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Abstract

Bulgarian Solitaire is an interesting self-map on the set of integer parti-
tions of a fixed number n. As a finite dynamical system, its long-term
behavior is well-understood, having cycles parametrized by necklaces of
beads with two colors, black B and white W . However, the behavior of
the transient elements within each orbit is much less understood. Recent
work of Pham considered the orbits corresponding to a family of neck-
laces P ` that are concatenations of ` copies of a fixed primitive necklace
P . She proved a striking limiting behavior as ` goes to infinity: the level
statistic for the orbit, counting how many steps it takes a partition to
reach the cycle, has a limiting distribution, whose generating function
HP (x) is rational. Pham also conjectured that HP (x) and HP ∗(x) have
the same denominator whenever P ∗ is obtained from P by reading it
backwards and swapping B and W .

Here we introduce a new representation of Bulgarian Solitaire that is
convenient for the study of these generating functions. We then use it to
prove two instances of Pham’s conjecture, showing that

HBWBWB···WB(x) = HWBWBW···BW(x)

and that HBWWW···W(x), HBBB···BW(x) share the same denominator.

1 Introduction

The game of Bulgarian Solitaire (BS) was introduced sometime in the late 20th
century, and popularized by Martin Gardner in 1983. The game itself is very simple.
A player starts with n cards divided into a number of piles in weakly descending
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order. Now keep repeating the Bulgarian Solitaire move β defined as follows: take
one card from each pile, form a new pile and put the piles in weakly descending
order. The game ends when a configuration of cards is repeated.

Observe that the order of the piles does not matter. Thus, we can sort the piles in
weakly descending order. Hence, the game can naturally be represented by partitions
and Young diagrams, where in each move, we remove the first column and reinsert
it as a new row as shown in Figure 1.

(7, 4, 4, 3, 1) (6, 5, 3, 3, 2)

β

Figure 1: Bulgarian Solitaire move

The BS move β forms a dynamical system on the set X of all partitions. In
this system, there exist partitions λ such that λ = βm(λ) for some m > 0. We call
such partitions the cycle elements. For such partitions λ, let m > 0 be the smallest
number such that λ = βm(λ). Then, the elements {λ, β(λ), . . . , βm−1(λ)} form a
cycle C. Note that a BS system may have more than one cycle. For example, Figure
2 shows an example of the Bulgarian Solitaire moves on partitions of 8 in which the
directed edges connect λ to β(λ). As can be seen in the example, we have two cycles
{(3, 2, 2, 1), (4, 2, 1, 1), (4, 3, 1), (3, 3, 2)} and {(3, 3, 1, 1), (4, 2, 2)}.

For a partition µ that is not a cycle element, there exists m > 0 such that βm(µ)
is a cycle element. Let C be the cycle that contains βm(µ), then we say that µ is
in the orbit of C. In other words, we can think of C as a basin of attraction, and
every element in the orbit of C will be mapped into the basin after finitely many
applications of β.

A detailed study of the cycles can be found in [1]. In particular, suppose
(
m
2

)
≤

n <
(
m+1

2

)
, Brandt showed that the number of cycles equals the number of circular

words of length m with n−
(
m
2

)
letters m and

(
m+1

2

)
−n letters m−1. Drensky later

reinterpreted these circular words as (black-white) necklaces and gave a bijection
between the set of cycles C and the set of necklaces([2, Theorem 2]). A necklace
N is an equivalence class of sequences of letters {B,W} under cyclic rotation. The
bijection from the set of necklaces of length m with n −

(
m
2

)
B’s to the set of cycle

elements in the BS system with n cards is defined by

(b1, b2, . . . , bm)→ (m− 1 + s1,m− 2 + s2, . . . , sm)

where

si =

{
1 if bi = B

0 if bi = W
.
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(2, 2, 2, 2)

(4, 1, 1, 1, 1)

(2, 2, 1, 1, 1, 1)

(6, 1, 1)

(5, 3)

(4, 2, 2)

(3, 3, 1, 1)

(2, 2, 2, 1, 1)

(5, 1, 1, 1)

(4, 4)

(3, 3, 2)

(3, 2, 2, 1)

(3, 2, 1, 1, 1) (6, 2)

(5, 2, 1)

(4, 3, 1)

(4, 2, 1, 1)

(3, 1, 1, 1, 1, 1) (7, 1)

(2, 1, 1, 1, 1, 1, 1) (8)

(1, 1, 1, 1, 1, 1, 1, 1)

Figure 2: Example for n = 8

(3, 3, 1, 1)(4, 2, 2)

(4, 3, 1) (3, 3, 2) (3, 2, 2, 1) (4, 2, 1, 1)

Figure 3: Necklaces and cycle elements

Figure 3 gives a visualization of the bijection from necklaces of length 4 with 2
B’s to the cycle elements of the system for n = 8.

For each necklaceN , let CN be the set of cycle elements corresponding to necklaces
in the equivalence class N , and let the orbit ON of CN be the set

{λ | βk(λ) ∈ CN for some k ≥ 0}.
For each element λ in ON , let

level(λ) = min{k : βk(λ) ∈ CN}
and define the level size generating function of N to be

DN(x) =
∑

λ∈ON

xlevel(λ).
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We call P a primitive necklace if it cannot be written as a concatenation P =
N ` = NN . . .N with ` ≥ 2. For example, BBWW is a primitive necklace while
BWBW = (BW )2 is not. Our main results concern the limit of the generating
function of P ` as `→∞ for primitive necklaces P , that is

HP (x) = lim
`→∞
DP `(x).

Eriksson and Jonsson proved in [3, Section 4] that such a limit exists when P = W ,
and

HW (x) =
(1− x)2

1− 3x+ x2
.

Pham then proved in [5, Theorem 1.1, 1.2] that for all primitive necklaces P with
|P | ≥ 2, such a limit HP (x) exists. Furthermore, for |P | ≥ 3, HP (x) is a rational
function having denominator polynomial of degree at most |P | and numerator degree
at most 2|P |. For example, she showed that

HBW(x) =
(1− x)2(3x+ 2)

x3 − 3x2 − x+ 1

and

HBWB(x) = HWBW(x) =
(1− x)(x3 − 3x2 − 4x− 3)

2x3 + x2 − 1
.

Further computations led Pham to an interesting conjecture in her thesis [4]. For a
primitive necklace P , the dual necklace P ∗ is constructed as follows: first reverse the
order of the letters in P , then replace all letters B by W and vice versa. She made
the following conjecture.

Conjecture 1.1. For all primitive necklaces P , the rational functions HP (x) and
HP ∗(x) can be written with the same denominator of degree |P | = |P ∗|.

In this paper, we introduce a new representation of Bulgarian Solitaire and then
use it to prove the following special cases of Conjecture 1.1.

Theorem 1.2. For k ≥ 1, one has HB(WB)k(x) = HW(BW )k(x) .

Theorem 1.3. For k ≥ 1, the functions HBWk(x) and HWBk(x) can both be written
over the same denominator which is a polynomial of degree k + 1.

The paper is outlined as follows. In Section 2, we review some basic definitions
and introduce our new representation. In Section 3, we introduce fuses and pre-fuses,
which will be important to our proof. Finally, we prove Theorem 1.2 in Section 4
and Theorem 1.3 in Section 5.

2 Set up

2.1 Reversed Bulgarian Solitaire

It is actually more convenient to study the reversed Bulgarian Solitaire move rather
than the (forward) Bulgarian Solitaire move. We give two analogous definitions of
the reversed BS move below.



A.J. HARRIS AND S. NGUYEN/AUSTRALAS. J. COMBIN. 93 (2) (2025), 224–273 228

Definition 2.1 (Reversed Bulgarian Solitaire move). For an element λ, a reversed
Bulgarian Solitaire move Rj maps λ to Rj(λ) as follows

• For Young diagrams: take out the jth row and insert it as the leftmost column.

• For a partition: take out the jth part and distribute it into the other parts, one
for each. Note that if λj > `(λ)− 1, then each of the remaining cards forms a
pile of size one.

For our move to make sense, the jth part needs to be as least `(λ) − 1. Thus,
the reversed BS moves are only defined for such parts. If Rj is defined, we say
the jth part is playable. Figure 4 shows an example of λ = (5, 3, 3, 2), R1(λ) and
R3(λ). Note that in the example, R2(λ) is also defined; however, since λ2 = λ3,
R2(λ) and R3(λ) are the same. In general, for our convenience in later sections, if
λi = λi+1 = . . . = λj, then Ri, Ri+1, . . . , Rj gives the same result, and hence it is
sufficient to only play Rj(λ). Finally, in the example, R4(λ) is not defined since
λ4 = 2 < 3 = `(λ)− 1.

Figure 4: Reversed BS moves

2.2 New representation

Now we define our new representation of Bulgarian Solitaire.

Definition 2.2. Given a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λ`), we will instead view it
as an infinite sequence λ = (λ1, λ2, . . . , λ`, 0, 0, . . .) of nonnegative integers that are
eventually zero. For a partition λ, define µλ = (µ1, µ2, . . .) by

µi = λi − λi+1.

In addition, if the jth part of λ is playable and µj 6= 0, we put a bar above µj. Note
that µ is also an infinite sequence of nonnegative integers that are eventually zero.
Call this set of sequences BSfin.

For example, for λ = (5, 3, 3, 2, 0, 0, . . .) (as in Figure 4), we have µλ = (2, 0, 1, 2, 0, 0, . . .).
When the context is clear, we may omit the subscript λ. Observe that we can easily
recover λ from µλ by the following formula:

λi =
∞∑

k=i

µk.
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It is also not difficult to determine which part of µ is playable.

Lemma 2.3. Consider a sequence µ ∈ BSfin, and let ` be the largest index such that
µ` > 0. There is a bar above µi if and only if µi 6= 0 and

∑`
k=i µk ≥ `− 1.

Proof. This follows directly from the fact that the jth part of a partition λ is playable
if and only if its size is at least `(λ)− 1.

From now on, we will refer to partitions λ by their new representation µ := µλ
instead of the standard partition representation. Furthermore, when we refer to an
element µ in BSfin, we assume that the bars in µ satisfy the conditions in Lemma
2.3.

The following lemma shows how this new representation behaves under the re-
versed BS moves. Unlike the standard partition representation, where each BS move
Rj changes every part of the partition, in the new representation, one only need to
zooms into the vicinity of µj.

Lemma 2.4. For any λ such that the jth part of λ is playable, let λ′ = Rj(λ), µ = µλ
and µ′ = µλ′. Then the parts µ′i, for i ≥ 1, are determined by the parts of µ in two
steps: 1) construct µ′i by

µ′i =





µi if i < j − 1

µj−1 + µj if i = j − 1

µi+1 if i ≥ j,

then 2) add 1 to µ′λj .
The bars on the parts of µ′ are determined as follows. For i ≤ j − 1, put a bar

above µ′i if µ′i 6= 0. For i ≥ j, put a bar above µ′i if µ′i 6= 0 and
∑i

k=j µk < 3.

When the context is clear, we will denote µ′ = Rj(µ).

Proof. We distribute 1 to each part, so the difference between 2 consecutive parts
stay the same except between λ′j−1 and λ′j. Since λ′j = λj+1 + 1, we have λ′j−1−λ′j =
λj−1− λj+1 = µj−1 +µj. However, observe that we add 1 to the λj-th part but none
to the (λj + 1)-st part, so the difference is increased by 1. Finally, to determine the
bars, observe that λj is the length of λ′. Thus, for the ith part of λ′ to be playable,
λ′i ≥ λj − 1, which means λi ≥ λj − 2. This is obviously true for i < j, and is
equivalent to the condition

∑i
k=j µi < 3 for i ≥ j.

For example, in Figure 4, µ = (2, 0, 1, 2, 0, 0, . . .), so R1(µ) = (0, 1, 2, 0, 1, 0, 0, . . .)
and R3(µ) = (2, 1, 3, 0, 0, . . .).

2.3 The system in the limit

Let us now shift to our main concern of the paper, the limiting version of the Bul-
garian Solitaire system. We will start with an example with the primitive necklace
P = BWW and its powers P 1, P 2, P 3, . . ..
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C
(1)
1

(1, 0, 1)

R1

C
(1)
2

(0, 2)

R2

C
(1)
3

(2, 1)

R1

R2

(4)

R1

(0, 0, 0, 1)

Figure 5: Digraph O(BWW )1

Figures 5, 6, and 7 show the digraphs for reverse BS orbits O(BWW )1 , O(BWW )2 ,
O(BWW )3 , respectively. Observe that their sets of cycle elements, or cycle sets for
short,

{C(1)
1 , C

(1)
2 , C

(1)
3 } ↔ {WWB, WBW, BWW},

{C(2)
1 , C

(2)
2 , C

(2)
3 } ↔ {WWBWWB, WBWWBW, BWWBWW}

{C(3)
1 , C

(3)
2 , C

(3)
3 } ↔ {WWBWWBWWB, WBWWBWWBW, BWWBWWBWW}

...

are in bijection to the words within a cyclic equivalence class of necklaces of the form
P ` for ` = 1, 2, 3. Note that these bijections appear to extend to natural inclusions
of digraphs

O(BWW )1 ↪→ O(BWW )2 ↪→ O(BWW )3 ↪→ · · · .
Furthermore, the first three levels of O(BWW )2 and O(BWW )3 are isomorphic.

