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Abstract

For given graphs G1, G2 and G, by G → (G1, G2) we mean that if the
edges of G are arbitrarily colored by red and blue, then there is either
a red monochromatic copy of G1 or a blue monochromatic copy of G2

in G. The Ramsey number R(G1, G2) is defined as the smallest positive
integer n such that Kn → (G1, G2) and the star-critical Ramsey number
R∗(G1, G2) is defined as min{δ(G) : G ⊆ KR(G1,G2), G → (G1, G2)}. The

size Ramsey number R̂(G1, G2) is defined as the minimum number of
edges of a graphG such thatG → (G1, G2). In this paper, the star-critical
Ramsey number of a forest versus a near complete graph is computed
exactly and a sharp bound is given for their size Ramsey numbers.

1 Introduction

In this paper, we are only concerned with undirected simple finite graphs and we
follow [3] for terminology and notations that are not defined here. For a given graph
G, we denote its vertex set, edge set, maximum degree and minimum degree of G by
V (G), E(G), ∆(G) and δ(G), respectively. For a vertex v ∈ V (G), we use deg (v)
and N(v) to denote the degree and the set of neighbors of v in G, respectively.
Also, for given disjoint subsets A and B of V (G), by E[A,B] we mean the set of
edges of the bipartite subgraph of G with partite sets A and B. In this paper,
for a given graph G, we use l(G) to denote the number of vertices of the largest
component of G and we use ki(G) to denote the number of components of G with
exactly i vertices. Moreover, the variety of a graph G, denoted by q(G), is defined
as q(G) = |{i : ki(G) 6= 0}|, that is the number of components of G with different
sizes and we set C(G) = {i : ki(G) 6= 0}. A clique in a graph is a set of mutually
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adjacent vertices and the maximum size of a clique in a graph G is called the clique
number of G. As usual, the star graph on n+ 1 vertices is denoted by K1,n and the
complete graph on n vertices is denoted by Kn. We use Kk(n1, . . . , nk) to denote the
complete k-partite graph in which the i-th part, 1 ≤ i ≤ k, has ni vertices.

For a given red/blue coloring of the edges of a graph G, we use Gr and Gb to
denote the spanning subgraphs of G induced by the edges of colors red and blue,
respectively. Let G and G1, G2 be given graphs. By G → (G1, G2) we mean if the
edges of G are arbitrarily colored by red and blue, then either G1 ⊆ Gr or G2 ⊆ Gb. If
G 9 (G1, G2), then we say that G has a (G1, G2)-free coloring. The Ramsey number
R(G1, G2) is defined as the smallest positive integer n such that Kn → (G1, G2). The
existence of such a positive integer is guaranteed by Ramsey’s classical result [11].
In recent years there have been several activities in the determination of Ramsey
numbers of certain pairs of specific graphs [10]. One of the known results is due to
Chavátal [3] who showed that R(T,Km) = (n− 1)(m− 1) + 1, where T is a tree of
order n. Chavátal’s theorem was extended by Stahl [12] who showed that if F is a
forest, then

R(F,Km) = max
j∈l(F )

{(j − 1)(n− 2) +

l(F )
∑

i=j

iki(F )}.

Finally, the Ramsey number of any forest of order at least 3 versus any graph G of
order n, n ≥ 4, having clique number n− 1 is computed exactly in [4].

For given graphs G1 and G2, instead of the complete graph KR(G1,G2), we are
interested in subgraphs H ⊆ KR(G1,G2) such that H → (G1, G2). In this direction,
we consider the star-critical Ramsey number as an extension of the Ramsey number
which was first defined by Hook and Isaak in [8]. The star-critical Ramsey number
R∗(G1, G2) is defined as min{δ(H) : H ⊆ KR(G1,G2), H → (G1, G2)}. The size

Ramsey number R̂(G1, G2) is defined as the minimum number of edges of a graph H

such that H → (G1, G2). For results and related problems in this area we refer the
reader to [7, 9, 13].

Let G be an n-vertex graph, n ≥ 4, with clique number n − 1 and let T be an
arbitrary tree with at least three vertices. In this paper, all (T,G)-free colorings
of KR(T,G)−1 will be classified and consequently, the star-critical Ramsey number
R∗(T,G) will be computed exactly. This article further provides the exact value of
the star-critical Ramsey number of every forest versus an n-vertex graph G, n ≥ 4,
with clique number n − 1. In addition, a sharp bound is given for the size Ramsey
number of forests versus near-complete graphs in terms of their star-critical Ramsey
numbers.

