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Abstract

The degree polynomial of a multigraph G is given by
∑

v∈V (G) x
deg(v).

We investigate here properties of the roots of such polynomials. In ad-
dition to examining the roots for some families of graphs with few and
many degrees, we provide some bounds on the moduli of the roots. We
also propose a region that contains all roots for multigraphs of order n.

1 Introduction

Let G = (V,E) be a multigraph (with possibly multiple edges but no loops) of order
n and size m, that is, |V | = n and |E| = m (if G has no multiple edges, then we refer
to it as a simple graph, or simply as a graph). For any v ∈ V , let deg(v) = degG(v)
denote its degree in G, and let ak be the number of vertices of degree k in G. The
degree polynomial of G is defined by

D(G;x) =
∑
v∈V

xdeg(v)

=
∆∑
k=δ

akx
k,

where ∆ = ∆(G) and δ = δ(G) denote the largest and smallest degrees of G, re-
spectively. The degree polynomial encodes precisely the degree sequence of a graph,
and hence contains the same information. The polynomial (unlike many other graph
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polynomials) can clearly be constructed in linear time. This graph polynomial has
been previously defined independently by a number of researchers [14, 22]. Exist-
ing literature explores how it behaves under graph operations [14], and studies the
polynomials for prime graphs and their derivatives [27, 28].

The roots (or zeros) of many graph polynomials have been well studied — see,
for example, roots of chromatic polynomials [17], reliability polynomials [6], and
independence polynomials [7, 11, 9]. A natural question that arises is — why study
roots of graph polynomials? On one hand, there is (and has been) considerable
interest in roots of graph polynomials in their own right. Often the calculating the
graph polynomial is intractable (as is the case for chromatic [17], reliability [13, 30]
and independence polynomials [8, 15]) as it encodes some information about the
graph that is NP-hard (or NP-complete), and in this regard investigating the roots
can lead to some non-trivial insight. However, even when determining the polynomial
can be carried out efficiently, such as in our case (but others as well, such as Wiener
polynomials [10]), the location and the nature of the roots show much interesting
structure.

Moreover, mathematical structures as esoteric as fractals have arisen in a variety
of contexts [8, 5]. The location and nature of roots of (graph) polynomials also
have import on the shape of associated coefficient sequences. For example, an old

result of Newton (cf. [31]) reveals that if the roots of a polynomial f =
n∑
i=0

aix
i with

real coefficients has all real roots, then the coefficient sequence is log-concave (a2
i ≥

a−1ai+1 for all i) and hence unimodal (i.e. a1 ≤ a2 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an for
some k). Brenti et al. [4] have extended this to polynomials with roots in the sector
{z ∈ C : 2π/3 < arg(z) < 4π/3} of the complex plane. Both these results have been
utilized numerous times, including Chudnovsky and Seymour’s beautiful proof of the
log concavity of the independence numbers of claw-free graphs [15]. As well, the roots
of a positive polynomial lying outside a disk in the complex plane can imply that the
coefficient sequence has a binomial shape. Michelen and Sahasrabudhe [26] proved
that for certain families of polynomials with non-negative coefficients, the absence
of roots in a disc with center z = 1 implies that the coefficients are asymptotically
normal, and this result has been applied [29] to the generating function for the
number of subtrees of a tree.

For all of these reasons, our attention has been drawn to the roots of degree
polynomials, which we refer to as degree roots. Degree roots for regular graphs are
trivial: an r-regular graph with n vertices has degree polynomial nxr, and thus all
its degree roots are 0. Slightly less trivial are the degree roots for graphs with two
degrees: a graph with a∆ vertices of degree ∆ and aδ vertices of degree δ has degree
polynomial a∆x

∆ + aδx
δ. This polynomial has δ roots at 0, and the remaining ∆− δ

roots are the (∆ − δ)th roots of −aδ/a∆. Figure 1 shows degree roots for graphs of
small order.

One important fact to note is that if graph G of order n has graph complement G,
then D(G;x) = xn−1 ·D(G; 1/x), so the set of nonzero degree roots of graphs of order
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Figure 1: Degree roots of graphs of small order n.

n is closed under inverses. In fact, the result holds for multigraphs M of order n as
well: Suppose that the maximum multiplicity of an edge is µ. Then we can define
the multigraph complement M as follows. For every pair of distinct vertices x and y
with kxy edges between them in M , place a bundle of µ− kxy parallel edges between
the vertices in M . Then it is easy to verify that D(M ;x) = x(n−1)µ ·D(M ; 1/x).

