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Abstract

Given a sequence S = (s1, s2, . . . , sk) of positive integers satisfying s1 ≤
s2 ≤ · · · ≤ sk, an S-packing coloring of a graph G is a partition of
V (G) into k subsets V1, V2, . . . , Vk such that, for each 1 ≤ i ≤ k, the
distance between any two distinct vertices x, y ∈ Vi is at least si + 1.
Yang and Wu established that every 3-irregular subcubic graph admits
a (1, 1, 3)-packing coloring. Later, Mortada and Togni introduced the
concept of an i-saturated subcubic graph, defined as a subcubic graph
in which every vertex of degree three has at most i neighbors of degree
three for 0 ≤ i ≤ 3. They further demonstrated that all 1-saturated
subcubic graphs are (1, 1, 2)-packing colorable. In this paper, we present
new concise proofs of these results using a novel tool.

1 Introduction

In this paper, we assume all graphs are simple, meaning they have no loops and
multiple edges. For a graph G, we denote by V (G) the set of vertices of G and by
E(G) the set of edges. We denote by g(G) the girth of G, defined as the length of the
shortest cycle in G. For a vertex v in G, we denote by dG(v) the number of neighbors
of v in G. For brevity, we refer to a vertex v with dG(v) = i as an i-vertex in G.
We denote by ∆(G) the maximum degree of G. The distance between two vertices
u and v in G, denoted by dG(u, v), is the length of the shortest path between u and
v in G. For a set M ⊆ E(G), M is said to be a matching in G if no two edges in M
share a common vertex. For a set H ⊆ V (G), H is called an independent set in G if
no two vertices in H are adjacent. We denote by G[H] the subgraph induced by H.
A spanning subgraph of a graph G is a subgraph H of G such that V (H) = V (G). A
bipartite graph B, denoted by B = X∪Y , is a graph where V (B) can be partitioned
into two subsets X and Y , called partite sets, such that every edge of B joins a
vertex of X and a vertex of Y .
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A subcubic graph is a graph in which each vertex has at most three neighbors.
Mortada and Togni [11] introduced the concept of an i-saturated subcubic graph,
defined as a subcubic graph in which every vertex of degree three has at most i
neighbors of degree three, where 0 ≤ i ≤ 3. Note that a 3-irregular subcubic graph
is the same as a 0-saturated subcubic graph.

For a sequence S = (s1, s2, . . . , sk) of positive integers satisfying s1 ≤ s2 ≤
· · · ≤ sk, an S-packing coloring of a graph G is a partition of V (G) into k subsets
V1, V2, . . . , Vk such that, for each 1 ≤ i ≤ k, the distance between any two distinct
vertices x, y ∈ Vi is at least si + 1. The smallest integer k for which G admits
a (1, 2, . . . , k)-packing coloring (k-packing coloring) is called the packing chromatic
number of G and is denoted by χρ(G). This concept was introduced by Goddard,
Hedetniemi, Hedetniemi, Harris, and Rall [7] in 2008 under the name broadcast
chromatic number. For a graph G, the subdivided graph of G, denoted by S(G), is
obtained by replacing each edge of G with a path of length two.

Numerous studies have focused on establishing bounds for χρ(G) and χρ(S(G))
(see [1, 2, 3, 4, 6]). In particular, Gastineau and Togni [6] posed the question of
whether the inequality χρ(S(G)) ≤ 5 holds for any subcubic graph G, a conjecture
later formalized by Brešar, Klavžar, Rall, and Wash [3]. Gastineau and Togni [6]
demonstrated that for a subcubic graph G to satisfy χρ(S(G)) ≤ 5, it is sufficient for
G to be (1, 1, 2, 2)-packing colorable. Several papers [8, 11] have verified that certain
subclasses of subcubic graphs are (1, 1, 2, 2)-packing colorable. More recently, Brešar,
Kuenzel, and Rall [5] proved that every claw-free cubic graph is (1, 1, 2, 2)-packing
colorable.

