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Abstract

Given a graph, its vertices can be thought of as locations that are sub-
ject to a sequence of attacks. Guards who defend the graph respond to
attacks by moving along graph edges (or remaining stationary). A set
of vertices of the graph is said to be autonomous dominating if mobile
guards that start at those locations are able to defend against any infinite
series of attacks using local information only, without coordination by a
central planner. The autonomous domination number of the graph is the
smallest size of an autonomous dominating set. This paper initiates the
study of autonomous domination, computing the autonomous domina-
tion number for some families of graphs and comparing the parameter
to other domination numbers. Examples are presented of “paradoxical”
behavior under the addition of edges or guards; these examples show that
the autonomous domination number appropriately reflects the difficulty
of acting with limited information.

1 Introduction

1.1 Domination and Variations

This paper considers graphs subjected to a series of attacks, with a single unguarded
vertex being attacked at each stage, and a guard being required to move along a
single edge to the attacked location. The defense of graphs under lengthy (includ-
ing infinite) attack sequences have been studied in a number of ways. The article
[24] surveys the literature. Eternal domination, introduced in [4], involves the de-
fense of a graph under attacks of infinite length with the assistance of a perfectly
strategic coordinator. Further studies include [12, 13]. Arbitrarily long (but finite)
length series of attacks were considered in [3]. Domination under an infinite series
of attacks without any strategic or tactical coordination has been studied under the
name foolproof eternal domination [23]. Domination generally is the subject of the
monographs [14, 15].
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There is a natural intermediate notion between eternal domination and foolproof
eternal domination, called autonomous domination, and it is the purpose of the
present work to introduce and study this idea. The mobile guards have local, tacti-
cal information, but there is no central planner optimizing motion based on global
information and strategic thinking. Such a formulation models significant features
of real-world decision-making, in which time and information are limited.

1.2 An Example

Here is an example that illustrates the significance of the presence of a master planner.
Suppose a graph is defended by three guards, marked in blue in the following figure.

The configuration of guards above is a dominating set. A problem could arise at the
red vertex. Each of the three guards is adjacent to the problem vertex. Moreover,
if any guard moves to the problem vertex, the new configuration will still be a
dominating set. Tactical thinking aiming merely at the maintenance of domination
does not reveal that one movement is preferable. Suppose, though, that the guard
at the top left moves to the central red vertex. The consequence of that movement
is depicted below.

p

This is still a dominating set, but the guard configuration is no longer secure. If a
problem arises at one of the bottom two vertices, it can only be addressed by the
guard at the top right, and the other bottom vertex will then be unguarded.

The notions of secure, perfect, and perfect secure domination address, respec-
tively, the ability to respond to a second attack, the uniqueness of the responder,
and the uniqueness of the responder to a second attack [6, 32, 36]. Uniqueness implies
that no decision needs to be made by a central planner. None of these definitions,
however, addresses attack sequences of arbitrary length. The present work begins to
fill this gap.



P. ULRICKSON/AUSTRALAS. J. COMBIN. 92 (2) (2025), 210–236 212

1.3 Distinctions

This subsection briefly distinguishes between autonomous domination and other
forms of domination. Autonomous domination deals with attack sequences of ar-
bitrary length, in which attacks occur at a single vertex at each time step. It is
thereby distinguished from ordinary domination (which involves defense against a
single attack) and secure domination (which involves a sequence of two attacks),
and similar to eternal domination and foolproof eternal domination. Autonomous
domination does not presume that a strategic planner makes optimal decisions at
each step; this distinguishes it from eternal domination. On the other hand, guards
move tactically, considering locally available information about graph defense, and
so autonomous domination is different from foolproof eternal domination, in which
guards move without any consideration of the consequences of such motion.

Only one vertex is attacked at each stage, and only one guard moves, in contrast
to m-eternal domination, in which multiple guards move [12]. In autonomous domi-
nation, a guard occupying a vertex is considered sufficient for both that vertex and
its neighbors; this is in contrast with total domination, in which the graph induced
by the guard set has no isolated vertices. Guards move towards, not away from,
attacks, in contrast to eternal eviction [21].

In autonomous domination, guards may not accumulate at a single vertex. In-
stead, at most one guard occupies any location. This distinguishes autonomous
domination from Roman domination and similar parameters, in which vertices can
hold multiple guards [7, 17].

1.4 Related work and applications

Autonomous domination can be considered a form of self-stabilization [9] and involves
a local detection paradigm [2]. Comparison can be made to the notion of distributed
graph algorithms. Rather than considering distributed processors that combine to
compute a global result, we consider distributed maintainers, whose communication
is of a standard simple form at each step. The computation of autonomous dom-
ination numbers is done globally, here. Furthermore, supposing the autonomous
domination number as given, the initial guard distribution within the graph involves
strategic thought and global data. Many distributed algorithms for domination num-
bers and other parameters have been presented [8, 16, 18, 19, 25, 26, 30, 33, 34].

Autonomous domination can be seen as a toy problem for swarm robotics [10].
The problem (like eternal domination, and unlike foolproof eternal domination) has
a hierarchical aspect [27], since the guards must be initially configured (and, in the
eternal domination case, subsequently guided). The guards in an autonomous domi-
nating set can be seen as mobile sensors [1, 29, 35], so that the problem of finding an
autonomous dominating set is like finding a good mobile sensor deployment. Impor-
tantly, the mathematical abstraction of autonomous domination does not consider
the cost of sensor movements or of communication at a distance, and these must be
accounted for in real applications.
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2 Definitions

Informally speaking, an autonomous dominating set is a collection of guards that can
cover an arbitrarily long sequence of attacks, while coordinating their movements
only by preserving domination. We assume that each guard knows about whether
neighboring vertices are also defended by other guards, so that it knows whether its
movement away from a location would result in an undefended vertex, and thus be
forbidden. At least one guard can cover each attack so that the new configuration is
still dominating, and no special choice is made if multiple guards can so move.

We now build up to a formal definition in a series of steps. First comes a definition
about dominating sets that is useful when describing how guards move.

Definition 2.1. Given a graph G and dominating sets S and S ′, we say that S and
S ′ are adjacent if they differ only by a pair of vertices adjacent in G: i.e. there are
vertices v ∈ S and v′ ∈ S ′ such that (v, v′) is an edge of G and S ′ = (S \ {v})∪{v′}.

