [5] that for the game digraphs Ope, the bijections of their cycle sets

{Cy), Oéé), e C’,(f)} extend to digraph inclusions
Op = Op2 = Ops < ---

which converge to a digraph Ops, with cycle set {C,Cy, ..., C,}. Fach C; in the
cycle set is an infinite sequence with period n.

Furthermore, one can write out the C;’s in the cycle set {C1,Cy, ..., C,} in terms
of the new representation as follows. Let (b1, bs,...,b,) be a word in the cyclic
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R’y
o® o o)
1 Rl 2 R2 3

(1,0,2,1,0,2,1,0,1) ——  (0,2,1,0,2,1,0,2) ——  (2,1,0,2,1,0,2,1)

|®

3,0,2,1,0,2,2)

P

0,2,1,0,2,2,0,0,0,1) (3,2,1,0,2,2,1)
R/ lR2\f3

Figure 7: Part of the digraph O(gyw)s

equivalence class of the necklace P (where |P| = n), then the corresponding C; in
the cycle set of Ope is (1, po, . ..) where

2 lf bjijrl - BW
Hi = 1 if bjbj+1 = BBor WIV. (1)
0 ifbjbj = WB

Here the indices are taken mod n. One can easily deduce this formula by observing
that b;b;11 = BW means that part j has two more boxes than part j+1 and similarly
for the other cases. It is also clear from the formula that this sequence has period n.
For example, the cycle set of Opww)e~ is

{(2,1,0,2,1,0,...), (0,2,1,0,2,1,...), (1,0,2,1,0,2,...)}.
The following properties are straightforward from (1).

Lemma 2.5. Let pu be an element in the cycle set of Op~ where |P| = n, then we
have

o u; €{0,1,2} for all i > 1; furthermore, the non-one entries alternate between
0’s and 2’s;

® (i, = [tirn for allt > 1; and
® [+ ftiy1 + -+ flign—1 =1 for alli > 1.

Proof. We get u; = pyrp for all ¢ > 1 from (1). Now, we prove that the 0’s and 2’s
alternate. A 2 only appears in the sequence if in the necklace we go from B to W.
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Then the next entries will all be 1 until we go back from W to B. When we go from
W to B, the corresponding entry is 0, so we cannot have two consecutive 2’s. The
same argument shows that we cannot have two consecutive (0’s. This also implies
the third condition. Since p; € {0,1,2} for all i > 1, and the 0’s and 2’s alternate,
among every n consecutive entries, there are as many 0’s as 2’s, so the sum is n
(since the remaining entries are all 1’s). O

Definition 2.6. We call a (possibly finite) sequence of integers (ay, as, ...) a proper
tail of period n if it satisfies the conditions in Lemma 2.5 with period n. If the
sequence is finite, we only require the second and third conditions to be satisfied
when p;+, and ;4,1 exists, respectively. However, we do require the 0’s and 2’s to
alternate when the sequence is read cyclically.

For example, the infinite sequence (2,1,0,2,1,0,...) is a proper tail of period 3.
However, the sequence (2, 1,0, 2) is not a proper tail because if we read the sequence
cyclically, we obtain the sequence (2,1,0,2,2,1,0,2,...) in which the 0’s and 2’s do
not alternate. On the other hand, the finite sequence (2,1,0,2,1,0) is a proper tail.

Lemma 2.7. The set of necklaces of length n bijects with the set of proper tails of
period n with length n.

Proof. The bijection is the map defined by (1). Clearly, the map is injective. Con-
structing the inverse is also simple. For a proper tail (a4, ..., a,), let i be the smallest
index such that a; = 2. We construct the necklace (by,...,b,) by first setting b; = B
and b;,1 = W. Next, we iterate from j := i+ 1 to n; then, we iterate from j := 1 to
¢ — 1. In each iteration, if a; = 0 then set b;.; = B, and if a; = 2 then set b;;; = W.
If a; = 1 then set b; ;1 = b;. Here the indices are taken mod n. The condition that
the 0’s and 2’s alternate when the sequence is read cyclically assures that we get the
correct inverse. [

Therefore, from now, we can associate proper tails with necklaces.

Definition 2.8. Let a = (a,as,...) be a proper tail of period n. We say a is a
proper tail of P, where P is a primitive necklace of length n, if the bijection defined
by (1) maps (ay,...,a,) to a necklace in the cyclic equivalence class of P.

Now, we characterize the sequences of nonnegative integers ju = (ju1, fi2, - . .) that
can occur in the limit of the Bulgarian digraphs Ops, along with the possible posi-
tions of bars 7z; indicating that a reversed BS move R; in position j is applicable.

Definition 2.9. For a primitive necklace P with |P| = n, we define O to be the
set of all v that can be constructed as follows.

1. Pick p € Ope for some ¢ such that there is an index ¢ satisfying

® ([, fhis1,- -, Mitn_1) is & proper tail of P, and

e none of the entries y;, fti+1, - - -, fi+n—1 are barred, i.e. none of the positions
1,7+ 1,...,2+n — 1 are playable.
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2. v is obtained from p by replacing (ftitn, fhitn+1, - - -) With infinitely many copies
of (:uzu Mit1y - - - 7:ui+n71)'

Proposition 2.10. For any primitive necklace P, the elements v € O are ez-
actly the limits v = lim;_, 49 for some € large enough, of convergent sequences
(D 2y with ) € Opeys for all j. In other words, O = Ope.

Proof. Let p) € Ope for some ¢, and i is an index such that (i, fhig1, - -, fitn-1)
is a proper tail of P, and none of the entries p;, tti11, .- ., titn_1 are barred. Then
p“+7) can be obtained from p¥ by adding j copies of (i, ftiz1, - . -, fitn—1) between
fitn—1 and ji; . Furthermore, we claim that the bars of ;“*7) are in the exact same
places as the bars in (®. This is because the bars in ;{9 can only possibly be on the
first ¢ — 1 entries p1,...,u;—1. By adding j copies of (i, ftit1, - .-, ftitn_1) between
Pitn—1 and fiyn, in p7) ) there are nj more parts than in . In addition, since
pi+ -+ pign—1 =n, forany 1 <k <7 -1, Ziik Mgﬂ) = Z:ik Mg) + nj. That is,
for any 1 < k <i—1, the sum ) <~ ,ugﬂ) is also exactly nj more than > 7, p,q(ne).
Thus, the kth part (1 < k < i — 1) is playable in p“*7) if and only if it is playable in
o)

From this, lim;_,, u**#) can be obtained from p® by replacing (iiyn, Hitniis - - -)
with infinitely many copies of (u;, ftix1,-- -, fitn—1). This gives the corresponding
element in Of. O

This allows us to define the limit version of the Bulgarian Solitaire system.

Definition 2.11. We define BS,, to be the set of all elements obtained by the
construction in Definition 2.9 for all primitive necklaces P.

We can define the reversed BS moves on BS., similar to Lemma 2.4.

Lemma 2.12. If the jth part of j is playable, i.e. there is a bar above 1, we define

!/

i = Ri(p) as follows.
(1) If j =1 then

1 = fiy1
(2) If j > 2 then
1 ifi<j—1
i = 4 Hio1 + M fi=j5—1
Hit1 ifi>]

The bars on the parts of ' are determined as follows. Fori < j—1, put a bar above
wi if ph #0. Fori > j, put a bar above p if . # 0 and Zzzj iy < 3.

Proof. This construction is consistent with the one in Lemma 2.4. The only difference
is that we exclude any case that includes A;. Recall that in Lemma 2.4, we need
these cases because when playing R;, we add 1 to A; but none to Aj;1. In BS, A;
is 00, so this situation does not arise, and we can exclude these cases. O]
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From now on, unless stated otherwise, when we refer to “an element p”, we mean
that p is in BS,. Finally, recall that we can write out the cycle elements in Op
(in BS). It is a bit trickier to decide which part is playable, i.e. where to put the
bars. One strategy is to play the first nonzero part of one element to see which part
of the next element is playable. For example, the cycle set of Opww)e~ is

{(2,1,0,2,1,0,...), (0,2,1,0,2,1,...), (1,0,2,1,0,2,..)}.

To see where to put the bars, playing R;(2,1,0,2,1,0,...), we have the next element
is (1,0,2,1,0,2,...). Playing R;(1,0,2,1,0,2,...), we get (0,2,1,0,2,1,...). Finally,
playing R»(0,2,1,0,2,1,...), which is the first playable part of (0,2,1,0,2,1,...),

gives (2,1,0,2,1,0,...). Thus, the cycle set of O(gww e, with the bars, is
{2,1,0,2,1,0,...), (0,2,1,0,2,1,...), (1,0,2,1,0,2,...)}.

One can check that these bars are consistent with the bars in the finite version in
Figures 5, 6, and 7.

2.4 Quasi-infinite forests Fp

Now we introduce the quasi-infinite forest for certain directed graphs (digraphs),
such as the opposites of the functional digraphs for Bulgarian solitaire orbits. Recall
that a functional digraph for a function f : V' — V on a set V has arcs v — f(v)
for each v in V. Functional digraphs are the same as digraphs in which every vertex
v has outdegree one; this allows self-loops and directed 2-cycles, but parallel arcs
would violate the outdegree one condition.

Definition 2.13. Let D = (V, A) be the opposite digraph of a functional digraph,
that is a digraph in which every vertex has in-degree one. Let C' be the largest subset
of V such that the induced digraph D|¢ is a permutation. Let us call C' the cycle
set of D.