Indeed, Pham [5] showed that for any m, one can find L(m) large enough such
that the first m levels of O(BWW )` are isomorphic for all ` > L(m). In other
words, O(BWW )` converges to a digraph O(BWW )∞ = lim`→∞O(BWW )` . The cycle



A.J. HARRIS AND S. NGUYEN/AUSTRALAS. J. COMBIN. 93 (2) (2025), 224–273 231

C
(2)
1

(1, 0, 2, 1, 0, 1)

R1

C
(2)
2

(0, 2, 1, 0, 2)

R2

C
(2)
3

(2, 1, 0, 2, 1)

R1

R2

(3, 0, 2, 2)

R1 R3

(0, 2, 2, 0, 0, 0, 1)

(3, 2, 2, 1)

R1 R2 R3

. . . . . . . . .

Figure 6: Part of the digraph O(BWW )2

set of O(BWW )∞ is {C1, C2, C3} = {(WWB)∞, (WBW )∞, (BWW )∞}. Observe that
C1 = (WWB)∞, C2 = (WBW )∞, and C3 = (BWW )∞ are infinite sequences with
period 3.

Pham generalized this idea to every primitive necklace P of length |P | = n.
She showed in [5] that for the game digraphs OP ` , the bijections of their cycle sets

{C(`)
1 , C

(`)
2 , . . . , C

(`)
n } extend to digraph inclusions

OP ↪→ OP 2 ↪→ OP 3 ↪→ · · ·
which converge to a digraph OP∞ , with cycle set {C1, C2, . . . , Cn}. Each Ci in the
cycle set is an infinite sequence with period n.

Furthermore, one can write out the Ci’s in the cycle set {C1, C2, . . . , Cn} in terms
of the new representation as follows. Let (b1, b2, . . . , bn) be a word in the cyclic
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C
(3)
1

(1, 0, 2, 1, 0, 2, 1, 0, 1)
R1

C
(3)
2

(0, 2, 1, 0, 2, 1, 0, 2)
R2

C
(3)
3

(2, 1, 0, 2, 1, 0, 2, 1)

R1

R2

(3, 0, 2, 1, 0, 2, 2)

R1 R3

(0, 2, 1, 0, 2, 2, 0, 0, 0, 1) (3, 2, 1, 0, 2, 2, 1)

R1 R2 R3

. . . . . . . . .

Figure 7: Part of the digraph O(BWW )3

equivalence class of the necklace P (where |P | = n), then the corresponding Ci in
the cycle set of OP∞ is (µ1, µ2, . . .) where

µj =





2 if bjbj+1 = BW

1 if bjbj+1 = BB or WW

0 if bjbj+1 = WB

. (1)

Here the indices are taken mod n. One can easily deduce this formula by observing
that bjbj+1 = BW means that part j has two more boxes than part j+1 and similarly
for the other cases. It is also clear from the formula that this sequence has period n.
For example, the cycle set of O(BWW )∞ is

{(2, 1, 0, 2, 1, 0, . . .), (0, 2, 1, 0, 2, 1, . . .), (1, 0, 2, 1, 0, 2, . . .)}.

The following properties are straightforward from (1).

Lemma 2.5. Let µ be an element in the cycle set of OP∞ where |P | = n, then we
have

• µi ∈ {0, 1, 2} for all i ≥ 1; furthermore, the non-one entries alternate between
0’s and 2’s;

• µi = µi+n for all i ≥ 1; and

• µi + µi+1 + · · ·+ µi+n−1 = n for all i ≥ 1.

Proof. We get µi = µi+n for all i ≥ 1 from (1). Now, we prove that the 0’s and 2’s
alternate. A 2 only appears in the sequence if in the necklace we go from B to W .
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Then the next entries will all be 1 until we go back from W to B. When we go from
W to B, the corresponding entry is 0, so we cannot have two consecutive 2’s. The
same argument shows that we cannot have two consecutive 0’s. This also implies
the third condition. Since µi ∈ {0, 1, 2} for all i ≥ 1, and the 0’s and 2’s alternate,
among every n consecutive entries, there are as many 0’s as 2’s, so the sum is n
(since the remaining entries are all 1’s).

Definition 2.6. We call a (possibly finite) sequence of integers (a1, a2, . . .) a proper
tail of period n if it satisfies the conditions in Lemma 2.5 with period n. If the
sequence is finite, we only require the second and third conditions to be satisfied
when µi+n and µi+n−1 exists, respectively. However, we do require the 0’s and 2’s to
alternate when the sequence is read cyclically.

For example, the infinite sequence (2, 1, 0, 2, 1, 0, . . .) is a proper tail of period 3.
However, the sequence (2, 1, 0, 2) is not a proper tail because if we read the sequence
cyclically, we obtain the sequence (2, 1, 0, 2, 2, 1, 0, 2, . . .) in which the 0’s and 2’s do
not alternate. On the other hand, the finite sequence (2, 1, 0, 2, 1, 0) is a proper tail.

Lemma 2.7. The set of necklaces of length n bijects with the set of proper tails of
period n with length n.

Proof. The bijection is the map defined by (1). Clearly, the map is injective. Con-
structing the inverse is also simple. For a proper tail (a1, . . . , an), let i be the smallest
index such that ai = 2. We construct the necklace (b1, . . . , bn) by first setting bi = B
and bi+1 = W . Next, we iterate from j := i+ 1 to n; then, we iterate from j := 1 to
i− 1. In each iteration, if aj = 0 then set bj+1 = B, and if aj = 2 then set bj+1 = W .
If aj = 1 then set bj+1 = bj. Here the indices are taken mod n. The condition that
the 0’s and 2’s alternate when the sequence is read cyclically assures that we get the
correct inverse.

Therefore, from now, we can associate proper tails with necklaces.

Definition 2.8. Let a = (a1, a2, . . .) be a proper tail of period n. We say a is a
proper tail of P , where P is a primitive necklace of length n, if the bijection defined
by (1) maps (a1, . . . , an) to a necklace in the cyclic equivalence class of P .

Now, we characterize the sequences of nonnegative integers µ = (µ1, µ2, . . .) that
can occur in the limit of the Bulgarian digraphs OP∞ , along with the possible posi-
tions of bars µj indicating that a reversed BS move Rj in position j is applicable.

Definition 2.9. For a primitive necklace P with |P | = n, we define O′P to be the
set of all ν that can be constructed as follows.

1. Pick µ ∈ OP ` for some ` such that there is an index i satisfying

• (µi, µi+1, . . . , µi+n−1) is a proper tail of P , and

• none of the entries µi, µi+1, . . . , µi+n−1 are barred, i.e. none of the positions
i, i+ 1, . . . , i+ n− 1 are playable.
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2. ν is obtained from µ by replacing (µi+n, µi+n+1, . . .) with infinitely many copies
of (µi, µi+1, . . . , µi+n−1).

Proposition 2.10. For any primitive necklace P , the elements ν ∈ O′P are ex-
actly the limits ν = limj→∞ µ

(`+j), for some ` large enough, of convergent sequences
(µ(`+1), µ(`+2), . . .) with µ(`+j) ∈ OP `+j for all j. In other words, O′P = OP∞.

Proof. Let µ(`) ∈ OP ` for some `, and i is an index such that (µi, µi+1, . . . , µi+n−1)
is a proper tail of P , and none of the entries µi, µi+1, . . . , µi+n−1 are barred. Then
µ(`+j) can be obtained from µ(`) by adding j copies of (µi, µi+1, . . . , µi+n−1) between
µi+n−1 and µi+n. Furthermore, we claim that the bars of µ(`+j) are in the exact same
places as the bars in µ(`). This is because the bars in µ(`) can only possibly be on the
first i − 1 entries µ1, . . . , µi−1. By adding j copies of (µi, µi+1, . . . , µi+n−1) between
µi+n−1 and µi+n, in µ(`+j), there are nj more parts than in µ(`). In addition, since

µi + · · ·+ µi+n−1 = n, for any 1 ≤ k ≤ i− 1,
∑∞

r=k µ
(`+j)
r =

∑∞
r=k µ

(`)
r + nj. That is,

for any 1 ≤ k ≤ i − 1, the sum
∑∞

r=k µ
(`+j)
r is also exactly nj more than

∑∞
r=k µ

(`)
r .

Thus, the kth part (1 ≤ k ≤ i− 1) is playable in µ(`+j) if and only if it is playable in
µ(`).

From this, limj→∞ µ
(`+j) can be obtained from µ(`) by replacing (µi+n, µi+n+1, . . .)

with infinitely many copies of (µi, µi+1, . . . , µi+n−1). This gives the corresponding
element in O′P .

This allows us to define the limit version of the Bulgarian Solitaire system.

Definition 2.11. We define BS∞ to be the set of all elements obtained by the
construction in Definition 2.9 for all primitive necklaces P .

We can define the reversed BS moves on BS∞ similar to Lemma 2.4.

Lemma 2.12. If the jth part of µ is playable, i.e. there is a bar above µj, we define
µ′ := Rj(µ) as follows.

(1) If j = 1 then

µ′i = µi+1

(2) If j ≥ 2 then

µ′i =





µi if i < j − 1

µi−1 + µi if i = j − 1

µi+1 if i ≥ j

The bars on the parts of µ′ are determined as follows. For i ≤ j− 1, put a bar above
µ′i if µ′i 6= 0. For i ≥ j, put a bar above µ′i if µ′i 6= 0 and

∑i
k=j µk < 3.

Proof. This construction is consistent with the one in Lemma 2.4. The only difference
is that we exclude any case that includes λj. Recall that in Lemma 2.4, we need
these cases because when playing Rj, we add 1 to λj but none to λj+1. In BS∞, λj
is ∞, so this situation does not arise, and we can exclude these cases.
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From now on, unless stated otherwise, when we refer to “an element µ”, we mean
that µ is in BS∞. Finally, recall that we can write out the cycle elements in OP∞
(in BS∞). It is a bit trickier to decide which part is playable, i.e. where to put the
bars. One strategy is to play the first nonzero part of one element to see which part
of the next element is playable. For example, the cycle set of O(BWW )∞ is

{(2, 1, 0, 2, 1, 0, . . .), (0, 2, 1, 0, 2, 1, . . .), (1, 0, 2, 1, 0, 2, . . .)}.

To see where to put the bars, playing R1(2, 1, 0, 2, 1, 0, . . .), we have the next element
is (1, 0, 2, 1, 0, 2, . . .). Playing R1(1, 0, 2, 1, 0, 2, . . .), we get (0, 2, 1, 0, 2, 1, . . .). Finally,
playing R2(0, 2, 1, 0, 2, 1, . . .), which is the first playable part of (0, 2, 1, 0, 2, 1, . . .),
gives (2, 1, 0, 2, 1, 0, . . .). Thus, the cycle set of O(BWW )∞ , with the bars, is

{(2, 1, 0, 2, 1, 0, . . .), (0, 2, 1, 0, 2, 1, . . .), (1, 0, 2, 1, 0, 2, . . .)}.

One can check that these bars are consistent with the bars in the finite version in
Figures 5, 6, and 7.

2.4 Quasi-infinite forests FP
Now we introduce the quasi-infinite forest for certain directed graphs (digraphs),
such as the opposites of the functional digraphs for Bulgarian solitaire orbits. Recall
that a functional digraph for a function f : V → V on a set V has arcs v → f(v)
for each v in V . Functional digraphs are the same as digraphs in which every vertex
v has outdegree one; this allows self-loops and directed 2-cycles, but parallel arcs
would violate the outdegree one condition.

Definition 2.13. Let D = (V,A) be the opposite digraph of a functional digraph,
that is a digraph in which every vertex has in-degree one. Let C be the largest subset
of V such that the induced digraph D|C is a permutation. Let us call C the cycle
set of D.

Define the quasi-infinite forest FD to be the digraph in which the vertices are
directed paths p = (v0 → v1 → · · · → vi) in D such that v0 ∈ C, and there is an arc
p→ p′ in FD whenever p, p′ are related as follows:

p = (v0 → v1 → · · · → vi),

p′ = (v0 → v1 → · · · → vi → vi+1).
(2)

Figure 8 shows an example of a digraph D and the corresponding forest FD. The
cycle set C is {1, 2, 3}, and the induced digraph D|C is the permutation (12)(3) (in
cycle notation). It is easy to see that FD consists of |C| = 3 trees rooted at the
vertices in C. Note that, for example, the vertices in the tree rooted at 3 in Figure
8 correspond to the directed paths 3→ 3→ 3→ · · · → 3.

We wish to relate two generating functions, one for the digraph D and one for its
quasi-infinite forest FD. The level generating function for D is defined by

h(x) :=
∑

v∈V

xlevel(v)
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1 2 3

4

1 2

12

21

12

3

3

3

3

4

4

4

4 . . .. . .. . .

Figure 8: Digraph D (left) and the corresponding quasi-infinite forest FD (right)

where level(v) = min{k : fk(v) ∈ C} for the function f : V → V whose functional
digraph is opposite to D. Letting `(p) := i for p = (v0 → v1 → · · · → vi), the
path-length generating function for FD is defined by

g(x) :=
∑

p

x`(p).

Lemma 2.14. For any digraph D opposite to a functional digraph, one has

h(x) = (1− x)g(x).

