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Abstract

In this paper, we propose and investigate the concept of k-coalitions
in graphs, where k ≥ 1 is an integer. A k-coalition refers to a pair of
disjoint vertex sets that jointly constitute a k-dominating set of the graph,
meaning that every vertex not in the set has at least k neighbors in the
set. We define a k-coalition partition of a graph to be a vertex partition
in which each set is either a k-dominating set with exactly k members
or forms a k-coalition with another set in the partition. The maximum
number of sets in a k-coalition partition is called the k-coalition number of
the graph and is represented by Ck(G). We present fundamental findings
regarding the properties of k-coalitions and their connections with other
graph parameters. Also we obtain the exact values of 2-coalition numbers
of some specific graphs and we also study graphs with large 2-coalition
number.

1 Introduction

Consider a simple and undirected graph G with vertex set V = V (G). Two vertices
are said to be neighbors if they are adjacent. For an integer k ≥ 1, a k-dominating
set of G is a set S of vertices such that each vertex in V \S is adjacent to at least k
vertices in S. The smallest possible size of a k-dominating set of G is referred to as
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the k-domination number of G and is denoted by γk(G). The interested reader may
refer to [11, 12] for a comprehensive overview of dominating sets in graphs.

A coalition in a graph G is a pair of nonempty sets S1 and S2 that are not
dominating sets of G, but their union S1 ∪ S2 is a dominating set of G. Such a pair
forms a coalition and the members of such a pair are coalition partners. A vertex
partition X = {S1, . . . , Sk} of the vertex set V (G) is called a coalition partition of G
if every set Si ∈ X is either a dominating set of G with cardinality |Si| = 1, or not a
dominating set but forms a coalition with some Sj ∈ X. The coalition number of a
graph is the maximum number of sets in a coalition partition.

The concept of a coalition in graphs was introduced by Haynes, Hedetniemi,
Hedetniemi, McRae, and Mohan in [10]. Their fundamental studies have set the
stage for much of the subsequent research on coalition numbers and coalition graphs.
Notably, they explored upper bounds on coalition numbers, providing essential in-
sights and bounds that help understanding the maximum coalition number possible
in various graph classes [7]. Additionally, they developed the concept of coalition
graphs, which are derived from the original graph by focusing on the coalition struc-
ture among the vertices, allowing for deeper analysis of the interactions and relation-
ships within graph coalitions [8]. Extending their previous work, they introduced
self-coalition graphs, a specific type of coalition graph where the coalitions possess a
self-referential property, adding another layer of complexity and applicability to the
study of coalition graphs [9].

Recent studies have continued to build upon these foundational concepts, ex-
panding the scope and depth of coalition studies in graphs. Significant contributions
in this area include the exploration of total coalitions, independent coalitions, con-
nected coalitions, and specific investigations into coalition numbers in tree structures
and singleton coalition graph chains. Alikhani et al. (2024) delved into total coali-
tions, provided a detailed analysis of how coalitions can encompass all vertices in a
graph and the implications of such total structures. This study offers new metrics
and bounds for total coalition numbers, expanding the understanding of coalition
dynamics in comprehensive vertex sets [1]. Henning and Jogan [13] characterized
graphs with smallest possible total coalition number. Moreover they characterized
graphs G with δ(G) = 1 satisfying Ct(G) = k for all k ≥ 3.

Alikhani et al. also explored the independence properties within coalitions, defin-
ing and characterizing independent coalition graphs, leading to new theoretical in-
sights and practical applications in graph theory [2]. Moreover, Alikhani et al. inves-
tigated connected coalitions, where coalitions form connected subgraphs, providing
critical results on the connectivity aspects of coalitions, which are vital for applica-
tions requiring robust and resilient coalition structures [3]. Mojdeh and Masoumi
[15], introduced the concept of edge coalition and characterized graphs G with small
and large size number of edge coalition. Also existence and characterization of inde-
pendent coalition and double coalitions are investigated in [14, 16].

In addition, Bakhshesh, Henning, and Pradhan (2023) focused on tree structures,
a fundamental graph class, for determining coalition numbers. Their findings offer
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specific insights and bounds applicable to trees, enriching the overall understand-
ing of coalition numbers in hierarchical and acyclic graph structures [4] and in an
upcoming publication, Bakhshesh, Henning, and Pradhan explored chains formed
by singleton coalitions. This study provides a novel perspective on coalition struc-
tures by examining the sequential and chain-like properties of singleton coalitions,
contributing to the broader theory of coalition graphs [5].

