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Abstract

By generalising the notion of quasi-transitive directed graphs to mixed
graphs, we study the problem of classifying those graphs that arise as an
undirected square of an oriented graph. We fully classify those graphs
of maximum degree 3 and graphs of girth at least 4 that arise as an
undirected square of an oriented graph. In contrast to the recognition
problem for graphs that admit a quasi-transitive orientation, we find it is
NP-complete to decide whether a graph admits a partial orientation as a
quasi-transitive mixed graph. We prove the problem is Polynomial when
restricted to inputs of maximum degree 3, but it remains NP-complete
when restricted to inputs with maximum degree at least 5. Our proof
further implies that for fixed k ≥ 3, it is NP-complete to decide whether
a graph arises as an undirected square of an orientation of a graph with
∆ = k.

1 Introduction and Background

A simple graph Γ is a graph square when there exists a graph Σ such that Γ = Σ2,
where Σ2 is the graph formed from Σ by adding an edge between any pair of vertices
at distance 2. We extend this notion to oriented graphs, that is, those graphs that
arise from simple graphs by assigning each edge an orientation as an arc.

A simple graph Γ is an oriented graph square when there exists an oriented graph
−→
G such that Γ = U(

−→
G 2), where U(·) denotes the simple graph underlying a mixed

graph, and
−→
G 2 is the mixed graph formed from the oriented graph

−→
G by adding an

edge between any pair of vertices at directed distance 2. Similar to the problem of

finding square roots of graphs, given Γ it is not obvious how one may recover
−→
G , nor

whether
−→
G is unique. Further, given an arbitrary graph Σ it is not clear how one

can determine whether Σ is an oriented graph square. We consider these problems
herein.
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To study oriented graph squares, we reframe the problem as a graph orientation
problem. Recall a comparability graph is a graph whose edges correspond to compa-
rable pairs in a partial order. We say an oriented graph is quasi-transitive when it
contains no induced directed path of length 2 (i.e., no 2-dipath).

Theorem 1.1. [12] A graph Γ admits a quasi-transitive orientation if and only if Γ
is a comparability graph.

By definition, if
−→
G is a quasi-transitive oriented graph, then

−→
G 2 =

−→
G and so

U(
−→
G ) = U(

−→
G 2). This implies that for every comparability graph Γ there exists

an oriented graph
−→
G such that Γ = U(

−→
G 2). However, there are non-comparability

graphs for which there exists an oriented graph
−→
G such that Γ = U(

−→
G 2). Consider

the graphs given in Figure 1.

u

u′

v w

v′ w′

Γ −→
G H =

−→
G2

Figure 1: The oriented graph square Γ resulting from the oriented graph
−→
G . H is the corresponding mixed graph.

The subgraph of Γ induced by {u, v, w, u′, v′, w′} is a forbidden subgraph for the
family of comparability graphs [11]. Therefore Γ does not admit an orientation as a

quasi-transitive oriented graph. However, Γ = U(
−→
G 2) is an oriented graph square.

We generalise the notion of quasi-transitive oriented graphs to mixed graphs. Let
H be a mixed graph. We say H is quasi-transitive when

(1) H has no induced 2-dipath; and

(2) for every edge uv in H there exists w ∈ V (H) such that uwv or vwu is a
2-dipath.

Looking back at our example in Figure 1, we see that H is a quasi-transitive mixed
graph.

Let H be a quasi-transitive mixed graph and let Γ = U(H). Let
−→
G be the

oriented graph formed from H by removing all its edges. By the definition of quasi-

transitive mixed graph we have H =
−→
G 2 and thus Γ = U(

−→
G 2). And so we arrive at

the following observation.
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Observation 1.2. Let Γ be a graph. There exists an oriented graph
−→
G such that

Γ = U(
−→
G 2) if and only if Γ admits a partial orientation as a quasi-transitive mixed

graph.

Observation 1.2 allows us to treat equivalently graphs that admit a partial ori-
entation as a quasi-transitive mixed graph and graphs that arise as an undirected
square of an oriented graph. Throughout the remainder of this work we treat these
two concepts interchangeably, opting for the one which eases the path of the reader
through a particular argument or which allows a direct comparison to previous work.