Define the quasi-infinite forest Fp to be the digraph in which the vertices are
directed paths p = (vg — v; — -+- — v;) in D such that vy € C, and there is an arc
p — p' in Fp whenever p, p’ are related as follows:

p=(vg = v = =), @)
p/: (Uo—>U1—>"'—>UZ‘—>UZ'+1>.
Figure 8 shows an example of a digraph D and the corresponding forest Fp. The
cycle set C'is {1,2,3}, and the induced digraph D|¢ is the permutation (12)(3) (in
cycle notation). It is easy to see that Fp consists of |C| = 3 trees rooted at the
vertices in C'. Note that, for example, the vertices in the tree rooted at 3 in Figure
8 correspond to the directed paths 3 -3 -3 — --- — 3.
We wish to relate two generating functions, one for the digraph D and one for its
quasi-infinite forest Fp. The level generating function for D is defined by

h(m) — Z xlevel(v)

veV
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<—0
>l\3
IS

Figure 8: Digraph D (left) and the corresponding quasi-infinite forest Fp (right)

where level(v) = min{k : f*(v) € C} for the function f : V — V whose functional
digraph is opposite to D. Letting ¢(p) := ¢ for p = (v9 — v1 — -+ = v;), the
path-length generating function for Fp is defined by

g(x) = Z 24®).

Lemma 2.14. For any digraph D opposite to a functional digraph, one has

W) = (1 —x)g(x).
Proof. 1t is equivalent to show that

gx)=1+z+2*+2°+--)h(2)
= h(x) + xzh(x) + 2*h(x) + 2°h(z) + - - -

One can interpret each term x*h(z) on the last line as follows. Call an arc v — v in D
permutational if both v, v’ lie in C' and f(v') = v, and non-permutational otherwise.
It is not hard see that every path p = (vg — v; — -+ — v;) indexing a vertex in
Fp starts with a (possibly empty) sequence of all permutational steps vy — v; —
-+« — vy, followed by a (possibly empty) sequence of steps vy — Vg1 — -+ = v;
which are all non-permutational; the index k is therefore uniquely determined. This
lets one decompose Fp into vertex subsets

FD:fou.FIU.FQUFgU"‘

where Fj, are the vertices whose corresponding path starts with k& permutational
steps. In Figure 8, the sets Fj, for k = 0,1, 2,3 are colored black, red, blue, green,
respectively. One then checks that, for each k£ = 0,1,2,..., the map sending p =
(vo = v — --+ — ;) to v; restricts to a bijection F, — V satisfying {(p) =
k + level(v;). Consequently,

Z ') = 2*n(z).

PEFK 0
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Let us recall the example at the beginning of Section 2.3 with the primitive
necklace P = BWW and its powers P, P2, P3,.... Figures 5, 6, and 7 show the
digraphs for O gy O(BWW 2 O(BWW Recall that each orbit O(gyyye has a cy-
cle set {(BWW) (WBW) (WWB) }. Hence, each orbit O gywye corresponds to
a quasi-infinite forest F( gy, which is a disjoint union of three trees Tipww)e,
Towswys Twwa) rooted at (BWW) (WBW)Y, (WW B)*, respectively. Since
Owwye converges to a digraph Opww)~ = limy o Opwwye, the correspond-
ing quasi-infinite forests F gy also converge to a quasi-infinite forest Fpyw =
limyo Fgwwye. The cycle set {C1, Cy, C3} of Oww)~ is still in bijection with
{BWW, WBW, BWB}, and hence Fpww is a disjoint union of three trees Te,, Tey, Toy
rooted at C, (s, C3 as shown in Figure 9.

7271 7-02
(170,2,170,2,1,0,2,...) (0,?,1,0,2,1,0,271,...)
Ry
(0210210,2,1,...) (Q,T,O,Q,l,o 2,170,..,)
Tes

(2,1,0,2,1,0,2,1,0,.

Hfﬂ/\

(1,0,2,1,0,2,1,0,2,. (3,0,2,1,0,2,1,0,.

/\

(0,2,1,0,2,1,0,. (3,2,1,0,2,1,0,...)
R/ JR\%

Figure 9: Part of the quasi-infinite forest Fryw

Also, recall that Pham generalized this idea to every primitive necklace P of
length |P| = n. She showed in [5] that for the game digraphs Ope, the bijections of

their cycle sets {Cfﬁ), C’y), e ,C’,(f)} extend to digraph inclusions

Op — Op2 — Opsz < -+~
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which converge to a digraph Op with cycle set {Cy,Cs, ..., C,}. Hence, the corre-
sponding quasi-infinite forests Fp¢ also converge to a quasi-infinite forest Fp, having
n trees To,, Toy, - - -, To, rooted at C, Cs, ..., C,. In other words,

n

FP:|_|7-CZ” (3)

=1

We can also generalize the concept of quasi-infinite trees 7¢, to trees 7, rooted
at any element p in BS,,. Observe that we can pick any element i, not necessarily a
cycle element, and start playing reversed BS from p. Let O, be the set of elements
reachable from p after a sequence of reversed BS moves. When g is not a cycle
element, then for every element v in O,, there is a unique sequence of 7 moves
R;,,...,R;, such that v = Rj, o--- o Rj (p). Thus, we can associate each element
v in O, with a “level” i. Hence, we can define the tree rooted at p and the level
generating function of this tree as follows.

Definition 2.15. For any element y in BS, denote by 7, the tree rooted at p whose
vertices are indexed by elements in O,,, and there is a direct edge v — v/ if v/ = R;(v)
for some j. In this case, for each v in O, we let {(p, ) denote the number of steps
in the path from p to v, and define the level generating function for 7, to be

G = gulw) =Y ')

where the sum runs over all such vertices v of 7,,.

For example, Figure 10 shows the tree 7, rooted at the element p = (1,2,1,1,...).
The level generating function of 7, is g,(z) = 1 + 2z + 32% + - -

Figure 10: Ti1311,.)

An important idea is comparing subtrees rooted at different vertices of the forest
Fp. In the special case where pu = C; is one of the roots of the forest Fp, so that



A.J. HARRIS AND S. NGUYEN / AUSTRALAS. J. COMBIN. 93 (2) (2025), 224-273 239

T, = Tc, is one of the trees in the forest, denote g,(z) by ¢; = g:(z) = g¢,(x). Thus,
(3) shows that

g9(@) =Y gi(w) = gi(@) + - + galx)
i=1
and the work of [5] (or Lemma 2.14 above) shows that
Hp(z) = (1 - x)g(z).

Thus, the key step in studying Hp(z) is to understand the generating functions
{gi(z)}"_,. Our strategy to prove Theorem 1.3 is to relate the {g;(x)}!, via a linear
system of equations. Our strategy to prove Theorem 1.2 uses the following notion.

Definition 2.16. Say that two quasi-infinite trees 7, and 7, are isomorphic if there
is a bijection f between their vertices that respects the reverse BS moves, i.e., one
has p' = R;(p) in 7, if and only if f(p') = Ri(f(p)) in 7,.

3 Fuses and pre-fuses

3.1 k-fuses

In this section, we introduce the concept of k-fuse that shows up in almost every
quasi-infinite forest. In general, we say an element = (1, .. ., fig, fes1, - - -) in BSs
contains a k-fuse if its first k parts pq, ..., g satisfy the conditions in Definition 3.1
below. We then view p as (1, .. ., i, ¥) where v is some other element of BS, i.e.
w is v following a prefix (pq,. .., ux). We will eventually show that regardless of the
exact values of py, ..., ug, as long as they satisfy the conditions in Definition 3.1, we
have

gu(®) = ux(z) - g (2), (4)
where wuy(z) only depends on k and does not depend on p or v or the exact values
of g1, ..., ux. Then we will combinatorially interpret the coefficients of uy(z).

Definition 3.1. We say (u1, ..., ux) is a k-fuse if

1. Each of puy, po, ..., pg_1 is either 1 or 2, but u; > 3,
2. all parts pq, pa, . . ., g are playable, and

3. for 1 < j <k —1,if p; =1 then p;yq # 1, i.e. there is no two consecutive
ones.

If o= (g1, ..., g, - - .), that is, the first k parts of p are py, ..., pg, and (pg, . . ., i)
is a k-fuse, we say that u contains a k-fuse.

Ezample 3.2. Both p=(2,1,3,1,2,...) and v = (1,2,3,2,2,...) contain 3-fuses.
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Remark 3.3. We explain here why we call (pq,...,ux) a “k-fuse”. First of all, once
we play any of the first k parts, all parts after g, i.e. pigs1, flkr2, - .., are no longer
playable because py, > 3. This is because Lemma 2.12 says that if we let 4/ = R;(p),
then for ¢ > 7, p is playable only if Zi,:j i < 3. Having p > 3 immediately violates
this condition. As a result, once we play any of the first k parts, only the first k
parts are playable. In addition, Proposition 3.7 will show that the reversed BS game
will terminate after at most k£ moves. For example, Figure 11 shows two different
elements of BS,, that both contain a 3-fuse. Although the 3-fuses are different, the
branches after playing R;, Rs, or R3 are isomorphic. Furthermore, for every element
in these branches, the playable parts are only those initially in the 3-fuses, and after
at most 3 steps, there is no more playable parts. We can think of a k-fuse as a fuse
of a “bomb”. Once we “trigger” the fuse by playing one of the first k£ parts, there is
nothing we can do except continue “burning” the fuse. Eventually, after at most k
moves, the bomb “explodes” and there is no more possible move.

(2,1,3,1,2,...)
bl
(1,3,1,2,...) (3,3,1,2,. (2,4,1,2,..))
AT
(3,1,2,...) (3,1,2,...) (6,1,2,..) (4,1,2,...) (6,1,2,...)
R lRl Rll lRl
(1,2,...) (1,2,...) (1,2,...) (1,2,...)
(1,2,3,2,2,...)
(2,3,2,2,...) (3,3,2,2,...) (1,5,2
AT
(3,2,2,..) (3,2,2,..) (6,2,2,..) (5,2,2,...) (6,2,2,.
| Co b
(2,2,...) (2,2,...) (2,2,...) (2,2,...)