Before proceeding, we observe that degree polynomials are polynomials with non-
negative integer coefficients, that is, polynomials belonging to Z≥0[x]. Over the
class of all multigraphs, the degree roots are not only contained in the set of all
roots of Z≥0[x], but equal to it, by the following reasoning. By a result of Hakimi
[21], a sequence of non-negative integers d1 ≥ · · · ≥ dn is the degree sequence of a
multigraph if and only if (i) d1 + · · · + dn is even, and (ii) d1 ≤

∑n
i=2 di. It follows

that in our terminology, a polynomial p(x) ∈ Z≥0[x] is the degree polynomial of a
multigraph if and only if (i) p′(1) is even, and (ii) deg(p(x)) ≤ p′(1)/2. It follows
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easily that if f(x) ∈ Z≥0[x], then 2f(x) is the degree polynomial of a multigraph,
and our result follows. The situation is not different even if we try to restrict to
simple graphs, because if M is a multigraph, then there exists a (simple) graph G
for which D(M ;x) = K · D(G;x) for some constant K, and hence G has precisely
the same roots, including multiplicities, as M . (If M has an edge e with multiplicity
µe > 1, take µe disjoint copies of M and let e1, . . . , eµe be the copies of e in each
copy of M . Furthermore, let ui, vi be the endpoints of ei, 1 ≤ i ≤ µe. Consider
the subgraph induced by the edges {e1, . . . , eµe}, where each vertex has an induced
degree of µe. Delete the edges in this induced subgraph and add new edges to create
a µe-regular induced subgraph that is simple. It is possible to do this by a folklore
result since this induced subgraph has an even number of vertices and µe + 1 ≤ 2µe.
If the graph is now simple, we are done. Otherwise, repeat this process for each edge
of multiplicity greater than one until the graph is simple.)

A consequence of the set of degree roots being identical to the roots of polynomials
with non-negative integer coefficients is that the closure of degree roots is the entire
complex plane: Consider the polynomials qaxa+1 + pax ∈ Z≥0[x], where p and q are
relatively prime positive integers and a is a positive integer. It is easy to show that
the set of non-trivial roots of such polynomials,

A =

{
ωa

(
p

q

)
: a, p, q ∈ Z≥1, gcd(p, q) = 1, (ωa)

a = −1

}
,

is dense in the complex plane, along the negative real axis, and along the imaginary
axes (moreover, all such roots indeed arise as degree roots of simple graphs — see
[20]).

Yet this is not the end of the story, but just the beginning. What if we impose
some graph-theoretic restrictions, such as restricting to certain families of multi-
graphs or graphs? Or restricting to graphs of fixed order, fixed size or fixed maxi-
mum degree – that is, roots of degree polynomials with fixed sum of the coefficients,
fixed evaluation of its derivative at x = 1, or fixed degree? For example, if we restrict
to multigraphs of order 2, then only 0 is a degree root, while the roots of the corre-
sponding polynomials a + bxk ∈ Z≥0[x] where the sum of the coefficients a + b = 2
include all nth roots of −1 as well. The results presented have been motivated by a
few interesting problems, some of which arose out of similar investigations for other
established graph polynomials, and others from the very nature of degree sequences.

• First, while the real roots of degree polynomials clearly must be negative, are
they unbounded? How might they grow as a function of the order of the graph?

• The degree polynomials with the greatest number of nonzero terms can be
characterized, as they arise from a well-characterized family of graphs. What
can be said about the roots of such polynomials?

• For graphs of order n, what regions bound the roots?

In terms of the latter, we conjecture a region that neatly contains the roots, whose
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Figure 2: All roots of D(CLn;x) for 2 ≤ n ≤ 20.

bounding curve is unlike the usual circular disks that are presented to bound the
roots of other graph polynomials.

We devote the next two sections to precisely such questions.

2 Degree Roots for Graphs With Few or Many Degrees

In this section, we investigate the degree roots of two families of graphs, one with
few degrees, the other with many.

2.1 Complete Graphs with a Leaf

Of course, the degree roots of any regular multigraph are only 0. The degree roots
of multigraphs with only two degrees are almost just as trivial, being 0 and kth roots
of some negative integer, for some k. However, once we have more than two different
degrees, the nature and location of the degree roots become more interesting. There
is a broad range of graphs with exactly three different degree values, so we have
chosen to focus on the degree roots of CLn, a complete graph of order n − 1 with
a leaf attached to one vertex; clearly D(CLn;x) = xn−1 + (n − 2)xn−2 + x. Figure
2 shows all roots for D(CLn;x), 2 ≤ n ≤ 20. We can observe two things: there
are roots which appear to be located near the negative integers, and there are roots
which have modulus close to 1. Figure 3 focuses on those roots that are within the
unit circle. It appears that the roots are approaching the entire unit circle from the
inside, save for the roots at the origin and −1.

Addressing the observation of the real roots, let us first count the negative real
roots. Consider the polynomial D(CLn;−x):

D(CLn;−x) = (−1)n−1xn−1 + (−1)n−2(n− 2)xn−2 − x.