Quasi-transitive directed graphs were first studied by Ghouilà-Houri [12] and
Gallai [8] in the 1960s. Bang-Jensen and Huang proved that quasi-transitive digraphs
have similar structural properties to tournaments [4]. Continued interested in the
study of quasi-transitive directed graphs follows from their connection to a variety
of other concepts in the study of directed graphs such as local tournaments [14]
and semi-complete digraphs [2]. One can decide in polynomial time whether a graph
admits a quasi-transitive orientation [10] and whether a partial orientation of a graph
can be completed to be a quasi-transitive orientation [3].

The study of graph squares and related concepts are a mainstay of research in
structural graph theory. Graph squares were fully classified in 1967 by Mukhopad-
hyay [16]. Classifying the complexity of the recognition problem for graph squares
remained open until 1994 when Motwani and Sudan proved the problem is NP-
complete [17]. There is a full characterisation of tree squares (that is, graphs that
arise as a square of a tree), which leads to a polynomial time algorithm for their
recognition [15, 19]. More recently Farzad et al. presented a full dichotomy theorem
for the problem of deciding whether a graph is a graph square of a graph with fixed
girth. It is NP-complete to decide whether a graph is a graph square of graph with
fixed girth at most 5 and Polynomial to decide whether a graph is a graph square
of a graph with fixed girth g ≥ 6 [1, 7]. Despite the abundance of research into
graph squares, relatively little work has been devoted to the study of squares of
directed graphs. In [13] Geller gives a classification of digraph squares from which
Mukhopadhyay’s result follows as a corollary.

The remainder of this work proceeds as follows. In the subsequent section we
develop necessary lemmas and preliminary results required for the main results in the
subsequent sections. In doing so we immediately arrive at a classification of oriented
graph squares of girth 4. In Section 3 we classify graphs with maximum degree 3
that admit a partial orientation as a quasi-transitive mixed graph and thus classify
the family of oriented graph squares of maximum degree 3. In Section 4 we study
the computational complexity of the recognition problem for undirected squares and
graphs admitting a partial orientation as a quasi-transitive mixed graph. We prove
the problem of deciding whether a graph is an oriented graph square is NP-complete.
Finally in Section 5 we provide additional discussion that relates the problem under
study herein to the study of the oriented chromatic number and highlights potential
areas of future study.

At times throughout we will be interested in the graph formed from a subset of
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the edges of a graph. Let Γ be a graph and let X ⊆ E(Γ). The graph formed from
X is the graph whose vertex set is those vertices that appear as an endpoint of an
edge in X and whose edge set is X. Acknowledging the slight abuse of notation, we
refer to this graph as Γ[X]. We extend this convention to subsets of arcs and edges
in mixed and oriented graphs.

Throughout this work we will be interested in various properties and parameters
of graphs, mixed graphs and oriented graphs. For ease of communication we may
refer to the undirected property or parameter of a mixed or oriented graph to mean
that of its underlying simple graph. For example, when we say that a vertex has

degree k in
−→
G we mean it has degree k in U(

−→
G ). To avoid needing to consider

edge cases in which a mixed graph has no edges, we consider an oriented graph to
be a partial orientation of a graph, that is, a mixed graph. We use E(·) and A(·)
to respectively refer to the edge set and the arc set of a mixed graph. And so we
may consider an oriented graph as a mixed graph H with E(H) = ∅. We say that
a vertex v is a source (respectively, a sink) in a mixed graph H when v is a source
(respectively sink) in H[A(H)]. For other graph theoretic notation not defined herein
we refer the reader to [6].

2 Preliminaries

The classification of quasi-transitive oriented graphs as arising from comparability
graphs gives a forbidden subgraph classification for the family of graphs that admit
such an orientation [11]. We begin by proving no such classification exists for quasi-
transitive mixed graphs.

Proposition 2.1. For every graph Γ there exists a graph Γ′ such that Γ′ admits a
partial orientation as a quasi-transitive mixed graph and Γ is an ‘induced subgraph
of Γ′.