It will be useful at times to use the term ‘legal guard move’ to refer to the pair
(v, v′) relating two adjacent dominating sets S and S ′. Adjacent dominating sets
have the same cardinality.

The following definition is the fundamental one for this paper. It clarifies what
precisely is meant when we say, informally, that the guards coordinate their motions
using tactical but not strategic information.

Definition 2.2. A non-empty collection F of subsets Si ⊂ V is said to be an
autonomously dominating family if the following conditions are satisfied.

1. Each subset Si is a dominating set.

2. For each subset Si and each vertex v ∈ V \ Si, there is a subset Sj ∈ F which
is adjacent to Si and contains v.

3. For each subset S ∈ F , every dominating set which is adjacent to S is also
in F .

The first condition simply records that the guard configuration at a given time is
capable of responding to an attack at any vertex. The second condition is that there
is always some guard that can respond to an attack without losing domination. The
first and second conditions imply that each member of the family F is in fact secure
dominating. The third is ‘closure under all reasonable movements of autonomous
guards.’ It says that it must be possible for any guard that can move to the attack
without losing graph domination to do so. There is no coordinator who, with an eye
to the whole, determines which guard moves. What this would mean in a practical
situation is that a randomization would pick one guard to move, if multiple guards
are free to do so.

Remark 2.3. Autonomous domination is about defending a graph in perpetuity.
As a result the definition of autonomously dominating family does not privilege one
of the many configurations as ‘initial.’ Instead all possible arrangements of guards
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are treated equally. This is the reason for making the definition in terms of a family
of subsets, rather than a statement about sequences. A definition using sequences
could be made as well but would be more complicated. It is simpler to consider a
whole family which is closed under the relation of adjacency for dominating sets.

Having defined autonomous domination for a family, the notion for an individual
set follows.

Definition 2.4. A set of vertices in a graph is said to be an autonomous dominating
set if it belongs to an autonomous dominating family.

It is now possible to define a graph invariant, the autonomous domination number.

Definition 2.5. The autonomous domination number γaut(G) of a graph G is the
smallest size of an autonomous dominating set.

Remark 2.6. The graph given in Section 1.2 has autonomous domination number 4.
The discussion of that section showed that fewer guards would not suffice. The
eternal domination number of that graph, on the other hand, is 3.

Autonomous domination differs from eternal and eternal foolproof domination
in ways made evident by the form of the definition. In Definition 2.2, one obtains
eternal domination by dropping the third condition.

Definition 2.7. A set S of vertices V in a graph is said to be a secure dominating
set if S is an element of a collection F of subsets Si ⊂ V which satisfies the following
conditions.

1. Each subset Si is a dominating set.

2. For each subset Si and each vertex v ∈ V \ Si, there is a subset Sj ∈ F which
is adjacent to Si and contains v.

In this case, all that is required is the existence of a possible guard (second
condition). The master planner will determine which guard moves, and so the third
condition is omitted.

On the other hand, the third condition can be strengthened as follows.

Strengthened Third Condition: For each subset Si, each vertex v ∈
V \Si, and each vertex w ∈ Si, if v and w are adjacent, then (Si\{w})∪{v}
is also contained in F .

This gives foolproof eternal domination, in which guards move without consid-
ering whether such movement is prudent. The foolproof eternal domination number
itself is very simple to compute.
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3 Properties and Computational Methods

3.1 Elementary Bounds

The foolproof eternal domination number of a graph is n − δ, where n is the order
of the graph and δ is the minimum degree [4, Theorem 3]. It was noted above that
foolproof eternal domination arises by strengthening the definition of autonomous
domination, so that the following inequality is immediate.

Lemma 3.1. Let G be a graph with order n and minimum degree δ. Then γaut(G) ≤
n− δ.

The upper bound can be attained. For example, the complete graphs attain the
upper bound.

It is also evident that the autonomous domination number is bounded below by
the eternal domination number, since an eternal dominating set is subject to fewer
conditions. In eternal domination a ‘manager’ is able to have an eye to the whole of
the network being defended, and this is reflected in the following inequality.

Lemma 3.2. The autonomous domination number γaut is bounded below by the eter-
nal domination number γ∞.

3.2 Some means of computation

If an adversary attacks at a series of independent vertices, each such attack must be
addressed by a separate guard. The next lemma records this.

Lemma 3.3. Let G be a graph and F an autonomous family of dominating sets.
Given any independent set I of vertices of G, there is a set S in the automonous
family such that I ⊂ S.

Proof. Consider a series of attacks at each of the vertices in I. These must be covered
by distinct guards, since the set is independent and so a guard will never move from
one vertex in I directly to another such vertex.

When considering concrete examples, the following corollary is useful. It explains
how independent dominating sets allow us to explore possible guard configurations.

Corollary 3.4. Suppose that G is a connected graph, F an autonomous dominating
family, and I an independent dominating set. Suppose further that the subgraph
induced by the complement of I is connected. Then any set T of vertices of G
which contains I and has the same cardinality as elements of F is contained in the
autonomous family F .

Proof. By Lemma 3.3 there is some S ∈ F which contains I. Let the remaining
guards move along paths from their initial locations to the remaining elements of T .
These constitute a series of legal guard moves.
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Here are examples that exclude possible weakenings of the hypotheses of Corol-
lary 3.4. Consider a path on five vertices {a1, a2, a3, a4, a5} and add two leaves ℓ2 and
ℓ3 adjacent to a2 and a3, respectively. The autonomous domination number of this
graph is 4; the set S = {a1, a2, a3, a4} is an autonomous dominating set. Consider the
set of vertices {a2, a3, a4, a5}. This set also contains the dominating set {a2, a3, a4},
but is not connected to S by a sequence of legal guard moves. The three vertices
{a1, a2, ℓ2} must always have two guards. In order for a guard to move away from
these three vertices, it would do so from a2, thereby abandoning one of the adjacent
leaves. This is not a legal guard move. (In this example, both independence and the
connectedness of the complement fail.)

Again, with regard to the connectedness hypotheses in Corollary 3.4, consider the
disjoint union of two cycles C5. The autonomous domination number of this graph is
6, by Proposition 4.2. With two guards on one cycle and four on the other, however,
we obtain a dominating set of that size which is not autonomous.

The second example involved a graph with two components. It seems reasonable
to imagine that the hypothesis about the connectedness of the complement can be
dropped. A proof of such a statement would involve some intricate analysis, and the
more general result (if it holds) is not needed here.