Many other S-packing colorings have been studied. In particular, Gastineau and
Togni [6] proved that every subcubic graph is (1, 1, 2, 2, 2)-packing colorable. Tarhini
and Togni [14] proved that every cubic Halin graph is (1, 1, 2, 3)-packing colorable.
Mortada and Togni [12, 13] established many results regarding i-saturated subcubic
graphs. Recently, Liu, Zhang, and Zhang [9] proved that every subcubic graph is (1,
1, 2, 2, 3)-packing colorable, and hence that the packing chromatic number of the
subdivided graph of any subcubic graph is at most six.

Yang and Wu [15] answered a question posed by Gastineau and Togni [6], con-
firming that every 0-saturated subcubic graph is (1, 1, 3)-packing colorable. This
result has improved the earlier work of Gastineau and Togni [6], who had shown that
every 0-saturated subcubic graph is (1, 1, 2)-packing colorable. More precisely, Yang
and Wu [15] demonstrated that every 0-saturated subcubic graph admits a good
(1, 1, 3)-packing coloring, where a (1, 1, 3)-packing coloring of G is said to be a good
(1, 1, 3)-packing coloring if no connected component of the subgraph induced by the
vertices of degree two in G is isomorphic to a path of length two, P = uvw, with the
vertex v colored by the color three. To prove this result, Yang and Wu considered the
0-saturated subcubic graph of minimum order that does not admit such a coloring.
Then, they proved that every vertex of degree two is adjacent to at most one vertex
of degree two, G is 2-connected, and g(G) is at least 3, then at least 4, 5, 6, and
finally at least 7. These results allowed the authors to define the distance between
edges whose ends are both of degree two in G. Ultimately, they proved the existence
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of a good (1, 1, 3)-packing coloring for G. Mortada and Togni [11] demonstrated that
all 1-saturated subcubic graphs are (1, 1, 2)-packing colorable. Their proof technique
involves considering a 1-saturated subcubic graph G of minimum order that does not
admit such a coloring. Then, they select an independent set in G that maximizes,
among all independent sets, a linear combination of the number of vertices of degree
three and the number of vertices of degree two. By analyzing such an independent
set, they were able to determine the distance between a number of vertices in G and
establish the existence of a (1, 1, 2)-packing coloring for G. Using the same method,
Mortada [10] provided a simpler proof for the result established by Yang and Wu
[15] concerning the 0-saturated subcubic graphs.

In this paper, we present concise proofs that every 0-saturated subcubic graph
is (1, 1, 3)-packing colorable and that every 1-saturated subcubic graph is (1, 1, 2)-
packing colorable. Our approach depends on the spanning bipartite subgraph B
of G with the maximum number of edges. This subgraph effectively organizes the
structure of the subcubic graph, facilitating the partitioning of V (G) and enabling
the achievement of the desired colorings. Notably, this technique is introduced for
the first time in the context of S-packing colorings of subcubic graphs.

2 About 0-Saturated and 1-Saturated Subcubic Graphs

Let us begin by introducing a key property of the spanning bipartite subgraph of a
graph G with the maximum number of edges.

Proposition 2.1. Let G be a graph. Let B = X∪Y be a spanning bipartite subgraph

of G with the maximum number of edges. Then dB(v) ≥
1
2
dG(v) for any v ∈ G.

Proof. Suppose, to the contrary, that there exists a vertex x ∈ G such that dB(x) <
1
2
dG(x). Without loss of generality, suppose that x ∈ X. Now, define B′ = (X\{x})∪

(Y ∪{x}) as a spanning bipartite subgraph of G, where E(B′) consists of all edges of G
that have one endpoint in X ′ and the other in Y ′. Thus, we have |E(B′)| = |E(B)|+
dG[X](x)−dB(x). Since dG[X](x) = dG(x)−dB(x), |E(B′)| = |E(B)|+dG(x)−2dB(x).
Therefore, |E(B′)| > |E(B)| as dB(x) <

1
2
dG(x), a contradiction. �

By specializing the graph in Proposition 2.1 to a subcubic graph, we obtain the
following corollary.