Proof. It is equivalent to show that

g(x) = (1 + x+ x2 + x3 + · · · )h(x)

= h(x) + xh(x) + x2h(x) + x3h(x) + · · · .

One can interpret each term xkh(x) on the last line as follows. Call an arc v → v′ in D
permutational if both v, v′ lie in C and f(v′) = v, and non-permutational otherwise.
It is not hard see that every path p = (v0 → v1 → · · · → vi) indexing a vertex in
FD starts with a (possibly empty) sequence of all permutational steps v0 → v1 →
· · · → vk, followed by a (possibly empty) sequence of steps vk → vk+1 → · · · → vi
which are all non-permutational; the index k is therefore uniquely determined. This
lets one decompose FD into vertex subsets

FD = F0 t F1 t F2 t F3 t · · ·

where Fk are the vertices whose corresponding path starts with k permutational
steps. In Figure 8, the sets Fk for k = 0, 1, 2, 3 are colored black, red, blue, green,
respectively. One then checks that, for each k = 0, 1, 2, . . ., the map sending p =
(v0 → v1 → · · · → vi) to vi restricts to a bijection Fk −→ V satisfying `(p) =
k + level(vi). Consequently, ∑

p∈Fk

x`(p) = xkh(x).
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Let us recall the example at the beginning of Section 2.3 with the primitive
necklace P = BWW and its powers P 1, P 2, P 3, . . .. Figures 5, 6, and 7 show the
digraphs for O(BWW )1 ,O(BWW )2 ,O(BWW )3 . Recall that each orbit O(BWW )` has a cy-
cle set {(BWW )`, (WBW )`, (WWB)`}. Hence, each orbit O(BWW )` corresponds to
a quasi-infinite forest F(BWW )` , which is a disjoint union of three trees T(BWW )` ,
T(WBW )` , T(WWB)` rooted at (BWW )`, (WBW )`, (WWB)`, respectively. Since
O(BWW )` converges to a digraph O(BWW )∞ = lim`→∞O(BWW )` , the correspond-
ing quasi-infinite forests F(BWW )` also converge to a quasi-infinite forest FBWW =
lim`→∞F(BWW )` . The cycle set {C1, C2, C3} of O(BWW )∞ is still in bijection with
{BWW,WBW,BWB}, and hence FBWW is a disjoint union of three trees TC1 , TC2 , TC3

rooted at C1, C2, C3 as shown in Figure 9.

TC1

(1, 0, 2, 1, 0, 2, 1, 0, 2, . . .)

R1

(0, 2, 1, 0, 2, 1, 0, 2, 1, . . .)

. . .

TC2

(0, 2, 1, 0, 2, 1, 0, 2, 1, . . .)

R2

(2, 1, 0, 2, 1, 0, 2, 1, 0, . . .)

. . .

TC3

(2, 1, 0, 2, 1, 0, 2, 1, 0, . . .)

R1 R2

(1, 0, 2, 1, 0, 2, 1, 0, 2, . . .) (3, 0, 2, 1, 0, 2, 1, 0, . . .)

R1 R3

(0, 2, 1, 0, 2, 1, 0, . . .) (3, 2, 1, 0, 2, 1, 0, . . .)

R1 R2 R3

. . . . . . . . .

Figure 9: Part of the quasi-infinite forest FBWW

Also, recall that Pham generalized this idea to every primitive necklace P of
length |P | = n. She showed in [5] that for the game digraphs OP ` , the bijections of

their cycle sets {C(`)
1 , C

(`)
2 , . . . , C

(`)
n } extend to digraph inclusions

OP ↪→ OP 2 ↪→ OP 3 ↪→ · · ·
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which converge to a digraph OP∞ with cycle set {C1, C2, . . . , Cn}. Hence, the corre-
sponding quasi-infinite forests FP ` also converge to a quasi-infinite forest FP , having
n trees TC1 , TC2 , . . . , TCn rooted at C1, C2, . . . , Cn. In other words,

FP =
n⊔

i=1

TCi . (3)

We can also generalize the concept of quasi-infinite trees TCi to trees Tµ rooted
at any element µ in BS∞. Observe that we can pick any element µ, not necessarily a
cycle element, and start playing reversed BS from µ. Let Oµ be the set of elements
reachable from µ after a sequence of reversed BS moves. When µ is not a cycle
element, then for every element ν in Oµ, there is a unique sequence of i moves
Rj1 , . . . , Rji such that ν = Rji ◦ · · · ◦ Rj1(µ). Thus, we can associate each element
ν in Oµ with a “level” i. Hence, we can define the tree rooted at µ and the level
generating function of this tree as follows.

Definition 2.15. For any element µ in BS∞, denote by Tµ the tree rooted at µ whose
vertices are indexed by elements in Oµ, and there is a direct edge ν → ν ′ if ν ′ = Rj(ν)
for some j. In this case, for each ν in Oµ, we let `(µ, ν) denote the number of steps
in the path from µ to ν, and define the level generating function for Tµ to be

gµ = gµ(x) :=
∑

ν

x`(µ,ν)

where the sum runs over all such vertices ν of Tµ.

For example, Figure 10 shows the tree Tµ rooted at the element µ = (1, 2, 1, 1, . . .).
The level generating function of Tµ is gµ(x) = 1 + 2x+ 3x2 + · · · .

(1, 1, . . .) (1, 1, . . .) (4, 1, . . .)

(2, 1, 1, . . .) (3, 1, 1, . . .)

(1, 2, 1, 1, . . .)

R1 R1 R2

R1 R1 R2

R1 R2

. . . . . . . . .

Figure 10: T(1,2,1,1,...)

An important idea is comparing subtrees rooted at different vertices of the forest
FP . In the special case where µ = Ci is one of the roots of the forest FP , so that
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Tµ = TCi is one of the trees in the forest, denote gµ(x) by gi = gi(x) = gCi(x). Thus,
(3) shows that

g(x) =
n∑

i=1

gi(x) = g1(x) + · · ·+ gn(x)

and the work of [5] (or Lemma 2.14 above) shows that

HP (x) = (1− x)g(x).

Thus, the key step in studying HP (x) is to understand the generating functions
{gi(x)}ni=1. Our strategy to prove Theorem 1.3 is to relate the {gi(x)}ni=1 via a linear
system of equations. Our strategy to prove Theorem 1.2 uses the following notion.

Definition 2.16. Say that two quasi-infinite trees Tµ and Tν are isomorphic if there
is a bijection f between their vertices that respects the reverse BS moves, i.e., one
has ρ′ = Ri(ρ) in Tµ if and only if f(ρ′) = Ri(f(ρ)) in Tν .

3 Fuses and pre-fuses

3.1 k-fuses

In this section, we introduce the concept of k-fuse that shows up in almost every
quasi-infinite forest. In general, we say an element µ = (µ1, . . . , µk, µk+1, . . .) in BS∞
contains a k-fuse if its first k parts µ1, . . . , µk satisfy the conditions in Definition 3.1
below. We then view µ as (µ1, . . . , µk, ν) where ν is some other element of BS∞, i.e.
µ is ν following a prefix (µ1, . . . , µk). We will eventually show that regardless of the
exact values of µ1, . . . , µk, as long as they satisfy the conditions in Definition 3.1, we
have

gµ(x) = uk(x) · gν(x), (4)

where uk(x) only depends on k and does not depend on µ or ν or the exact values
of µ1, . . . , µk. Then we will combinatorially interpret the coefficients of uk(x).

Definition 3.1. We say (µ1, . . . , µk) is a k-fuse if

1. Each of µ1, µ2, . . . , µk−1 is either 1 or 2, but µk ≥ 3,

2. all parts µ1, µ2, . . . , µk are playable, and

3. for 1 ≤ j ≤ k − 1, if µj = 1 then µj+1 6= 1, i.e. there is no two consecutive
ones.

If µ = (µ1, . . . , µk, . . .), that is, the first k parts of µ are µ1, . . . , µk, and (µ1, . . . , µk)
is a k-fuse, we say that µ contains a k-fuse.

Example 3.2. Both µ = (2̄, 1̄, 3̄, 1̄, 2̄, . . .) and ν = (1̄, 2̄, 3̄, 2̄, 2̄, . . .) contain 3-fuses.
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Remark 3.3. We explain here why we call (µ1, . . . , µk) a “k-fuse”. First of all, once
we play any of the first k parts, all parts after µk, i.e. µk+1, µk+2, . . ., are no longer
playable because µk ≥ 3. This is because Lemma 2.12 says that if we let µ′ = Rj(µ),
then for i ≥ j, µ′i is playable only if

∑i
s=j µi < 3. Having µk ≥ 3 immediately violates

this condition. As a result, once we play any of the first k parts, only the first k
parts are playable. In addition, Proposition 3.7 will show that the reversed BS game
will terminate after at most k moves. For example, Figure 11 shows two different
elements of BS∞ that both contain a 3-fuse. Although the 3-fuses are different, the
branches after playing R1, R2, or R3 are isomorphic. Furthermore, for every element
in these branches, the playable parts are only those initially in the 3-fuses, and after
at most 3 steps, there is no more playable parts. We can think of a k-fuse as a fuse
of a “bomb”. Once we “trigger” the fuse by playing one of the first k parts, there is
nothing we can do except continue “burning” the fuse. Eventually, after at most k
moves, the bomb “explodes” and there is no more possible move.

(1, 2, . . .) (1, 2, . . .) (1, 2, . . .) (1, 2, . . .)

(3, 1, 2, . . .) (3, 1, 2, . . .) (6, 1, 2, . . .) (4, 1, 2, . . .) (6, 1, 2, . . .)

(1, 3, 1, 2, . . .) (3, 3, 1, 2, . . .) (2, 4, 1, 2, . . .)

(2, 1, 3, 1, 2, . . .)

R1 R2 R3

R1 R1 R2 R1 R2

R1 R1 R1 R1

(2, 2, . . .) (2, 2, . . .) (2, 2, . . .) (2, 2, . . .)

(3, 2, 2, . . .) (3, 2, 2, . . .) (6, 2, 2, . . .) (5, 2, 2, . . .) (6, 2, 2, . . .)

(2, 3, 2, 2, . . .) (3, 3, 2, 2, . . .) (1, 5, 2, 2, . . .)

(1, 2, 3, 2, 2, . . .)

R1 R2 R3

R1 R1 R2 R1 R2

R1 R1 R1 R1

Figure 11: 3-fuses

Let us now make some of the earlier comments about (4) more precise. Given a
subset A ⊆ {1, 2, 3, . . .}, define

RA(µ) := {ρ = (Rj1 ◦Rj2 ◦ · · · ◦Rjk)(µ) for some j1, j2, . . . , jk ∈ A}.
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Given µ = (µ1, . . . , µk, ν) starting with a k-fuse, let V := R{k+1,k+2,...}(µ). Corollary
3.5 below will show that every element in V also has a k-fuse. By Remark 3.3 and
Proposition 3.7, the tree Tµ has a disjoint decomposition

Tµ =
⊔

ρ∈V

R{1,2,...,k}(ρ).

Figure 12b shows the disjoint decomposition of the tree rooted at µ = (1, 3, 1, 2, 1, 1, . . .)
with a 2-fuse. Each component R{1,2,...,k}(ρ) is illustrated via the color-coding.

(1, 1, . . .) (1, 1, . . .) (4, 1, . . .)

(2, 1, 1, . . .) (3, 1, 1, . . .)

(1, 2, 1, 1, . . .)

R1 R1 R2

R1 R1 R2

R1 R2

. . . . . . . . .

(a)

R1, R2

R1, R2

R1, R2

R1, R2

R1, R2 R1, R2

(1, 6, 1, 1, . . .) (1, 6, 1, 1, . . .) (1, 3, 4, 1, . . .)

(1, 4, 2, 1, 1, . . .) (1, 3, 3, 1, 1, . . .)

(1, 3, 1, 2, 1, 1, . . .)

R3 R3 R4

R3 R3 R4

R3 R4

. . . . . . . . .

(b)

Figure 12

Because of the disjoint decomposition, one can write

gµ(x) =
∑

ρ∈V

x`(µ,ρ)uρ(x)

where
uρ(x) =

∑

σ∈R{1,2,...,k}(ρ)

x`(ρ,σ).
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Proposition 3.6 below shows that all of the subtrees R{1,2,...,k}(ρ) are isomorphic.
Hence one can define a single (polynomial) generating function uk(x) := uρ(x) for
all ρ ∈ V , to be studied further in Section 3.2 below. Consequently,

gµ(x) = uk(x) ·
∑

ρ∈V

x`(µ,ρ).

Our next proposition shows Tµ|V is isomorphic to Tν , which will eventually imply
(4).

Proposition 3.4. Let µ = (µ1, . . . , µk, ν) where (µ1, . . . , µk) is a k-fuse. Then the
vertex set V := R{k+1,k+2,...}](µ) has Tµ|V isomorphic to Tν.

Proof. We will show that a sequence of moves Ri1 , Ri2 , . . . , Rij is possible from ν if
and only if the sequence of moves Rk+i1 , Rk+i2 , . . . , Rk+ij is possible from µ. In fact,
we will prove a slightly stronger statement: ρ := Rij ◦ · · · ◦ Ri1(ν) exists if and only

if Rk+ij ◦ · · · ◦ Rk+i1(µ) also exists, and Rk+ij ◦ · · · ◦ Rk+i1(µ) = (µ1, . . . , µk−1, µ′k, ρ)

where (µ1, . . . , µk−1, µ′k) is a k-fuse. We will prove this by induction on j. The base
case where j = 0 is obvious.