Building on these established concepts, the exploration of k-coalitions in graphs
represents a promising extension. A k-coalition consists of a pair of disjoint vertex
sets that together form a k-dominating set of the graph, meaning that each vertex not
in the set has at least k neighbors within the set. We define a k-coalition partition of
a graph as a vertex partition where each set is either a k-dominating set with exactly
k members or forms a k-coalition with another set in the partition. The maximum
number of sets in a k-coalition partition is referred to as the k-coalition number of the
graph and denoted by Ck(G). This generalization has the potential to tackle more
complex real-world problems, where entities often participate in multiple overlapping
groups.

In the next section, after introducing k-coalition partition and k-coalition number,
we prove that any graph G has a k-coalition partition, and we obtain bounds on the
k-coalition number. Moreover, we study the k-coalition number of certain graphs
such as complete graphs, trees, paths, cycles, and corona of paths and cycles with
Kl in Section 3. In Section 4, we study graphs with large 2-coalition numbers and
in Section 5 we characterize trees T of order n with C2(T ) = n and C2(T ) = n− 1.
Finally, we conclude the paper in Section 6.

2 Existence and some bounds

In this section, we prove that any graph G has a k-coalition partition, and also we
present some bounds on the k-coalition number.

Definition 1 Two sets U1 ⊆ V and U2 ⊆ V form a k-coalition (are k-coalition
partners) if neither is a k-dominating set, but their union is a k-dominating set. We
define a k-coalition partition Θ = {U1, . . . , Ur} of a graph G as a vertex partition in
which each set of Θ is either a k-dominating set with exactly k members or forms a
k-coalition with another set in the partition. We denote the k-coalition number of
a graph G which is the maximum number of sets in a k-coalition partition of G, by
Ck(G).

A domatic partition is a partition of the vertex set into dominating sets, in other
words, a partition π = {V1, V2, . . . , Vk} of V (G) such that every set Vi is a dominating
set of G. Cockayne and Hedetniemi [6] introduced the domatic number of a graph
d(G) as the maximum order k of a domatic partition. For more details on the domatic
number, refer to [17, 18, 19]. Now we propose the notion of k-domatic number of G.
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Definition 2 A k-domatic partition is a partition of the vertex set into k-dominating
sets, in other words, a partition π = {V1, V2, . . . , Vk} of V (G) such that every Vi is
a k-dominating set of G. The k-domatic number of a graph dk(G) is the maximum
order k of a k-domatic partition.

Theorem 2.1 For any integer k ≥ 1 there is a k-coalition partition for a given
graph G.

Proof. We consider two cases:

Case 1. If dk(G) ≥ 2, then consider a k-domatic partition Φ = {X1, . . . , Xs} of
V (G) and let 1 ≤ i < s. Without loss of generality, assume that Xi is a minimal
k-dominating set of G. If it is not, then there exists a minimal k-dominating set
X ′

i ⊆ Xi. In this case, we replace Xi with X ′
i and add all members of Xi\X

′
i to Xs.

To construct a k-coalition partition Θ of G, we split each minimal k-dominating set
Xi with i < s into two non-empty sets Xi,1 and Xi,2 and add them to Θ. If |Xi| = 1,
then k = 1 and we simply add Xi to Θ without splitting it. Note that neither Xi,1 nor
Xi,2 is a k-dominating set, but their union is a k-dominating set. Next, we consider
the set Xs. If Xs is a minimal k-dominating set, we split it into two non-empty sets
Xs,1 and Xs,2 and add them to Θ to complete the construction. If Xs is not a minimal
k-dominating set, there exists a set X ′

s ⊆ Xs that is minimal and k-dominating. We
split X ′

s into two non-empty sets X ′
s,1 and X ′

s,2 and add them to Θ. Let X ′′
s = Xs\X

′
s.

It is important to observe that X ′′
s cannot be a k-dominating set, as this would imply

that dk(G) > s, which contradicts the fact that Φ is a k-domatic partition of G. If
X ′′

s form a k-coalition with any set in Θ, we add it to Θ and finish the construction.
Otherwise, we remove X ′

s,2 from Θ and add X ′
s,2 ∪X ′′

s to Θ.

Case 2. If dk(G) = 1, it is sufficient to consider X1 as Xs in Case 1.