2 Trees versus near-complete graphs

In this section, the star-critical Ramsey number and also the size Ramsey number of
a tree versus a graph G of order n ≥ 4 having clique number n− 1 will be discussed.
It is worth noticing that the Ramsey number of a tree versus Kn − e is computed in
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[4] as follows.

Theorem 2.1. [4] If n ≥ 3 and Tm is any tree of order m ≥ 3, then

R(Tm, Kn − e) =







m+ 1, if n = 3, m is even and Tm is a star,

(m− 1)(n− 2) + 1, otherwise.

To determine the star-critical Ramsey number R∗(Tm, Kn − e), for m ≥ 3 and
n ≥ 4, we first characterize all (Tm, Kn − e)-free colorings of KR(Tm,Kn−e)−1. Before
that we give a result from [1], which will be used in the sequel.

Corollary 2.2. [1] Any graph G with a connected component of minimum degree
δ(G) ≥ m− 2 and maximum degree ∆(G) ≥ m− 1 contains every tree of order m.

Theorem 2.3. Let m ≥ 3 and n ≥ 4 be given and r = R(Tm, Kn− e) = (m−1)(n−
2) + 1. If c is an arbitrary (Tm, Kn − e)-free coloring of F = Kr−1 without a red
copy of Tm and a blue copy of Kn−e, then the resulting graph must admit a red/blue
coloring of F described as follows.

F r ∼= (n− 2)Km−1,

F b ∼= Kn−2(m− 1,m− 1, . . . ,m− 1).
(1)

If n = m = 4 and Tm = K1,3, the graph F could also have the following red/blue
coloring.

F r ∼= C6, F b ∼= K6 − C6. (2)

Proof. Assume that the statement of the theorem is not correct and suppose a coun-
terexample exists. Therefore, there are some positive integers m ≥ 3, n ≥ 4 and a
(Tm, Kn − e)-free coloring of F such that F r or F b are not isomorphic to the one’s
described in the theorem. Among all counterexamples, consider the one with the
smallest possible value of n.

If there is a vertex u ∈ V (F ) such that degF b(u) ≥ R(Tm, Kn−1 − e), then the
subgraph of F induced byNF b(u)∪{u} contains a blue copy ofKn−e, a contradiction.
Thus, for every vertex u ∈ V (F ), degF b(u) < R(Tm, Kn−1−e) and so by Theorem 2.1,
for each vertex u ∈ V (F ),

degF r(u) ≥

{

m− 3, if n = 4, m is even and Tm is a star

m− 2, otherwise.

First, let n = 4, m be even and Tm
∼= K1,m−1. In this case, for each vertex

u ∈ V (F ), degF r(u) ≥ m − 3 and degF b(u) ≤ m. Since c is a (Tm, Kn − e)-free
coloring of F and Tm * F r, then for each vertex u ∈ V (F ), degF r(u) ∈ {m−2,m−3}
and degF b(u) ∈ {m,m − 1}. Let z ∈ V (F ) be a vertex of maximum degree in F b

and degF b(z) = m− ǫ, where ǫ = 0 or ǫ = 1. We may assume that there are vertices
x, y ∈ NF b(z) such that xy is blue, otherwise since c is a (Tm, Kn − e)-free coloring



A. KAMRANIAN AND G. RAEISI /AUSTRALAS. J. COMBIN. 92 (2) (2025), 184–193 187

of F , then ǫ = 1, E[NF b(z), NF r(z)] ⊆ E(F b) and F [NF r(z)] ⊆ F r. Therefore,
F r ∼= 2Km−1 and F b ∼= K2(m− 1,m− 1), as described in (1), a contradiction.