A useful bound arises in the case that all dominating sets of a given size are
secure dominating.

Theorem 3.5. If every dominating set of size k is secure dominating, then γaut ≤ k.

Proof. Define an autonomous family consisting of all dominating sets of size k.

The converse does not hold. Consider a K3 with two leaves from one vertex. The
autonomous domination number of this graph is 3, but the set consisting of the three
vertices of K3 is dominating but not secure dominating.

3.3 A partition count

The eternal domination number γ∞ is bounded above by the clique cover number
[4, Theorem 4]. In other words, if the vertices of a graph can be divided among c
subsets such that the induced graph on each subset is complete, then γ∞ ≤ c.

This clique cover number c, though bounding γ∞, does not provide a bound of
γaut. Observe that a path Pn can be partitioned (by taking adjacent pairs of vertices,
with possibly one left over) into ⌈n

2
⌉ such subsets, all of whose induced graphs are

complete. On the other hand, γaut(Pn), computed in Proposition 4.1, exceeds this
bound by an amount growing arbitrarily large as n increases.

There is, however, the following technical proposition involving a partition of
the set of vertices, which determines the autonomous domination number at least
in some cases. It will be applied in Section 5 to compute autonomous domination
numbers of Cartesian products of complete graphs.
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Before giving the specific statement, here is an informal summary. Suppose that a
graph consists of a relatively small number of relatively large cliques whose intercon-
nections are sparse. Then one obtains an autonomous dominating set by assigning
one guard to each clique. Because there are few connections between cliques, the
guards will not leave their initial cliques.

Proposition 3.6. Suppose that the set of vertices of a graph G is partitioned into k
cliques Si each satisfying |Si| > k. Suppose as well that for each vertex v ∈ Si and
for all j 6= i, there is at most one vertex in Sj adjacent to v. Then γaut(G) = k.

Proof. Let T be a set of vertices of G with |T | < k. Then there is an i so that
Si

⋂
T = ∅; without loss of generality let it be S1. By the connectivity hypothesis,

each vertex in T is adjacent to at most one vertex in S1. Since |S1| > k, we see that
some vertex in S1 is not adjacent to T , so that T is not a dominating set. We have
shown that γaut(G) ≥ γ(G) ≥ k.

Let T be a set with k vertices whose intersection with some Si is empty. Then
T is not dominating, by the same counting argument as above. The graph G does,
however, have dominating sets of cardinality k, namely those containing one vertex of
each clique Si. These are secure dominating sets (move guards within their cliques)
and so by Theorem 3.5, we conclude that γaut(G) = k.

4 Elementary Examples

It is not difficult to check that γaut(P2) = 1 and γaut(P3) = 2. For longer paths, the
following result gives the autonomous domination number.

Proposition 4.1. The autonomous domination number of the path Pn is n− 2 for
n ≥ 4.

Proof. In the case n = 4, there is no dominating set of size n − 3 = 1. Two guards
suffice, since they will not cluster at one end.

Now consider n ≥ 5. Let {a1, a2, . . . , an} be the vertices of Pn, with edges
(ai, ai+1). The set I = {a2, a4, . . . , a2⌊n

2
⌋} is independent and dominating, so by

Lemma 3.3 it is a subset of an autonomous dominating set. Let S be a dominating
set with |S| ≤ n− 3 which contains I.

We now show that the guards can congregate on one side of the path, leaving the
other side vulnerable. Let j be an odd integer such that aj ∈ S and aj+2 /∈ S and
j + 2 ≤ n. Then the legal guard moves (aj+1, aj+2) followed by (aj, aj+1) show that
the guards outside I can accumulate among the vertices with high indices.

A series of moves of this kind means that the odd vertices of low index are vacant.
More specifically: by the cardinality of S we arrive at a dominating set which contains
{a2, a4} and which does not contain a1, a3, or a5. Then (a4, a5) is a legal guard move.
The resulting set of vertices is no longer secure dominating, since only the guard at
a2 defends a3, but (a2, a3) is not a legal guard move since it would leave a1 without
defense.
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Having established the lower bound, now consider any dominating set S of size
n−2. Either the omitted vertices are adjacent, or they are not. If they are adjacent,
they must be interior to the path (by the fact that S is dominating), in which case
S is secure dominating. If they are not adjacent it is immediate that S is secure
dominating. By Theorem 3.5 and the lower bound already established, we see that
γaut(Pn) = n− 2.

The foolproof eternal domination number of Pn is n− 1, and the eternal domina-
tion number is ⌈n

2
⌉, given in [4]. Consequently, the autonomous domination number

is intermediate, but closer to the foolproof for large n.

A similar relation is present in the case of cycles. For small cycles, it is straight-
forward to check that γaut(C3) = 1, γaut(C4) = 2, and γaut(C5) = 3. The general
result is the following.

Proposition 4.2. The autonomous domination number of the cycle Cn is n− 3 for
n ≥ 6.

Proof. Let n be at least 8, and let {a1, . . . , an} be the vertices of Cn, with edges
(ai, ai+1) and (a1, an). Let I be the set of all odd-indexed vertices with index strictly
less than n. Let S be any dominating set of size |S| ≤ n − 4 which contains I.
Reasoning as in the proof of Proposition 4.1, S is connected through a series of legal
guard moves to a dominating set which contains the vertices of I as well as the vertex
an and all vertices with sufficiently large even index. In particular, by cardinality,
the vertices {a2, a4, a6, a8} are unguarded. The series of legal guard moves (a3, a2)
and (a7, a8) yields a dominating set which is not secure dominating, since the guard
at a5 must defend both a4 and a6 but cannot do so.

In the case of n = 6, there is no secure dominating set of size 2. In the case of
n = 7, the independent set {a1, a4, a6} is dominating and so would necessarily be
contained in an autonomous family whose elements have size 3. But (a6, a7) is a
legal guard move, yielding {a1, a4, a7} which is not secure dominating, since only a4
defends a3 and a5.

Every dominating set of size n− 3 is secure dominating (there is no room to end
up with an ‘isolated guard’), so by Theorem 3.5 we conclude that γaut(Cn) = n − 3
for n ≥ 6.

The comparable results are that the eternal domination number of Cn is ⌈n
2
⌉ and

the foolproof eternal domination number is n− 2, given in [4].