Figure 11: 3-fuses

Let us now make some of the earlier comments about (4) more precise. Given a
subset A C {1,2,3,...}, define

RA(/J’) = {p = (le © R]Z ©---0 R]k)(:u) fOI' some j17j27 e 7jk S A}
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Given pt = (1, . .., g, v) starting with a k-fuse, let V' := Rgjiq 42,31 (1t). Corollary
3.5 below will show that every element in V' also has a k-fuse. By Remark 3.3 and
Proposition 3.7, the tree 7, has a disjoint decomposition

7; = |_| R{1,2,..‘,k}(0)-

peV

Figure 12b shows the disjoint decomposition of the tree rooted at u = (1,3,1,2,1,1,...)

= Y PAR

with a 2-fuse. Each component R o . 1y (p) is illustrated via the color-coding.

(1,2,1,1,...)

2,1,1,...) (3,1,1,...)

. AN

(1,1,...) (1,1,...) 4,1,...)

. AN
(a)

(1,4,2,1,1,...) (1,3,3,1,1,...)

Rl,‘l/ R.‘a R/ \er /')\~ /1)2
EN
(1,6,1,1,...) (1,3,4,1,...)
/
Ri,Ry Ry Rl.Ri/ lRN\T
(b)
Figure 12

Because of the disjoint decomposition, one can write
4(p,
gu(@) =Y 2 WPy, ()
peV

where

u,(x) = Z z'(Po).

TER(1 2, k}(p)
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Proposition 3.6 below shows that all of the subtrees R{m,.“,k}(p) are isomorphic.
Hence one can define a single (polynomial) generating function uy(x) := u,(z) for
all p € V, to be studied further in Section 3.2 below. Consequently,

gu(x) = ug(x) - Z 2 mp)

peV

Our next proposition shows 7,|y is isomorphic to 7,, which will eventually imply

(4).

Proposition 3.4. Let yu = (i, . .., g, v) where (i1, ..., ix) is a k-fuse. Then the
vertex set V 1= Rypi1 pyo,.3 (1) has T,|v isomorphic to T,.

Proof. We will show that a sequence of moves Ry, R;,, ..., R;, is possible from v if
and only if the sequence of moves Ry, Ritiy, - - -, Ri1i; 18 possible from p. In fact,
we will prove a slightly stronger statement: p := R;; o--- o R; (v) exists if and only

if Rpyi; 00 Ry, (1) also exists, and Rpqq; 0 -+ 0 Ry, (1) = (Fn, - -, Bt iy P)
where (i1, ..., fg_1, p_ﬁc) is a k-fuse. We will prove this by induction on j. The base
case where j = 0 is obvious.

Suppose p := R; 0---oR; (v) exists and 0 := Ry, 0- -0 Ry, (1) = (i1, - - -, o1,
., p). Suppose p = R;, ., (p) exists for some i, > 1, then since 4;,; > 1, this move
only affects and depends on parts 441 — 1,%;41,%;41 + 1,... in p. These parts are
identical to parts k + 4,1 — 1,k +dj1,k +ij01 + 1,... in 0. Thus, 0’ = Rpy,,(0)
exists, and o’ = (7, . . ., o1, fly, £)-

Finally, suppose p/ = R;(p) exists. By Lemma 2.4, p/ is obtained by removing
the first part of p and putting the bars on the remaining parts following the rules in
Lemma 2.4. On the other hand, ¢’ = Ry41(0) is obtained from o by adding p; to ),
and putting the bars on the remaining parts also following the rules in Lemma 2.4.
Again, parts 1,2, ... of p are the same as parts k+1,k+2,... of o, so the extra bars
are put on respective parts. Thus, o = (7, ..., fix_1, i1}, o) where u = 1} + p1.
Note that this does not violate the conditions of k-fuses, i.e. ({1, .., ir_1, /L_/k,) is still
a k-fuse.

The argument for the converse is exactly the same. O]

The following corollary is immediate from the proof of Proposition 3.4.

Corollary 3.5. There is an isomorphism from T, to T,|v that maps every element
p €T, to an element (i1, . .., f—1, 4., p) € Tulv where (G, ..., fi—1, it},) s a k-fuse.
In particular, every element in T,|v has a k-fuse.

Now we prove that u,(x) are the same for all p € V.

Proposition 3.6. Let p = (p1,. .., px, V) where (py1,...,px) is a k-fuse. Then for all
values of p1,...,pr (satisfying the conditions of k-fuses) and for all v, the subtrees
R o, ky(p) are isomorphic.
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Proof. We will prove this by induction on k. The base case where k = 1 is obvious.
Suppose the statement is true for k£ = 1,...,7 — 1, consider any two elements p =
(p1, .-, p5,v) and o = (o, . .. ,p_;., V') where (pr, ..., p;) and (o, ... ,p_;) are j-fuses.
Let 0 = R;(p) and o' = R;(p') for some i < j, we will prove that 7, and 7, are
isomorphic.

First, let V' = Ry;, y(0) and V' = Ry; 3(0'), we claim that 7,|y and 7|y are
isomorphic. In fact, we claim that V = {7 | # = R"(0),0 < m < k —i}. This is
because in o, o; is playable since p; < 3, but ¢, is not playable for all » > i since
> Ps > pi+ pir1 > 3 by condition 3 in Definition 3.1. For the same reason, in
R*(o) for 0 < m < k — i, the ith part is playable but any part after that is not.
However, in RF~"(¢), the ith part is p;, which is at least 3. Thus, in the R¥ (o, the
ith part is also not playable. Thus, V = {7 | 7 = R[*(0),0 < m < k —i}. Similarly,
V'={r|m=R"0"),0<m < k—i}. Hence, T,|v and 7|y are isomorphic.

Finally, every element 7 in 7|y and 7|y contains an (i — 1)-fuse. Since i — 1 <
J — 1, by the inductive hypothesis, R . ;—13(7) are isomorphic for all 7 in 7|y and
T)|v,. This completes the proof.

O

The proof of Proposition 3.6 also suggests the following result.

Proposition 3.7. Let p = (p1,...,pk, V) where (p1,...,pr) is a k-fuse. Let a; =
Ri(p) for 1 < i < k. Let Tp = Ujcicr Ta,- Let V' be the set of elements in T,
then

V={r|m=(Ryo--oR)(p)}

where j <k and k > iy > iy > -+ > i;. Specifically, V = Rp, iy (p), and T,|v has
depth k.

Proof. We will prove this by induction on k. If &k = 1, then p = (p1, v) where p; > 3.
Since p; > 3, in Ri(p), no part is playable. Thus, 7y, = 7a, only contains one
element: R;(p), so the statement is true for k& = 1.

If £ > 1, consider any 7,, with 1 < ¢ < k. The proof of Proposition 3.6 shows
that

R y(o) ={m |7 =R"(0;),0<m < k—i} ={r|m=R"(p), 1 <m < k—i+1}.

Furthermore, every element o in Ry; y(c;) has an (i — 1)-fuse, by induction, the
elements in 7j;_y), have the form

(Rij 0o R )(0)

where j <i¢—1andi—12>14; > iy > --- >1;. Hence, every element in 7,, has the
form
(Rijo---0 Ry oR")

where j <i—1,1—12>14 >y > --- >4;, and 0 < m < k —i+ 1. Thus, the
statement is true.

This proves that V' C Ry xy(p). Clearly, we also have Ry . i(p) C V, so
V' = Rp,.iy(p). Finally, to show that 7,|y has depth k, it suffices to check that
R¥(p) exists, which is not difficult. O
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fuses are different, and the remaining parts are also different ((1,2,...) and (2,2, ...)),
still Rg12,33(p) and Ry 233(p') are isomorphic and both have depth 3.

Proposition 3.6 means that Ry 5. 1 (p) only depends on &, and hence the level
generating function of this subtree, denote uy(x), also depends only on k. Proposition
3.7 shows that ug(z) has degree k. For instance, Figure 11 shows that ug(z) =
143z + 52?4 42®. Furthermore, if p is an element at level i of some tree 7, then the
elements in this subtree contribute exactly uy(z)x" to the level generating function
gu- Thus, we say that p has a coefficient ui(x). Combining Propositions 3.4 and 3.6
we achieve the desired equation (4).

Corollary 3.8. If u = (g, ..., fig,v) where (fi1, ..., ig) i a k-fuse then the gener-
ating functions g,(z) and g,(x) of T, and T, are related by

gu(z) = up(z) - 9o ()
where uy(x) only depends on k.

Figure 12 shows an example of Corollary 3.8. Figure 12a shows the tree of an
element v = (1,2,1,1,...), and Figure 12b shows the tree of an element ju that
consists of a 2-fuse followed by v. In 7,, if R; and R, are not played, the elements
are exactly the elements in 7,. However, at each element p, one can play R; or Ry
and get to R 23(p). Thus, each element has a coefficient us(z).

3.2 Combinatorial formula for wu(x)

In later sections, we will see that these coefficients uy(x) are very crucial, espe-
cially for computing the generating function Hp(z). Fortunately, these coefficients
can be described combinatorially through weak compositions. Recall that a weak
composition « = (o, o, ..., ) of k is a sequence of nonnegative integers «; with
o+ +a=k.

Proposition 3.9. For all k,

k
ug(x) = Z ci,k_ixi
=0

where ¢, ; s the number of weak compositions of n with exactly © zeros.

Proof. Let u = (@, ..., ;) be an arbitrary k-fuse. We will construct a bijection
between weak compositions of ¢ with & — 4 zeros and elements at level 7 in 7, re-
cursively. Given a weak composition (v1,...vy) of i with k — i zeros, we obtain the
corresponding element as follows:

1. If vy = --- = vy, = 0, do nothing and stop. Note that this corresponds to p,
the only element at level 0, and also corresponds to the only composition of 0
with k zeros.
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2. Else, there is a largest index ¢ — m such that v,_,, #0. Then let p =k —m —
Ve—m + 1, and play R, repeatedly vy_,, times. Note that after this, we have a
(p — 1)-fuse and the weak composition (4, ...,_,_1); repeat the process.