Suppose ρ := Rij◦· · ·◦Ri1(ν) exists and σ := Rk+ij◦· · ·◦Rk+i1(µ) = (µ1, . . . , µk−1,

µ′k, ρ). Suppose ρ′ = Rij+1
(ρ) exists for some ij+1 > 1, then since ij+1 > 1, this move

only affects and depends on parts ij+1 − 1, ij+1, ij+1 + 1, . . . in ρ. These parts are
identical to parts k + ij+1 − 1, k + ij+1, k + ij+1 + 1, . . . in σ. Thus, σ′ = Rk+ij+1

(σ)

exists, and σ′ = (µ1, . . . , µk−1, µ′k, ρ
′).

Finally, suppose ρ′ = R1(ρ) exists. By Lemma 2.4, ρ′ is obtained by removing
the first part of ρ and putting the bars on the remaining parts following the rules in
Lemma 2.4. On the other hand, σ′ = Rk+1(σ) is obtained from σ by adding ρ1 to µ′k
and putting the bars on the remaining parts also following the rules in Lemma 2.4.
Again, parts 1, 2, . . . of ρ are the same as parts k+ 1, k+ 2, . . . of σ, so the extra bars
are put on respective parts. Thus, σ′ = (µ1, . . . , µk−1, µ′′k, ρ

′) where µ′′k = µ′k + ρ1.
Note that this does not violate the conditions of k-fuses, i.e. (µ1, . . . , µk−1, µ′′k) is still
a k-fuse.

The argument for the converse is exactly the same.

The following corollary is immediate from the proof of Proposition 3.4.

Corollary 3.5. There is an isomorphism from Tν to Tµ|V that maps every element
ρ ∈ Tν to an element (µ1, . . . , µk−1, µ′k, ρ) ∈ Tµ|V where (µ1, . . . , µk−1, µ′k) is a k-fuse.
In particular, every element in Tµ|V has a k-fuse.

Now we prove that uρ(x) are the same for all ρ ∈ V .

Proposition 3.6. Let ρ = (ρ1, . . . , ρk, ν) where (ρ1, . . . , ρk) is a k-fuse. Then for all
values of ρ1, . . . , ρk (satisfying the conditions of k-fuses) and for all ν, the subtrees
R{1,2,...,k}(ρ) are isomorphic.
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Proof. We will prove this by induction on k. The base case where k = 1 is obvious.
Suppose the statement is true for k = 1, . . . , j − 1, consider any two elements ρ =
(ρ1, . . . , ρj, ν) and ρ′ = (ρ′1, . . . , ρ

′
j, ν
′) where (ρ1, . . . , ρj) and (ρ′1, . . . , ρ

′
j) are j-fuses.

Let σ = Ri(ρ) and σ′ = Ri(ρ
′) for some i ≤ j, we will prove that Tσ and Tσ′ are

isomorphic.
First, let V = R{i,...}(σ) and V ′ = R{i,...}(σ

′), we claim that Tσ|V and T ′σ|V ′ are
isomorphic. In fact, we claim that V = {π | π = Rm

i (σ), 0 ≤ m ≤ k − i}. This is
because in σ, σi is playable since ρi < 3, but σr is not playable for all r > i since∑r

s=i ρs ≥ ρi + ρi+1 ≥ 3 by condition 3 in Definition 3.1. For the same reason, in
Rm
i (σ) for 0 ≤ m < k − i, the ith part is playable but any part after that is not.

However, in Rk−i−1
i (σ), the ith part is ρj, which is at least 3. Thus, in the Rk−i

i (σ, the
ith part is also not playable. Thus, V = {π | π = Rm

i (σ), 0 ≤ m ≤ k − i}. Similarly,
V ′ = {π | π = Rm

i (σ′), 0 ≤ m ≤ k − i}. Hence, Tσ|V and T ′σ|V ′ are isomorphic.
Finally, every element π in Tσ|V and T ′σ|V ′ contains an (i− 1)-fuse. Since i− 1 ≤

j − 1, by the inductive hypothesis, R{1,...,i−1}(π) are isomorphic for all π in Tσ|V and
T ′σ|V ′ . This completes the proof.

The proof of Proposition 3.6 also suggests the following result.

Proposition 3.7. Let ρ = (ρ1, . . . , ρk, ν) where (ρ1, . . . , ρk) is a k-fuse. Let αi =
Ri(ρ) for 1 ≤ i ≤ k. Let T[k],ρ :=

⋃
1≤i≤k Tαi. Let V be the set of elements in T[k],ρ,

then
V = {π | π = (Rij ◦ · · · ◦Ri1)(ρ)}

where j ≤ k and k ≥ i1 ≥ i2 ≥ · · · ≥ ij. Specifically, V = R{1,...,k}(ρ), and Tρ|V has
depth k.

Proof. We will prove this by induction on k. If k = 1, then ρ = (ρ1, ν) where ρ1 ≥ 3.
Since ρ1 ≥ 3, in R1(ρ), no part is playable. Thus, T[1],ρ = Tα1 only contains one
element: R1(ρ), so the statement is true for k = 1.

If k > 1, consider any Tαi with 1 ≤ i ≤ k. The proof of Proposition 3.6 shows
that

R{i,...}(αi) = {π | π = Rm
i (αi), 0 ≤ m ≤ k− i} = {π | π = Rm

i (ρ), 1 ≤ m ≤ k− i+1}.
Furthermore, every element σ in R{i,...}(αi) has an (i − 1)-fuse, by induction, the
elements in T[i−1],σ have the form

(Rij ◦ · · · ◦Ri1)(σ)

where j ≤ i− 1 and i− 1 ≥ i1 ≥ i2 ≥ · · · ≥ ij. Hence, every element in Tαi has the
form

(Rij ◦ · · · ◦Ri1 ◦Rm
i )

where j ≤ i − 1, i − 1 ≥ i1 ≥ i2 ≥ · · · ≥ ij, and 0 ≤ m ≤ k − i + 1. Thus, the
statement is true.

This proves that V ⊆ R{1,...,k}(ρ). Clearly, we also have R{1,...,k}(ρ) ⊆ V , so
V = R{1,...,k}(ρ). Finally, to show that Tρ|V has depth k, it suffices to check that
Rk

1(ρ) exists, which is not difficult.
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For example, in Figure 11, we have two elements ρ = (2, 1, 3, 1, 2, . . .) and ρ′ =
(1, 2, 3, 2, 2, . . .), both containing 3-fuses. Even though the exact values of the two 3-
fuses are different, and the remaining parts are also different ((1, 2, . . .) and (2, 2, . . .)),
still R{1,2,3}(ρ) and R{1,2,3}(ρ

′) are isomorphic and both have depth 3.
Proposition 3.6 means that R{1,2,...,k}(ρ) only depends on k, and hence the level

generating function of this subtree, denote uk(x), also depends only on k. Proposition
3.7 shows that uk(x) has degree k. For instance, Figure 11 shows that u3(x) =
1+3x+5x2 +4x3. Furthermore, if ρ is an element at level i of some tree Tµ, then the
elements in this subtree contribute exactly uk(x)xi to the level generating function
gµ. Thus, we say that ρ has a coefficient uk(x). Combining Propositions 3.4 and 3.6
we achieve the desired equation (4).

Corollary 3.8. If µ = (µ1, . . . , µk, ν) where (µ1, . . . , µk) is a k-fuse then the gener-
ating functions gµ(x) and gν(x) of Tµ and Tν are related by

gµ(x) = uk(x) · gν(x)

where uk(x) only depends on k.

Figure 12 shows an example of Corollary 3.8. Figure 12a shows the tree of an
element ν = (1, 2, 1, 1, . . .), and Figure 12b shows the tree of an element µ that
consists of a 2-fuse followed by ν. In Tµ, if R1 and R2 are not played, the elements
are exactly the elements in Tν . However, at each element ρ, one can play R1 or R2

and get to R{1,2}(ρ). Thus, each element has a coefficient u2(x).

3.2 Combinatorial formula for uk(x)

In later sections, we will see that these coefficients uk(x) are very crucial, espe-
cially for computing the generating function HP (x). Fortunately, these coefficients
can be described combinatorially through weak compositions. Recall that a weak
composition α = (α1, α2, . . . , αr) of k is a sequence of nonnegative integers αi with
α1 + · · ·+ αr = k.

Proposition 3.9. For all k,

uk(x) =
k∑

i=0

ci,k−ix
i

where cn,i is the number of weak compositions of n with exactly i zeros.

Proof. Let µ = (µ1, . . . , µk) be an arbitrary k-fuse. We will construct a bijection
between weak compositions of i with k − i zeros and elements at level i in Tµ re-
cursively. Given a weak composition (ν1, . . . ν`) of i with k − i zeros, we obtain the
corresponding element as follows:

1. If ν1 = · · · = ν` = 0, do nothing and stop. Note that this corresponds to µ,
the only element at level 0, and also corresponds to the only composition of 0
with k zeros.
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2. Else, there is a largest index `−m such that ν`−m 6= 0. Then let p = k −m−
ν`−m + 1, and play Rp repeatedly ν`−m times. Note that after this, we have a
(p− 1)-fuse and the weak composition (ν1, . . . , ν`−m−1); repeat the process.

First, observe that after step (2), the remaining weak composition (ν1, . . . , µ`−m−1)
is a weak composition of i− ν`−m with n− i−m zeros, and the remaining fuse is a
(k −m− ν`−m)-fuse. Since (i− ν`−m) + (k − i−m) = k −m− ν`−m, the recursion
is well-defined.

It is easy to see that two different weak compositions define two different playing
sequences, and injectivity follows since no two playing sequences lead to the same
element by nature of Bulgarian Solitaire.

Finally, in order to prove surjectivity, we define the inverse function. For each
element µ in the tree, there is a unique sequence of play (i1, i2, . . . , it) that yields µ
from the k-fuse. Moreover, by the argument in the proof of Proposition 3.4, this se-
quence is weakly decreasing. Thus, we can rewrite the play sequence as (iα1

1 , . . . , i
αs
s )

where (i1, . . . , is) is strictly decreasing and αj ≤ ij−1 − ij. Now we fill in the parts
of the weak composition from right to left. For each i

αj
j , we fill in (αj, 0, . . . , 0) with

ij−1 − ij + 1 zeros (here we take i0 = k). Finally, we fill the rest with zeros, if
necessary. It is easy to check that this is the inverse of step (1) and (2) above.

Figure 13 shows an example of this bijection. Take the composition (2, 1) for
instance, the 1 means that we start by playing R3 once. Then we are left with the
2-fuse (2, 4) and the composition 2. This tells us that we play R1 twice, and hence
we obtain the empty element after the sequence R3, R1, R1.

∅ ∅ ∅ ∅

(3) (3) (6) (4) (6)

(1, 3) (3, 3) (2, 4)

(2, 1, 3)

R1 R2 R3

R1 R1 R2 R1 R2

R1 R1 R1 R1

(a) Tree of a 3-fuse

(3) (1, 2) (2, 1) (1, 1, 1)

(2, 0) (1, 1, 0) (0, 2) (1, 0, 1) (0, 1, 1)

(1, 0, 0) (0, 1, 0) (0, 0, 1)

(0, 0, 0)

R1 R2 R3

R1 R1 R2 R1 R2

R1 R1 R1 R1

(b) Corresponding compositions

Figure 13: Tree of a 3-fuse and the corresponding compositions

Remark 3.10. Although there is no simple explicit formula for ck,i that we know of,
there is a nice family of generating functions for these numbers. Fixing i, one has

∞∑

k=0

ck,ix
k =

(
1− x
1− 2x

)i+1

.
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Observe that when i = 0,

∞∑

k=0

ck,0x
k =

1− x
1− 2x

= 1 +
∞∑

k=1

2k−1xk,

which is indeed the generating function for the number of strong compositions.

3.3 k-pre-fuses

Now we briefly discuss k-pre-fuses, which will be discussed in more detail in Section
5.

Definition 3.11. We say (µ1, . . . , µk) is a k-pre-fuse if they satisfy

1. µ1, µ2, . . . , µk are either 1 or 2,

2. all parts 1, 2, . . . , k are playable, and

3. for all j ≤ k − 1, µj = 1 implies µj+1 6= 1, i.e. there is no consecutive ones.

If µ = (µ1, . . . , µk, . . .), that is, the first k parts of µ are µ1, . . . , µk, and (µ1, . . . , µk)
is a k-pre-fuse, we say that µ contains a k-pre-fuse.

The only difference between this definition and Definition 3.1 is that µk is also
less than 3, so this is not a k-fuse. However, if we play any Ri for 2 ≤ i ≤ k, we
immediately reach an (i− 1)-fuse.

4 B(WB)k and W (BW )k

Now that we have a good understanding of the k-fuses, we are set to prove Theorem
1.2, asserting HB(WB)k(x) = HW (BW )k(x) for k ≥ 1.