Proposition 4.3. The autonomous domination number of the complete bipartite
graph Km,n is the maximum of m and n.

Proof. Let n be greater than or equal to m. Since Km,n has an independent dominat-
ing set of n vertices, the autonomous domination number must be at least n. Since
each set of vertices of cardinality n is secure dominating, we find that n autonomous
guards suffice.
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5 Autonomous Domination Numbers for Certain Families of

Graphs

Let p ≤ q be natural numbers. The eternal domination number of the Cartesian
productKp�Kq is p, while the foolproof eternal domination number is pq−(p+q)+2,
so that the two differ widely in general [4, Proposition 2]. For this family of graphs
the autonomous domination number happens to coincide with the eternal domination
number.

Proposition 5.1. If p ≤ q, then γaut(Kp�Kq) = p.

Proof. First consider the case that p < q. Partition the graph Kp�Kq into the p sets
of vertices of the copies of Kq, each of which has size q. Then apply Proposition 3.6
to infer that γaut(Kp�Kq) = p.

It remains to treat the case p = q. By [4, Proposition 2] the eternal domination
number is p, so the elementary bound of Lemma 3.2 implies that γaut is at least p.
We now show that p guards suffice.

Enumerate the vertices of each Kp with non-negative integers {0, . . . , p− 1}. The
vertices of the product Kp�Kp are then ordered pairs (i, j) of such integers.

Distribute p guards to p vertices with distinct first coordinates; the second coor-
dinate of each location is arbitrary. This is a dominating set by the completeness of
the factor Kp.

Consider a legal guard move whose result is that there is an integer i such that
there is no guard at (i, j) for all j. In other words, the collection of vertices (i, •)
in Kp�Kp has been vacated. For this to be the case, there must have been guards
at (jk, k) for all k (the first coordinates need not be distinct) so that every complete
subgraph of the form (i, •) remains dominated.

Therefore, at every time, legal guard movements will be such that either every
guard has a distinct first coordinate, or every guard has a distinct second coordinate,
and all such subsets of vertices are dominating sets.

Since the eternal domination number p is a lower bound for the autonomous
domination number, we conclude that γaut(Kp�Kp) = p.

Ladder graphs are also an instance in which eternal and foolproof eternal domina-
tion numbers diverge widely. In this case the autonomous domination number differs
from the foolproof domination number by one. The eternal domination number of
P2�Pn is n, and the foolproof eternal domination number is 2n − 2, shown in [4,
Theorem 8].

Proposition 5.2. For n ≥ 3, the ladder graph P2�Pn has autonomous domination
number γaut(P2�Pn) = 2n− 3.

Proof. Let the vertices of P2�Pn be {a1, . . . , an, b1, . . . , bn} with edges (ai, ai+1),
(bi, bi+1), and (ai, bi). Let S be a dominating set of size n ≤ |S| ≤ 2n − 4 which
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contains the independent dominating set {a1, b2, a3, b4, . . .}. By simple legal guard
moves, it is no loss of generality to suppose that at least two of the a vertices and
two of the b vertices are omitted from S. (Consider, for example, (b2k, b2k+1) and
(a2k, b2k), which moves a guard from the a level to the b level.)

Suppose that S contains a2k and does not contain a2k+2. The pairs (a2k+1, a2k+2)
and (a2k, a2k+1) are legal guard moves whether or not b2k+1 is occupied. Thus excess
guards in the a-subgraph can be moved to vertices of higher index. The same can
be done with guards among the b subgraph vertices. After many such moves, we
obtain a dominating set S ′ connected to S through a series of legal guard moves does
not contain {a2, a4, b1, b3}. Then (b2, b3) and (a3, a4) are legal guard moves, but the
resulting dominating set is not secure dominating since the guard at a1 is isolated
and cannot defend both b1 and a2.

To show that 2n − 3 autonomous guards suffice, consider any dominating set S
of size 2n − 3. All vertices but those on the ends of the ladder have degree 3. By
cardinality, every vertex of degree 3 must have a guard in its closed neighborhood,
and so vertices not at the end of the ladder are always defended. Since S is presumed
dominating, it includes either at least one of a1 and b1, or both a2 and b2. In either
case the set is secure dominating. The same reasoning applies for the other end of the
ladder. Since all dominating sets of size 2n− 3 are secure dominating, Theorem 3.5
gives the conclusion.

6 Counterintuitive examples

The following examples show that autonomous domination reflects noteworthy fea-
tures of tactical action under limited information. The addition of an edge, which
offers new ways for guards to defend locations, can also lead them away from the
most strategically suitable positions. Additional guards, which in theory make a
defensive arrangement stronger, can allow for poor positioning due to temporary
security arising from the abundance of defenders.

These examples reveal the utility of the concept of autonomous domination. The
parameter does not decrease monotonically with edge addition, and it is not a super-
hereditary property. These facts suggest that autonomous domination is a good
abstraction that can account for difficulties that arise when real, limited agents act
under constraints.

6.1 Edge addition

The autonomous domination number can decrease when an edge is added. A simple
example is completing a path on three vertices to the complete graph on these three
vertices, in which case the autonomous domination number decreases from 2 to 1.

Adding an edge can increase the autonomous domination number, however. A
new edge means that guards can be drawn away from one portion of the graph and
into another, and this could leave the source portion vulnerable.
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Figure 1: Edge addition can increase the autonomous domination number.
In the graph on the right, the upper left and upper central vertices form a
dominating set that is not secure dominating.

The graph on the left in Figure 1 has autonomous domination number 2, as it is
K2�K3. The additional diagonal edge added to obtain the graph on the right causes
the autonomous domination number to increase.

Lemma 6.1. The autonomous domination number of the graph on the right in Fig-
ure 1 is 3.

Proof. The autonomous domination number must be at least 2, since the graph has
an independent set of size 2. Consider the independent dominating set consisting
of the upper left and lower central vertices. This is adjacent to the dominating
set consisting of the upper left and upper central vertices. But this is not secure
dominating since an attack on the upper right vertex cannot be safely covered.

Every 3-subset of the graph is dominating, so more than three guards are not
required.

Another simple example is adding an edge to connect the disjoint union of C5

and Kn. The graph C5

⋃
Kn has autonomous domination number 4. Add a single

edge to connect the two components. Guards can now be ‘siphoned off’ of the C5

subgraph in a way that leaves it exposed to attack. More concretely, the autonomous
domination number of the new (connected) graph is n + 3. With fewer than n + 3
guards, it is possible to move all but two guards to the Kn. The two guards that
remain on the cycle do not defend it securely.