If n is odd, the coefficients have exactly one sign change. Thus D(CLn;x) has
exactly one negative root by Descartes’ Rule of Signs (see, for example, [2]). If n is
even, there are two sign changes in the coefficients. Thus D(CLn;x) has zero or two
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Figure 3: The roots of D(CLn;x) for 2 ≤ n ≤ 50 that are contained in the unit
circle. The roots appear to be converging outward to the unit circle as n increases.

negative roots, also by the Rule of Signs. We shall see there are in fact two negative
roots for even n, except for n = 2 when the degree polynomial is D(CL2;x) = 2x.
For n ≥ 4, which is when D(CLn;x) is a trinomial, we can locate a large negative
root within an error that vanishes as n→∞.

Proposition 2.1. Consider the graphs CLn, n ≥ 4. For odd n, D(CLn;x) has a
real root in the interval (−(n− 2)− εo(n),−(n− 2)) where

εo(n) =
1

(n− 2)n−3
.

For even n, D(CLn;x) has a real root in the interval (−(n − 2),−(n − 2) + εe(n)],
where

εe(n) =
1

(n− 3)n−3
.

Proof. To simplify some calculations, make the change of variables x = (n−2)y, and
consider the polynomial

f(y) =
1

(n− 2)n−1
D(CLn; (n− 2)y) = yn−1 + yn−2 +

y

(n− 2)n−2
.

We first consider when n is odd. We will evaluate f(y) at two points that give values
with opposite sign, and apply the Intermediate Value Theorem (IVT). The first point
is y = −1:

f(−1) = (−1)n−1 + (−1)n−2 +
−1

(n− 2)n−2
=

−1

(n− 2)n−2
< 0.
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The next point is y = −1− 1/(n− 2)n−2:

f

(
−1− 1

(n− 2)n−2

)
=

(
−1− 1

(n− 2)n−2

)n−1

+

(
−1− 1

(n− 2)n−2

)n−2

+
−1− 1

(n−2)n−2

(n− 2)n−2

=
1 + 1

(n−2)n−2

(n− 2)n−2

[(
1 +

1

(n− 2)n−2

)n−3

− 1

]
> 0

since (1 + 1/(n − 2)n−2)n−3 > 1. Thus by the IVT, f(y) has a root in the interval
(−1−1/(n−2)n−2,−1). Through the change of variables x = (n−2)y, D(CLn;x) has
a root in the interval (−(n−2)−1/(n−2)n−3,−(n−2)) = (−(n−2)−εo(n),−(n−2)).

Similarly, suppose that n is even. We still have that f(−1) = −1/(n− 2)n−2 < 0.
Let us evaluate f(y) at another point, namely y = −1 + 1/(n− 2)(n− 3)n−3:

f(y) = f

(
−1 +

1

(n− 2)(n− 3)n−3

)
=

(
−1 +

1

(n− 2)(n− 3)n−3

)n−1

+

(
−1 +

1

(n− 2)(n− 3)n−3

)n−2

+
−1 + 1

(n−2)(n−3)n−3

(n− 2)n−2

=

(
1− 1

(n−2)(n−3)n−3

)n−2

(n− 2)(n− 3)n−3
−

1− 1
(n−2)(n−3)n−3

(n− 2)n−2
.

This quantity is non-negative, as

f

(
−1 +

1

(n− 2)(n− 3)n−3

)
≥ 0

⇐⇒

(
1− 1

(n−2)(n−3)n−3

)n−2

(n− 2)(n− 3)n−3
≥

1− 1
(n−2)(n−3)n−3

(n− 2)n−2

⇐⇒ 1− 1

(n− 2)(n− 3)n−3
≥ n− 3

n− 2

⇐⇒ (n− 2)(n− 3)n−3 − 1 ≥ (n− 3)n−2

⇐⇒ 1 ≤ (n− 3)n−3,

and this last inequality is indeed true since n ≥ 4. Furthermore, there is equality
if and only if n = 4. Applying the IVT, we conclude that f(y) has a root in the
interval (−1,−1 + 1/(n − 2)(n − 3)n−3]. Thus D(CLn;x) has a root in the interval
(−(n− 2),−(n− 2) + 1/(n− 3)n−3] = (−(n− 2),−(n− 2) + εe(n)].
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Since we have shown there is at least one negative root when n is even, there
in fact must be two negative roots by what we found above with the Rule of Signs.
Using the IVT, we can quickly find that this root is in the interval [−1, 0). Evaluating
the polynomial g(x) = D(CLn;x)/x (just removing the known root at 0) at these
endpoints, we find

g(0) = (0)n−2 + (n− 2)(0)n−3 + 1

= 1

> 0,

and

g(−1) = (−1)n−2 + (n− 2)(−1)n−3 + 1

= (−1)n−3(−1 + n− 2) + 1

= −(n− 3) + 1

≤ 0,

as n ≥ 4. Therefore D(CLn;x) has a root in [−1, 0) when n is even. In fact, this
last inequality is an equality if and only if n = 4, when D(CL4;x) = x3 + 2x2 + x =
x(x + 1)2. In this case there is a double root at −1, which is why the half-closed
interval is needed in Proposition 2.1.