Corollary 2.1. Let G be a subcubic graph. Let B = X ∪ Y be a spanning bipar-

tite subgraph of G with the maximum number of edges. Then ∆(G[X]) ≤ 1 and

∆(G[Y ]) ≤ 1.

Proof. Let x ∈ X. We have dG[X](x) = dG(x) − dB(x). By Proposition 2.1, we get
dG[X](x) ≤ 1

2
dG(x). Since G is a subcubic graph, dG[X](x) ≤ 1. Similarly, we can

show that ∆(G[Y ]) ≤ 1. �

For any spanning bipartite subgraph B = X ∪ Y of a subcubic graph G with the
maximum number of edges, let EX (respectively EY ) denote the set of edges of G[X]
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(respectively G[Y ]). By Corollary 2.1, each EX and EY is a matching in G. We call
each end of an edge in EX ∪ EY a bad vertex. By Proposition 2.1, each bad vertex
has degree at least two in G. Two bad vertices in G are said to be unlinked if they
belong to distinct edges in EX ∪ EY .

Our approach establishing that a subclass of a subcubic graph G is (1, 1, k)-
packing colorable follows this strategy. We start by selecting a spanning bipartite
subgraph B = X ∪ Y of G with the maximum number of edges. Then, we color
exactly one end of each edge in EX ∪ EY with k. By Corollary 2.1, and since each
edge has a colored end, the subgraph of G induced by the uncolored vertices is a
bipartite graph. This establishes that G is (1, 1, k)-packing colorable.

We will now present two lemmas that are essential for proving the main theorems
of this paper.

Lemma 2.1. Let G be a subcubic graph, and let B = X ∪ Y be a spanning bipartite

subgraph of G with the maximum number of edges. If x ∈ X and y ∈ Y are two

adjacent bad vertices, then both x and y are 3-vertices in G.

Proof. Suppose, to the contrary, that either x or y is a 2-vertex in G. Without loss
of generality, assume that y is a 2-vertex in G. Then, define B′ = X ′ ∪ Y ′ to be a
spanning bipartite subgraph of G, where X ′ = (X\{x})∪{y} and Y ′ = (Y \{y})∪{x}.
The edge set E(B′) consists of all edges of G that have one endpoint in X ′ and the
other in Y ′. Thus, we have |E(B′)| = |E(B)| + dG[X](x) + dG[Y ](y) − dG[Y ′](x) −
dG[X′](y). Clearly, dG[X](x) = dG[Y ](y) = 1. Since x has two neighbors in X ′ and
G is a subcubic graph, dG[Y ′](x) ≤ 1. Additionally, dG[X′](y) = 0 because y is a
2-vertex in G, and y already has two neighbors in Y ′. Thus |E(B′)| > |E(B)|, a
contradiction. �

Lemma 2.2. Let G be a subcubic graph, and let B = X ∪ Y be a spanning bipartite

subgraph of G with the maximum number of edges. Suppose u, v ∈ V (G) are bad

unlinked vertices belonging to the same partite set of B and having a common neighbor

z ∈ V (G). Then, u or v is a 3-vertex in G. Furthermore, if either u or v is a 2-vertex
in G, then z must be a 3-vertex in G.

Proof. Let u and v be two bad unlinked 2-vertices in G. Then, there exist u1, v1 ∈
V (G) such that uu1, vv1 ∈ EX ∪ EY . Suppose, without loss of generality, that
u, v ∈ X and that they have a common neighbor z. By Corollary 2.1, it follows that
z ∈ Y .