Example 6.2. The addition of a single edge can increase the autonomous domina-
tion number by an arbitrary amount even for connected graphs. Construct a graph
consisting of two cliques {a1, . . . , an} and {b1, . . . , bn+1}. Add edges (ai, bi) for each
i ≤ n. Additionally, let b1 and b2 be adjacent to the vertices all a vertices except
an and an−1. For i satisfying 2 < i < m ≪ n, let bi be adjacent to all but the
last i vertices among the a. This graph has autonomous domination number 2. If
the edge (b1, an−1) is added, however, the autonomous domination number increases
dramatically. For any 1 ≤ k ≤ m, k + 1 guards will fail; place one guard at bk and
the others at the uppermost (k total) a vertices. Those guards can vacate the a level,
moving to the corresponding b vertices, and the configuration remains dominating.
An attack at bn+1 leads to failure.
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Reasoning like in Example 6.2 will be useful in Section 7. Edges are added to
connect cliques in such a way that the eternal domination (and ordinary domination)
numbers remain fixed, while the autonomous domination number increases because
of certain unstable configurations involving the congregation of guards within a single
large clique.

6.2 Failure through excess of guards

In can be that n guards suffice for autonomous domination but n+ 1 guards do not.
Thus autonomous domination is not a super-hereditary property.

Definition 6.3. Define a graph with the vertices

{a1, a2, a3, a4, b1, b2, b3, b4, b5}

and the following edges.

• Edges such that the set {ai}
4
i=1 induces a complete subgraph.

• Edges such that the set {bi}
5
i=1 induces a complete subgraph.

• (ai, bi) for 1 ≤ i ≤ 4.

• (b1, a2).

• There are no other edges.

The graph is depicted in Figure 2. The eternal domination number of this graph is
2. This is also the autonomous domination number. Yet there is no autonomous set
with three guards. The reason is that an arbitrary dominating set of cardinality 3 is
connected through a series of legal guard moves with {b1, a3, a4}, which is connected
by a pair of legal guard moves with {b1, b3, b4}. This last set is not secure dominating,
since it is not adjacent to a dominating set containing b5. Informally, with three
guards it is possible that they all move ‘upstairs,’ and this is a bad decision.

Because autonomous domination is not super-hereditary, showing that n guards
fail does not suffice to demonstrate that n is a lower bound on the autonomous dom-
ination number. Instead, every possibility between the eternal domination number
and n must be considered.

One can generalize the reasoning of Definition 6.3. By stacking two large complete
graphs, and making some of the vertices of the upper graph highly connected to
vertices of the lower one, it is possible to produce a graph where two guards remain
in their “assigned” cliques, but three or more can migrate upwards (and so fail),
unless there are so many guards that the upper complete graph becomes essentially
full before the lower one empties. In other words, if n guards succeed but n+ 1 fail,
it could be that many more guards than n+ 2 are required to succeed again.

6.3 Mitigation

Without a central planner or particular structural details about a specific graph
or family of graphs, it is difficult to conceive of a way to completely eliminate the
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a1 a2

a3

a4

b1 b2

b3

b4

b5

Figure 2: Autonomous domination is not super-hereditary. Two guards dom-
inate the graph autonomously, but three guards can congregate at the upper
level, a security failure.

paradoxical behaviors described here. Generally speaking, it is a poor use of resources
to have many guards concentrate themselves in a highly connected region. In an
implementation, one can imagine adding some sort of concentration measure to the
guards’ tactical motion planning. In other words, the guards move with a preference
for remaining relatively dispersed. Such considerations are interesting in practice,
but too far afield of the theoretical parameter now under discussion to warrant further
treatment here.

7 Realizability of Parameter Values

It is straightforward to observe that the eternal domination number is bounded below
by the domination number, and similarly that the autonomous domination number is
bounded below by the eternal domination number (Lemma 3.2). A question following
from these bounds is whether every possible collection of three natural numbers
satisfying the inequalities constitute the domination number, eternal domination
number, and autonomous domination number of some graph. This is so (excluding
a trivial exception), as will be shown below. The proof will require reference to a
number of families of graphs constructed for the purpose. These will be presented
first, and their various parameters computed. Theorem 7.14 then collects these
results. Note for comparison that realizability for triples given by the independence
number, eternal domination number, and clique covering number has been considered
previously [22].

Some general remarks can be made about the families of graphs to come. In a
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b1 b2 b3 b4

a1 a2 a3 a4 a5

c

Figure 3: Depicts the graph A2. The domination number is 1 and the eternal
domination number is 2, but autonomous guards can congregate at the upper
level, so that γaut is larger.

sense, the final family, Fℓ,m,n of Definition 7.11, is generic. More precisely, given
natural numbers 1 ≪ a ≪ b ≪ c, a member of this family has these numbers as
domination, eternal domination, and autonomous domination number, respectively.
The difficulty comes when considering cases where two of the parameters a, b, and
c are equal or almost equal. That leads us to introduce the additional families of
graphs here.

Recall that γ denotes the domination number, γ∞ denotes the eternal domination
number, and γaut denotes the autonomous domination number.

Definition 7.1. Given a natural number n define a graph An with vertices

{a1, a2, . . . , a2n+1, b1, b2, . . . , b2n, c}

and the following edges.

• The vertices ai induce a complete subgraph.

• The vertices bi induce a complete subgraph.

• (ai, bi) for all 1 ≤ i ≤ 2n

• (ai, bj) for all 1 ≤ i ≤ n and 1 ≤ j ≤ 2n − i (observe that some of these were
included in the previous item)

• (c, ai) for all 1 ≤ i ≤ 2n+ 1

• (c, bj) for all 1 ≤ j ≤ 2n

The graph A2 is sketched in Figure 3. Some simplification has been made there
to avoid clutter. The boxes denote induced complete subgraphs, and the vertex c,
adjacent to all other vertices, is shown with half edges.

Proposition 7.2. The parameters of An are these: γ(An) = 1, γ∞(An) = 2, and
γaut(An) = n+ 2.