First, observe that after step (2), the remaining weak composition (v, ..., fte—m_1)
is a weak composition of i — v,_,, with n — i — m zeros, and the remaining fuse is a
(k —m — vp_p,)-fuse. Since (i — vp_p,) + (k — i —m) = k —m — vy_,, the recursion
is well-defined.

It is easy to see that two different weak compositions define two different playing
sequences, and injectivity follows since no two playing sequences lead to the same
element by nature of Bulgarian Solitaire.

Finally, in order to prove surjectivity, we define the inverse function. For each
element 4 in the tree, there is a unique sequence of play (i1, s, ...,4;) that yields u
from the k-fuse. Moreover, by the argument in the proof of Proposition 3.4, this se-
quence is weakly decreasing. Thus, we can rewrite the play sequence as (i{",. .., %)
where (i1, ...,1,) is strictly decreasing and «; < i;_; —i;. Now we fill in the parts
of the weak composition from right to left. For each i?j, we fill in (o, 0,...,0) with
ij-1 —1; + 1 zeros (here we take iy = k). Finally, we fill the rest with zeros, if
necessary. It is easy to check that this is the inverse of step (1) and (2) above. [

Figure 13 shows an example of this bijection. Take the composition (2,1) for
instance, the 1 means that we start by playing R3 once. Then we are left with the
2-fuse (2,4) and the composition 2. This tells us that we play R; twice, and hence
we obtain the empty element after the sequence R3, Ry, R;.

(2,1,3) 0,0,0)
/ l \ / lRN)
(1,3) (3:3) (2,4) (1,0,0) (0,1,0) (0,0,1)
o N e e N / e
(3) (3) (6) (4) © (2,0 (1,1,00 (0,2) (1,0, (0,1,1)
Rll lRl Rll lRl R.l lRl R.l lR\
0 0 0 (NG (1,2) @1 @5
(a) Tree of a 3-fuse (b) Corresponding compositions

Figure 13: Tree of a 3-fuse and the corresponding compositions

Remark 3.10. Although there is no simple explicit formula for ¢ ; that we know of,
there is a nice family of generating functions for these numbers. Fixing ¢, one has

o) . 1— 2\
E CLiT = .
’ 1—2z

k=0




A.J. HARRIS AND S. NGUYEN / AUSTRALAS. J. COMBIN. 93 (2) (2025), 224-273 246

Observe that when ¢ = 0,

11—
k k=1, .k
E Ck,0T —1_21;—14—5 27 a2,
k=0 k=1

which is indeed the generating function for the number of strong compositions.

3.3 k-pre-fuses

Now we briefly discuss k-pre-fuses, which will be discussed in more detail in Section
5.

Definition 3.11. We say (p1, ..., ux) is a k-pre-fuse if they satisfy

1. py, pa, ..., py are either 1 or 2,
2. all parts 1,2, ...,k are playable, and

3. forall j <k —1, u; =1 implies p1;41 # 1, i.e. there is no consecutive ones.

If o= (g1, .-, fig, - - .), that is, the first k parts of p are py, . .., pg, and (pg, . . ., )
is a k-pre-fuse, we say that u contains a k-pre-fuse.

The only difference between this definition and Definition 3.1 is that puy is also
less than 3, so this is not a k-fuse. However, if we play any R; for 2 < ¢ < k, we
immediately reach an (i — 1)-fuse.

4 B(WB)* and W(BW)*

Now that we have a good understanding of the k-fuses, we are set to prove Theorem
1.2, asserting Hgwpy(2) = Hy pwyx(x) for k> 1.

Recall from Section 2.4 that it suffices to study the generating functions g;’s
corresponding to the trees 7o, where C;’s are the cycle elements. Corollary 3.8
tells us that if in 7, there is an element p with a k-fuse followed by C; for some
J (not necessarily different from ), then the weight of the subtree rooted at this
element is uy(z) - g;(z). Thus, we can degenerate the whole subtree to one element
representing the subtree with weight wy(z) - gj(x). We call the tree obtained from
Tc, by degenerating all such subtrees to single elements the degenerate tree of 7¢,.
For two necklaces P and P', we say two quasi-infinite trees 7¢, and 7o are almost
isomorphic if their degenerate trees are isomorphic, and if a degenerated element in
Tc, has weight ug(z)gc; () then the corresponding element in T¢r is also degenerated
and has weight ui(z)gcr (z). Note that two trees being almost isomorphic means that
the subtrees that consist of the non-degenerate elements are isomorphic.
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Ty Tey
(1,0,2,1,0,2,1,0,2,...) (0,2,1,0,2,1,0,2,1,...)
Ry Ry
(0,2,1,0,2,1,0,2,1,...) (2,1,0,2,1,0,2,1,0,...)

/17| /])J
ys A
(1,0,2,1,0,2,1,0,2,...) (3,0,2,1,0,2,1,0,...)
R/ \?3
(0,2,1,0,2,1,0,...) (3,2,1,0,2,1,0,...)
R/ lRQ R;
(a) Fwaw
Te, Te,
(1,0,2,1,0,2,1,0,2,...) (0,2,1,0,2,1,0,2,1,...)
Ry l Ry
gcz(aj) gos()
T
(2,1,0,2.1,0,2,1,0
R R
V4 A
9o, () ui(z)ge, ()

(b) Fwpw degenerated

Figure 14: Fypw and its degenerated version

247
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Ty Tey
(2,0,1,2,0,1,2,0,1,...) (0,1,2,0,1,2,0,1,2,...)
R1 RZ
(0,1,2,0,1,2,0,1,2,...) (1,2,0,1,2,0,1,2,0,...)

R, Ry
ys A
(2,0,1,2,0,1,2,0,1,...) (3,0,1,2,0,1,2,0,.
(0,1,2,0,1,2,0,. (3,1,2,0,1,2,0,...)
v N
(a) Fewn
Te, Te,
(2,0,1,2,0,1,2,0,1,...) (0,1,2,0,1,2,0,1,2,...)
R1 lRQ
gcz(aj) gos()
T,
(1,2,0,1,2,0,1,2,0
R R
V4 A
go, (T) U1($)902(33)

(b) Fewp degenerated

Figure 15: Fpwp and its degenerated version
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For example, recall from Section 2.4 the quasi-infinite forest Fypw with three
trees rooted at the cycle elements

{Cy,Cy,C3} ={(1,0,2,1,0,2,...), (0,2,1,0,2,1,...), (2,1,0,2,1,0,...)}

as shown in Figure 14a. Observe that R;(C}) is Cy, so we degenerate the whole

subtree rooted at R;(C}) to an element with weight gc, (x). Similarly, we degenerate

the whole subtree rooted at R;(Cs) to an element with weight ge,(x), and the whole

subtree rooted at R;(C3) to an element with weight go, (x). Finally, Ry(Cs3) is a

1-fuse followed by Cy, so we degenerate the whole subtree rooted at Ry(C3) to an

element with weight u;(x)gc,(x). The degenerated forest is shown in Figure 14b.
Similarly, the cycle set for Ogwp is

{C1,Cs, 05} ={(2,0,1,2,0,1,...), (0,1,2,0,1,2,...), (1,2,0,1,2,0,...)}.

The quasi-infinite forest Fpwp is shown in Figure 15a, and its degenerated forest is
shown in Figure 15b. One can easily check that the degenerated forests of Fypy and
Fewpg are isomorphic by comparing Figures 14b and 15b. Thus, Fysw and Frwa
are almost isomorphic. Lemma 4.1 will show that this implies Fygw and Fpwg are
isomorphic, which can be seen by comparing Figures 14a and 15a. This will be our
method for proving Theorem 1.2.

Lemma 4.1. If T¢, and Te; are almost isomorphic for all i, then Te, and Te; are
isomorphic for all i.

Proof. It suffices to prove that from the roots of 7¢, and T¢y, one can play a sequence
of moves R;,,..., R, in T¢, if and only if one can play the same sequence in ¢
Observe that we start at the root of both trees. If before R; , we have non-degenerate
elements in both trees, then R; is playable in one tree if and only if it is playable
in the other. If we have degenerate elements in both trees, then by definition of
almost isomorphic, the degenerate elements both have k-fuses followed by C; and
C’ respectively. If 1 < j, < k, then R; is playable in both trees, and playing R;,
leads to the “terminal phase” of the k-fuses, which we already know are isomorphic.
If j, > k then playing R;, is the same as playing R;  in T¢; and ’TC;_. Since T¢;,
and TC;- are also almost isomorphic, R _j is playable in one tree if and only if it is
playable in the other. O]

We first analyze the quasi-infinite trees of the families B(W B)* and W (BW)*.
For the former family, the cycle elements are

C) =(2,0,2,0,2,0,...,2,0,1,...)
Cy =(0,2,0,2,0,...,2,0,1,2,...)
Cs =(2,0,2,0,...,2,0,1,2,0,...)
Cy=(0,2,0,...,2,0,1,2,0,2,...)

Cops = (0,2,0,1,2,0,2,...,0,2,...)
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Cgk,1:<, 5 ,2,02 O,2,0)

2.0,1
Cor = (0,1,2,0,2, .. 0202”)
Tiaz”wazazau)

where each element has k twos, k zeros and a one. Similarly, the cycle elements of
the latter family are

@02020 ,2,0,2,..)
=(0,2,0,2, WZQZL”)
=(2,0,2,0, .WzazLon)
=(0,2,0,...,2,0,2,1,0,2,...)
%2:@§Oﬂﬂﬂ2 50,2,
e =(2,0,2,1,0,2,...,0,2,0,...)
%w=®§1QZ~w&ZQZ~)
et = (2,1,0,2,...,0,2,0,2,0,...)

where each element also has k twos, k zeros and a one.
Our first lemma is clear.

Lemma 4.2. In Fgauwpy and Fypwk, fori=1andi=2j (1 <j<k), T, and
Tcr are almost isomorphic.