The following theorem gives a lower bound on Ck(G) for connected graphs of
order n by means of the k-domatic number.

Theorem 2.2 If G is a connected graph and k ≥ 2, then Ck(G) ≥ 2dk(G).

Proof. Let G have a k-domatic partition C = {C1, C2, . . . , Cs} with dk(G) = s.
Without loss of generality, we assume that the sets {C1, C2, . . . , Cs−1} are minimal
k-dominating sets. If any set Ci is not minimal, we can find a subset C ′

i ⊆ Ci

that is a minimal k-dominating set and add the remaining vertices to the set Cs.
Since k ≥ 2, it follows that Ci is not a singleton set. Furthermore, if we partition
a minimal k-dominating set, containing more than one element, into two non-empty
subsets, then we obtain two non-k-dominating sets that together form a k-coalition.
Consequently, we divide each non-singleton set Ci into two sets Ci,1 and Ci,2 that
form a k-coalition. This results in a new partition C ′ consisting of non-k-dominating
sets, each of which pairs with another non-k-dominating set in C ′ to form a coalition.
Next, we consider the k-dominating set Cs. If Cs is a minimal k-dominating set, we
divide it into two non-k-dominating sets, add these sets to C ′, and obtain a k-coalition
partition of cardinality at least 2s. Since s = dk(G), it follows that Ck(G) ≥ 2dk(G).
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If Cs is not a minimal k-dominating set, we aim to find a subset C ′
s ⊆ Cs that is

minimal. We then partition C ′
s into two non-k-dominating sets that together form

a k-coalition. Let C ′′
s be the complement of C ′

s in Cs, and append C ′
s,1 and C ′

s,2 to
C ′. If C ′′

s can merge with any non-k-dominating set to form a k-coalition, we can
obtain a k-coalition partition of cardinality at least 2s+1 by adding C ′′

s to C ′. Thus,
Ck(G) ≥ 2dk(G) + 1. However, if C ′′

s cannot form a k-coalition with any set in C ′,
we remove C ′

s,2 from C ′ and add the set C ′
s,2 ∪C ′′

s to C ′. This results in a k-coalition
partition of cardinality at least 2s. Therefore, Ck(G) ≥ 2dk(G).

Based on the above arguments, we conclude that Ck(G) ≥ 2dk(G), completing
the proof.

Corollary 2.3 For even k, Ck(G) ≥ dk/2(G).

Proof. Consider a graph G possessing a k/2-domatic partition, denoted as C =
{C1, C2, . . . , Cs}. By definition, any two sets in C are considered as k-coalition part-
ners if neither qualifies as a k-dominating set. Define the subset C ′ of C by:

C ′ = {Ci ∈ C | Ci is a k-dominating set}.

Applying the same process to C ′ as applied for C in the proof of Theorem 2.2, we
arrive at the desired conclusion.

Lemma 2.4 For any graph G and any k-coalition partition C of G, any set of C
forms a k-coalition with at most ∆(G)− k + 2 sets of C.

Proof. Consider a vertex v in graph G and a set S ∈ C such that v ∈ S. If S is
a k-dominating set, then by definition, S forms a k-coalition with no other set in
C, thereby confirming the result. Now, suppose S is not a k-dominating set. Then,
there exists a vertex x /∈ S that is not k-dominated by S. For any set A ∈ C that
does not include x and forms a k-coalition with S, in order for A ∪ S to k-dominate
vertex x, the set A∪S must include at least k vertices from N(x) (the neighborhood
of x). Let x ∈ A. To maximize the number of sets that form a k-coalition with S,
the set S must contain at most k−1 neighbors of x, leaving the remaining neighbors
of x to be covered by all coalition partners of S except A. Therefore, in the worst
case, S forms a k-coalition with at most 1 + |N(x)| − (k − 1) ≤ ∆(G) − k + 2 sets.
This completes the proof.

Theorem 2.5 For any graph G with the maximum degree ∆(G) and any integer
k > δ(G), we have Ck(G) ≤ ∆(G)− k + 3.