A complex number z is a limit of zeros of the sequence of polynomials P1, P2, . . .
if there is a sequence z1, z2, . . . of complex numbers such that Pn(zn) = 0 and
lim
n→∞

zn = z. Suppose polynomials P1, P2, . . . satisfy a fixed term recurrence

Pn+k(x) = −
k∑
i=1

fi(x)Pn+k−i(x), (1)

where the fi’s are polynomials in x. We can solve such a recurrence to derive an
explicit formula of the type

Pn(x) =
k∑
i=1

αi(x)(λi(x))n (2)

where the λi’s are the zeros of the characteristic equation of the recursive relation
(1). Beraha, Kahane and Weiss proved a beautiful result concerning the limits of the
zeros of such polynomials, which we state as follows.

Theorem 2.2 (Beraha-Kahane-Weiss, [3]). Suppose {Pt(x) : t ∈ N} is a sequence
of polynomials having the form

Pt(x) =
s∑
j=1

αj(x)λj(x)t

for some polynomials αj and not identically zero analytic functions λj, satisfying the
following non-degeneracy condition: there is no constant ω, with |ω| = 1, such that
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λi = ωλj for some i 6= j. Then z is a limit of zeros for {Pt(x)} if and only if the
αj’s, λj’s can be reordered such that at least one of the following holds:

1. |λ1(z)| > |λj(z)|, 2 ≤ j ≤ s, and α1(z) = 0

2. |λ1(z)| = |λ2(z)| = · · · = |λl(z)| > |λj(z)|, l + 1 ≤ j ≤ s, for some l ≥ 2.

We can address the observation of roots converging to the unit circle, from Fig-
ure 3, with the extension of the BKW (Beraha-Kahane-Weiss) Theorem:

Theorem 2.3 ([12]). Let {Pn(x)} be a sequence of analytic functions of the form

Pn(x) =
k∑
i=1

αi(n;x)(λi(x))n, (3)

where the λi are analytic and not identically zero, λi(x) 6= ωλj(x) for any ω ∈ C of
unit modulus, and αi(n;x) have the form

αi(n;x) = ndipi,di(x) + ndi−1pi,di−1
(x) + · · ·+ npi,1(x) + pi,0(x). (4)

where di is the degree of αi(n;x), the coefficient functions pi,j are analytic, and pi,di
are not identically zero.

Then z ∈ C is a limit of zeros of the family {Pn(x)} if the λi can be reordered
such that either of the following conditions hold.

1. |λ1(z)| > |λi(z)| for all i 6= 1 and p1,d1(z) = 0.

2. for some l ≥ 2, |λ1(z)| = |λ2(z)| = · · · = |λl(z)| > |λj(z)| for all j > l and
there exists at least one i such that 1 ≤ i ≤ l and pi,di(z) 6= 0.

Let us examine the limits of the roots of D(CLn;x), as n → ∞. Since there is
always a root at x = 0, we can just consider the polynomial

gn−3(x) =
D(CLn;x)

x
= xn−3(x+ n− 2) + 1.

With a substitution of N = n−3, gN(x) = xN(x+N + 1) + 1 is in the form to apply
Theorem 2.3 if we let λ1(x) = x, λ2(x) = 1, α1(N ;x) = x+N + 1, and α2(N ;x) = 1.
Furthermore, we have p1,1(x) = 1 as the coefficient polynomial on N in α1(N ;x),
and p2,0(x) = 1 as the coefficient polynomial on N in α2(N ;x). Since both p1,1(x)
and p2,0(x) are nonzero, we can rule out using the first condition of Theorem 2.3 to
find the limits. The second condition immediately gives that the limits of gN(x) are
the points z where |λ1(z)| = |λ2(z)|, or where |z| = 1, i.e. the unit circle. Thus we
derive:

Proposition 2.4. The limits of the roots of D(CLn;x), as n → ∞, contain 0 and
the unit circle |z| = 1.
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We have now verified our observation that there are roots of D(CLn;x) which
approach the unit circle. In fact, for n ≥ 5, all the roots of D(CLn;x) except for
the real root located near −(n− 2) from Proposition 2.1 (that is, within the interval
(−(n−2)−εo(n),−(n−2)) if n is odd, or inside the interval (−(n−2),−(n−2)+εe(n))
if n is even) are contained within the unit circle. This follows easily from Rouché’s
Theorem (see, for example, [25]), as |xn−1 + x| ≤ 2 < |(n − 2)xn−2| = n − 2 on
|z| = 1, and hence D(CLn;x) = xn−1 + (n − 2)xn−2 + x and (n − 2)xn−2 have the
same number of roots inside the disk |z| < 1, which is n− 2.