For the first part of this lemma, suppose to the contrary that both u and v are 2-
vertices in G. Define B′ = X ′ ∪ Y ′ to be a spanning bipartite subgraph of G, where
X ′ = (X \ {u, v}) ∪ {z} and Y ′ = (Y \ {z}) ∪ {u, v}. The edge set E(B′) consists
of all edges of G that have one endpoint in X ′ and the other in Y ′. Thus, we have
|E(B′)| = |E(B)|+dG[Y ](z)+dG[X](u)+dG[X](v)−dG[X′](z)−dG[Y ′](u)−dG[Y ′](v). As u
and v are bad vertices in G, dG[X](u) = dG[X](v) = 1. Since z has two neighbors in Y ′

and G is a subcubic graph, we have dG[X′](z) ≤ 1. Moreover, dG[Y ′](u) = dG[Y ′](v) = 0
because both u and v are 2-vertices in G and already have two neighbors in X ′. Thus
|E(B′)| > |E(B)|, a contradiction.
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For the second part of this lemma, assume without loss of generality that u is a 2-
vertex in G and suppose, for the sake of contradiction, that z is also a 2-vertex in G.
Now, define B′ = X ′∪Y ′ as a spanning bipartite subgraph of G, where X ′ = X \{u}
and Y ′ = Y ∪ {u}. Then, we obtain |E(B′)| = |(E(B) \ {uz}) ∪ {uu1}| = |E(B)|.
Therefore, B′ is a spanning bipartite subgraph of G with the maximum number of
edges. However, under this new bipartition, v ∈ X ′ and z ∈ Y ′ are two adjacent bad
vertices, where z is a 2-vertex in G, a contradiction by Lemma 2.1. �

The following lemma establishes the distance between any two bad unlinked 2-
vertices in G.

Lemma 2.3. Let G be a subcubic graph, and let B = X ∪ Y be a spanning bipartite

subgraph of G with the maximum number of edges. Then, the distance between any

two bad unlinked 2-vertices in G is at least 3.

Proof. Let u and v be two bad unlinked 2-vertices in G. Then, there exist u1, v1 ∈
V (G) such that uu1, vv1 ∈ EX ∪EY . First, suppose that u and v belong to the same
partite set of B, either X or Y . As u and v are unlinked, dG(u, v) > 1. Furthermore,
by Corollary 2.1 and by Lemma 2.2, u and v cannot share a common neighbor,
which implies that dG(u, v) ≥ 3. Next, consider the case where u and v belong to
distinct partite sets of B. By Lemma 2.1, we have uv, uv1, u1v /∈ E(G). As a result,
dG(u, v) ≥ 3. �

We are now ready to present the proofs of our main theorems.

Theorem 2.1. Every 0-saturated subcubic graph is (1, 1, 3)-packing colorable.

Proof. Let G be a 0-saturated subcubic graph. Let B = X ∪ Y be a spanning
bipartite subgraph of G with the maximum number of edges. By Corollary 2.1, EX

and EY are two matchings in G. By Proposition 2.1, each bad vertex has degree at
least two in G. Therefore, since G is a 0-saturated subcubic graph, at least one end
of each edge in EX ∪ EY must be a 2-vertex in G.

Claim 2.1.1. The distance between any two bad unlinked 2-vertices in G is at least 4.

Proof. Let u and v be two bad unlinked 2-vertices in G. Then, there exist u1, v1 ∈
V (G) such that uu1, vv1 ∈ EX ∪ EY . By Lemma 2.3, dG(u, v) ≥ 3. Suppose that
dG(u, v) = 3.

First, assume that u and v are in the same partite set. Then, either u and v1 or u1

and v have a common neighbor in G. Without loss of generality, suppose that u and
v1 have a common neighbor z ∈ V (G). By Corollary 2.1, z ∈ Y . By Lemma 2.2, and
since u is a 2-vertex in G, both v1 and z are 3-vertices in G, which is a contradiction
because G is a 0-saturated subcubic graph.

Now, consider the case where u and v are in distinct partite sets. Without loss
of generality, assume that u ∈ X and v ∈ Y . By Lemma 2.1, and since G is a
0-saturated subcubic graph, u1v1 /∈ E(G). Then, there exist x ∈ X and y ∈ Y
such that uy, yx, xv ∈ E(G). Now, define B′ = X ′ ∪ Y ′ to be a spanning bipartite
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subgraph of G, where X ′ = X ∪ {v} and Y ′ = Y \ {v}. We have |E(B′)| = |(E(B) \
{xv}) ∪ {vv1}| = |E(B)|. Then, B′ is a spanning bipartite subgraph of G with the
maximum number of edges. In this new bipartition, the two bad unlinked vertices
u, x ∈ X ′ have a common neighbor y ∈ Y ′. Then, by Lemma 2.2, and since u is a
2-vertex in G, it follows that both x and y must be 3-vertices in G, a contradiction
as G is a 0-saturated subcubic graph. 2