Recall from Section 2.4 that it suffices to study the generating functions gi’s
corresponding to the trees TCi where Ci’s are the cycle elements. Corollary 3.8
tells us that if in TCi there is an element µ with a k-fuse followed by Cj for some
j (not necessarily different from i), then the weight of the subtree rooted at this
element is uk(x) · gj(x). Thus, we can degenerate the whole subtree to one element
representing the subtree with weight uk(x) · gj(x). We call the tree obtained from
TCi by degenerating all such subtrees to single elements the degenerate tree of TCi .
For two necklaces P and P ′, we say two quasi-infinite trees TCi and TC′i are almost
isomorphic if their degenerate trees are isomorphic, and if a degenerated element in
TCi has weight uk(x)gCj(x) then the corresponding element in TC′i is also degenerated
and has weight uk(x)gC′j(x). Note that two trees being almost isomorphic means that
the subtrees that consist of the non-degenerate elements are isomorphic.
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TC1

(1, 0, 2, 1, 0, 2, 1, 0, 2, . . .)

R1

(0, 2, 1, 0, 2, 1, 0, 2, 1, . . .)

. . .

TC2

(0, 2, 1, 0, 2, 1, 0, 2, 1, . . .)

R2

(2, 1, 0, 2, 1, 0, 2, 1, 0, . . .)

. . .

TC3

(2, 1, 0, 2, 1, 0, 2, 1, 0, . . .)

R1 R2

(1, 0, 2, 1, 0, 2, 1, 0, 2, . . .) (3, 0, 2, 1, 0, 2, 1, 0, . . .)

R1 R3

(0, 2, 1, 0, 2, 1, 0, . . .) (3, 2, 1, 0, 2, 1, 0, . . .)

R1 R2 R3

. . . . . . . . .

(a) FWBW

TC1

(1, 0, 2, 1, 0, 2, 1, 0, 2, . . .)

R1

gC2(x)

TC2

(0, 2, 1, 0, 2, 1, 0, 2, 1, . . .)

R2

gC3(x)

TC3

(2, 1, 0, 2, 1, 0, 2, 1, 0, . . .)

R1 R2

gC1(x) u1(x)gC2(x)

(b) FWBW degenerated

Figure 14: FWBW and its degenerated version
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TC1

(2, 0, 1, 2, 0, 1, 2, 0, 1, . . .)

R1

(0, 1, 2, 0, 1, 2, 0, 1, 2, . . .)

. . .

TC2

(0, 1, 2, 0, 1, 2, 0, 1, 2, . . .)

R2

(1, 2, 0, 1, 2, 0, 1, 2, 0, . . .)

. . .

TC3

(1, 2, 0, 1, 2, 0, 1, 2, 0, . . .)

R1 R2

(2, 0, 1, 2, 0, 1, 2, 0, 1, . . .) (3, 0, 1, 2, 0, 1, 2, 0, . . .)

R1 R3

(0, 1, 2, 0, 1, 2, 0, . . .) (3, 1, 2, 0, 1, 2, 0, . . .)

R1 R2 R3

. . . . . . . . .

(a) FBWB

TC1

(2, 0, 1, 2, 0, 1, 2, 0, 1, . . .)

R1

gC2(x)

TC2

(0, 1, 2, 0, 1, 2, 0, 1, 2, . . .)

R2

gC3(x)

TC3

(1, 2, 0, 1, 2, 0, 1, 2, 0, . . .)

R1 R2

gC1(x) u1(x)gC2(x)

(b) FBWB degenerated

Figure 15: FBWB and its degenerated version
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For example, recall from Section 2.4 the quasi-infinite forest FWBW with three
trees rooted at the cycle elements

{C1, C2, C3} = {(1, 0, 2, 1, 0, 2, . . .), (0, 2, 1, 0, 2, 1, . . .), (2, 1, 0, 2, 1, 0, . . .)}

as shown in Figure 14a. Observe that R1(C1) is C2, so we degenerate the whole
subtree rooted at R1(C1) to an element with weight gC2(x). Similarly, we degenerate
the whole subtree rooted at R1(C2) to an element with weight gC3(x), and the whole
subtree rooted at R1(C3) to an element with weight gC1(x). Finally, R2(C3) is a
1-fuse followed by C1, so we degenerate the whole subtree rooted at R2(C3) to an
element with weight u1(x)gC2(x). The degenerated forest is shown in Figure 14b.

Similarly, the cycle set for OBWB is

{C1, C2, C3} = {(2, 0, 1, 2, 0, 1, . . .), (0, 1, 2, 0, 1, 2, . . .), (1, 2, 0, 1, 2, 0, . . .)}.

The quasi-infinite forest FBWB is shown in Figure 15a, and its degenerated forest is
shown in Figure 15b. One can easily check that the degenerated forests of FWBW and
FBWB are isomorphic by comparing Figures 14b and 15b. Thus, FWBW and FBWB

are almost isomorphic. Lemma 4.1 will show that this implies FWBW and FBWB are
isomorphic, which can be seen by comparing Figures 14a and 15a. This will be our
method for proving Theorem 1.2.

Lemma 4.1. If TCi and TC′i are almost isomorphic for all i, then TCi and TC′i are
isomorphic for all i.

Proof. It suffices to prove that from the roots of TCi and TC′i , one can play a sequence
of moves Rj1 , . . . , Rjm in TCi if and only if one can play the same sequence in TC′i .
Observe that we start at the root of both trees. If before Rjr , we have non-degenerate
elements in both trees, then Rjr is playable in one tree if and only if it is playable
in the other. If we have degenerate elements in both trees, then by definition of
almost isomorphic, the degenerate elements both have k-fuses followed by Cj and
C ′j respectively. If 1 ≤ jr ≤ k, then Rjr is playable in both trees, and playing Rjr

leads to the “terminal phase” of the k-fuses, which we already know are isomorphic.
If jr > k then playing Rjr is the same as playing Rjr−k in TCj and TC′j . Since TCj
and TC′j are also almost isomorphic, Rjr−k is playable in one tree if and only if it is
playable in the other.

We first analyze the quasi-infinite trees of the families B(WB)k and W (BW )k.
For the former family, the cycle elements are

C1 = (2, 0, 2, 0, 2, 0, . . . , 2, 0, 1, . . .)

C2 = (0, 2, 0, 2, 0, . . . , 2, 0, 1, 2, . . .)

C3 = (2, 0, 2, 0, . . . , 2, 0, 1, 2, 0, . . .)

C4 = (0, 2, 0, . . . , 2, 0, 1, 2, 0, 2, . . .)

...

C2k−2 = (0, 2, 0, 1, 2, 0, 2, . . . , 0, 2, . . .)
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C2k−1 = (2, 0, 1, 2, 0, 2, . . . , 0, 2, 0, . . .)

C2k = (0, 1, 2, 0, 2, . . . , 0, 2, 0, 2, . . .)

C2k+1 = (1, 2, 0, 2, . . . , 0, 2, 0, 2, 0, . . .)

where each element has k twos, k zeros and a one. Similarly, the cycle elements of
the latter family are

C ′1 = (1, 0, 2, 0, 2, 0, . . . , 2, 0, 2, . . .)

C ′2 = (0, 2, 0, 2, 0, . . . , 2, 0, 2, 1, . . .)

C ′3 = (2, 0, 2, 0, . . . , 2, 0, 2, 1, 0, . . .)

C ′4 = (0, 2, 0, . . . , 2, 0, 2, 1, 0, 2, . . .)

...

C ′2k−2 = (0, 2, 0, 2, 1, 0, 2, . . . , 0, 2, . . .)

C ′2k−1 = (2, 0, 2, 1, 0, 2, . . . , 0, 2, 0, . . .)

C ′2k = (0, 2, 1, 0, 2, . . . , 0, 2, 0, 2, . . .)

C ′2k+1 = (2, 1, 0, 2, . . . , 0, 2, 0, 2, 0, . . .)

where each element also has k twos, k zeros and a one.
Our first lemma is clear.

Lemma 4.2. In FB(WB)k and FW (BW )k , for i = 1 and i = 2j (1 ≤ j ≤ k), TCi and
TC′i are almost isomorphic.

Proof. This is clear because for these Ci, there is only one playable move, which
gives Ci+1. Thus, the degenerate tree has only two elements: Ci and the degenerate
element for TCi+1

.

Our next lemma is also straightforward.

Lemma 4.3. In FB(WB)k and FW (BW )k , TC2k+1
and TC′2k+1

are almost isomorphic.

Proof. From C2k+1, we have two moves: R1 and R2. If we play R1, we get the
degenerate element for TC1 . If we play R2, we get a 1-fuse followed by C2, which is
also a degenerate element. The tree for C ′2k+1 is exactly the same, so they are almost
isomorphic.

Now we tackle the more complicated elements.

Lemma 4.4. For i = 2j + 1 (1 ≤ j ≤ k − 1), TCi and TC′i are almost isomorphic.

Proof. First note that
Ci = (2, 0, 2, 0, . . . , 0, 1, 2, . . .)

and
C ′i = (2, 0, 2, 0, . . . , 0, 2, 1, . . .).
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Specifically, both elements begin with (2, 0, 2, 0, 2, 0, . . .) and the first difference is
in the (2k + 1 − 2i)th and (2k + 2 − 2i)th parts where those of Ci are 1, 2 while
those of C ′i are 2, 1. Let us call these two parts the significant parts. Until these
two parts are played, the two trees are isomorphic. Now we claim that in order for
the significant parts to be playable, we need to always play the last playable part,
i.e. the playable part with the largest index. Indeed, suppose we have an element
(2, 2, . . . , 2, 0, 2, 0, . . .) (note that Ci and C ′i also have this form themselves), if we play
the last playable part, then we get another element of this form. If we do not play the
last playable part, then we reach an `-fuse (2, . . . , 4, 2, 2, . . . , 2, 0, 2, . . .). From here,
if we play Rj with j < `, we trigger the terminating phase and will eventually stop
before the significant parts are playable. Else, we can only play R` repeatedly until
we get (2, . . . , 2m, 0, 2, . . .), which is an `-fuse followed by a cycle element. Thus, this
degenerates to an element before the significant parts are playable.

When the first significant part becomes playable, the elements in the two trees
are (2, . . . , 2, 0, 1, 2, . . .) and (2, . . . , 2, 0, 2, 1, . . .). Similar to above, if we do not play
the last playable part, we will either terminate or get a fuse followed by C2k and C ′2k,
and so the subtrees are almost isomorphic. If we play the last playable part, then we
get (2, . . . , 2, 1, 2, 0, 2, . . .) and (2, . . . , 2, 2, 1, 0, 2, . . .). Once again, if we do not play
the last playable part, then the subtrees are almost isomorphic. If we play the last
playable part, in both trees, we get (2, . . . , 2, 3, 0, 2, . . .), which is a fuse followed by
C2 and C ′2, and so this degenerates to the same element in both trees, and hence the
trees are almost isomorphic.

The last three lemmas combine to prove Theorem 1.2.

Theorem 1.2. For k ≥ 1, one has

HB(WB)k(x) = HW (BW )k(x).

Proof. From the lemmas, we have that TCi and TC′i are almost isomorphic for all i, so
they are isomorphic for all i. Thus, the generating functions gi and g′i are the same
for all i, and hence HB(WB)k(x) = HW (BW )k(x).

5 BW k and WBk

Now, we shift our focus to the families BW k and WBk and Theorem 1.3, asserting
that HBWk(x) and HWBk(x) can both be written as rational functions over the same
polynomial of degree k + 1, by which we mean the rational functions have the same
denominator of degree k + 1.

Let us start with a warm-up example with P = BWWW. Figure 16 shows the
degenerated forest for this necklace.

In Figure 16, the tree TC3 has one element on level 0, a copy of TC4 on level 1, and
a copy of TC1 with a 1-fuse on level 1. Thus, we have the equation g3 = 1+xg4+xu1g1.
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TC1

(1, 0, 2, 1, 1, 0, 2, 1, . . .)

(0, 2, 1, 1, 0, 2, 1, . . .) (1, 2, 1, 1, 0, 2, 1, . . .)

R1 R3

g2

(2, 1, 1, 0, 2, 1, . . .) (3, 1, 1, 0, 2, 1, . . .) (1, 3, 1, 0, 2, 1, . . .)

R1 R2 R3

(1, 1, 0, 2, 1, . . .)

(1, 0, 2, 1, . . .)

g1

(1, 1, 0, 2, 1, . . .) (4, 1, 0, 2, 1, . . .)

u2g1

u1g1

R1

R1

R1 R2

TC2

(0, 2, 1, 1, 0, 2, 1, 1, . . .)

(2, 1, 1, 0, 2, 1, 1, . . .)

R2

g3

(2, 1, 1, 0, 2, 1, 1, 0, . . .)

TC3

R1

(1, 1, 0, 2, 1, 1, 0, . . .)

g4

(3, 1, 0, 2, 1, 1, 0, . . .)

u1g1

R2

(1, 1, 0, 2, 1, 1, 0, 2, . . .)

TC4

R1

g1

(1, 0, 2, 1, 1, 0, 2, . . .)

Figure 16: FBWWW degenerated

Similarly, we can write the following system of equations





g1 = 1 + x+ 2x2 + 2x3 + xg2 + (x4 + x3u1 + x2u2)g1

g2 = 1 + xg3

g3 = 1 + xg4 + xu1g1

g4 = 1 + xg1.