Proof. The vertex c is adjacent to every other vertex, so γ(An) = 1. The vertices
a2n+1 and b1 are not adjacent, so γ∞(An) ≥ 2. That two guards suffice follows from
observing that {c, a1, a2, . . . , a2n+1} and {b1, b2, . . . , b2n} are cliques.
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a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

c11

c21

c12

c22

Figure 4: Depicts the graph B2,3. The domination and eternal domination
numbers are equal, while the autonomous domination number is greater.

Consider any natural number g satisfying 2 ≤ g ≤ n. There is no autonomous
dominating set of size g. Any dominating set is adjacent to one which includes c.
Since c is adjacent to every vertex, we see that any two sets of the same size, both of
which contain c, are connected through a series of legal guard moves. An arbitrary
dominating set of size g is thus connected to {a2n−g+1, a2n−g+2 . . . , a2n, c}. This set
is adjacent to {ag−1, a2n−g+1, a2n−g+2 . . . , a2n}, which is a dominating set. It is not
secure dominating, however, since an attack on a2n+1 leads to failure.

It remains to show that An has an autonomous dominating set of size n+2. Any
dominating set of n+2 vertices among the ai is secure dominating. No set consisting
only of b vertices is dominating, since none is adjacent to a2n+1. Thus the only
remaining case to check is that a dominating set including c is secure dominating. If
c is occupied, along with at least one vertex from a or b, the set is secure dominating,
since the guard at c can move to the other level to defend an attack there.

Definition 7.3. Given a non-negative integer m and a natural number n, define the
graph Bm,n with vertices

{a1, a2, . . . a2n+m, b1, b2, . . . , b2n+m, c
1
1, c

2
1, c

1
2, c

2
2, . . . , c

1
m, c

2
m}

and the following edges.

• The vertices ai induce a complete subgraph.

• The vertices bi induce a complete subgraph.
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• (ai, bi) for all 1 ≤ i ≤ 2n.

• (c1i , c
2
i ) for all 1 ≤ i ≤ m.

• (bi, aj) for each 0 ≤ i ≤ n and 0 ≤ j ≤ 2n+m− i.

• (bi, aj) for each n+ 1 ≤ i ≤ n+m and 0 ≤ j ≤ n+m− 1.

• (bi, c
1
j) for all 2 ≤ i ≤ 2n+m− 1 and all 1 ≤ j ≤ m.

• There are no other edges.

A sketch of such a graph is in Figure 4. There the parameter values are m = 2
and n = 3.

Proposition 7.4. The domination parameters of Bm,n are:
γ(Bm,n) = γ∞(Bm,n) = m+ 2, and γaut(Bm,n) = m+ n+ 2.

Proof. The set I = {a2n+m, b1, c
2
1, c

2
2, . . . , c

2
m} is an independent dominating set of

size m+2. There is no smaller dominating set, since at least one guard is needed for
each of the m edges (c1i , c

2
i ). None of these defends b1, and no b vertex is adjacent to

all a vertices, nor vice versa.

The eternal domination number is also m + 2, since one guard can be allocated
to each of the m edges (c1i , c

2
i ), one can be allocated to the vertices ai, and finally

one to the vertices bj.

We now show that the autonomous domination number is not less than m+n+2.
Consider i ≤ n. We show that m+ i+ 1 guards will fail. Let m guards be arranged
among the edges (c1i , c

2
i ). The vertex bi is adjacent to all but the last i a vertices.

By stationing a guard at bi, and another i guards at the last i a vertices, the guards
can vacate the a level while remaining a dominating set. This configuration is not
secure, since an attack at b2n+m−i cannot be defended.

Now we must show that m + n + 2 guards suffice for autonomous domination.
Consider any dominating set S of this size. Then S necessarily contains at least m
vertices from among cji .

There are a few cases to consider.

Case 1: S contains a and b vertices. This case is straightforward. Since {ai} and
{bi} are each cliques, S is secure dominating.

All of the nuance is in the following two cases. We must confirm that when
guards congregate at a single level, an attack within that level will not throw off the
coverage of the other level.

Case 2: S contains no a vertices. Since b2n+m is the only b vertex adjacent to
a2n+m, we see that b2n+m ∈ S. If there is an i so that both of the vertices c1i and c2i
are in S, then S is secure dominating, since problems at the b level can be addressed
by the c1i guard, and problems at the a level can be addressed by the guards already
at the b level, on the hypothesis that S is dominating.

Therefore, suppose that there is no i such that both of the vertices c1i and c2i are
in S. Then S contains n + 2 of the b vertices. With that many guards, there is
necessarily redundancy in coverage of a vertices, so that at least one b vertex is free
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a1 a2 c1 c2 c3

b1 b2 b3

Figure 5: Depicts the graph C3,3. The domination number is 1, while the
eternal and autonomous domination numbers are greater and distinct.

to move within the b level. This claim can be made more formal in the following
manner. Let j be the least natural number so that b2n+m−j is unoccupied. If j = n+2,
then S is secure dominating, since b guards moving to lower indices cover more a
vertices. If j < n + 2, then bk is necessarily occupied for some k ≤ j. This means
that the dominating set S contains j vertices with index higher than 2n + m − j,
and the vertex bk. But these j + 1 vertices are already a dominating set, so that the
remaining vertex or vertices in S is/are free to cover any attacks at the remaining b
vertices.

Case 3: S contains no b vertices. Since no a vertex is adjacent to both b1 or
b2n+m, and neither of those b vertices is defended by any c vertex, we see that S must
contain a2n+m along with at least one other a vertex. If more than m guards are
among the c vertices, the set is secure dominating, since a c1i vertex can guard the
interior b vertices, and every a vertex other than a2n+m is adjacent to b1.

Suppose, then, that S contains exactly m of the c vertices. This means that
it contains n+2 a vertices. To be dominating, S must contain the n vertices
{an+m+1, an+m+2, . . . , a2n+m}. Therefore it also contains two vertices from {a1, a2,
. . . , an+m}. At least one of these vertices, however, defends the vertices {b1, b2, . . . ,
bn+m}. ‘:w! Therefore, the second guard can move freely at the a level to defend any
attack, while maintaining domination.

In each of the three cases, then, we find that S, a dominating set of size m+n+2,
is secure dominating.

Definition 7.5. Given a natural numbers m ≥ 2 and n ≥ 2, define the graph Cm,n

whose vertices are
{a1, a2, b1, b2, . . . , bm, c1, c2, . . . , cn}

having the following edges.

• The set of vertices {a1, a2, c1, c2, . . . , cn} induces a complete subgraph.

• Each bi is adjacent to a1 and a2.