Proof. Let x be a vertex of G of degree deg(x) = δ(G). Let C be a ck-partition
of G of the cardinality Ck(G). Let X ∈ C such that x ∈ X. If N(x) ⊆ X, then
any set of C \ {X} must form a k-coalition only with X. Hence, by Lemma 2.4,
Ck(G) ≤ 1 + ∆(G) − k + 2 = ∆(G) − k + 3. Now, assume that N(x) * X.
Let A 6= X and B 6= X be two sets of C. If A and B forms a k-coalition, then
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A ∪ B is a k-dominating set. Since x 6∈ A ∪ B, x must have at least k neighbors in
A ∪ B, which is a contradiction because x has δ(G) < k neighbors. Hence, every
set of C must only form a k-coalition with X. Hence, by Lemma 2.4, we have
Ck(G) ≤ ∆(G)− k + 2 + 1 = ∆(G)− k + 3.

Lemma 2.6 If ∆(G) < k then Ck(G) = 2.

Proof. Suppose A and B form a k-coalition. Since deg(v) < k, it follows that A∪B
contains all vertices and no proper subset of the vertices can be a k-dominating set.
Consequently, Ck(G) = 2.

Theorem 2.7 For any graph G with ∆(G) ≥ δ(G)+1, we have Cδ(G)(G) ≤ 2∆(G)−
2δ(G) + 4.

Proof. Let k = δ(G) and let x be a vertex of G of degree δ(G). Let C be a k-coalition
partition of G of the cardinality Ck(G). Let X ∈ C such that x ∈ X.

• If N(x) ∩X 6= ∅, then, any set of C \X must form a k-coalition only with X.
Hence, by Lemma 2.4, Ck(G) ≤ ∆(G) − k + 3. Since ∆(G) ≥ δ(G) = k, we
have Cδ(G)(G) ≤ 2∆(G)− 2δ(G) + 4.

• If N(x) ∩X = ∅, then we consider the following cases.

– There exist at least three sets A,B and C in k-coalition partition C \{X}
which have intersect with N(x), i.e., A ∩ N(x) 6= ∅, B ∩ N(x) 6= ∅ and
C ∩ N(x) 6= ∅. In this case for every two partners Si and Sj which
form k-coalition, we have Si = X, or Sj = X. Therefore by Lemma 2.4,
Ck(G) ≤ ∆(G)− k + 3.

– There exist exactly two sets A and B with A ∩N(x) 6= ∅, B ∩N(x) 6= ∅.
Then N(x) ⊆ A ∪ B. Hence, there is no set C \ {X,A,B} forming k-
coalition with A or B. Hence, by Lemma 2.4 the set X is in at most
∆(G)− k + 2 k-coalition and therefore Ck(G) ≤ 1 + ∆(G)− k + 2 + 2 =
∆(G)− k + 5. Since ∆(G) ≥ k + 1, we have Ck(G) ≤ 2(∆(G)− k + 2).

– There exists exactly one set A ∈ C with A ∩ N(x) 6= ∅. So N(x) ⊆ A.
Then, if A andX form a k-coalition, then by Lemma 2.4, each of the sets A
and X form k-coalitions with at most ∆(G)−k+2 sets. Since we assumed
that A and X form a k-coalition, then C(G) ≤ 2(∆(G) − k + 1) + 2 =
2(∆(G) − k + 2). Now, assume that A and X do not form a k-coalition.
Then, A ∪ X is not a k-dominating set. Hence, there exists a vertex w
which is not k-dominated by A and X. Consider |(X ∪A)∩N(w)| = t ≤
k − 1. Therefore, every member of C \ {X,A} must either contain the
vertex w or include at least k− t vertices of N(w). Consequently, we have

Ck(G) ≤ max
0≤t≤k−1

(
∆(G)− t

k − t
) + 1 + 2.

This value can reach its maximum when t = k − 1 and Ck(G) ≤ ∆(G)−
k + 4.
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In the following, we show that the k-coalition number of any k-regular graph is
3 or 4.

Theorem 2.8 If G is a k-regular graph, then 3 ≤ Ck(G) ≤ 4.

Proof. Suppose that two vertices v1 and v2 in G are adjacent. Then
{

V \ {v1, v2}, {v1}, {v2}
}

is a k-coalition partition of G and so Ck(G) ≥ 3. Now let C be a k-coalition partition
of G with the cardinality Ck(G). If there exists X in C which contains two adjacent
vertices, then for some vertex x in X, N(x) ∩ X 6= ∅. By Lemma 2.4, Ck(G) ≤
∆(G)− k + 3 = 3. Therefore in this case Ck(G) = 3.