(5)

We can solve this system by substitution. We have

g2 = 1 + xg3 = 1 + x(1 + xg4 + xu1g1) = 1 + x(1 + x(1 + xg1) + xu1g1)

= 1 + x+ x2 + x3g1 + x2u1g1.

Thus,

g1 = 1 + x+ 2x2 + 2x3 + xg2 + (x4 + x3u1 + x2u2)g1
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= 1 + x+ 2x2 + 2x3 + x(1 + x+ x2 + x3g1 + x2u1g1) + (x4 + x3u1 + x2u2)g1

= A1 + (2x4 + 2x3u1 + x2u2)g1

= A1 + (2x4 + 2x3(1 + x) + x2(1 + 2x+ 2x2))g1

= A1 + (6x4 + 4x3 + x2)g1,

where A1 = 1 + 2x+ 3x2 + 3x3. Therefore,

g1 =
−A1

6x4 + 4x3 + x2 − 1
.

Note that since we only care about the denominator, the value of A1 is not relevant.
Working backwards, we can solve for g2, g3 and g4:

g4 = 1 + xg1 = 1 + x
−A1

6x4 + 4x3 + x2 − 1
=

−A4

6x4 + 4x3 + x2 − 1

g3 = 1 + xg4 + xu1g1 =
−A3

6x4 + 4x3 + x2 − 1

g2 = 1 + xg3 =
−A2

6x4 + 4x3 + x2 − 1

for some polynomials A2, A3, A4. Recall from Section 2.4 that this means

g = g1 + g2 + g3 + g4 =
−A1(x)− A2(x)− A3(x)− A4(x)

6x4 + 4x3 + x2 − 1
,

and hence

HBWWW(x) = (1− x)
−A1(x)− A2(x)− A3(x)− A4(x)

6x4 + 4x3 + x2 − 1
.

Thus, HBWWW(x) can be written as a rational generating function over a polynomial
of degree 4.

Similarly, for P = WBBB, we have the following system of equations. We en-
courage the reader to check that this is the correct system.





g1 = 1 + x+ x2 + xg2 + (x3 + x2u1 + xu2)g4

g2 = 1 + xg3 + xu1g4

g3 = 1 + xg4

g4 = 1 + xg1.

Although this system is a bit different from (5), by substitution, we also have

g2 = 1 + xg3 + xu1g4 = 1 + x(1 + x(1 + xg1)) + xu1(1 + xg1)

= 1 + x+ x2 + xu1 + x3g1 + x2u1g1.

Thus,

g1 = 1 + x+ x2 + xg2 + (x3 + x2u1 + xu2)g4
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= A′1 + (x4 + x3u1)g1 + (x4 + x3u1 + x2u2)g1

= A′1 + (2x4 + 2x3u1 + x2u2)g1

= A′1 + (2x4 + 2x3(1 + x) + x2(1 + 2x+ 2x2))g1

= A′1 + (6x4 + 4x3 + x2)g1.

This means that

g1 =
−A′1

6x4 + 4x3 + x2 − 1
,

and similar to above, eventually we have

HBWWW(x) = (1− x)
−A′1(x)− A′2(x)− A′3(x)− A′4(x)

6x4 + 4x3 + x2 − 1

for some polynomial A′2, A
′
3, A

′
4. This is also a generating function over the same

polynomial of degree 4 as HBWWW.
Observe that in both examples above, we use substitution to derive

g1 = A+ (6x4 + 4x3 + x2)g1

for some polynomial A. This means we have

g1 =
−A

6x4 + 4x3 + x2 − 1
,

and eventually we can write both HBWWW and HWBBB as a generating function over
6x4 + 4x3 +x2− 1, which is a polynomial of degree 4. This will be our main strategy
in this section.

Also, observe from the example that in both cases, we encounter the sum x2 +
xu1 +u2. This sum is indeed homogeneous, for Proposition 3.9 shows that u2(x) has
degree 2 and u1(x) has degree 1. Thus, for our convenience, we will “normalize” our
uk’s by redefining

uk(x) =
k∑

i=0

ci,k−ix
i−k

where cn,i is the number of weak compositions of n with exactly i zeros. Under this
new definition, the sum x2 + xu1 + u2 becomes x2(u0 + u1 + u2) (since u0 = 1). This
motivates the following abbreviation:

Definition 5.1. Let vk(x) := u0(x) + u1(x) + · · ·+ uk(x).

Now, we are ready to carry out the computations for Theorem 1.3.

5.1 BW k

First, we will deal with the more “friendly” family of the two. The cycle elements of
this family are

C1 = (1, 1, 1, 1, 1, . . . , 1, 0, 2, 1, . . .)
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C2 = (1, 1, 1, 1, . . . , 1, 0, 2, 1, 1, . . .)

C3 = (1, 1, 1, . . . , 1, 0, 2, 1, 1, 1, . . .)

...

Ck−3 = (1, 1, 0, 2, 1, 1, . . . , 1, 1, 1, . . .)

Ck−2 = (1, 0, 2, 1, 1, . . . , 1, 1, 1, 1, . . .)

Ck−1 = (0, 2, 1, 1, . . . , 1, 1, 1, 1, 1, . . .)

Ck = (2, 1, 1, . . . , 1, 1, 1, 1, 1, 0, . . .)

Ck+1 = (1, 1, . . . , 1, 1, 1, 1, 1, 0, 2, . . .)

Definition 5.2. For k ≥ 2, define fk to be the polynomial such that when using
substitution to solve the system of equations for BW k, we have

g1 = A+ fkg1

for some polynomial A. Then HBWk can be written as a rational generating function
over fk − 1.

It is actually not clear yet why such fk always exists. Its existence will be proved
in Proposition 5.5; furthermore, we will show that these fk’s satisfy the recurrence
given in (6). Once we can write g1 = A + fkg1, it follows that we can write g1 as
a rational generating function over fk − 1. Along the way, Proposition 5.3 implies
that the equation for any g` only depends on g`+1, . . . , gk+1 and g1. Thus, we can
iteratively write gk+1, . . . , g2 as rational generating functions over fk−1. This implies
that we can write HBWk as a rational generating function over fk − 1.

Let us start once again with an example that will illustrate the idea of the recur-
rence. Figure 17 shows the quasi-infinite trees corresponding to the cycle elements
for BWWWW = BW 4. From the forest, we can set up the following system of
equations

g1 = A
(4)
1 + xv0g2 + x2v0g3 + x4v1g5 + x5u2g1

g2 = A
(4)
2 + xv0g3 + x3v1g5 + x4u2g1

g3 = A
(4)
3 + xv0g4

g4 = A
(4)
4 + xv0g5 + x2u1g1

g5 = A
(4)
5 + xv0g1

where each A
(4)
i is a sum of the terms whose weights do not contain any gi. Hence,

each A
(4)
i is not relevant to our study of the denominator.

Similarly, we can set up the following system for BWWWWW = BW 5

g1 = A
(5)
1 + xv0g2 + x3v1g4 + x5v2g6 + x6u3g1

g2 = A
(5)
2 + xv0g3 + x2v0g4 + x4v1g6 + x5u2g1

g3 = A
(5)
3 + xv0g4 + x3v1g6 + x4u2g1
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(1, 1, 0, 2, 1, . . .)

(1, 0, 2, 1, 1, . . .)(2, 0, 2, 1, 1, . . .)

(0, 2, 1, 1, 1, . . .)(2, 2, 1, 1, 1, . . .)

v1g5(2, 3, 1, 1, 0, . . .)

C1

C2

(2, 3, C1)

C3

(1, 0, 2, 1, 1, . . .)

(0, 2, 1, 1, 1, . . .)(1, 2, 1, 1, 1, . . .)

v1g5(1, 3, 1, 1, 0, . . .)

C2

C3

(1, 3, C1)

(0, 2, 1, 1, 1, . . .)

(2, 1, 1, 1, 0, . . .)

C3

C4

(1, 1, 1, 0, 2, . . .)

(1, 1, 0, 2, 1, . . .)

C5

C1

(2, 1, 1, 1, 0, . . .)

(3, 1, 1, 0, 2, . . .) (1, 1, 1, 0, 2, . . .)

C4

(3, C1) C5

Figure 17: Quasi-infinite forest for BWWWW

g4 = A
(5)
4 + xv0g5

g5 = A
(5)
5 + xv0g6 + x2u1g1

g6 = A
(5)
6 + xv0g1

Observe that the equations for g2, g3, . . . , g6 are exactly the same (up to shifting the
indices) as those for g1, g2, . . . , g5 for BW 4. This is indeed true in general.

Proposition 5.3. If for P = BW k we have

g` = A
(k)
` +

∑

i>0

xiaig`+i

where ai is some coefficient (in this case ai is either vj or uj for some j), then for
P = BW k+m, we have

g`+m = A
(k+m)
`+m +

∑

i>0

xiaig`+m+i.

Here the indices of g are taken mod |P |.
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Proof. The equation g` = A
(k)
` +

∑
i>0 x

iaig`+i for P = BW k is set up using the
quasi-infinite tree rooted at the element

(1, 1, 1, . . . , 1︸ ︷︷ ︸
j copies of 1

, 0, 2, 1, . . .)

for some j. Then, for P = BW k+m, the equation for g`+m is set up using the
quasi-infinite tree rooted at the element of the exact same type, i.e.

(1, 1, 1, . . . , 1︸ ︷︷ ︸
j copies of 1

, 0, 2, 1, . . .).

Thus, the equations are the same up to shifting of the indices.

Proposition 5.3 leads to a useful corollary.

Corollary 5.4. If for P = BW k, we can substitute and obtain

g1 = A(k) + fkg1

for some polynomial A(k) and fk, then for P = BW k+m, we have

gm+1 = A(k+m) + fkg1

for some polynomial A(k+m).

Proof. The equations for g1, . . . , gk+1 of BW k is the same as those for gm+1, . . . ,
gk+m+1 for BW k+m, so substitution yields the desired identity.

For example, for P = BW 4, we can substitute and obtain g1 = A(4)+(12x5+8x4+
2x3)g1, then we know that for P = BW 5, we have g2 = A(5) + (12x5 + 8x4 + 2x3)g1.
Thus, we obtain the following recurrence.

Proposition 5.5. The coefficients fn in Definition 5.2 satisfy the following recur-
rence:

fn =





(∑n−4
2

i=0 x
2i+1vifn−(2i+1)

)
+ xn−2vn−4

2
f2 + xn+1vn

2
if n is even,(∑n−3

2
i=0 x

2i+1vifn−(2i+1)

)
+ xn+1vn+1

2
if n is odd.

(6)

Proof. This proposition is best illustrated by a figure.
Figure 18 shows the quasi-infinite trees TC1 for both cases. Hence, we can set up

the equation

g1 = A
(n)
1 +





(∑n−4
2

i=0 x2i+1vig2i+2

)
+xn−2vn−4

2
gn−1+xnvn−2

2
gn+1+xn+1un

2
g1 if n is even,

(∑n−3
2

i=0 x2i+1vig2i+2

)
+ xnvn−1

2
gn+1 + xn+1un+1

2
g1 if n is odd.
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(1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−2

, 0, 2, 1, 1, 1, . . .)

(2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−4

, 0, 2, 1, 1, 1, . . .)

(2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−6

, 0, 2, 1, 1, 1, . . .)

...

(2, 2, . . . , 2
︸ ︷︷ ︸

n−4
2

, 1, 1, 0, 2, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−2
2

, 0, 2, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n
2

, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−2
2

, 3, 1, 1, . . .)

C1

xv0g2

x3v1g4

x5v2g6

xn−3vn−4
2
gn−2

xn−2vn−4
2
gn−1

xnvn−2
2
gn+1

xn+1un
2
g1

(1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−2

, 0, 2, 1, 1, 1, . . .)

(2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−4

, 0, 2, 1, 1, 1, . . .)

(2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−6

, 0, 2, 1, 1, 1, . . .)

...

(2, 2, . . . , 2
︸ ︷︷ ︸

n−5
2

, 1, 1, 1, 0, 2, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−3
2

, 1, 0, 2, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−3
2

, 1, 2, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−3
2

, 1, 3, 1, 1, . . .)

C1

xv0g2

x3v1g4

x5v2g6

xn−4vn−5
2
gn−3

xn−2vn−3
2
gn−1

xnvn−1
2
gn+1

xn+1un+1
2
g1

n even n odd

Figure 18: Quasi-infinite trees TC1 when n is even (left) and odd (right)

By Corollary 5.4, each gi+1 can be substituted by Ai+1 + fn−ig1 for some polyno-
mial Ai+1. In addition, in both cases, we have gn+1 = 1 + xg1, and since vi + ui+1 =
vi+1, we have

xnvn−2
2
gn+1 + xn+1un

2
g1 = xnvn−2

2
+ xn+1vn

2
g1

for even n and

xnvn−1
2
gn+1 + xn+1un+1

2
g1 = xnvn−1

2
+ xn+1vn+1

2
g1

for odd n. Thus,

g1 = A(n) +





(∑n−4
2

i=0 x
2i+1vifn−(2i+1)g1

)
+ xn−2vn−4

2
f2g1 + xn+1vn

2
g1 if n is even,(∑n−3

2
i=0 x

2i+1vig2i+2

)
+ xn+1vn+1

2
g1 if n is odd.
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for some polynomial A(n). This gives equation (6).