2.2 Anti-Regular Graphs

At the other end of the spectrum, there are graphs of order n having n− 1 distinct
degrees. Indeed there cannot be more than n − 1 distinct degrees: if there were n
distinct degrees, then each of 0, 1, . . . , n − 1 would need to appear as the degree of
exactly one vertex, and there would simultaneously be a vertex adjacent to all others
(degree n − 1) and a vertex not adjacent to any (degree 0), a contradiction. These
graphs are called anti-regular [1], also known as quasi-perfect, maximally non-regular,
degree anti-regular, or half-complete [1, 19, 16].

For a given n ≥ 2, there are precisely two graphs (up to isomorphism) with n− 1
distinct degrees (see [16]): first, the graph Hn, with degrees 1, 2, . . . , n − 1. Every
degree appears once in the degree sequence, except for bn/2c, which appears twice.
Hn can be formed by taking vertices v1, . . . , vn, and adding all edges of the form
{vi, vj} such that i + j ≥ n + 1. The other graph has degrees 0, 1, . . . , n − 2, and
is the graph complement Hc

n of Hn. The degree which appears twice in the degree
sequence in this case is n− 1− bn/2c = b(n− 1)/2c:
Thus we can easily write the degree polynomials for these graphs:

D(Hn;x) =
n−1∑

1

xi + xbn/2c =
x(xn−1 − 1)

x− 1
+ xbn/2c,

and

D(Hc
n;x) = xn−1D(Hn; 1/x) =

xn−1 − 1

x− 1
+ xb(n−1)/2c.

These polynomials have no gaps in the powers of the terms with nonzero coefficients
(that is, there are nonnegative integers d and k with d ≥ k such that the coefficient
of xi is nonzero iff d ≥ i ≥ k), and have only a single term with coefficient greater
than one. See Figure 4 for some examples of anti-regular graphs and their degree
polynomials.

Figure 5 shows the degree roots of the connected anti-regular graphs up to order
n = 50. Furthermore, we identify roots for even n with red and those for odd n with
blue. Some immediate observations are: when n is even the (nonzero) roots appear
to be on the unit circle, and not so for odd n. However, the roots for odd n surround
the unit circle and possibly converge to it. No root seems to exceed a modulus of 2,
which occurs for a real root.
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2x x2 + 2x x3 + 2x2 + x x4 + x3 + 2x2 + x

Figure 4: Examples of anti-regular graphs and their degree polynomials. Left to
right: H2, H3, H4, H5.

As the degree roots of the disconnected anti-regular graphs are merely the inverses
of the degree roots of the of their complements, we can restrict our attention to
the connected graphs Hn. For a graph of order n ≥ 2, the connected anti-regular
graph Hn has degree polynomial D(Hn;x) =

∑n−1
j=1 x

j + xbn/2c. As D(Hn;x) =

x1−xn−1

1−x +xbn/2c, for all x 6= 1, the roots of D(Hn;x) are the solutions to the equation

x− xn + xbn/2c − xbn/2c+1 = 0 (5)

except x = 1. We now examine the solutions to (5) via two cases on n.

Case 1: n = 2k, k ≥ 1. Here, (5) simplifies to

x2k + xk+1 − xk − x = 0

or
x(xk − 1)(1 + xk−1) = 0.

Thus the roots of D(H2k;x) are x = 0, the kth roots of unity (except for 1 itself),
and the (k − 1)th roots of −1.

Case 2: n = 2k + 1, k ≥ 1. In this case, (5) becomes

x2k+1 + xk+1 − xk − x = 0. (6)

These polynomials require numerical techniques to find their solutions. However,
we can deduce some information about them. First of all, as |x2k+1| > |xk+1| +
|xk| + x ≥ |xk+1 − xk − x| on the circle |x| ≤ 2, by Rouché’s Theorem, the roots
of x2k+1 + xk+1 − xk − x are in the disk |x| = 2. Of course, there is a root at 0.
Since there is exactly one sign change in the coefficients, there is exactly one positive
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Figure 5: Degree roots for connected anti-regular graphs Hn, up to order n = 50
(red roots correspond to even n, blue to odd n.

solution to (6) by the Rule of Signs. Trivially, this solution is x = 1, which is exactly
the point we are excluding. If we substitute x→ −x, we obtain

−x2k+1 + (−1)k+1xk+1 + (−1)k+1xk + x = 0.

Regardless if k is even or odd, this equation has exactly one sign change and thus
has exactly one positive root. Therefore, D(H2k+1;x), has exactly one negative root.
It follows that this root is in the interval [−2, 0). We can bound this negative root
to the interval [−2,−1/2) using the well-known Eneström-Kakeya Theorem:

Theorem 2.5 (Eneström-Kakeya [18, 23]). Suppose p(x) = anx
n + an−1x

n−1 + · · ·+
a1x + a0 where each ai is positive. Let qk = ak−1/ak, for 1 ≤ k ≤ n. Then any root
z of p(x) satisfies

min
k
{qk} ≤ |z| ≤ max

k
{qk}.