Proof. This is clear because for these C;, there is only one playable move, which
gives C;1. Thus, the degenerate tree has only two elements: C; and the degenerate
element for 7o . ]

i+1

Our next lemma is also straightforward.
Lemma 4.3. In Fpuypy and Fypwys, Toy,,, and TC/ L, are almost i.somorphic.

Proof. From Cy;,q, we have two moves: R; and Ry. If we play R;, we get the
degenerate element for 7¢,. If we play Ry, we get a 1-fuse followed by C5, which is
also a degenerate element. The tree for 5, is exactly the same, so they are almost
isomorphic. O

Now we tackle the more complicated elements.
Lemma 4.4. Fori=2j+1 (1<j<k~—1), To, and To; are almost isomorphic.

Proof. First note that

Q
Il
—
\'[\D I
k=
N
o
o
\.}—‘
N
S~—

and

Q
I
oy
\.[\D I
o
el
o
o
N
\.}—‘
~—
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Specifically, both elements begin with (2,0,2,0,2,0,...) and the first difference is
in the (2k + 1 — 2i)th and (2k + 2 — 2¢)th parts where those of C; are 1,2 while
those of C] are 2,1. Let us call these two parts the significant parts. Until these
two parts are played, the two trees are isomorphic. Now we claim that in order for
the significant parts to be playable, we need to always play the last playable part,
i.e. the playable part with the largest index. Indeed, suppose we have an element
(2,2,...,2,0,2,0,...) (note that C; and C! also have this form themselves), if we play
the last playable part, then we get another element of this form. If we do not play the
last playable part, then we reach an (-fuse (2,...,4,2,2,...,2,0,2,...). From here,
it we play R; with j < £, we trigger the terminating phase and will eventually stop
before the significant parts are playable. Else, we can only play R, repeatedly until
we get (2,...,2m,0,2,...), which is an /-fuse followed by a cycle element. Thus, this
degenerates to an element before the significant parts are playable.

When the first significant part becomes playable, the elements in the two trees
are (2,...,2,0,1,2,...) and (2,...,2,0,2,1,...). Similar to above, if we do not play
the last playable part, we will either terminate or get a fuse followed by Cy, and Cf,,
and so the subtrees are almost isomorphic. If we play the last playable part, then we
get (2,...,2,1,2,0,2,...) and (2,...,2,2,1,0,2,...). Once again, if we do not play
the last playable part, then the subtrees are almost isomorphic. If we play the last
playable part, in both trees, we get (2,...,2,3,0,2,...), which is a fuse followed by
Cy and Y, and so this degenerates to the same element in both trees, and hence the
trees are almost isomorphic. O]

The last three lemmas combine to prove Theorem 1.2.

Theorem 1.2. For k > 1, one has

HB(WB)k(x) = HW(BW)k(I)-

Proof. From the lemmas, we have that 7¢, and 7T¢; are almost isomorphic for all 4, so
they are isomorphic for all i. Thus, the generating functions g; and ¢ are the same
for all i, and hence Hpuy gy () = Hy (gw)s (7). O

5 BWF and WB*

Now, we shift our focus to the families BW* and W B* and Theorem 1.3, asserting
that Hpy(x) and Hyype(x) can both be written as rational functions over the same
polynomial of degree k + 1, by which we mean the rational functions have the same
denominator of degree k + 1.

Let us start with a warm-up example with P = BWWW. Figure 16 shows the
degenerated forest for this necklace.

In Figure 16, the tree 7¢, has one element on level 0, a copy of T¢, on level 1, and
a copy of 7o, with a 1-fuse on level 1. Thus, we have the equation g3 = 1+xg4+2xu;1 9.
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Te,

(1,0,2,1,1,0,2,1,...)

(0,2,1,1,0,2,1,...) (1,2,1,1,0,2,1,...)

0
g2
R/ R{ \f3

(2,1,1,0,2,1,...)  (3,1,1,0,2,1,...)  (1,3,1,0,2,1,..))

U291
Rli Rli \f2

(1,1,0,2,1,...) (1,1,0,2,1,...) (4,1,0,2,1,...)
U191
Rli
(17075’17 )
g1
To, To, To,
0,2,1,1,0,2,1,1,...) (2,1,1,0,2,1,1,0,. (1,1,0,2,1,1,0,2,...)
Rzi / \i‘b Rll
(2,1,1,0,2,1,1,...) (1,1,0,2,1,1,0,. (3,1,0,2,1,1,0,...) (1,0,2,1,1,0,2,...)
g3 94 U191 a1

Figure 16: Fpwww degenerated

Similarly, we can write the following system of equations

g1 = 1+x+222 4223 + 29y + (2* + 23u; + 2%us) gy

g2 =1+xg3 (5)
g3 =1+xg4s+ 20101
g1 =1+zg.

We can solve this system by substitution. We have
g=1+zg3=1+2(1+2g9s+20191) = 1+ 2(1 + 2(1 + 291) + TULG1)

=14+z+2%+ x3gl + x2ulgl.
Thus,

g1 =1+2 4222 +22° + 29y + (2 + 23u; + 2%u2) 1
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=1+a+202 + 208 +o(1 4+ + 22 + 2% + 2%uyg1) + (2" + 23uy + 22u9) g1
= Ay + (22" + 22%u; + 2Pup) 1

= Ay + (22" + 22°(1 + 2) + 2°(1 + 27 + 22°))¢n

= Ay + (62" + 42% + 2?)gy,

where A; = 1 + 22 + 322 + 323. Therefore,

bzt 4xd a2 —17

0

Note that since we only care about the denominator, the value of A; is not relevant.
Working backwards, we can solve for go, g3 and gy:

m m —A —Ay
94 7 6ot + 423 + 22— 1 62 + 48 + 22 — 1
— A,
p— 1 p—
g3 + xgs + TULGL 6o F A 27 =1

—A,
6z + 423 + 22— 1

g2 =1+wgs =

for some polynomials Ay, Az, A4. Recall from Section 2.4 that this means

—A;(z) — As(z) — As(x) — Ay(x)
6t + 43 + 22— 1

g=g1+9+93+gs=

Y

and hence

—Al(.’L') — AQ(,CI?) — A3($) — A4(.%’)

Hewww(z) = (1-2) 62t + 423 + 22 — 1

Thus, Hgwww(x) can be written as a rational generating function over a polynomial
of degree 4.

Similarly, for P = WBBB, we have the following system of equations. We en-
courage the reader to check that this is the correct system.

g1 =l4+x+2%+x9+ (23 4+ 2%u; + 2U2)gs
g2 =1+xg3+ U194

g3 =1l+uzg

gs =1+uzg:.

Although this system is a bit different from (5), by substitution, we also have
go=14xzg5+zu1gs =1+ (1 +2(1+xg91)) + zui (1 + xg1)

=142+ 2%+ zu + 221 + 22w 1.
Thus,

g =1+z+2%+ 19+ (2% + 22U + 2U2) 94
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+ (2t + 2%u) g1 + (2* 4 2Puy 4+ 2un) gy
+ (22* + 22°%uy + 2ug) gy
+ (22" + 22%(1 + ) + 2°(1 + 22 + 22°)) g
+ (62" + 42 + 2%)g1.
This means that
_A

_ 1

6t + 43 + 22— 1
and similar to above, eventually we have

— Al (z) — Ay(x) — Aj(z) — Aj(x)
624 + 423 + 22 -1

(251

9

for some polynomial Aj, A}, A). This is also a generating function over the same
polynomial of degree 4 as Hgwww.
Observe that in both examples above, we use substitution to derive

g1 = A+ (62" + 42° + %) g

for some polynomial A. This means we have

B —A
C6rt+4ad a2 —1]

(251

and eventually we can write both Hpwww and H ygpp as a generating function over
62 + 423 + 22 — 1, which is a polynomial of degree 4. This will be our main strategy
in this section.

Also, observe from the example that in both cases, we encounter the sum z? +
xuy + uy. This sum is indeed homogeneous, for Proposition 3.9 shows that us(x) has
degree 2 and u;(z) has degree 1. Thus, for our convenience, we will “normalize” our

ug’s by redefining
k

ug(x) = Z ci,k_imi*k

i=0
where ¢, ; is the number of weak compositions of n with exactly 7 zeros. Under this
new definition, the sum x? + zu; + uy becomes x?(ug + u; + uy) (since ug = 1). This
motivates the following abbreviation:

Definition 5.1. Let v () 1= uo(z) + ui(x) + - - - + ug(z).

Now, we are ready to carry out the computations for Theorem 1.3.

51 BW*k

First, we will deal with the more “friendly” family of the two. The cycle elements of
this family are

C,=(1,1,1,1,1,...,1,0,2,1,...)
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Cy=(1,1,1,1,...,1,0,2,1,1,...)

Cs=(1,1,1,...,1,0,2,1,1,1,...)
Cros=(1,1,0,2,1,1,...,1,1,1,...)
Cro=(1,0,2,1,1,...,1,1,1,1,...)
Cpq =(0,2,1,1,...,1,1,1,1,1,...)
Cr=(2,1,1,...,1,1,1,1,1,0,...)
Cipr = (1,1,...,1,1,1,1,1,0,2,...)

Definition 5.2. For & > 2, define f; to be the polynomial such that when using
substitution to solve the system of equations for BW*, we have

g =A+ fign

for some polynomial A. Then Hpgy+ can be written as a rational generating function
over f — 1.

It is actually not clear yet why such f; always exists. Its existence will be proved
in Proposition 5.5; furthermore, we will show that these f.’s satisfy the recurrence
given in (6). Once we can write gz = A + frg1, it follows that we can write ¢; as
a rational generating function over f, — 1. Along the way, Proposition 5.3 implies
that the equation for any g, only depends on gpi1,...,gr+1 and g;. Thus, we can
iteratively write gi11, ..., g2 as rational generating functions over f; —1. This implies
that we can write Hgyx as a rational generating function over f — 1.