If no member of C contains two adjacent vertices, then we consider the following
two cases:

Case 1. If there exists a vertex x such that N(x) has intersection with just one
set or more than two sets in C, then by the proof of Theorem 2.7,

Ck(G) ≤ max
{

∆(G)− k + 4, 2(∆(G)− k + 2)
}

= 4.

Case 2. Otherwise, let X be a member of C, and consider x ∈ X as a vertex.
Again, we consider two cases:

• If S1 or S2 forms a k-coalition with X, then by Lemma 2.4

Ck(G) ≤ 1 + ∆(G)− k + 2 + 1 = ∆(G)− k + 4 = 4.

• If neither S1 nor S2 forms a k-coalition with X and X is a k-dominating set, we
are done. Now let X form a k-coalition with S0. Since any vertex v0 ∈ N(x)
(which is not in S0 ∪ X) is dominated by S0 ∪ X, and the neighborhood of
any vertex cannot be in the only one set in a partition, so there is a vertex
v0 ∈ N(X) which is adjacent to a vertex in S0. So X just forms a k-coalition
with S0 and so C = {X,S0, S1, S2}. Therefore we have the result.

3 k-coalition number of specific graphs

First let us recall the definition of the corona of two graphs F and H. By taking a
single instance of graph F and |V (F )| copies of the graph H, and linking the i-th
vertex of F to each vertex in the i-th instance of H, we obtain a graph denoted as
F ◦H. This graph is regarded as the corona product of F and H.

In this section, we study the k-coalition number of certain graphs, such as com-
plete graphs, trees, paths Pn, cycles Cn, Pn◦Kl and i Cn◦Kl. We start with complete
graphs.

Since π = {{v1, v2, . . . , vk−1}, {vk}, {vk+1}, . . . , {vn}} is a k-coalition partition of
Kn, we have the following observation:
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Observation 3.1 For every 2 ≤ k ≤ n− 1, Ck(Kn) = n− k + 2.

The following theorem characterizes the k-coalition number of the complete bi-
partite graph.

Theorem 3.2 Let Ks,t be the complete bipartite graph with partitions X = {v1, v2,
. . . , vs} and Y = {v′1, v

′
2, . . . , v

′
t}, where s ≤ t. The coalition number Ck(Ks,t) is

characterized as follows:

(i) If k < s, then max{s+ t− 4k + 4, t− k + 2} ≤ Ck(Ks,t) ≤ s+ t− 2k + 1.

(ii) If 1 < k = s, then Ck(Ks,t) = 4.

(iii) If s < k ≤ t, then Ck(Ks,t) = 2.

(iv) If t < k, then Ck(Ks,t) = 2.

Proof. Let X = {v1, v2, . . . , vs} and Y = {v′1, v
′
2, . . . , v

′
t} represent the two partitions

of Ks,t. Consider the following cases:

(i) Using the following k-coalition partitions the lower bound follows.

{

{v1, v2, . . . , vk−1, v
′
1, v

′
2, . . . , v

′
k}, {vk, vk+1, . . . , v2k−1, v

′
k+1, v

′
k+2, . . . , v

′
2k−1},

{v2k}, . . . , {vs}, {v
′
2k}, . . . , {v

′
t}
}

,

and
{

{v1, v2, . . . , vs, v
′
1, v

′
2, . . . , v

′
k−1}, {v

′
k}, . . . , {vk+1}, , . . . , {v

′
t}
}

.

Every Si and Sj forming a k-coalition must satisfy |Sj ∪ Si| ≥ 2k (ensuring k
vertices in each part) and the following partition gives the upper bound.

{

{u1, u2, . . . , u2k−1}, {u2k}, . . . , {us+t}
}

, ui ∈ X ∪ Y.

(ii) Let Θ = {S1, S2, . . . } be a k-coalition partition and S1, S2 form a k-coalition.
Since degX(v) = k for all v ∈ Y , it follows that Y ⊆ (S1∪S2) or X ⊆ (S1∪S2).
So the Θ can at most have four member. According the following partition we
have |Θ| = 4.

{{v1}, {v2, . . . , vs} {v
′
1}, {v

′
2 . . . , v

′
t}} .

Note that if there exists a k-dominating set S in Θ, then Θ = {X, Y }.