As D(Hn;x) = x
∑n−2

j=0 x
j+xbn/2c, the minimum ratio of consecutive coefficients is

1/2. By Theorem 2.5, every root of D(Hn;x)/x (i.e. the non-zero roots of D(Hn;x))
have modulus in the interval [1/2, 2]. This also holds for even n. For the real root in
the case of odd n (which we were originally interested in), we can slightly improve
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this interval. Evaluating the left hand side of (6) at x = −1/2, we obtain

x2k+1 + xk+1 − xk − x =

(
−1

2

)2k+1

+

(
−1

2

)k+1

−
(
−1

2

)k
+

1

2

=
−1 + (−1)k+1(2k + 2k+1) + 22k

22k+1
.

If k is odd, then this quantity is clearly positive. When k is even, observe

−1 + (−1)k+1(2k + 2k+1) + 22k = −1− (2k + 2k+1) + 22k > 0.

Thus in any case, the left hand side of (6) is positive when x = −1/2. Therefore
the negative root of equation (6) is actually in the interval [−2,−1/2).

We can also study the limits of degree roots for Hn, as n→∞, using the BKW
Theorem (Theorem 2.2) described earlier. The first step is writing our polynomials
in the correct form. Note that

(1− x)D(Hn;x) = x(1− xn−1) + (1− x)xbn/2c,

so we examine the limits of the roots of the latter. As before, we shall consider cases
on the parity of n.

Case 1: n = 2k, k ≥ 1. Define the polynomial

fk(z) = (1− z)D(H2k; z) = −z2k + (1− z)zk + z.

Observe that fk(z) is readily in the form to apply the (original) BKW Theorem by
setting α1(z) = −1, α2(z) = 1 − z, α3(z) = z, and λ1(z) = z2, λ2(z) = z, and
λ3(z) = 1. We find that the limits of the roots for fk(z), and also D(H2k; z) are the
unit circle centered at z = 0 and the origin.

Case 2: n = 2k + 1, k ≥ 1. Similar to the first case, we can apply the BKW
Theorem to the function

gk(z) = (1− z)D(H2k+1; z) = −z2k+1 + (1− z)zk + z

by setting α1(z) = −z, α2(z) = 1 − z, α3(z) = z, and λ1(z) = z2, λ2(z) = z,
λ3(z) = 1. The only difference between gk(z) and fk(z) is α1; thus the limits of the
roots will be the same except for possibly those from the constraint |λ1(z)| > |λ2(z)|,
|λ1(z)| > |λ3(z)|, and α1(z) = 0. A quick verification determines that the limits of
the roots of gk(z) are the same as fk(z), which overall gives that the limits of the
roots of D(Hn; z), the unit circle centered at z = 0 and the origin. Summarizing:

Proposition 2.6. The degree polynomial of the anti-regular graph Hn has exactly
one negative root which lies in the interval [−2,−1/2). The limits of roots of the
degree polynomials D(Hn;x) are 0 and the unit circle centered at z = 0.
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3 Bounds on Degree Roots

We mentioned earlier that the set of all degree roots of graphs is equal to the set
of all degree roots of multigraphs, which in turn is equal to the set of roots of non-
negative integer coefficient polynomials. However, what if we restrict to graphs and
multigraphs of order n? The question becomes much more interesting. In such a
case, our point of comparison is with the roots of non-negative integer coefficient
polynomials whose coefficient sum is n, as the sum of the coefficients in any degree
polynomial of a multigraph of order n is n.

Even for some small n, there is a divergence, as the only degree root of a multi-
graph (or graph) of order 2 is 0, while −1 is a root of 1 + x. For order 3, the only
degree roots of (simple) graphs are 0, −1/2 and −2, while the degree roots of multi-
graphs of order 3 contain all roots of 1 + 2xµ for µ ≥ 1, and hence in their closure
contain the unit circle centered at the origin. In fact, the same argument can be used
to show that for all n ≥ 3, there are infinitely many degree roots of multigraphs that
are not degree roots of (simple) graphs. Take any graph G of order n ≥ 3 with an
edge e. Then it is easy to see that if Gµ is the multigraph (of order n) formed from G
by replacing e by a bundle of µ ≥ 1 parallel edges, then the degree polynomial of Gµ

has the form of a(x) · xµ + b(x), where a(x) and b(x) are fixed nonzero polynomials.
The BKW Theorem now shows that the limits of these degree roots contain the unit
circle centered at the origin, while of course there are are only finitely many degree
roots of graphs of order n (as there are only finitely many such graphs). We shall
see that for all even n, there are roots of non-negative integer coefficient polynomials
whose coefficients sum to n that are not the degree roots of multigraphs, so there is
divergence there as well.