• There are no other edges.

The graph C3,3 is depicted in Figure 5.

Proposition 7.6. The domination parameters of Cm,n are these:
γ(Cm,n) = 1, γ∞(Cm,n) = m+ 1, and γaut(Cm,n) = m+ n.
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a1 a2 b11 b12 b13

b21 b22 b23c1

c2 c3

Figure 6: Depicts the graph D3,3. The domination and eternal domination
numbers differ by one, while the autonomous domination number is greater.

Proof. Since a1 is adjacent to every vertex the domination number is 1.

The set {b1, b2, . . . .bm, c1} is an independent set, so that the eternal domination
number is at least m+ 1. In fact m+ 1 suffice. Assign stationary guards to each bi,
and a single additional guard for the remaining clique.

Let any number k from m + 1 to m + n − 1 be given, and consider any domi-
nating set of size k. Such a dominating set is adjacent to one containing the ver-
tex a1. Then, via a series of legal guard moves, we arrive at the dominating set
{a1, c1, c2, . . . , ck−m+1, b1, b2, . . . , bm−2}. This is not a secure dominating set, since an
attack at bm−1 can only be covered by the guard at a1, and then no guard is adjacent
to bm.

A set with m+n vertices either contains all the peripheral vertices bi and cj, or it
contains one of the central vertices ak. In either case such a set is secure dominating.

Definition 7.7. Given natural numbersm and n, define the graph Dm,n with vertices

{a1, a2, b
1
1, b

2
1, b

1
2, b

2
2, . . . , b

1
m, b

2
m, c1, c2, c3, . . . , cn}

and the following edges.

• The set of vertices {a1, a2, b
1
1, b

1
2, . . . , b

1
m} induces a complete subgraph.

• (b1i , b
2
i ) for each i, 1 ≤ i ≤ m.

• The set of vertices {a2, c1, c2, . . . , cn} induces a complete subgraph.

• There are no other edges.

The graph D3,3 is depicted in Figure 6. The rectangle encloses vertices inducing
a complete subgraph.

Proposition 7.8. The domination parameters of Dm,n are these: γ(Dm,n) = m+1,
γ∞(Dm,n) = m+ 2, and γaut(Dm,n) = m+ n+ 1.
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Proof. The vertices {b11, b
1
2, . . . , b

1
m, a2} form a dominating set. No smaller dominating

set exists. At least m guards are required for the m leaves b2i , and another is required
for vertices ci.

The set {a1, b
2
1, b

2
2, . . . , b

2
m, c1} is an independent set of size m+ 2, giving a lower

bound for the eternal domination number. In fact m+2 guards suffice, since {a1, a2},
{{b1i , b

2
i }

m
i=1}, and {ci}

n
i=1 is a partition of the vertices into m+2 subsets all inducing

complete subgraphs.

Let k be a number of guards m + 2 ≤ k ≤ m + n. Consider a dominating set of
size k containing the independent set of vertices {a1, b

2
1, b

2
2, . . . , b

2
m, c1}. This set has

size m+ 2, so that there are k −m− 2 remaining guards. Then via a series of legal
guard moves we obtain the set

{a1, b
2
1, b

2
2, . . . , b

2
m, c1, c2, . . . , ck−m−1},

which is adjacent to

{a1, b
1
1, b

2
2, . . . , b

2
m, c1, c2, . . . , ck−m−1},

which is adjacent to

{a2, b
1
1, b

2
2, . . . , b

2
m, c1, c2, . . . , ck−m−1},

which is adjacent to
{b11, b

2
2, . . . , b

2
m, c1, c2, . . . , ck−m},

which is not secure dominating, since an attack at b21 is only covered by the guard at
b11, leaving a1 unprotected.

A dominating set of m + n + 1 vertices is secure dominating, by counting the
leaves and the size of the clique {a2, c1, c2, . . . , cn}.

Definition 7.9. Let m and n be natural numbers. Define the graph Em,n with
vertices

{a1, a2, a3, . . . , am+3, b1, b2, c1, c2, . . . , cn}

and the following edges.

• The vertices ai induce a complete subgraph.

• (ai, bj), for each pair (i, j) ∈ {1, 2} × {1, 2}.

• (am+3, ci) for each i ∈ {1, 2, . . . , n}.

The graph E3,3 is depicted in Figure 7. The vertices ai, forming a clique, are
enclosed by the rectangle and their edges are omitted.

Proposition 7.10. The domination parameters of Em,n are these: γ(Em,n) = 2,
γ∞(Em,n) = n+ 3, and γaut(Em,n) = m+ n+ 3.
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a1 a2 a3 a4 a5 a6

b1

b2

c1

c2

c3

Figure 7: Depicts the graph E3,3. The domination number is 2, while the
eternal and autonomous domination numbers are greater and distinct.

Proof. There is no single vertex adjacent to all vertices, but each vertex is adjacent
to either a1 or am+3. This establishes the domination number.

The set {b1, b2, a3, c1, c2, . . . , cn} is an independent set of size n+3, establishing a
lower bound for the eternal domination number. That n+3 guards suffice is seen by
noting that stationary guards can be assigned to each bi and cj, and one final guard
is needed for the complete graph induced by {ai}.

Let k be a natural number n + 3 ≤ k ≤ m + n + 2 and consider a dominating
set of size k which contains the independent set {b1, b2, a3, c1, c2, . . . , cn}. Through
a series of legal guard moves we obtain a dominating set which contains b1 and b2
but neither a1 nor a2 nor a3. This set is adjacent to one containing a1 but not b1,
and the latter is adjacent to one containing a2 but not b2. That set is adjacent to
the dominating set containing a3 but not a2. This set is not secure dominating. An
attack at one of the vertices bi can only be addressed by the guard at a1, at which
point the other b vertex is left without defense.

Thatm+n+3 guards suffice follows from counting. Withm+n+3 guards at least
two of {a1, a2, b1, b2} will be occupied, hence neither b1 nor b2 will be unguarded.

This final family of graphs is, in a sense, the generic one for this problem.

Definition 7.11. Given natural numbers ℓ, m, and n, define the graph Fℓ,m,n with
vertices

{a1, a2, . . . , aℓ, b1, b2, . . . , bm, c1, c2, c3, . . . , cℓ+n}

and the following edges.

• (ai, ci) for each i ∈ {1, 2, . . . , ℓ}.