(iii) Let Θ = {S1, S2, . . . } be a k-coalition partition. Suppose S1 and S2 form a
k-coalition. Since degX(v) < k for all v ∈ Y , it follows that Y ⊆ (S1 ∪ S2). If
both Y ∩ S1 6= ∅ and Y ∩ S2 6= ∅, then |Θ| = 2. Without loss of generality,
assume Y ⊆ S1. Furthermore, since ∀v ∈ X, degY (v) ≥ k, S1 is a k-dominating
set, which contradicts Definition 2. Note that a k-dominating set must contain
all vertices of Y . Consequently, Ck(Ks,t) = 2.
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(iv) This follows from Lemma 2.6.

Using Theorem 2.7, we have the following result.

Corollary 3.3 For every tree G, C2(G) ≤ ∆(G) + 1.

Corollary 3.4 For every k ∈ N, there exists a tree T with maximum degree k and
C2(T ) = k + 1.

Proof. Let T be a tree obtained from a starK1,k with attaching two pendant vertices
to each leave of K1,k (see Figure 1). If L is the set of leaves of T , then the 2-coalition
number of this tree is k + 1, as demonstrated by the following partition:

{{u}, {v2}, {v3}, . . . , {vk}, L ∪ {v1}} .

u

v1 v2 vk

v11 v12 v21 v22 vk1 vk2

Figure 1: A tree T with maximum degree k and C2(T ) = k + 1.

Now by using Theorem 2.5 we prove the following result.

Theorem 3.5 For any path Pn

C2(Pn) =











1 n = 1

2 n = 2, 3

3 n ≥ 4.

Proof. It is easy to verify that form n ≤ 3, C2(P1) = 1, C2(P2) = 2, and C2(P3) = 2.
Now consider a path Pn with n ≥ 4. By Theorem 2.5, for any path Pn we have
C2(Pn) ≤ ∆(Pn) − 2 + 3 = 3. Now, we have a 2-coalition partition of cardinality 3
for Pn as follows.

{{v1, vn}, {v2i|1 < 2i < n}, {v2i+1|1 < 2i+ 1 < n}} .

To obtain the 2-coalition number of cycles we need the following easy lemma:

Lemma 3.6 If S ⊆ V (Cn) is a 2-dominating set of Cn, then |S| ≥
n

2
.
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Proof. For every v ∈ V \S, degS(v) = 2 and
∑

v∈V \S degS(v) = 2(n − |S|). So by
definition,

2(n− |S|) ≤
∑

v∈S

deg(v) = 2|S|,

and so
n

2
≤ |S|.

Theorem 3.7 (i) If Θ = {S0, S1, . . . , St} is a 2-coalition partition for Cn with
|Θ| ≥ 4 and every Si ∈ Θ does not contain consecutive vertices of Cn, then n
is even and C2(Cn) = 4.

(ii) The 2-coalition number of odd cycles is 3.

Proof.

(i) We consider two cases:

Case 1: If there is a vertex v0 ∈ S0 which is adjacent to different members S1

and S2, then every Si ∈ Θ\{S0, S1, S2} form a 2-coalition with S0. So

n

2
≤ |Si ∪ S0| = |Si|+ |S0|.

Since degV \{S1,S2}(v0) = 0, so S1 and S2 form a 2-coalition. Therefore

n

2
+

n

2
≤ |Si|+ |S0|+ |S1|+ |S2| ≤ n = |V |,

and so
|Si|+ |S0| =

n

2
, |S1|+ |S2| =

n

2
.

Thus n is even and |Θ| = 4.

Case 2: We do not have any vertex adjacent to a different member. So the
vertices must be alternatively in the same member S0. Therefore n is even and
S0 is 2-dominating set. Hence |S0| = 2 and n = 4.

(ii) Suppose that Θ = {S1, S2, . . . , St} is a 2-coalition of Cn, where n > 4 is odd.
On the other hand, for every Cn with n ≥ 4, there exists a 2-coalition partition
with three elements, explicitly given by:

{

{v1}, {v2i | 2 ≤ 2i ≤ n}, {v2i+1 | 2 ≤ 2i+ 1 ≤ n}
}

.