Let us start once again with an example that will illustrate the idea of the recur-
rence. Figure 17 shows the quasi-infinite trees corresponding to the cycle elements
for BWWWW = BW?*. From the forest, we can set up the following system of
equations

g1 = A§4) + 2v0g2 + T v0gs + 2115 + 2 uggy
g2 = Agl) + 2v0g3 + T 0195 + ' uagy

g5 = A + 2vogs

g1 = AP + woogs + 2Purgs

g5 = ALY + 2uegy

where each AZ@ is a sum of the terms whose weights do not contain any g;. Hence,
each A§4) is not relevant to our study of the denominator.

Similarly, we can set up the following system for BWWWWW = BW?®
g1 = Agf)) + xvog2 + V194 + 70296 + 20Uz
g2 = AS)) + 20093 + 20091 + V196 + T U2y
g3 = AP + 20994 + 120196 + 2usg
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Cl 02
(1,1,0,2,1,...) (1,0,2,1,1,...)

(2,2,1,1,1,...) 0,2,1,1,1,...) (1,3,1,1,0,...) U195
\ 03 (Tvgvcl)
(2,3,1,1,0,...) V195
(iagacl)

Cs Cy Cs
0,2,1,1,1,...) (2,1,1,1,0,...) (1,1,1,0,2,...)
(2,1,1,1,0,...) (3,1,1,0,2,...) (1,1,1,0,2,...) (1,1,0,2,1,...)

Cy (3,C1) Cs Ch

Figure 17: Quasi-infinite forest for BWWWW

g4 = AS) + Vg5
gs = Ag)) + 20096 + T UL g1
g6 = Aés) + xvog1

Observe that the equations for gs, gs, ..., gs are exactly the same (up to shifting the
indices) as those for g1, ga, ..., g5 for BW?. This is indeed true in general.

Proposition 5.3. If for P = BW* we have
ge = Aék) + Z T a; g
>0

where a; is some coefficient (in this case a; is either v; or u; for some j), then for
P = BW*m™ we have

k+m i
Go4m = AEJ:,I ) 4+ Zl’ @i Go+m+i-

>0

Here the indices of g are taken mod |P)|.
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Proof. The equation g, = Agk) + > oo L'aigey; for P = BW* is set up using the
quasi-infinite tree rooted at the element

(1,1,1,...,1,0,2,1,...)
———

j copies of 1

for some j. Then, for P = BW**™ the equation for gy, is set up using the
quasi-infinite tree rooted at the element of the exact same type, i.e.

(1,1,1,...,1,0,2,1,...).
———
J copies of 1
Thus, the equations are the same up to shifting of the indices. O

Proposition 5.3 leads to a useful corollary.

Corollary 5.4. If for P = BW*, we can substitute and obtain
g =AY+ fig
for some polynomial A®) and f,, then for P = BW* ™ we have

G = AT 4 frg,
for some polynomial A®+™).

Proof. The equations for gi,...,gwy1 of BW* is the same as those for g,,i,...,
Grpme1 for BWET™ 5o substitution yields the desired identity. O]

For example, for P = BW*, we can substitute and obtain g; = A® +(122° 4821+
273) gy, then we know that for P = BW?®, we have g, = A®) 4 (122° + 82* + 22%)g;.
Thus, we obtain the following recurrence.

Proposition 5.5. The coefficients f,, in Definition 5.2 satisfy the following recur-
rence:

n—4
2 2041 —2 1 . .
f PR Uifn—(Zi—i—l)) + x" UanzlfQ + ™t vz if n is even, ©)
n — n—3 .
( =0 x21+1vifn—(2i+1)) + x”anTH if n is odd.

Proof. This proposition is best illustrated by a figure.
Figure 18 shows the quasi-infinite trees 7¢, for both cases. Hence, we can set up
the equation

n—4
2

2i+1
i=0 T

) Vig2i+2 + 2" 2004 gp_1 + 2T Vn—2 gn+1+x”+1u%gl if n is even,

n 2 2

g1 = Al + n—3 .

> 22 0ig9it0 | + 2001 gni1 + 2" unt1 gy if n is odd.
2 2
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Cl C]
(I,1,1,...,1,0,2,1,1,1,...) (1,1,1,...,1,0,2,1,1,1,...)
n—2 n—2
— 2,1,1,1,...,1,0,2,1,1,1,...) 2,1,1,1,...,1,0,2,1,1,1,...) —
n—4 n—4
3 <?7?7T7T717---7110727171717"'> (§7?7T7T717"'*170727171717"') 3
uigs A e AR Rt A AL R 220194
n—>6 n—06
20904 : ; R
2,2,...,2,1,1,0,2,1,1,1,...) (2,2,...,2,1,1,1,0,2,1,1,1,...)
B 22,...,2,0,2,1,1,1,... 2.2,....2.1,0,2,1,1,1,... )
o 31)&;19"72 ( s ) ( - ) " 4’Uuﬁ1’>g7173
2 2
zn72vnl;4‘q"7] (2727-“727171717'-') (2727~~'7271:2717171>"'> «T7172UL73!]7L71
2 g n;’{ 5
xnvﬂgn+1 (2727-:-727371717"') (2727':'72717371717"'> flf”"l)n_;lng&
2 %72 n—3 2
In+1u%gl In_HU%gl
n even n odd

Figure 18: Quasi-infinite trees 7o, when n is even (left) and odd (right)

By Corollary 5.4, each g;11 can be substituted by A;.1 + f,_;g1 for some polyno-
mial A;, ;. In addition, in both cases, we have g, = 1+ x¢g;, and since v; + u; 11 =
Vit1, we have

2" Vn-2Gni1 + x"Hu%gl = 2" VUn-2 + x"HU%gl
2 2

for even n and

T"Vn-1 g1 + 2" Uni1 g1 = 2001 + 2" 00 gy
2 2 2 2

for odd n. Thus,

n—4
5t 2i41 2 1 e
<Zz’:20 il Uifn—(2i+1)gl) + 2" Una fagr + 2" ong,  if nis even,

Yol 5U2i+1?1¢92i+2> + x"anTﬂgh if n is odd.
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for some polynomial A™. This gives equation (6). O
Corollary 5.6. For alln, f, has degree n + 1.
Proof. This is immediate from (6), knowing that v; has degree 0 for all i. [

Corollary 5.6 means that for all n, Hgy« can be written as a generating function
over f, — 1, which is a polynomial of degree n + 1.

52 WB*

Now we will shift our attention to the other family, namely W B*. The cycle elements
of this family are

¢ =(1,1,1,1,1,...,2,0,...)
G =(1,1,1,1,...,2,0,1,...)
Q:ﬁiL.ﬂ@LL)
Crs = (1,1,2,0,1,1,1,...,1,...)
Cir=(1,2,0,1,1,1,...,1,1,...)
Cp=(2,0,1,1,1,...,1,1,1,...)
Chpr = (0,1,1,1,...,1,1,1,2,...)

Cl 02
(T7 T7 T7 27 07 ) (T7 T7 27 07 17 )
(1,1,2,0,1,...)  (21,2,0,1,...) (1,2,2,0,1,...) (2,2,0,1,1,...)  (1,2,0,1,1,...)
Cy / l \ \ Cs
Ulg4 <§7 g7 0 T7 ]‘7 i ) (T’ 17 0’T7 1’ c ') U]‘g4 (17 0’T7 17 17 N ) (27 07 ]‘7 17 1 )
(é 37 C5> (T Z7 CS) (T7 37 C5> C4
Cs Cy Cs
(1,2,0,1,1,...) (2,0,1,1,1,...) 0,1,1,1,2,...)
B3,0,T,1,1,...)  (2.0,1,1,1,...) (0,1,1,1,2,...) (1,1,1,2,0,...)
(3705) C—l CS Cl

Figure 19: Quasi-infinite forest for WBBBB
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From Figure 19, we can set up the following system of equations.
g1 = B + 2vogs + %0101 + 2tuags + 2 0194 + 2 Uzgs
92 = Bgl) + 20093 + Tv0gs + 2 u1gs
g3 = BSY + 2vogs + 2%u1 g5
91 = B + 2vngs
g5 = B + zuog
Similarly, we can set up the following system for P = W B5.
g1 = BP + 20092 + 220194 + 210195 4+ T usgs + 110295 + T U39
g2 = BY) + avogs + 2%v1gs + atuzgs
g3 = B + avogs + 2?vogs + 2Purgs
g1 = BY + 2vog5 + 2*u1 g
g5 = BY + wuogs
g6 = By + zvg;

Similar to the case for P = BW* we can see that the equations for gs, . . ., g5 for W B*
are the same as those for gs, ..., gs for WB®. However, there is a minor difference
between the equation for g; for WB* and that for g, for W B®. This is because C;
has three playable parts, so besides the main branch after playing R; and R,, we
also have the extra branch after playing Rs. This extra branch, however, does not
show up in longer necklaces, so the equations are different. To take into account this
minor difference, we have a slightly different definition.

Definition 5.7. For k£ > 2, let h; be the polynomial such that when using substitu-
tion to solve the system of equation for W B**! one has

g2 = B+ hxgi
for some polynomial B.

Note that we have to define h; using the tree T, of WB™! to account for the
minor difference above. We also have two results analogous to Proposition 5.3 and
Corollary 5.4.

Proposition 5.8. If for P = W B* we have
Gge = Bék) + Zajiaigf-‘ri

i>0
where £ > 1 and a; is some coefficient (in this case a; is either vj or u; for some 7),
then for P = BW*+™ we have

k+m i
Go+m = Béﬁn St Z T Qi Ge+m+i-
i>0

Here the indices of g are taken mod |P|.
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Corollary 5.9. If for P = BW*! we have
g2 = B® + hyg
for some polynomial B®), then for P = BW* ™1 we have
gmi1 = B&™ 4 hygy
for some polynomial B*+m).

Moreover, we also have an analogous recurrence.