We will now consider bounding degree roots in terms of multigraph order, n.
A well-known bound on the zeros of polynomials [24], states that a real polyno-

mial f(x) =
n∑
i=0

aix
i has all its roots in the disk centred at the origin of radius

R = max

{
|an−1|+ · · ·+ |a0|

an
, 1

}
. The following bound immediately follows.

Proposition 3.1. Let p(x) = a∆x
∆ + · · · + aδx

δ ∈ Z≥0[x] where ∆ > δ and with
a∆, aδ ≥ 1. Suppose that p(1) = a∆ + · · ·+ aδ = n. If z is a root of p(x), then

|z| ≤ max

{
n− a∆

a∆

,
a∆

n− a∆

}
.

In Figure 1 we observe that the degree roots for graphs of order n seemed to
never exceed a modulus of n− 1, and roots that had such a modulus were real.

Theorem 3.2. If z is nonzero degree root of a multigraph of order n, then

1

n− 1
≤ |z| ≤ n− 1.
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This modulus upper bound is in fact true, even for multigraphs of order n, and
follows directly from Proposition 3.1, when a∆ = 1 or n− 1 (the lower bound holds
as the set of nonzero degree roots of multigraphs is closed under inverses).

Figure 1 seems to suggest that the only roots of modulus n − 1 are real, and
only appear when n is odd. The following propositions address these observations
for n ≥ 4, since all degree roots for n = 2 or n = 3 are already real.

Proposition 3.3. Let G be a graph of order n ≥ 4, and suppose D(G;x) has a degree
root z, where |z| = n− 1. Then D(G;x) has the form D(G;x) = x∆ + (n− 1)x∆−1,
and in particular z = −(n− 1).

Proof. Let D(G;x) = a∆x
∆ + · · · + aδx

δ (a∆ > 0) be the degree polynomial of G
which has the root z of modulus n − 1 (so G is not regular and hence δ < ∆).
Consider the theorem of Cauchy (see, for example, [25]) which states that all roots
of D(G;x) have modulus strictly less than

1 + max
k 6=∆

{∣∣∣∣ aka∆

∣∣∣∣} = 1 +
maxk 6=∆{ak}

a∆

.

Since this applies to the root z with modulus n− 1, we must have

n− 2 <
maxk 6=∆{ak}

a∆

.

As the non-negative coefficients sum to n, this inequality is only satisfied when a∆ = 1
and maxk 6=∆{ak} = n − 1, so a∆ = 1, ak = n − 1 for some k < ∆, and all other
coefficients are zero. This gives D(G;x) the form D(G;x) = x∆ + (n− 1)xk. As the
modulus of the root z is n− 1, it follows that ∆− k = 1, and thus k = ∆− 1. Thus
D(G;x) = x∆ + (n− 1)x∆−1, and we also conclude that z = −(n− 1).

Polynomials of the form x∆ + (n− 1)x∆−1 are not necessarily degree polynomials
for all values of n and ∆. The next proposition tells us precisely when they are.

Proposition 3.4. A polynomial of the form x∆ +(n−1)x∆−1 with n ≥ 4, ∆ ≤ n−1,
is a degree polynomial of a (multi)graph of order n if and only if n is odd and ∆ is
even.

Proof. ( =⇒ ) We first prove the forward direction. Since x∆ + (n − 1)x∆−1 is the
degree polynomial of a multigraph, we know that the sum of the degrees must be
even. Hence, ∆ + (n− 1)(∆− 1) is even, implying ∆ and (n− 1)(∆− 1) are of the
same parity. It is not hard to see that this implies n is odd and ∆ is even.

( ⇐= ) Suppose n is odd, so n = 2k + 1 for some k ≥ 2, and also that ∆ is even,
so ∆ = 2d for some 1 ≤ d ≤ k. We construct a graph Fn,∆ of order n as follows.
Take vertices v0, v1, . . . , vn−1. Arrange the vertices v0, v1, . . . , vn−2 cyclically and for
i ∈ {0, 1, , . . . , n − 2}, join each vi to ∆/2 − 1 = d − 1 on either side of it in the
arrangement and as well as to vi+k (arithmetic modulo n−1). The subgraph induced
on v0, v1, . . . , vn−2 is clearly (∆−1)-regular. Now take any matching M of cardinality
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d = ∆/2 in this subgraph, join vn−1 to the ends of the edges in M , and then remove
the edges in M . Call the resulting simple graph Fn,∆. Then Fn,∆ has one vertex of
degree ∆ and the remaining n − 1 vertices of degree ∆ − 1, and hence has degree
polynomial x∆ + (n− 1)x∆−1.