Thus it follows that |Θ| ≥ 3. Now, assume |Θ| ≥ 4. By Theorem 3.7, this
implies that there exists some Si ∈ Θ containing two consecutive vertices. Let
V (Cn) = {v1, v2, . . . , vn}, and without loss of generality suppose that v1 and v2
are both elements of Si. Since degV \Si

(v1) ≤ 1, every Sj ∈ Θ \ {Si} must form
a 2-coalition with Si. It is important to note that Si cannot be a 2-dominating
set, as Si is an element of the 2-coalition partition. Therefore, V \ Si must
contain consecutive vertices. Let vr, vr+1 ∈ V \ Si be two consecutive vertices,



A. JAFARI ET AL. /AUSTRALAS. J. COMBIN. 92 (2) (2025), 194–209 204

and let Sk and Sk′ be the members of Θ containing vr and vr+1, respectively.
Now we observe that Si cannot form a k-coalition with any member of Θ \
{Sk, Sk′}, implying that |Θ| ≤ 3. This contradicts the assumption that |Θ| ≥
4. Therefore, the initial assumption leads to a contradiction, and the result
follows.

Corollary 3.8 The 2-coalition number of Cn is:

C2(Cn) =

{

4 n is even

3 n is odd.

Using Theorem 2.7, we obtain the following result.

Corollary 3.9 For any cycle Cn and any path Pn, we have C2(Cn ◦ K1) = 4 and
C2(Pn ◦K1) = 4.

Proof. Let V ′ contain vertices of degree one and V ′′ = V \ V ′. By Theorem 2.7, we
have C2(Cn ◦K1) ≤ 4 and C2(Pn ◦K1) ≤ 4. Now, we present a 2-coalition partition
with 4 elements for Pn and Cn, as follows:

{

V \ {vn−2, vn−1, vn}, {vn−2}, {vn−1}, {vn}
}

such that vn−2, vn−1, vn ∈ V ′′.

Theorem 3.10 The k-coalition number of Cn ◦Kl is:

Ck(Cn ◦Kl) =



















2 l ≤ k − 3

3 l = k − 2

4 l = k − 1

2 l ≥ k

Proof. Let Θ = {S1, S2, . . . , St} be a k-coalition partition and Si and Sj form a
k-coalition. Suppose that V ′ = {v| deg(v) = 1} and V ′′ = {v| deg(v) = l + 2}. We
consider the following cases:

Case 1: l ≤ k− 3. Since the degree of any vertices is less than k, so Si ∪ Sj must
contain whole of the vertices. Therefore Θ = {Si, Sj}.

Case 2: l = k − 2. Since deg(v) = 1 < k for v ∈ V ′, it follows that V ′ ⊂ Si ∪ Sj.
If V ′ intersects with both Si and Sj, it is clear that |Θ| = 2. Now let V ′ ⊂ Si. Since
Si is not a k-dominating set, there are at least 2 consecutive vertices v1 and v2 in
V \ Si. Every St ∈ Θ \ {Si} must form a k-coalition with Si and contains at least
one of v1, v2. Therefore |Θ| ≤ 3. We can have a k-coalition with three elements as
follows:

{

V \ {vn−1, vn}, {vn−1}, {vn}
}

such that vn−1, vn ∈ V ′′.
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Case 3: l = k − 1. This is similar to the proof of Corollary 3.9.

Case 4: l ≥ k. In this case the vertices can be partitioned into two disjoint
sets V ′ and V ′′ such that V ′{v| deg(v) = 1} and V ′′ = {v| deg(v) = l + 2}. Let
Si and Sj be a k-coalition, so V ′ ⊂ Si ∪ Sj. If V ′ ⊂ Si then Si is a k-dominating
set, since V \ Si ⊂ V ′′ and degV ′(v) = l + 2 > k for v ∈ V ′′, and it contracts the
definition of k-coalition. Therefore sets V ′ ∩ Si and V ′ ∩ Sj are not empty and it
implies Θ = {Si, Sj}.

Similar to the proof of Theorem 3.10 we have the following result:

Theorem 3.11 The k-coalition number of Pn ◦Kl is:

Ck(Pn ◦Kl) =































2 l ≤ k − 3

2 l = k − 2 n ≤ 3

3 l = k − 2 n ≥ 4

4 l = k − 1

2 l ≥ k

4 Graphs with large 2-coalition number

Characterization of graphs of order n whose coalition number is n or n − 1 is an
interesting subject, see [3, 4]. In this section, we study graphs with large 2-coalition
number.

Theorem 4.1 If C2(G) = n, then deg(v) ≥ n− 2 for every vertex v.

Proof. Since C2(G) = n, for every v1 ∈ V (G), there exists v2 ∈ V (G) which forms
a 2-coalition. Therefore v1 and v2 must be adjacent to all vertices of V (G) \ {v1, v2}.