Corollary 5.6. For all n, fn has degree n+ 1.

Proof. This is immediate from (6), knowing that vi has degree 0 for all i.

Corollary 5.6 means that for all n, HBWn can be written as a generating function
over fn − 1, which is a polynomial of degree n+ 1.

5.2 WBk

Now we will shift our attention to the other family, namely WBk. The cycle elements
of this family are

C1 = (1, 1, 1, 1, 1, . . . , 2, 0, . . .)

C2 = (1, 1, 1, 1, . . . , 2, 0, 1, . . .)

C3 = (1, 1, 1, . . . , 2, 0, 1, 1, . . .)

...

Ck−2 = (1, 1, 2, 0, 1, 1, 1, . . . , 1, . . .)

Ck−1 = (1, 2, 0, 1, 1, 1, . . . , 1, 1, . . .)

Ck = (2, 0, 1, 1, 1, . . . , 1, 1, 1, . . .)

Ck+1 = (0, 1, 1, 1, . . . , 1, 1, 1, 2, . . .)

Figure 19 shows the forest for P = WBBBB = WB4.

(1, 1, 1, 2, 0, . . .)

(1, 1, 2, 0, 1, . . .) (2, 1, 2, 0, 1, . . .)

v1g4 (1, 4, 0, 1, 1, . . .)(2, 3, 0, 1, 1, . . .)

(1, 2, 2, 0, 1, . . .)

v1g4

C1

C2

(2, 3, C5) (1, 4, C5)

(1, 1, 2, 0, 1, . . .)

(1, 2, 0, 1, 1, . . .)(2, 2, 0, 1, 1, . . .)

(2, 0, 1, 1, 1, . . .)(4, 0, 1, 1, 1, . . .)

C2

C3

(1, 3, C5) C4

(1, 2, 0, 1, 1, . . .)

(3, 0, 1, 1, 1, . . .) (2, 0, 1, 1, 1, . . .)

C3

C4(3, C5)

(0, 1, 1, 1, 2, . . .)

(1, 1, 1, 2, 0, . . .)

C5

C1

(2, 0, 1, 1, 1, . . .)

(0, 1, 1, 1, 2, . . .)

C4

C5

Figure 19: Quasi-infinite forest for WBBBB
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From Figure 19, we can set up the following system of equations.

g1 = B
(4)
1 + xv0g2 + x3v1g4 + x4u2g5 + x3v1g4 + x4u2g5

g2 = B
(4)
2 + xv0g3 + x2v0g4 + x3u1g5

g3 = B
(4)
3 + xv0g4 + x2u1g5

g4 = B
(4)
4 + xv0g5

g5 = B
(4)
5 + xv0g1

Similarly, we can set up the following system for P = WB5.

g1 = B
(5)
1 + xv0g2 + x3v1g4 + x4v1g5 + x5u2g6 + x4v2g5 + x5u3g6

g2 = B
(5)
2 + xv0g3 + x3v1g5 + x4u2g6

g3 = B
(5)
3 + xv0g4 + x2v0g5 + x3u1g6

g4 = B
(5)
4 + xv0g5 + x2u1g6

g5 = B
(5)
5 + xv0g6

g6 = B
(5)
6 + xv0g1

Similar to the case for P = BW k, we can see that the equations for g2, . . . , g5 for WB4

are the same as those for g3, . . . , g6 for WB5. However, there is a minor difference
between the equation for g1 for WB4 and that for g2 for WB5. This is because C1

has three playable parts, so besides the main branch after playing R1 and R2, we
also have the extra branch after playing R3. This extra branch, however, does not
show up in longer necklaces, so the equations are different. To take into account this
minor difference, we have a slightly different definition.

Definition 5.7. For k ≥ 2, let hk be the polynomial such that when using substitu-
tion to solve the system of equation for WBk+1, one has

g2 = B + hkg1

for some polynomial B.

Note that we have to define hk using the tree TC2 of WBn+1 to account for the
minor difference above. We also have two results analogous to Proposition 5.3 and
Corollary 5.4.

Proposition 5.8. If for P = WBk we have

g` = B
(k)
` +

∑

i>0

xiaig`+i

where ` > 1 and ai is some coefficient (in this case ai is either vj or uj for some j),
then for P = BW k+m, we have

g`+m = B
(k+m)
`+m +

∑

i>0

xiaig`+m+i.

Here the indices of g are taken mod |P |.
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Corollary 5.9. If for P = BW k+1, we have

g2 = B(k) + hkg1

for some polynomial B(k), then for P = BW k+m+1, we have

gm+1 = B(k+m) + hkg1

for some polynomial B(k+m).

Moreover, we also have an analogous recurrence.

Proposition 5.10. The coefficients hn in Definition 5.7 satisfy the following recur-
rence

hn = B +





(∑n−4
2

i=0 x
2i+1vihn−(2i+1)

)
+ xn+1vn

2
if n is even,(∑n−3

2
i=0 x

2i+1vihn−(2i+1)

)
+ xn+1vn−1

2
if n is odd.

(7)

for some polynomial B.

Proof. Once again, this proposition is best illustrated by a figure. Figure 20 shows
the main branch of TC1 for both cases. Note that in both cases, we have

gn = 1 + xgn+1 = 1 + x+ x2g1

and since vi + ui+1 = vi+1, we have

xn−1vn−2
2
gn + xnun

2
gn+1 = C + xn+1vn

2
g1

when n is even, and

xn−1vn−3
2
gn + xnun−1

2
gn+1 = C + xn+1vn−1

2
g1

when n is odd for some polynomial C. This gives equation (7).

Corollary 5.11. For all n, hn has degree n+ 1.

Proof. This is immediate from equation (7), knowing that vi has degree 0 for all i.

Before wrapping up this subsection, let us give the relationship between the
coefficients hn and the denominators of HWBn(x).

Proposition 5.12. For n ≥ 4, define pn(x) by the condition that when using substi-
tution to solve the system of equations for WBn, one has

g1 = A+ png1

for some polynomial A. Thus, HWBn can be written as a generating function over
pn − 1. Then,

pn = x−1hn+1 − x2v1hn−2.
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(1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

, 2, 0, 1, 1, 1, . . .)

(2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−3

, 2, 0, 1, 1, 1, . . .)

(2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−5

, 2, 0, 1, 1, 1, . . .)

...

(2, 2, . . . , 2
︸ ︷︷ ︸

n−4
2

, 1, 1, 1, 2, 0, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−2
2

, 1, 2, 0, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−2
2

, 3, 0, 1, 1, 1, . . .)

C1

xv0g2

x3v1g4

x5v2g6

xn−3vn−4
2
gn−2

xn−1vn−2
2
gn

xnun
2
gn+1

(1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−1

, 2, 0, 1, 1, 1, . . .)

(2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−3

, 2, 0, 1, 1, 1, . . .)

(2, 2, 1, 1, 1, . . . , 1
︸ ︷︷ ︸

n−5

, 2, 0, 1, 1, 1, . . .)

...

(2, 2, . . . , 2
︸ ︷︷ ︸

n−3
2

, 1, 1, 2, 0, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−1
2

, 2, 0, 1, 1, 1, . . .)

(2, 2, . . . , 2
︸ ︷︷ ︸

n−3
2

, 4, 0, 1, 1, 1, . . .)

C1

xv0g2

x3v1g4

x5v2g6

xn−2vn−3
2
gn−1

xn−1vn−3
2
gn

xnun−1
2
gn+1

n even n odd

Figure 20: Main branch of TC1 when n is even (left) and odd (right)

Proof. Note that pn satisfies
g1 = B + png1

for some polynomial B when solving the system of equations for WBn. Let us
compute pn. The main branch of C1 contributes h1 to pn. As for the extra branch,
observe that the elements of this branch has the form (1, 2, 2, . . .). If we replace the
first part 1 by 2, we get the elements in the main branch of C1 in WBn+1. Note that
this replacement does not change the weight since it does not change the pre-fuses
and fuses. Thus, the elements in the extra branch of C1 in WBn are those in the main
branch of C1 in WBn+1, with a few top elements missing, namely xv0g2 and x3v1g4

(both in WBn+1). Thus, the extra branch contributes x−1(hn+1−xv0hn−x3v1hn−2),
where the coefficient x−1 is needed to shift the exponents. Since v0 = 1, we have

pn = hn + x−1(hn+1 − xv0hn − x3v1hn−2) = x−1hn+1 − x2v1hn−2.
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Corollary 5.13. For all n, pn has degree n+ 1.

Proof. This is immediate from the equation

pn = x−1hn+1 − x2v1hn−2

because hn+1 has degree n+ 2 and hn−2 has degree n− 1 (by Corollary 5.11).

By Corollary 5.13, for all n, HWBn can be written as a generating function over
pn − 1, which is a polynomial of degree n+ 1.

5.3 Proof of Theorem 1.3

Now we are ready to prove Theorem 1.3.

Theorem 1.3. For all k ≥ 1, the functions HBWk(x) and HWBk(x) can both be
written over the same denominator which is a polynomial of degree k + 1.

Proof. By Corollary 5.6, HBWk can be written as a generating function over fk − 1,
which is a polynomial of degree k+ 1. By Corollary 5.13, HWBk can be written as a
generating function over pk − 1, which is also a polynomial of degree k + 1. Hence,
it suffices to prove that fk = pk for all k.

For the base cases, when k = 1, BW and WB are the same necklace, so HBW =
HWB. For k = 2, Pham in [5] (and Theorem 1.2) showed that HBWW = HWBB. For
k = 3, the example at the beginning of this section showed that HBWWW and HWBBB

can both be written as a generating function over 6x4 + 4x3 + x2 − 1, which is a
polynomial of degree 4. In particular, pk = fk for k ≤ 3. Thus, it suffices to prove
that pk satisfies equation (6) for k ≥ 4.

• Case 1: k is even. We need to check

pk =




k−4
2∑

i=0

x2i+1vipk−(2i+1)


+ xk−2v k−4

2
p2 + xk+1v k

2
.

Substituting pi = x−1hi+1 − x2v1hi−2 for i ≥ 4, this is equivalent to

x−1hk+1 − x2v1hk−2 =




k−6
2∑

i=0

x2i+1vi
(
x−1hk−2i − x2v1hk−2i−3

)



+ xk−3v k−4
2
p3 + xk−2v k−4

2
p2 + xk+1v k

2
.

From equation (7), we have

hk+1 =




k−6
2∑

i=0

x2i+1vihk−2i


+ xk−3v k−4

2
h4 + xk−1v k−2

2
h2 + xk+2v k

2
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and

hk−2 =




k−6
2∑

i=0

x2i+1vihk−2i−3


+ xk−1v k−2

2
.

Thus, it suffices to check

x−1
(
xk−3v k−4

2
h4 + xk−1v k−2

2
h2 + xk+2v k

2

)
− x2v1 · xk−1v k−2

2

= xk−3v k−4
2
p3 + xk−2v k−4

2
p2 + xk+1v k

2
.

Fortunately, this can be checked by direct computation. We have h4 = x5(2v1+
v2), h2 = x3v1, p3 = x4(v1 + v2), and p2 = x3v1. Hence,

LHS = x−1
(
xk−3v k−4

2
x5(2v1 + v2) + xk−1v k−2

2
x3v1 + xk+2v k

2

)
− x2v1 · xk−1v k−2

2

= xk+1v k−4
2

(2v1 + v2) + xk+1v k−2
2
v1 + xk+1v k

2
− xk+1v k−2

2
v1

= xk+1v k−4
2

(v1 + v2) + xk+1v k−4
2
v1 + xk+1v k

2
,

and

RHS = xk−3v k−4
2
x4(v1 + v2) + xk−2v k−4

2
x3v1 + xk+1v k

2

= xk+1v k−4
2

(v1 + v2) + xk+1v k−4
2
v1 + xk+1v k

2
.

• Case 2: k is odd. We need to check

pk =




k−3
2∑

i=0

x2i+1vipk−(2i+1)


+ xk+1v k+1

2

Substituting pi = x−1hi+1 − x2v1hi−2 for i ≥ 4, this is equivalent to

x−1hk+1 − x2v1hk−2 =




k−5
2∑

i=0

x2i+1vi
(
x−1hk−2i − x2v1hk−2i−3

)



+ xk−2v k−3
2
p2 + xk+1v k+1

2
.

From equation (7), we have

hk+1 =




k−5
2∑

i=0

x2i+1vihk−2i


+ xk−2v k−3

2
h3 + xk+2v k+1

2

and

hk−2 =




k−5
2∑

i=0

x2i+1vihk−2i−3


+ xk−1v k−3

2
.
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Thus, it suffices to check

x−1
(
xk−2v k−3

2
h3 + xk+2v k+1

2

)
− x2v1 · xk−1v k−3

2

= xk−2v k−3
2
p2 + xk+1v k+1

2
.

Again, by manual computation, we have h3 = 2x4v1 and p2 = x3v1. Hence,

LHS = 2xk+1v k−3
2
v1 + xk+1v k+1

2
− xk+1v k−3

2
v1

= xk+1v k−3
2
v1 + xk+1v k+1

2

= RHS.

Therefore, pk satisfies equation (6), so the proof is complete.