Thus, let x, y ∈ NF b(z) and xy be blue. Now, if w is an arbitrary vertex in
NF b(u) \ {x, y}, to avoid a blue copy of K4 − e, the edge wx (and also wy) should
be red. Since degF r(x) ≥ m − 1 and degF r(x) ≥ m − 1, then each of x and y has
at least m − 3 blue neighbors in NF r(z) and since K4 − e * F b, all of the 2m − 6
neighbours of x and y in NF r(z) are distinct. Since |NF r(z)| = m+ ǫ− 3 and x and
y have at least 2m− 6 distinct neighbors in NF r(z), then 2m− 6 ≤ m+ ǫ− 3, means
that m ≤ 3+ ǫ. Since m ≥ 3 is even, thus ǫ = 1 and m = 4. Since z is a vertex with
maximum degree in F b and ǫ = 1, then degF b(v) = 3, for every vertex v ∈ V (F ). In
this case, one can easily see that F r ∼= C6 and F b ∼= K6 − C6, as described in (1), a
contradiction.

Now, let n > 4. In this case, for each vertex u ∈ V (F ), degF r(u) ≥ m − 2
and degF b ≤ (m − 1)(n − 3). If there is a vertex with degree at least m − 1 in
F r, then by Corollary 2.2, F r contains a copy of Tm, a contradiction. Hence, each
vertex in F r has degree m − 2 and each vertex in F b has degree (m − 1)(n − 3).
Let z be a vertex of F and H be the subgraph of F induced by NF b(z). Since
(m− 1)(n− 3) = R(Tm, Kn−1 − e)− 1 and c induced a (Tm, Kn−1 − e)-free coloring
of H, the minimality of n implies that H has a red/blue coloring described in (1) or
n = 5, m = 4, Tm

∼= K1,3 and H has the (K1,3, K4− e)-free coloring described in (2).
If H has a red/blue coloring described in (1), then

Hr = (n− 3)Km−1 and Hb = Kn−3(m− 1,m− 1, . . . ,m− 1).

Since every vertex in F r has degree m− 2, then all edges between NF r(z) and V (H)
must be blue and so, all edges contained in NF r(z) are colored red. Thus, we have the
red/blue coloring of F described in (1), a contradiction. Note that if n = 5, m = 4,
Tm

∼= K1,3 and the (Tm, K4 − e)-free coloring induced on H is the ones described
in (2), then considering three vertices in NF b(z) forming a triangle together with
the two vertices in NF r(z), we have a blue copy of K5 − e, contradicting the fact
that c is a (Tm, K5 − e)-free coloring of F . This contradiction shows that there is no
counterexample to the theorem and for every m ≥ 3 and n ≥ 4, any (Tm, Kn−e)-free
coloring of F is isomorphic to the ones described in (1) or (2).

Now, in the sequel we prove that if r = R(Tm, Kn − e) = (m− 1)(n− 2) + 1 and
H is a subgraph of Kr such that H → (Tm, Kn− e), then δ(H) ≥ (m− 1)(n− 3)+1.
For this purpose, we prove a more general result by determining the exact value of
the star-critical Ramsey number of any tree of order at least three versus Kn− e, for
n ≥ 4.

Lemma 2.4. If n ≥ 4 and Tm is any tree of order m,m ≥ 3, then

R∗(Tm, Kn − e) = (m− 1)(n− 3) + 1.

Proof. Let r = R(Tm, Kn−e) = (m−1)(n−2)+1 and r∗ be the claimed number for
R∗(Tm, Kn − e). To see r∗ is a lower bound for R∗(Tm, Kn − e), let H be a subgraph
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of Kr such that H → (Tm, Kn − e). We prove that δ(H) ≥ r∗. On the contrary,
let v be the vertex of H with degree at most r∗ − 1. Partition the vertices of Kr−1

into sets V1, V2, . . . , Vn−2 such that for every i, 1 ≤ i ≤ n − 2, |Vi| = m − 1 and
N(v) ⊆

⋃n−2
i=2 Vi. Color all edges contained in Vi, 1 ≤ i ≤ n− 2, by red and the rest

by blue. Also, color all edges incident with v by blue. Since the clique number of the
subgraph of H spanned by the blue edges is n− 2, then Hb does not contain Kn − e

as a subgraph. Also, Hr does not contain Tm, because the largest component in Hr

has size (m−1). Thus, we have a (Tm, Kn− e)-free coloring of H, contradicting that
H → (Tm, Kn − e).