Lemma 4.2 If C2(G) = n and deg(v) = n − 2, then there is only one 2-coalition
partner for v.

Proof. Since C2(G) = n, there is a vertex v′ which forms a 2-coalition with v.
Therefore all vertices of V (G)\{v, v′} must be adjacent to v and since deg(v) = n−2,
v′ is not adjacent to v.

Lemma 4.3 For any even integer n, there is an (n − 2)-regular graph H with
C2(H) = n.

Proof. Suppose H = Kn \M , where M is a perfect matching in Kn. Obviously the
graph H is (n− 2)-regular with C2(H) = n.

Corollary 4.4 If G is an (n− 2)-regular graph with C2(G) = n, then n is even and
G is isomorphic to graph H in the proof of Lemma 4.3.
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We close this section with the following remark.

Remark 4.5 If C2(G) = n and n is odd, then the number of full vertices of G is
odd.

5 Trees with large 2-coalition number

Characterization of trees of order n whose coalition number is n or n − 1 is an
interesting subject. In this section, we study trees with large 2-coalition number.
First we obtain another upper bound for the 2-coalition number of trees.

Theorem 5.1 For any tree T of order n, C2(T ) ≤
n
2
+ 1.

Proof. Let π be a k-coalition partition of T and L ∈ π is the set which consists of
leaves of T (if leaves are contained in two parts, then c2(T ) = 2). Any X 6= L in
π forms a 2-coalition with L. So by Lemma 2.4, there are at most ∆(T ) − 2 + 3 =
∆(T )+1 sets in π. But it is easy to see that for any tree T with k leaves, ∆(T ) ≤ k,
and so

C2(T ) ≤ k + 1.

On the other hand, since there are k leaves in L, we have at most n − k vertices
which are not in L. If any set X 6= L in π is a singleton (worst case), then

C2(T ) ≤ 1 + n− k.

From these two upper bounds, we have:

2C2(T ) ≤ n+ 2,

which implies the result.

Corollary 5.2 Let T be a tree of order n.

(i) If C2(T ) = n, then T = P2.

(ii) If C2(T ) = n− 1, then T = P4.

Proof.

(i) Suppose that C2(T ) = n. By Theorem 5.1, we have n ≤ n
2
+ 1, so n ≤ 2.

Therefore T = P2.

(ii) If C2(T ) = n − 1, then by Theorem 5.1, we have n − 1 ≤ n
2
+ 1, so n ≤ 4.

Therefore T = P4.

Theorem 5.3 If there is a vertex x in the tree T such that the distance between x
and all leaves of T is at least 2, then C2(T ) ≥ 3.
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Proof. Suppose that S = {v ∈ V (T )|d(v, x) ≥ 2} and S1 = {w ∈ V (T )|d(v, w) =
1}. Then S, S1 and {x} is a c2-partition. Therefore we have the result.

Now, we show that by using Theorem 5.3 we have another proof for 2-coalition
number of paths.

Corollary 5.4 For any n ≥ 5, C2(Pn) = 3.

Proof. By Theorem 2.7, C2(Pn) ≤ ∆(Pn) − l + 3 = 3. On the other hand by
Theorem 5.3, for n ≥ 5, C2(Pn) ≥ 3. Therefore the result is obtained.

6 Conclusion

This paper introduces the concept of k-coalition in graphs and investigates some
properties related to k-coalition number. We proved that any graph G has a k-
coalition partition, and also we presented some bounds on the k-coalition number.
Utilizing these bounds, we have determined the precise values of k-coalition number
of some specific graphs. We studied the graphs G with large Ck(G).

Here we state some unresolved problems and potential research directions related
to the k-coalition number of graphs.

(i) What is the exact values of k-coalition number of specific graphs, such as paths,
cycles, trees and unicyclic graphs for k ≥ 3.

(ii) Study Nordhaus and Gaddum lower and upper bounds on the sum and the
product of the k-coalition number of a graph and its complement.

(iii) What is the k-coalition number of graph operations, such as corona, Cartesian
product, join, lexicographic product, and so on?

(iv) Associated with every k-coalition partition π of a graph G, there is a graph
called the k-coalition graph of G with respect to π, denoted kCG(G, π), the
vertices of which correspond one-to-one with the sets V1, V2, . . . , Vk of π and
two vertices are adjacent in kCG(G, π) if and only if their corresponding sets
in π form a k-coalition. Study of k-coalition graph is an interesting subject.
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