Now, define T ⊆ V (G) as a set that contains one bad 2-vertex of each edge in EX∪EY .
By Claim 2.1.1, we can color each vertex in T with 3. Moreover, by Corollary 2.1
and the construction of T , the subgraph of G induced by the remaining uncolored
vertices is a bipartite graph. This implies that G is (1, 1, 3)-packing colorable. �

Theorem 2.2. Every 1-saturated subcubic graph is (1, 1, 2)-packing colorable.

Proof. Let G be a 1-saturated subcubic graph. Consider a spanning bipartite sub-
graph B = X ∪ Y of G with the maximum number of edges. By Corollary 2.1, EX

and EY are two matchings in G. By Proposition 2.1, each bad vertex has degree
at least two in G. Consequently, we define E1(B) to contain each edge in EX ∪ EY

where at least one of its ends is a 2-vertex in G, and E2(B) = (EX ∪ EY ) \ E1(B);
that is, both ends of any edge in E2(B) are 3-vertices in G. Assume B is chosen
such that |E1(B)| ≥ |E1(B

′)| for each spanning bipartite subgraphs B′ of G with
the maximum number of edges. Now, define T as the set containing exactly one bad
2-vertex of each edge in E1(B) and exactly one end of each edge in E2(B).

Claim 2.2.1. Let u, v ∈ T , then dG(u, v) ≥ 3.

Proof. Let u, v ∈ T . By the definition of T , u and v are unlinked. Then, there
exist u1, v1 ∈ V (G) such that uu1, vv1 ∈ EX ∪ EY . Suppose that u and v belong to
different partite sets. We have uv, uv1, vu1 /∈ E(G). Indeed, suppose to the contrary
and without loss of generality that uv ∈ E(G). Then, by Lemma 2.1, both u and v
are 3-vertices in G. Consequently, by the definition of T , both u1 and v1 are 3-vertices
in G, a contradiction as G is a 1-saturated subcubic graph. Suppose now that both u
and v are in the same partite set, either X or Y . Without loss of generality, assume
u, v ∈ X. By the definition of T , dG(u, v) > 1. Assume dG(u, v) = 2. Then, by
Corollary 2.1, there exists a vertex y ∈ Y such that uy, yv ∈ E(G). By Lemma
2.2, either u or v is a 3-vertex in G. Suppose, without loss of generality, that u is
a 3-vertex in G. By the definition of T , u1 must be a 3-vertex in G. Since G is a
1-saturated subcubic graph, y is a 2-vertex in G. Thus, by Lemma 2.2, v is a 3-vertex
in G. By the definition of T , v1 must be a 3-vertex in G. Now, let u′ (respectively
v′) be the third neighbor of u (respectively v) distinct from both u1 (respectively
v1) and y. By Corollary 2.1, u′, v′ ∈ Y . Since G is a 1-saturated subcubic graph,
both u′ and v′ are 2-vertices in G. Now, define B′ = X ′ ∪ Y ′ as a spanning bipartite
subgraph of G, where X ′ = (X \ {u, v}) ∪ {y} and Y ′ = (Y \ {y}) ∪ {u, v}. We
have |E(B′)| = |(E(B) \ {uu′, vv′}) ∪ {uu1, vv1}| = |E(B)|. Therefore, B′ is a
spanning bipartite subgraph of G with the maximum number of edges. However,
E1(B

′) = E1(B) ∪ {uu1, vv1}, which contradicts the maximality of E1(B). 2
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By Claim 2.2.1, we can color each vertex in T with 2. Moreover, by the construction
of T and Corollary 2.1, the subgraph of G induced by the remaining uncolored
vertices is a bipartite graph. Therefore, G is (1, 1, 2)-packing colorable. �
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