6 Discussion

As mentioned in the introduction, Theorem 1.3 is a special case of Conjecture 1.1
on the duality operation for primitive necklaces P 7→ P ∗, since the dual of BW k is
BkW = WBk. Theorem 1.2 is also a special case of this conjecture, but the two
families B(WB)k and W (BW )k also have a stronger property that HB(WB)k(x) and
HW (BW )k(x) are the same. We hope that our new representation and the combina-
torial interpretation of k-fuses may lead to a proof of the conjecture. Furthermore,
our proof of Theorem 1.3 is computationally heavy and is not combinatorial, so a
new combinatorial proof of Theorem 1.3 may shed light on a proof of the general
conjecture.

In her thesis [4], Pham proposed another nice conjecture about the size of the
finite Bulgarian solitaire orbits OPk for primitive necklaces P .

Conjecture 6.1. For any primitive necklace P with |P | ≥ 3, there is an integer cP
such that for all k,

|OPk | = ck−1
P |OP |.

If such cP exists, then there is an even more beautiful conjecture.

Conjecture 6.2. For any primitive necklace P such that cP and cP ∗ both exist,

cP = cP ∗ .

A special case of Conjecture 6.1 and 6.2 was proved by Pham in her thesis.

Theorem 6.3. For all k,
|O(BWW )k | = 5k

and
|O(BBW )k | = 7 · 5k−1.

Thus,
cBWW = cBBW = 5.
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It is also an interesting question to find a combinatorial interpretation of these
cP . In addition, the relationship between cP and the denominator of HP is not clear.
For example, BWBWBWB and BWBBWWW are not the dual of each other, and
cBWBWBWB = 63 6= cBWBBWWW = 94, yet our data shows that

HBWBWBWB(x) = HBWBBWWW(x)

= (1− x)
x9 + 8x8 + 42x7 − 19x6 − 63x5 − 56x4 − 34x3 − 18x2 − 10x− 7

18x7 + 16x6 + 6x5 + x4 − 1
.

The converse appears to be more probable. The smallest and only interesting ex-
ample that we could compute is WWWBBWWB and WWWBBWBB. They are not
the dual of each other, but our data shows that

cWWWBBWWB = cWWWBBWBB = 135,

and indeedHWWWBBWWB(x) andHWWWBBWBB(x) have the same denominator. Thus,
we make the following conjecture.

Conjecture 6.4. For any two primitive necklaces P1 and P2, if cP1 = cP2 then
HP1(x) and HP2(x) have the same denominator.

More data about cP and HP can be found in the Appendix below.
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Appendix: Data

Data on the conjectural ratios cP

These tables show the conjectural cP and |OPk | for primitive necklaces of size up
to 8.

P cP |OPk | Verified for
BWWW 15 15 · 15k−1 k ≤ 6
BBBW 15 30 · 15k−1 k ≤ 6

BBWW 10 15 · 10k−1 k ≤ 6

Table 1: |OPk | and cP for primitive necklaces of size 4

P cP |OPk | Verified for
BWWWW 44 56 · 44k−1 k ≤ 4
BBBBW 44 135 · 44k−1 k ≤ 4

BBWWW 27 45 · 27k−1 k ≤ 4
BBBWW 27 67 · 27k−1 k ≤ 4

BWBWB 17 34 · 17k−1 k ≤ 5
WBWBW 17 32 · 17k−1 k ≤ 5

Table 2: |OPk | and cP for primitive necklaces of size 5

P cP |OPk | Verified for
BWWWWW 164 231 · 164k−1 k ≤ 3

BBBBBW 164 627 · 164k−1 k ≤ 3

BBWWWW 96 185 · 96k−1 k ≤ 3
BBBBWW 96 322 · 96k−1 k ≤ 3

BBBWWW 80 214 · 80k−1 k ≤ 3

BWBWWW 53 87 · 53k−1 k ≤ 4
BBBWBW 53 133 · 53k−1 k ≤ 4

WWBWBB 38 80 · 38k−1 k ≤ 4

BBWBWW 30 65 · 30k−1 k ≤ 4

Table 3: |OPk | and cP for primitive necklaces of size 6
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P cP |OPk | Verified for
BWWWWWW 578 1002 · 578k−1 k ≤ 2

BBBBBBW 578 3010 · 578k−1 k ≤ 2

BBWWWWW 351 811 · 351k−1 k ≤ 2
BBBBBWW 351 1637 · 351k−1 k ≤ 2

BBBWWWW 290 777 · 290k−1 k ≤ 2
BBBBWWW 290 1114 · 290k−1 k ≤ 2

BWBWWWW 152 294 · 152k−1 k ≤ 3
BBBBWBW 152 544 · 152k−1 k ≤ 3

BWBBWWW 94 336 · 94k−1 k ≤ 3
BBBWWBW 94 286 · 94k−1 k ≤ 3

BBWBWWW 81 189 · 81k−1 k ≤ 3
BBBWBWW 81 255 · 81k−1 k ≤ 3

BWWBWWW 75 150 · 75k−1 k ≤ 3
BBBWBBW 75 255 · 75k−1 k ≤ 3

WBWBWBW 63 148 · 63k−1 k ≤ 3
BWBWBWB 63 158 · 63k−1 k ≤ 3

BBWWBWW 50 125 · 50k−1 k ≤ 4
BBWBBWW 50 145 · 50k−1 k ≤ 4

Table 4: |OPk | and cP for primitive necklaces of size 7
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P cP |OPk | Verified for
BWWWWWWW 2313 4565 · 2313k−1 k ≤ 2

BBBBBBBW 2313 14883 · 2313k−1 k ≤ 2

BBWWWWWW 1426 3727 · 1426k−1 k ≤ 2
BBBBBBWW 1426 8463 · 1426k−1 k ≤ 2

BBBWWWWW 1185 3880 · 1185k−1 k ≤ 2
BBBBBWWW 1185 5972 · 1185k−1 k ≤ 2

BBBBWWWW 956 4420 · 956k−1 k ≤ 2

BWBWWWWW 562 1152 · 562k−1 k ≤ 2
BBBBBWBW 562 2414 · 562k−1 k ≤ 2

WWWBWBBB 436 1076 · 436k−1 k ≤ 2

BBWBWWWW 288 747 · 288k−1 k ≤ 2
BBBBWBWW 288 1158 · 288k−1 k ≤ 2

BWBBWWWW 273 815 · 273k−1 k ≤ 2
BBBBWWBW 273 1082 · 273k−1 k ≤ 2

BBBWBWWW 240 802 · 240k−1 k ≤ 2

BWWBWWWW 220 500 · 220k−1 k ≤ 2
BBBBWBBW 220 983 · 220k−1 k ≤ 2

BWBWBWWW 197 420 · 197k−1 k ≤ 3
BBBWBWBW 197 593 · 197k−1 k ≤ 3

WWWBWWBB 150 375 · 150k−1 k ≤ 3
WWBBWBBB 150 525 · 150k−1 k ≤ 3

WWWBBWBB 135 414 · 135k−1 k ≤ 3
WWBWWBBB 135 470 · 135k−1 k ≤ 3

WWWBBWWB 135 360 · 135k−1 k ≤ 3
WBBWWBBB 135 524 · 135k−1 k ≤ 3

BBWBWWBW 114 316 · 114k−1 k ≤ 3

BBWBWBWW 110 295 · 110k−1 k ≤ 3

WWBWBWBB 97 309 · 97k−1 k ≤ 3

BWBWWBWW 85 245 · 85k−1 k ≤ 3
BBWBBWBW 85 289 · 85k−1 k ≤ 3

Table 5: |OPk | and cP for primitive necklaces of size 8



A.J. HARRIS AND S. NGUYEN/AUSTRALAS. J. COMBIN. 93 (2) (2025), 224–273 270

Data on the generating functions HP (x) = lim
`→∞
DP `(x)

Here are HP (x), HP ∗(x) for some primitive necklaces P and their duals P ∗.

HBWW = (1− x)
x3 − 3x2 − 4x− 3

2x3 + x2 − 1

= HBBW

HBWWW = (1− x)
x5 + 8x4 − 3x3 − 8x2 − 6x− 4

6x4 + 4x3 + x2 − 1

HBBBW = (1− x)
2x5 + 8x4 − 5x3 − 10x2 − 7x− 4

6x4 + 4x3 + x2 − 1

HBBWW = (1− x)
x5 + 4x4 − 3x3 − 6x2 − 6x− 4

3x4 + 2x3 + x2 − 1

HBWWWW = (1− x)
2x6 + 16x5 − 12x4 − 23x3 − 16x2 − 8x− 5

12x5 + 8x4 + 2x3 − 1

HBBBBW = (1− x)
4x6 + 16x5 − 16x4 − 28x3 − 19x2 − 9x− 5

12x5 + 8x4 + 2x3 − 1

HBBWWW = (1− x)
3x6 + 14x5 − 10x4 − 19x3 − 15x2 − 8x− 5

9x5 + 6x4 + 2x3 − 1

HBBBWW = (1− x)
3x6 + 10x5 − 15x4 − 24x3 − 18x2 − 9x− 5

9x5 + 6x4 + 2x3 − 1

HBWBWB = (1− x)
x6 + 8x5 − 9x4 − 16x3 − 12x2 − 7x− 5

6x5 + 4x4 + x3 − 1

= HWBWBW
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HBBBWWW = (1− x)
6x8 + 31x7 + 69x6 − 16x5 − 57x4 − 46x3 − 24x2 − 11x− 6

27x6 + 20x5 + 7x4 + x3 − 1

HBWWWWW = (1− x)
2x8 + 13x7 + 51x6 − 10x5 − 49x4 − 40x3 − 21x2 − 10x− 6

24x6 + 20x5 + 7x4 + x3 − 1

HBBBBBW = (1− x)
4x8 + 18x7 + 52x6 − 18x5 − 61x4 − 49x3 − 25x2 − 11x− 6

24x6 + 20x5 + 7x4 + x3 − 1

HBBWWWW = (1− x)
3x8 + 13x7 + 39x6 − 17x5 − 43x4 − 35x3 − 20x2 − 10x− 6

18x6 + 13x5 + 5x4 + x3 − 1

HBBBBWW = (1− x)
6x8 + 20x7 + 40x6 − 21x5 − 51x4 − 43x3 − 24x2 − 11x− 6

18x6 + 13x5 + 5x4 + x3 − 1

HBWBWWW = (1− x)
x8 + 8x7 + 42x6 − x5 − 35x4 − 32x3 − 18x2 − 9x− 6

18x6 + 16x5 + 6x4 + x3 − 1

HBBBWBW = (1− x)
2x8 + 12x7 + 43x6 − 7x5 − 43x4 − 38x3 − 21x2 − 10x− 6

18x6 + 16x5 + 6x4 + x3 − 1

HBBWBWW = (1− x)
2x7 + 12x6 − 3x5 − 20x4 − 23x3 − 16x2 − 9x− 6

6x6 + 7x5 + 4x4 + x3 − 1

HWWBWBB = (1− x)
x7 + 8x6 − 15x5 − 26x4 − 21x3 − 13x2 − 8x− 6

6x6 + 4x5 + x4 − 1



A.J. HARRIS AND S. NGUYEN/AUSTRALAS. J. COMBIN. 93 (2) (2025), 224–273 272

HBBWBWWW = (1− x)
6x8 + 40x7 − 9x6 − 67x5 − 69x4 − 42x3 − 21x2 − 11x− 7

18x7 + 21x6 + 10x5 + 2x4 − 1

HBBBWBWW = (1− x)
6x8 + 32x7 − 23x6 − 79x5 − 76x4 − 47x3 − 24x2 − 12x− 7

18x7 + 21x6 + 10x5 + 2x4 − 1

HBWBWBWB = (1− x)
x9 + 8x8 + 42x7 − 19x6 − 63x5 − 56x4 − 34x3 − 18x2 − 10x− 7

18x7 + 16x6 + 6x5 + x4 − 1

= HWBWBWBW

HBWBBWWW = (1− x)
x9 + 8x8 + 42x7 − 19x6 − 63x5 − 56x4 − 34x3 − 18x2 − 10x− 7

18x7 + 16x6 + 6x5 + x4 − 1

HBBBWWBW = (1− x)
2x9 + 12x8 + 43x7 − 25x6 − 77x5 − 70x4 − 43x3 − 22x2 − 11x− 7

18x7 + 16x6 + 6x5 + x4 − 1

HBBWWBWW = (1− x)
2x8 + 12x7 − 9x6 − 33x5 − 38x4 − 28x3 − 17x2 − 10x− 7

6x7 + 7x6 + 4x5 + x4 − 1

HBBWBBWW = (1− x)
2x8 + 12x7 − 9x6 − 32x5 − 36x4 − 26x3 − 16x2 − 10x− 7

6x7 + 7x6 + 4x5 + x4 − 1

HBWWBWWW = (1− x)
2x8 + 23x7 − 12x6 − 54x5 − 53x4 − 33x3 − 18x2 − 10x− 7

12x7 + 14x6 + 6x5 + x4 − 1

HBBBWBBW = (1− x)
4x8 + 24x7 − 16x6 − 60x5 − 57x4 − 36x3 − 20x2 − 11x− 7

12x7 + 14x6 + 6x5 + x4 − 1
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