For the upper bound, we construct a subgraph H of Kr such that δ(H) = r∗
and H → (Tm, Kn − e). For this purpose, let H be a subgraph of Kr constructed
from Kr−1 by adding a vertex adjacent to exactly r∗ vertices of Kr−1. We prove that
H → (Tm, Kn − e). On the contrary, assume that H 9 (Tm, Kn − e) and consider
a (Tm, Kn − e)-free coloring of H. This coloring induces a (Tm, Kn − e)-free coloring
of H \ {v} ∼= Kr−1 and so, by Theorem 2.3, this coloring is unique as described in
the theorem. If we have the red/blue coloring described in (1), then the red graph is
isomorphic to the (n− 2)-partite graph Kn−2(m− 1, . . . ,m− 1). Let V1, V2, . . . , Vn−2

be the partite sets of the red subgraph ofH\{v}. Thus, all edges incident with v must
be blue, otherwise, Hr contains a copy of Tm, a contradiction. Now, deg(v) = r∗ and
so by the Pigeonhole principle, v has at least one neighbor in each Vi, 1 ≤ i ≤ n− 2
and there are some j, 1 ≤ j ≤ n − 2, such that v has at least two neighbors in Vj,
means that Hb contains a copy of Kn − e, a contradiction. Now, let us have the
red/blue coloring described in (2), i.e. let Kr

r−1 = C6 and Kb
r−1 = K6 − C6. By a

similar argument, if there is a red edge between v and H \ {v}, we have a red copy
of K1,3. Thus, we may assume that all four edges between v and H \ {v} are blue,
which form a blue copy of K4 − e, a contradiction. This contradiction shows that r∗
is an upper bound for R∗(Tm, Kn − e), completing the proof of lemma.

Hook and Issak [8] determined the star-critical Ramsey number of a tree versus a
complete graph and proved that R∗(Tm, Kn−1) = (m− 1)(n− 3)+ 1. Since for every
graph G of order n and having clique number n − 1, we have Kn−1 ⊂ G ⊂ Kn − e,
then R∗(Tm, Kn−1) ≤ R∗(Tm, G) ≤ R∗(Tm, Kn − e). Having applied Lemma 2.4, we
obtain the following corollary.

Corollary 2.5. If Tm is any tree of order m ≥ 3 and G is any graph of order n ≥ 4
having clique number n − 1, then R∗(Tm, G) = (m − 1)(n − 3) + 1. In particular, if
H → (Tm, G) and |V (H)| = (m− 1)(n− 2) + 1, then δ(H) ≥ (m− 1)(n− 3) + 1.

3 Forests versus near-complete graphs

The aim of this section is to determine the exact value of the star-critical Ramsey
number of a forest versus a near complete graph and finally provide a sharp bound
for their size Ramsey numbers. For this purpose, we consider a more general case
and the star-critical Ramsey number of a forest versus a near complete graph will be
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obtained consequently. Let G and H be given connected graphs. G is called H-good
if R(G,H) = (χ(H)− 1)(|V (G)| − 1) + s(H), where χ(H) is the chromatic number
of H and s(H) is the chromatic surplus of H, i.e., the cardinality of a minimum
color class taken over all proper colorings of H with χ(H) colors. Also, we say G

is H-star-good, if G is H-good and R∗(G,H) = (χ(H) − 2)(|V (G)| − 1) + s(H).
For example, it is proved that [8, 12] every tree is Km-good and also Km-star-good,
for every m ≥ 2. In [2], Bielak proved that for given graph G with χ(G) ≥ 2 and
chromatic surplus s(G), if H is a disjoint union of G-good graphs, then

R(H,G) = max
j∈C(H)







(j − 1)(χ(G)− 2) +

n(H)
∑

i=j

iki(H)







+ s(G)− 1.

Also, the following simple proposition is proved by Bielak in [2].

Proposition 3.1. ([2]) Let G be a graph with χ(G) ≥ 2 and chromatic surplus s(G).
If H is a G-good graph, then |V (H)| ≥ s(G) + 1.

To determine the exact value of the star-critical Ramsey number of a forest versus
a near complete graph, we start with the following theorem, generalizing the result
of Bielak [2]. Hereafter, let Kn ⊔K1,k be the graph obtained from Kn by adding a
new vertex v adjacent to k vertices of Kn.

Theorem 3.2. For given graph G with χ(G) = n ≥ 3 and chromatic surplus s(G),
let H be the disjoint union of components which are G-star-good. If j0 is the smallest
positive integer such that maxj∈C(H){(j − 1)(n− 2) +

∑l(H)
i=j iki(H)} happens, then,

R∗(H,G) = (j0 − 1)(n− 3) +

l(H)
∑

i=j0

iki(H) + s(G)− 1.