Proof. Let Γ be a graph. Let
−→
G be the oriented graph formed from Γ by arbitrarily

orienting each edge into an arc, and then bisecting each arc to be a 2-dipath. Let

Γ′ = U(
−→
G 2). By construction, Γ′[V (Γ)] = Γ. By Observation 1.2, Γ′ admits a partial

orientation as a quasi-transitive mixed graph.

Though in general no forbidden subgraph characterisation exists, we do find such
characterisations when we consider various restrictions on Γ. Below we prove such
a characterisation exists when Γ has girth at least 4. In the subsequent section we
prove such a characterisation exists when Γ has maximum degree 3.

Throughout the remainder of this work we apply the following structural lemma.

Lemma 2.2. Let Γ be an oriented graph square. Let e ∈ E(Γ) be contained in no
copy of K3 in Γ. In every partial orientation G of Γ as a mixed quasi-transitive
graph,

(1) e is oriented as an arc;
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(2) the ends of e are respectively a source and a sink; and

(3) the graph formed from the set of edges contained in no copy of K3 in Γ contains
no odd cycle.

Proof. Let Γ be a graph arising as the square of an oriented graph. Let G be a
partial orientation of Γ as a quasi-transitive mixed graph. Let X be the set of edges
not contained in a copy of K3 in Γ. Consider e ∈ X with e = xy. Since there is no
vertex z such that zx, yz ∈ E(Γ), there is no 2-dipath in G with ends at x and y.
Therefore e is oriented, in some direction, as an arc in G.

Consider a pair of distinct edges e1, e2 ∈ X with a common end-point. Let e1 = uv
and e2 = vw. By construction of X, wu /∈ E(Γ). Since G is a quasi-transitive mixed
graph, uvw is not an induced 2-dipath in G. By construction, uvw is not an induced
2-dipath in G[X].

Therefore G[X] contains no induced 2-dipath. And so G[X] is a quasi-transitive
oriented graph. Therefore U(G[X]) is a comparability graph. Recall that every
comparability graph is perfect (see [9]) By construction, U(G[X]) contains no copy
of K3. Since U(G[X]) is perfect and contains no copy of K3, necessarily χ(Γ) ≤ 2.
And so it follows U(G[X]) is bipartite.

Using this lemma we fully classify those graphs with girth at least 4 that admit
a partial orientation as a quasi-transitive mixed graph.

Theorem 2.3. Let Γ be a graph with girth g ≥ 4. The graph Γ admits a partial
orientation as a quasi-transitive mixed graph if and only if Γ has no odd cycle.

Proof. Let Γ be a graph with girth g ≥ 4. If Γ admits a partial orientation as a
quasi-transitive mixed graph, then by Lemma 2.2, Γ is bipartite and thus has no odd
cycle.

Let Γ be bipartite with partition {V1, V2}. We find a partial orientation of Γ as
a quasi-transitive mixed graph G by orienting all arcs to have their tail in V1 and
their head in V2. In such an orientation every vertex is either a source vertex or a
sink vertex. The mixed graph G has no induced 2-dipath and no edges. Therefore
G is a quasi-transitive mixed graph.

Let Γ be a graph that admits a partial orientation as a quasi-transitive mixed
graph and consider the existence of a cut vertex v. Let {V1, V2} be a partition of
V (Γ) \ {v} such that v has a neighbour in both V1 and V2 and no vertex of V1 is
adjacent to a vertex of V2. Let G be a partial orientation of Γ as a quasi-transitive
mixed graph.

By construction, v cannot be the centre of a 2-dipath with an end in V1 and an
end in V2. Furthermore, if v is the centre of a 2-dipath with both ends in V1, then
no edge between v and a vertex of V2 can be oriented as an arc in G. However this
cannot be; any vertex in a quasi-transitive mixed graph that is incident with an edge
must also be an end-point of a 2-dipath whose end is at the other end of the edge.
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And so v cannot be the centre of a 2-dipath with both ends in V1. Therefore v is a
source or a sink in G.