Proposition 5.10. The coefficients h,, in Definition 5.7 satisfy the following recur-
rence

n—4 .
2o xmﬂvihn,(giﬂ)) - :E"“vg if n is even,
hn =B+ n—3 %41 1 (7)
( PR Uihn_(2i+1)> + gt Un_1 if n is odd.

for some polynomial B.

Proof. Once again, this proposition is best illustrated by a figure. Figure 20 shows
the main branch of 7¢, for both cases. Note that in both cases, we have

gn:1+xgn+1:1+l'+l'291

and since v; + u;11 = v;11, we have

-1 1
z" U”T*QQTL + xnu%gn-i-l =C+a"" vz g1

when 7 is even, and

2" s gy + 2" Un1 Gpp1 = C 4+ 2" w1 gy
2 2 2

when n is odd for some polynomial C'. This gives equation (7). O
Corollary 5.11. For all n, h, has degree n + 1.
Proof. This is immediate from equation (7), knowing that v; has degree 0 for all 7. [J

Before wrapping up this subsection, let us give the relationship between the
coefficients h,, and the denominators of Hyy pn(x).

Proposition 5.12. Forn > 4, define p,(x) by the condition that when using substi-
tution to solve the system of equations for W B™, one has

g1 = A+ pagi

for some polynomial A. Thus, Hypg» can be written as a generating function over
pn — 1. Then,
Pn = xilhn%»l - xQUIhn72-
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Cl C]
(1,1,1,...,1,2,0,1,1,1,...) (1,1,1,...,1,2,0,1,1,1,...)
n—1 n—1
. (ZT,T,L.3..,1,2,0,1,1,1,...) (ZIT,L;.,1,2,0,1,1,1,...) o
n—=3 n—3

3 <?7?7T7T717---7112707171717"'> (§7§7T7T717"'*172707171711"') 3
duigs SRR SRR duigs
n—>5 n—>5
20904 : ; R
2,2,...,2,1,1,1,2,0,1,1,1,..) (2,2,...,2,1,1,2,0,1,1,1,...)
= =
B 2,2,...,2,1,2,0,1,1,1,. .. 2,2,...,2,2,0,1,1,1,... .

x" 31)&5;1971,72 <—’—¥ - ' ) <—’—% ) ) z" Z/U'%égn,fl
"W ag, (2,2,...,2,3,0,1,1,1,...) (2,2,...,2,40,1,1,1,...) "W ag,
znu%grwrl xnuiglg"Jrl
n even n odd

Figure 20: Main branch of 7¢, when n is even (left) and odd (right)

Proof. Note that p,, satisfies
91 = B+ pnn

for some polynomial B when solving the system of equations for WB™. Let us
compute p,. The main branch of C contributes h; to p,. As for the extra branch,
observe that the elements of this branch has the form (1,2,2,...). If we replace the
first part 1 by 2, we get the elements in the main branch of C; in W B"*!. Note that
this replacement does not change the weight since it does not change the pre-fuses
and fuses. Thus, the elements in the extra branch of C'; in W B™ are those in the main
branch of C} in W B"*!, with a few top elements missing, namely zvog, and z3v, g4
(both in W B™*1). Thus, the extra branch contributes = (h,1 — zvoh, — 23v1h,_s),
where the coefficient 7! is needed to shift the exponents. Since vy = 1, we have

Pn = hy + 27 (M1 — 20ohy, — 23010y —0) = 27 hyp — 201 Ry
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Corollary 5.13. For all n, p, has degree n + 1.

Proof. This is immediate from the equation
Pr = "oy — 201 R o
because h,,1 has degree n + 2 and h,,_, has degree n — 1 (by Corollary 5.11). O

By Corollary 5.13, for all n, Hy g~ can be written as a generating function over
pn — 1, which is a polynomial of degree n + 1.

5.3 Proof of Theorem 1.3

Now we are ready to prove Theorem 1.3.

Theorem 1.3. For all k > 1, the functions Hgyr(x) and Hy gr(x) can both be
written over the same denominator which is a polynomaial of degree k + 1.

Proof. By Corollary 5.6, Hpy« can be written as a generating function over f — 1,
which is a polynomial of degree k£ + 1. By Corollary 5.13, Hy, gr can be written as a
generating function over py — 1, which is also a polynomial of degree k + 1. Hence,
it suffices to prove that f, = p, for all k.

For the base cases, when k£ = 1, BW and WB are the same necklace, so Hgy =
Hwp. For k =2, Pham in [5] (and Theorem 1.2) showed that Hpww = Hwpp. For
k = 3, the example at the beginning of this section showed that Hgwyww and Hygepp
can both be written as a generating function over 6z* + 42® + 22 — 1, which is a
polynomial of degree 4. In particular, p, = fi for £ < 3. Thus, it suffices to prove
that py satisfies equation (6) for k > 4.

e Case 1: k is even. We need to check

k+11}@.
2

k—4

7
Dk = Z xmﬂvipk—(%ﬂ) + $k72@%p2 +z

=0
Substituting p; = 27 h;1 — 2?0 hi_s for i > 4, this is equivalent to

k=6
2

r  hpr — BPvrhg_s = Z "y, (ﬂflhkdi - $2U1hk72173)

1=0

k+11)

+ 2" Bvkaps + 2 Pveapy + k.
2 2 2

From equation (7), we have

k—6
2

hk;—i-l = E xQZHvihk_gi + xk_%%lu + xk_lv% hg + xk+2v
=0

k
2



A.J. HARRIS AND S. NGUYEN / AUSTRALAS. J. COMBIN. 93 (2) (2025), 224-273

and
k—6

2
hk_g = E $2Z+1Uihk_2i_3 + Ik—lv%.
i=0

Thus, it suffices to check

k

x ! (a:k’?’vﬂm + 2" Ys by + 2820 ) — 2%y - 2 s
2 2

SIS

= 2" Pviaps + 3" Pviapy + 2o
2 2

[NIES

264

Fortunately, this can be checked by direct computation. We have hy = z°(2v; +

v9), ho = 2301, p3 = 2 (v1 + v9), and py = z%v;. Hence,

LHS = z7! <£Bk—3vﬂ$5<2’l)1 + vg) 4+ ¥ tws—a v, + $k+2vg> — 2% -z
2 2 2

= 2" i (201 4 vg) + 2" vs—2 vy + 2Pk — 2P s a0,
2 2 2 2

= ZEkHUﬂ(Ul +vg) + xk-’_lvﬂvl + $k+1w,
2 2 2

and

RHS = 2" 3vi_az?(v) + vo) + 2" 2vi—a vy + 25
2 2

NI

= 2" wsa (v + vg) + 2" sy + 2P
2 2

[NIES

Case 2: k is odd. We need to check

k-3

2
_ 2141 k+1
Dk = 596 ViDk—(2i41) | T 27 Uk
i=0

Substituting p; = 27 h;1 — x%v1hi_s for i > 4, this is equivalent to
k=5
2 .
g1 — 2P0rhg_o = Z * (-f_lhk—zi - 372'01hk—2i—3)

1=0

+ 2" 20kspy + 2 0k
2 2

From equation (7), we have

k=5

2
hgy1 = E x2HJthk,2¢ +-$k7205%§h3‘+'$k+20E%;
=0

and
k—5

5
hy—o = E ¥ kg9 g | + 2" ks,

2
1=0

k—

1

VE—2
2
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Thus, it suffices to check

x ! (mk’%@ hs + xk+2v@> — 220y - ¥ s
2 2 2

= xkfzv@pz + X" Ukt
2 2
Again, by manual computation, we have hs = 2z*v; and py = z3v,. Hence,

LHS = 225 wis vy + 2" M orn — 28 sy
2 2 2

k+1 k+1

=z k=3 (e v%
= RHS.
Therefore, pj, satisfies equation (6), so the proof is complete. n

6 Discussion

As mentioned in the introduction, Theorem 1.3 is a special case of Conjecture 1.1
on the duality operation for primitive necklaces P s P*, since the dual of BW* is
B*W = WB*. Theorem 1.2 is also a special case of this conjecture, but the two
families B(W B)* and W (BW)* also have a stronger property that Hpawpy(z) and
Hygwy(x) are the same. We hope that our new representation and the combina-
torial interpretation of k-fuses may lead to a proof of the conjecture. Furthermore,
our proof of Theorem 1.3 is computationally heavy and is not combinatorial, so a
new combinatorial proof of Theorem 1.3 may shed light on a proof of the general
conjecture.

In her thesis [4], Pham proposed another nice conjecture about the size of the
finite Bulgarian solitaire orbits Opr for primitive necklaces P.

Conjecture 6.1. For any primitive necklace P with |P| > 3, there is an integer cp
such that for all k,
|Opk| = CI;D_1|OP|.

If such cp exists, then there is an even more beautiful conjecture.
Conjecture 6.2. For any primitive necklace P such that cp and cp« both exist,
Cp = Cpsx.
A special case of Conjecture 6.1 and 6.2 was proved by Pham in her thesis.
Theorem 6.3. For all k,

and
|O(BBW)’“| - 7 . 5k_1.

Thus,
CBWW = CBBW = 9.
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It is also an interesting question to find a combinatorial interpretation of these
cp. In addition, the relationship between cp and the denominator of Hp is not clear.
For example, BWBWBWB and BWBBWWW are not the dual of each other, and

cewewaws = 63 # cpweswww = 94, yet our data shows that

Hewewews(r) = Hpweswww(x)

¥ + 8% + 4227 — 1925 — 632° — 562 — 3423 — 1822 — 102 — 7

=(1—2x) .
1827 + 1625 + 62° + 24 — 1

The converse appears to be more probable. The smallest and only interesting ex-

ample that we could compute is WWWBBWWB and WWWBBWBB. They are not
the dual of each other, but our data shows that

CWWWBBWWB = CWWWBBWBB = 135,

and indeed H ywwweswwa(x) and Hywwepwss(x) have the same denominator. Thus,
we make the following conjecture.

Conjecture 6.4. For any two primitive necklaces P, and Ps, if cp, = cp, then
Hp, () and Hp,(x) have the same denominator.