Proof. Let r = R(H,G) = (j0 − 1)(n − 2) +
∑l(H)

i=j0
iki(H) + s(G) − 1 and r∗ be

the claimed number for R∗(H,G). During the proof, for simplicity, we use
∑l

j to

denote
∑l(H)

i=j iki(H) and briefly, we use ki to denote ki(H). For the lower bound, let
F = Kr−1⊔K1,r∗−1 and we show that F 9 (H,G). Let v be the vertex of degree r∗−1
in F and let V1 be the set of non-neighbors of v in F . Clearly, |V1| = j0 − 1. Now,
let V2, . . . , Vn be a partition of neighbors of v such that for every i, 2 ≤ i ≤ n − 2,
|Vi| = j0 − 1, |Vn−1| = (

∑l

j0
) − 1 and |Vn| = s(G) − 1. Color all edges with both

ends in Vi, 1 ≤ i ≤ n, by red and the rest by blue. Clearly, F r does not contain H,
because in part Vn−1, some components of H of order j0 or larger are missed and by
Proposition 3.1, s(G)−1 < j0−1 and thus, in other parts there is no red component
of order j0. On the other hand, if s(G) = 1, then χ(F b) = n−1 and if s(G) > 1, then
χ(F b) = n, but the smallest color class of F b contains s(G)− 1 vertices. Therefore,
G * F b and we have a (H,G)-free coloring of F , means that F 9 (H,G).

For the upper bound, let Q = KR(H,G)−1 ⊔ K1,r∗ and v be the vertex of degree
r∗ in Q. We will show that Q → (H,G). Let s denote the number of vertices of
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the smallest component of H, H = ∪
l(H)
i=s kiHi and t =

∑l(H)
i=s ki be the number of

components of H. Now, on the contrary, assume that the statement of theorem is
not correct and suppose that a counterexample exists. Therefore, for a given graph
G, there are some graphs H containing disjoint union of G-star-good components
such that Q 9 (H,G). Among all counterexamples, let H be the one having the
minimum t i.e., the minimum number of components. Since each component of H is
G-star-good, it follows that t ≥ 2. Set

Qs =







Hs q(H) = 1

ksHs q(H) 6= 1.

Let H ′ = H −Qs and j′0 be the smallest value of j that realizes maxj∈C(H′){(j −

1)(n − 2) +
∑l

j}. Since C(H) \ C(H ′) = {s}, we have j0 ≤ j′0. Also, since H is
the counterexample with minimum t, then H ′ could not be a counterexample and so
R∗(H

′, G) ≤ r′∗, where r′∗ = (j′0 − 1)(n− 3) +
∑l

j′
0

+s(G)− 1. Since C(H ′) ⊆ C(H),

then (j0 − 1)(n− 2) +
∑l

j0
≥ (j′0 − 1)(n− 2) +

∑l

j′
0

, and using j0 ≤ j′0, we conclude
that

r∗ = (j0 − 1)(n− 3) + s(G)− 1 +
∑l

j0

≥ (j′0 − 1)(n− 2) + s(G)− 1− (j0 − 1) +
∑l

j′
0

≥ (j′0 − 1)(n− 2) + s(G)− 1− (j′0 − 1) +
∑l

j′
0

= (j′0 − 1)(n− 3) + s(G)− 1 +
∑l

j′
0

= r′∗.

Therefore, deg(v) ≥ r∗ ≥ r′∗ ≥ R∗(H
′, G) and since H ′ ⊆ H, then R(H,G) ≥

R(H ′, G). Set r′ = R(H ′, G) and choose r′ − 1 vertices from Q − {v} ≃ Kr−1

containing r′∗ vertices from N(v) and let D be the subgraph of Q spanned by v and
the chosen r′ − 1 vertices. Clearly, D ≃ Kr′−1 ⊔K1,r′

∗
⊆ Q and since R∗(H

′, G) ≤ r′∗,
then D → (H ′, G). As D ⊆ Q and Q does not contain a blue monochromatic copy of
G, we obtain that H ′ ⊆ Qr. Discard the vertices of such a copy of H ′ from Q and let
Q′ be the resulting graph. In the sequel, we prove that there is a red monochromatic
copy of Qs in Q′. Since Qs ⊂ H, then R∗(Qs, G) ≤ (s− 1)(m− 3) + sp+ s(G)− 1,
where p = 1 if q(H) = 1 and p = ks, otherwise. Note that |V (H ′)| = s(ks − 1) if
q(H) = 1 and |V (H ′)| =

∑l

s
H′
, otherwise. Now, we consider the following cases.