We extend this argument to vertex cuts consisting of independent sets. Let Γ be
a graph and let I ⊂ V (Γ) be an independent set. We say I is an independent vertex
cut when there exists a partition {V1, V2, I} of V (Γ) such that Γ−I is not connected,
every vertex in I is adjacent to at least one vertex in V1 and one in V2 and no vertex
of V1 is adjacent to a vertex of V2. We can extend partial orientations of Γ[V1 ∪ I]
and Γ[V2 ∪ I] as quasi-transitive mixed graphs to one to Γ provided each vertex in
the independent set is respectively a source or a sink in both the partial orientation
of Γ[V1 ∪ I] and of Γ[V2 ∪ I].

Lemma 2.4 (The Vertex Cut Lemma). Let Γ be a graph and let I ⊂ V (Γ) be an
independent vertex cut with I = {v1, v2, . . . , vk}. The graph Γ admits a partial orien-
tation as a quasi-transitive mixed graph if and only if there exists partial orientations
of Γ[V1 ∪ I] and Γ[V2 ∪ I] as quasi-transitive mixed graphs G1 and G2 such that for
each 1 ≤ i ≤ k, vi is a source (a sink) in both G1 and G2.

Proof. Let Γ be a graph and let I ⊂ V (Γ) be an independent vertex cut with I =
{v1, v2, . . . , vk}.

Let G be a partial orientation of Γ as a quasi-transitive mixed graph. Consider
v ∈ I. We claim v is a source or a sink. We prove v is not the centre vertex of a
2-dipath in G. Let u and u′ be incident with v and such that u and u′ are, without
loss of generality, contained in V1.

By hypothesis, there exists w ∈ V2 such that w is adjacent to v. Further we may
assume vw is an arc (in some direction) in G, as otherwise there exists a 2-dipath
ww′v such that w′ is in the same component as w in G − vi. In this case we may
swap the roles of w and w′.

If uvu′ is a 2-dipath (in some direction), then one of u and u′ must be adjacent
to w, which contradicts our choice of V1 and V2. Therefore v is not the centre of a
2-dipath whose ends are in V1. Therefore v is a source or a sink vertex in G[V1 ∪ I].

By choice of v, it then follows that for all v ∈ I, vertex v is a source or a sink
vertex in G[V1∪I]. Therefore there is no 2-dipath in G with an end in V1 and an end
in V2. And so G[V1 ∪ I] is partial orientation of Γ[V1 ∪ I] as a quasi-transitive mixed
graph. Similarly, G[V2 ∪ I] is partial orientation of Γ[V2 ∪ I] as a quasi-transitive
mixed graph.

Assume now that there exist partial orientations of Γ[V1 ∪ I] and Γ[V2 ∪ I] as
quasi-transitive mixed graphs G1 and G2 such that for each 1 ≤ i ≤ k, vi is a source
in both G1 and G2. Let G be the mixed graph formed from G1 and G2 by identifying
corresponding elements of I in G1 and G2. Since all identified vertices are source
vertices, this process neither creates nor removes 2-dipaths. Similarly, this process
neither creates nor removes edges. Since this construction preserves the existence of
all 2-dipaths and edges, G is a partial orientation of Γ as a quasi-transitive mixed
graph.
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Corollary 2.5. Let Γ be a graph arising as an oriented graph square. If v ∈ V (Γ)

is a cut vertex, then v is a source or a sink in every oriented graph
−→
G such that

Γ = U(
−→
G 2).

3 Quasi-Transitive Mixed Graphs with Maximum Degree 3

We turn now to the problem of classifying graphs with maximum degree 3 that admit
a partial orientation as a quasi-transitive mixed graph. We begin by identifying a
reduction that can be applied to graphs with maximum degree 3 that preserves the
property of (not) admitting such a partial orientation.

Let Γ be a graph with maximum degree 3 and let u ∈ V (Γ). We say u is removable
when it has degree 2 and its neighbours are adjacent, have degree 3, and have only
one common neighbour (see Figure 2).

u

w v

w′ v′

Figure 2: A removable vertex, u, in a graph with maximum degree 3

Lemma 3.1. Let Γ be a graph with maximum degree 3 and let u be a removable
vertex of Γ. The graph Γ admits a partial orientation as a quasi-transitive mixed
graph if and only if Γ − u admits a partial orientation as a quasi-transitive mixed
graph.