More data about cp and Hp can be found in the Appendix below.

Acknowledgments

We would like to offer our sincerest thanks to Nhung Pham for sparking our interest
in the Bulgarian Solitaire Problem, as well as to Vic Reiner for providing us with his
expert guidance throughout this project. We would also like to thank Elise Catania
and Connor McCausland for their help with editing and proofreading. We thank
Darij Grinberg for his helpful comments.



A.J. HARRIS AND S. NGUYEN / AUSTRALAS. J. COMBIN. 93 (2) (2025), 224-273

Appendix: Data

Data on the conjectural ratios cp

267

These tables show the conjectural c¢p and |Opx| for primitive necklaces of size up

to 8.

P cp |Opr| | Verified for
BWWW | 15 | 15 - 15%1 E<6
BBBW | 15 | 30 - 15%! k<6

| BBWW |10 [15-10"'] k<6 |

Table 1: |Opx| and cp for primitive necklaces of size 4

p cp |Opk| Verified for
BWWWW | 44 | 56 - 44%1 k<4
BBBBW | 44 | 135 - 44%! k<4

BBWWW | 27 | 45271 k<4
BBBWW | 27 | 67271 k<4
BWBWB | 17 | 34- 171! E<5
WBWBW | 17 | 32171 E<5

Table 2: |Opr| and cp for primitive necklaces of size 5

P cp |Opr| Verified for
BWWWWW | 164 | 231 - 164*~1 k<3
BBBBBW | 164 | 627 - 16451 k<3
BBWWWW | 96 | 185-96F1 k<3
BBBBWW | 96 | 322-96F1 k<3

| BBBWWW | 80 | 214-80"' | k<3 |

BWBWWW | 53 | 87-53"! k<4
BBBWBW | 53 | 133-53"! k<4
| WWBWBB | 38 | 80-38"! | k<4 |
| BBWBWW | 30 | 65-30"" | k<4 |

Table 3: |Opx| and cp for primitive necklaces of size 6
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P cp |Opr| Verified for
BWWWWWW | 578 | 1002 - 578%1 k<2
BBBBBBW | 578 | 3010 - 578"} k<2

BBWWWWW | 351 | 811-351F1 k<2
BBBBBWW | 351 | 1637 - 351F1 E<2
BBBWWWW [290 [ 777 -290%1 k<2
BBBBWWW | 290 | 1114 - 290F 1 k<2
BWBWWWW | 152 | 294 - 152k-1 k<3
BBBBWBW | 152 | 544 - 1521 k<3

BWBBWWW | 94 | 336941 E<3
BBBWWBW | 94 | 286-94%1 E<3
BBWBWWW | 81 189 - 81+~1 E<3
BBBWBWW | 81 255 - 8151 E<3
BWWBWWW | 75 150 - 75%1 k<3
BBBWBBW | 75 | 255751 E<3
WBWBWBW | 63 148 - 631 E<3
BWBWBWDB | 63 158 - 6351 k<3
BBWWBWW | 50 125 - 50%1 k<4
BBWBBWW | 50 145 - 50*1 E<4

Table 4: |Opx| and cp for primitive necklaces of size 7
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P cp |Opr| Verified for

BWWWWWWW | 2313 | 4565 - 2313"! k<2
BBBBBBBW | 2313 | 14883-2313" ' | k<2
BBWWWWWW | 1426 | 3727 - 1426" ! k<2
BBBBBBWW | 1426 | 8463 - 1426" " k<2
BBBWWWWW | 1185 [ 3880 - 11851 k<2
BBBBBWWW [ 1185 | 5972 -1185""! k<2

| BBBBWWWW | 956 | 4420-956* ' | k<2 |
BWBWWWWW | 562 | 115256251 k<2
BBBBBWBW | 562 | 2414 -562""" k<2

| WWWBWBBB | 436 | 1076-436"' | k<2 |
BBWBWWWW | 288 | 747 -288F"! k<2
BBBBWBWW | 288 | 1158-288"! k<2
BWBBWWWW | 273 | 815-273F! k<2
BBBBWWBW | 273 | 1082-273"! k<2

| BBBWBWWW [ 240 | 802-240"' | k<2 |
BWWBWWWW | 220 | 500 - 220" k<2
BBBBWBBW | 220 | 983-220F! k<2
BWBWBWWW | 197 | 420- 197! k<3
BBBWBWBW | 197 | 593 -197"1 k<3
WWWBWWBB | 150 | 375 150! k<3
WWBBWBBB | 150 | 525-150%" k<3
WWWBBWBB | 135 | 414-135""! k<3
WWBWWBBB | 135 | 470 - 135! k<3
WWWBBWWB | 135 | 360-135"! k<3
WBBWWBBB | 135 | 524-135F! k<3

| BBWBWWBW | 114 | 316-114"' | k<3 |

| BBWBWBWW [ 110 [ 295-110"" | k<3 |

| WWBWBWBB | 97 | 309-97"' | k<3 |
BWBWWBWW | 85 245 - 851 k<3
BBWBBWBW | 85 289 - 851 k<3

Table 5: |Opx| and cp for primitive necklaces of size 8



A.J. HARRIS AND S. NGUYEN / AUSTRALAS. J. COMBIN. 93 (2) (2025), 224-273

Data on the generating functions Hp(z) = elim Dpe(x)
—00

Here are Hp(z), Hp+(x) for some primitive necklaces P and their duals P*.

a3 —3x2 —4x — 3
203 + 22 — 1

HBWW = (1—.%)

= Hppw

270

x® + 8x* — 323 — 822 — 62 — 4
6zt + 423 + 22— 1

Hpwww = (1 —x)

2x° + 8x* — 53 — 1022 — T — 4
6z + 423 + 22 —1

Hpppw = (1 —x)

2+ 4t — 323 — 622 — 62— 4
3t + 283+ 22 -1

Hppww = (1 — z)

220 4+ 1625 — 1224 — 2322 — 1622 — 8x — 5
1229 + 8x4 + 243 — 1

Hpwwww = (1 —x)

425 + 162° — 162* — 2823 — 1922 — 92 — 5
1225 + 8x4 + 223 — 1

Hppppw = (1 —x)

320 4+ 1425 — 102* — 1922 — 1522 — 8z — 5
925 4+ 624 4+ 223 — 1

Hppwww = (1 — )

320 4+ 1025 — 1524 — 2422 — 1822 — 92 — 5
925 + 624 + 223 — 1

Hpppww = (1 — )

28+ 825 — 9zt — 1623 — 1222 — Tz — 5
625 +4xt + 23 —1

Hpwpwp = (1 —x)

= HwpwsBw
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628 + 3127 + 692% — 162° — 57a* — 4623 — 2422 — 112 — 6
2728 + 202 + Tat + 23 — 1

Hpgpwww = (1 — x)

228 4+ 1327 + 5125 — 102° — 492* — 4022 — 2122 — 102 — 6
2428 + 202° + Tzt + 23 -1

Hpwwwww = (1 —x)

428 + 1827 + 5226 — 182° — 61a* — 4923 — 2522 — 11z — 6
2428 + 202° + Tt + 23 — 1

Hppppew = (1 — z)

328 + 1327 + 3926 — 172° — 432* — 3523 — 2022 — 102 — 6
1826 4+ 1325 + 524 + 23 — 1

Hepwwww = (1 — z)

628 + 2027 + 4025 — 212° — 512 — 4323 — 2422 — 112z — 6
1826 4+ 1325 + 5z + 23 — 1

Hppppww = (1 — )

a8+ 8x7 + 4225 — 25 — 3524 — 3223 — 1822 — 92 — 6
1826 + 1625 4+ 624 + 23 — 1

Hpwswww = (1 —x)

228 + 1227 + 4325 — 7245 — 432* — 3823 — 2122 — 102 — 6
1828 + 1625 + 62t + 23 — 1

Hpppwaw = (1 — x)

227 4+ 1225 — 32° — 202* — 2323 — 1622 — 92— 6
628 + 7Ta® + 4t + 23 — 1

Hppweww = (1 — x)

27+ 825 — 1525 — 262% — 2122 — 1322 — 8x — 6
628 + 425+ 24 —1

Hwwswsp = (1 — x)
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628 + 402" — 925 — 672° — 69x* — 4223 — 2122 — 11z — 7
1827 4+ 2126 + 1025 + 224 — 1

Hppwewww = (1 — )

628 + 3227 — 2325 — 792° — 762t — 4723 — 2422 — 120 — 7
1827 + 2126 4+ 1025 + 224 — 1

Hpppweww = (1 — )

29 + 828 + 4227 — 1928 — 6325 — 562 — 342% — 1822 — 10 — 7
1827 + 1628 + 625 + 24 — 1

Hpwewpwp = (1 — z)

= HwpwBwBw

29 + 828 + 4227 — 1925 — 632° — 562* — 3423 — 1822 — 10z — 7
1827 + 1626 +62° + 24 — 1

Hpwepwww = (1 — )

229 + 1228 + 4327 — 2526 — 772® — 702t — 4323 — 2222 — 11z — 7
1827 + 1628 4+ 625 + 24 — 1

Hpppwwsw = (1 — z)

228 + 1227 — 926 — 3325 — 382% — 2822 — 1722 — 102 — 7
627 4+ 7ab + 425 + 24— 1

Hppwwsww = (1 — )

228 + 1227 — 925 — 322° — 362* — 2623 — 1622 — 102 — 7
627 4+ 7ab +4a° + 24— 1

Hppweeww = (1 — )

228 + 2327 — 1220 — 542° — 532 — 3323 — 1822 — 102 — 7
1227 4+ 1425 + 62° + 24 — 1

Hpwwewww = (1 — )

428 + 2427 — 1625 — 602° — 572* — 3623 — 2022 — 11lx — 7
1227 4+ 1425 + 62° + 24 — 1

Hppeweew = (1 — )
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