Proposition 3.4 also confirms what we stated earlier, namely that for even n ≥ 4,
there are roots of non-negative integer coefficient polynomials with sum n that are
not the degree roots of multigraphs of order n (in particular, −(n − 1), which is a
root of x+ (n− 1)). Some examples of graphs that have a degree root at −(n− 1),
when n is odd, can be constructed by removing a perfect matching from K2k (where
k = (n − 1)/2), and adding a universal vertex. Another set of examples (which are
disconnected) is afforded by taking the disjoint union of P3 with (n − 3)/2 copies
of P2.

We can also provide a bound for purely imaginary degree roots.

Proposition 3.5. If z is a nonzero purely imaginary degree root, then

1√
n− 1

≤ |z| ≤
√
n− 1.

Proof. Since z lies on the imaginary axis, we have z = ir for some r ∈ R. Let us
write D(G;x) = a∆x

∆ + · · ·+ aδx
δ. D(G; ir) = 0 can be written as

i∆
(
a∆r

∆ − a∆−2r
∆−2 + · · ·

)
+ i∆−1

(
a∆−1r

∆−1 − a∆−3r
∆−3 + · · ·

)
= 0,

or simply i∆A+ i∆−1B = 0. Therefore, both A and B must be equal to zero. Since
a∆ ≥ 1, there must be another coefficient (ak, for some k) in A that is nonzero. Let
us now consider two cases on the parity of ∆.

Case 1: ∆ = 2k. In this case, we may write A = 0 as

a2kr
2k − a2k−2r

2k−2 + · · · = 0.

Setting s = r2 we have
a2ks

k − a2k−2s
k−1 + · · · = 0,

and thus −s is a root of f(x) = a2kx
k + a2k−2x

k−1 + · · · . Since f(x) has only non-
negative integer coefficients, we apply Proposition 3.1: f(1) ≤ n and 1 ≤ a2k ≤ n−1,
so

|s| = | − s|

≤ max

{
n− a2k

a2k

,
a2k

n− a2k

}
≤ n− 1.

Therefore, |z| = |r| ≤
√
n− 1.
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Case 2: ∆ = 2k + 1. In this case, we may write A = 0 as

a2k+1r
2k+1 − a2k−1r

2k−1 + · · · = 0.

Dividing by r and again setting s = r2 we have

a2k+1s
k − a2k−1s

k−1 + · · · = 0,

so −s is a root of g(x) = a2k+1x
k + a2k−1x

k−1 + · · · . As above, we can apply
Proposition 3.1 to obtain |z| ≤

√
n− 1.

Therefore, in any case, we have |z| ≤
√
n− 1. The lower bound follows since 1/z

is a degree root as well.

4 Open Problems

We conclude this paper by discussing a modulus bound conjecture that generalizes
both Theorem 3.2 and Proposition 3.5, and gives a tighter modulus bound in all
other places. We have seen that the disk |z| = n − 1 contains the degree roots of
all multigraphs of order n, with a root on the boundary when n is odd. However,
Figure 1 suggests, at least for graphs, that a smaller region might suffice. We propose
the following.

Conjecture 4.1. If z is a nonzero degree root of a graph of order n with argument
arg(z) ∈ (−π, π], then

|z| ≤ (n− 1)|
arg(z)
π |.

This bound agrees with Theorem 3.2 for real roots (arg(z) = π) and Proposition

3.5 for imaginary roots (arg(z) = ±π/2). Figure 6 shows the curve |z| = (n−1)|
arg(z)
π |

along with the circular bound |z| = n − 1 on plots of degree roots for some small
values of n.

As evidence in favour of this conjecture, we have verified it for graphs of order
n ≤ 9 and trees of order n ≤ 18. Trivially, the degree roots for regular graphs are
within this bound. Similarly, the degree roots for graphs with only two degrees are

within this bound. Since the curve |z| = (n − 1)|
arg(z)
π |, for n ≥ 3, lies exterior to

the unit circle at all points except at z = 1 (where it meets the unit circle), our
conjecture also holds for degree roots inside the unit circle. Thus our conjecture
holds for the degree roots of the graphs CLn.

We also observe that the star K1,n−1 has degree polynomial xn−1 + (n−1)x, with
a degree root at 0 and the rest having modulus (n − 1)1/(n−2). One of these roots

is z = (n − 1)1/(n−2)eiπ/(n−2) with modulus (n − 1)|
arg(z)
π |, landing up right on the

boundary of the curve.

Finally, we can investigate the degree roots of other families of graphs, both in
terms of the conjecture, as well as in their own right. An examination of the degree
roots of trees and certain multipartite graphs has been undertaken in [20]. Future
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Figure 6: Degree roots of graphs for some small values of n (red). The blue curves

show |z| = n− 1, while the green curves are |z| = (n− 1)

∣∣∣ arg(z)π

∣∣∣
.

work on degree roots includes as well determining the set of rational degree roots of
graphs and multigraphs, as well as bounds for the real and imaginary parts of degree
roots of multigraphs of order n.
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