• (bi, cj) for each i ∈ {1, 2, . . . ,m} and each j ∈ {1, 2, . . . , ℓ}.

• The vertices ci induce a complete subgraph.

• There are no other edges.

The graph F4,3,3 is depicted in Figure 8. The vertices ci, inducing a complete
subgraph, are enclosed in the rectangle and their edges are omitted.
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Proposition 7.12. The domination parameters of Fℓ,m,n are these: γ(Fℓ,m,n) = ℓ,
γ∞(Fℓ,m,n) = ℓ+m+ 1, and γaut(Fℓ,m,n) = ℓ+m+ n.

Proof. One vertex of each pair {ai, ci} must be occupied in order to obtain a domi-
nating set, so that the domination number is at least ℓ. Provided that at least one
guard is stationed at one of the ci, the set is dominating, since each vertex ci is
adjacent to every b and c vertex.

The set {a1, a2, . . . , aℓ, b1, b2, . . . , bm, cℓ+1} is an independent set of size ℓ+m+1,
which gives a lower bound for the eternal domination number. That many guards
suffice, since stationary guards can be assigned to each ai and bj and one guard can
defend the remaining vertices ci.

Let k be a natural number ℓ+m+1 ≤ k ≤ ℓ+m+n−1. Consider a dominating
set of size k which contains the independent set {a1, a2, . . . , aℓ, b1, b2, . . . , bm, cℓ+1}.
This is adjacent to one with c1 replacing a1. Then all the guards on the bi can move
to ci without losing domination. In the end, since the ℓ leaves are occupied, as well
as interior vertices {cℓ+1, . . . , cℓ+n}, then because k ≤ ℓ +m + n − 1 we see that at
most m− 1 of the vertices c1, . . . , cℓ are occupied. There is then no defense against
the series of attacks b1, b2, . . . , bm.

We finally show that ℓ+m+n guards suffice for autonomous domination. Consider
any dominating set of that size. Since the set is dominating, at least one member of
each pair {ai, ci} is contained in the set. Moreover, either no ci is in the set, in which
case all of the vertices bi are, or at least one of the ci is in the set. In the former case
secure domination is straightforward: every vertex ai is occupied, and every vertex
bi is occupied, and there are n > 0 guards remaining necessarily contained in the set
{ci} which induces a complete subgraph. In the latter case, let j be the number of
vertices ci contained in the dominating set 1 ≤ j ≤ ℓ. Then ℓ − j guards occupy
leaves, since the set is dominating. At most n guards are contained in the subset of
vertices {cℓ+1, . . . , cℓ+n}, which means at least ℓ+m+n−(j+(ℓ−j)+n) = m guards
are contained in the vertices bi. But there are only m such vertices. Thus the only
empty vertices are either among pairs {ai, ci} (which contain a guard by hypothesis)
or are among the vertices {cℓ+1, . . . , cℓ+n} (which induce a complete subgraph and
contain a guard). Thus the set is secure dominating.

Proposition 7.13. Suppose that γ∞(G) = 1. Then γaut(G) = 1.

Proof. If γ∞(G) = 1 then there is no independent set of vertices of size 2. Therefore
G is necessarily a complete graph.

The previous proposition is the reason for excluding the case a = b = 1 and c 6= 1
in the following theorem. Otherwise there is no limit on how the various domination
numbers can be related, beyond their ordering.

Theorem 7.14. Let a, b, and c be natural numbers such that a ≤ b ≤ c and either
c = 1 or b > 1. Then there is a graph G such that γ(G) = a, γ∞(G) = b, and
γaut(G) = c.
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Figure 8: Depicts the graph F4,3,3. The domination, eternal domination, and
autonomous domination numbers are distinct.

Proof. It is necessary only to put together the examples collected previously. We
organize the cases in a sort of lexicographic order, thinking of the sizes of a, b, and
c. There are some extraordinary situations for small parameter values, leading to a
number of cases.

Case c = 1

Kn is such a graph.

Case a = 1 and b = 2

If c > 2, then Ac−2 is such a graph. If c = 2, then P3 is such a graph.

Case a = 1 and b > 2

If b = c, then K1,b is such a graph. If b < c, the graph Cb−1,1−b+c is such a graph.

Case a = 2 and b = 2

If c = 2 then P4 is such a graph. If c > 2 then B0,c−2 is such a graph.

Case a = 2 and b = 3

If c = 3, then K2,3 is such a graph. If c > 3, then D1,c−2 is such a graph.

Case a = 2 and b > 3

If b = c, then K2,b is such a graph. If b < c, then Ec−b,b−3 is such a graph.

Case a ≥ 3 and b = a

If c = b, then the path on c vertices with a leaf attached to each path vertex is
such a graph. If c > b, the graph Bb−2,c−b is such a graph.

Case a ≥ 3 and b = a+ 1

The graph Da−1,c−a is such a graph.

Case a ≥ 3 and b− a ≥ 2

The graph Fa,b−a−1,c−b+1 is such a graph.
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8 Conclusion

This paper has introduced a new invariant for graphs, the autonomous domination
number. This new invariant is computable, relates in clear ways to previously stud-
ied domination invariants, and models interesting features of decision-making under
partial information.

8.1 Further Questions

The following are avenues for future research in autonomous domination.

• Compute the autonomous domination numbers of well-known graph classes.

• Compute the autonomous domination numbers of random graphs.

• Find an algorithm to compute the autonomous domination number of a tree.

• Theorem 7.14 gives a family of graphs whose domination and autonomous dom-
ination numbers are equal. Determine whether these are all such (connected)
graphs.

• Characterize graphs whose eternal domination and autonomous domination
numbers are equal.

• Characterize graphs whose autonomous domination and foolproof eternal dom-
ination numbers are equal (cf. Lemma 3.1).

• Determine whether there is a graph with two autonomous dominating sets of
minimum size that are not connected by a series of legal guard moves.

• If some graphs have minimum-size autonomous dominating sets that are not
connected by legal guard moves (as in the preceding item), consider weighting
the vertices of the graph, and finding minimum-weight autonomous families.

• Determine whether the hypothesis regarding the connectedness of the comple-
ment in Corollary 3.4 can be removed.

• Investigate the computational complexity of finding the autonomous domina-
tion number of a graph (cf. [5, 11, 20, 28, 31]).

• Investigate distributed algorithms for finding the autonomous domination num-
ber of a graph.
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