Case 1: v ∈ V (H ′).

In this case, Q′ ⊆ Kr−1 and |V (Q′)| = r − 1 − |V (H ′) \ {v}| ≥ (s − 1)(n − 2) +
sp+ s(G)− 1. Therefore, |V (Q′)| ≥ (s− 1)(n− 2) + sp+ s(G)− 1 ≥ R(Qs, G) and
so, Q′ → (Qs, G), means that there is a monochromatic red copy of Qs in Q′.
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Case 2: v 6∈ V (H ′).

In this case, V (H ′) ⊆ Kr−1 and |V (Q′) \ {v}| = |V (Kr−1) \ V (H ′)|. Therefore,

|V (Q′) \ {v}| = r − 1− |V (H ′)|

= (j0 − 1)(n− 2) +
∑l

j0
+s(G)− 2− |V (H ′)|

≥ (s− 1)(n− 2) +
∑l

s+s(G)− 2− |V (H ′)|

≥ (s− 1)(n− 2) + sp+ s(G)− 2 = R(Qs, G)− 1.

In addition,

degQ′(v) ≥ r∗ − |V (H ′)| = (j0 − 1)(n− 3) +
∑l

j0
+s(G)− 1− |V (H ′)|

≥ (s− 1)(n− 3) +
∑l

s+s(G)− 1− |V (H ′)|

= (s− 1)(n− 3) + sp+ s(G)− 1 ≥ R∗(Qs, G).

Therefore, in this case |V (Q′) \ {v}| ≥ R(Qs, G) − 1 and degQ′(v) ≥ R∗(Qs, G)
and thus, Q′ → (Qs, G). Since Q′ ⊂ Q and there is no blue copy of G in Q, then Q′

contains a red monochromatic copy of Qs.

Now, this red copy of Qs from Q′ with the deleted monochromatic red H ′, forms
a monochromatic copy of H in Qr, which means that Q → (H,G), a contradiction.
This contradiction shows that such a counterexample does not exist and so the proof
of theorem is completed.

Since every tree is a Kn-star-good graph [5, 8], then for n ≥ 4, the star-critical
Ramsey number of a forest F containing trees of order at least three versus a complete
graph will be obtained directly from Theorem 3.2. Also, combining Theorems 3.2
and 2.5, we have the following corollary.

Corollary 3.3. Let F be a forest that is a disjoint union of trees of order at least 3
and let G be any graph of order n ≥ 4 having clique number n − 1. Also, let j0 be
the smallest value of j that realizes maxj∈C(F ){(j− 1)(n− 3)+

∑l(F )
i=j iki(F )}. Then,

R∗(F,G) = (j0 − 1)(n− 4) +

l(F )
∑

i=j0

iki(F ).

Let G and H be given graphs and Q = KR(G,H)−1 ⊔K1,R∗(G,H). By the definition

of the star-critical Ramsey number, Q → (G,H) and Q is a graph of size
(

R(F,G)−1
2

)

+
R∗(F,G). Therefore,

R̂(F,G) ≤

(

R(G,H)− 1

2

)

+R∗(G,H).

In particular, if n ≥ 4 and F is a forest containing disjoint union of trees with
order at least 3, then by Corollary 3.3, we conclude that
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R̂(F,Kn − e) ≤

(

R(F,Kn − e)

2

)

− (j0 − 2). (3)

If F is isomorphic to 2K2, P3 or K1,3, then by Eq. 3, R̂(P3, K4 − e) ≤ 9,

R̂(K1,3, K4 − e) ≤ 19 and R̂(2K2, K4 − e) ≤ 10, respectively. On the other hand,

Faudree and Sheehan in [6] proved that R̂(P3, K4− e) = 9, R̂(K1,3, K4− e) = 19 and

R̂(2K2, K4 − e) = 10, which means that the bound presented in (3) is best possible
for these cases.
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