Proof. Let Γ be a graph with maximum degree 3 and let u be a removable vertex in
Γ with neighbours v and w. Let v′ and w′ respectively be the other neighbour of v
and w. Since Γ has maximum degree 3, edges ww′ and vv′ are contained in no copy
of K3.

Let G be a partial orientation of Γ as a quasi-transitive mixed graph. By Lemma
2.2, v and w are each a source or a sink. Therefore neither v nor w is the centre
vertex of a 2-dipath. Since v is not the centre of a 2-dipath, the edge uw is oriented
in some direction in G. Similarly, the edge uv is oriented in some direction in G

If both of these arcs are oriented to have their head at u, then both v and w are
source vertices. However, in this case notice that the edge vw must be an edge in G,
but there is no 2-dipath between v and w.

Therefore, without loss of generality, vuw is a 2-dipath in G, which then implies
v is a source and w is a sink. If vw is an arc in G, then it must have its head at w.
Furthermore, if vw is an edge in G it can be replaced by the arc vw. And so we may
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assume vw is an arc in G. Removing u from G yields a partial orientation of Γ− u
as quasi-transitive mixed graph.

Let H be a partial orientation of Γ− u as a quasi-transitive mixed graph. Since
none of vv′, vw or ww′ is contained in a copy of K3 in Γ − u, then, by Lemma 2.2,
each of these edges is oriented as an arc in H. The path v′vww′ must be oriented to
have no induced 2-dipath. Thus it is oriented as an alternating path. Without loss
of generality, we assume v′v, wv, ww′ ∈ A(H). We extend the partial orientation of
Γ− u to one of Γ by orienting the edge uv to have its head at v and the edge uw to
have its head at u.

This lemma implies that removing a removable vertex from a graph does not
affect whether it admits a partial orientation as a quasi-transitive oriented graph.
The definition of removable implies directly that removing a removable vertex does
not affect the set of removable vertices.

Lemma 3.2. Let Γ be a graph with maximum degree 3 and let R be the set of
removable vertices Γ. For every u ∈ R the set of removable vertices in Γ−u is R\u.

Together Lemmas 3.1 and 3.2 imply that removing the set of removable vertices of
Γ produces a graph with no removable vertices, ΓR, with the property that Γ admits
a partial orientation as a quasi-transitive mixed graph if and only if ΓR admits a
partial orientation as a quasi-transitive mixed graph.

Theorem 3.3. Let Γ be a graph with maximum degree 3. Let R be the set of re-
movable vertices of Γ. The graph Γ admits a partial orientation as a quasi-transitive
mixed graph if and only if Γ − R admits a partial orientation as a quasi-transitive
mixed graph.

Proof. The result follows directly by induction on |R| by applying Lemmas 3.1
and 3.2.

We say a graph Γ with maximum degree 3 is reduced when it contains no remov-
able vertices. We classify those reduced graphs with maximum degree 3 that arise
as an oriented square by way of forbidden subgraphs.

Let Π be the split graph on six vertices consisting of a copy of K3 with a pendant
edge on each vertex. Recall Π is a forbidden subgraph for the family of graphs that
admit a quasi-transitive orientation [11].

Lemma 3.4. Let Γ be a graph with maximum degree 3. If Π is a subgraph of Γ, then
Γ does not admit a partial orientation as a quasi-transitive mixed graph.

Proof. Let Γ be a graph with maximum degree 3 containing Π, as labelled in Figure 3.
We proceed by contradiction. Let G be a partial orientation of Γ as a quasi-transitive
mixed graph.

Since Γ has maximum degree 3, none of uu′, vv′ and ww′ is contained in a copy
of K3 in Γ. And so by Lemma 2.2, each is oriented as an arc in Γ and further each
of u,v and w is a source or a sink.
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u′

u

w v

w′ v′

Π

Figure 3: a forbidden subgraph for quasi-transitive mixed partial ori-
entability of graphs with maximum degree 3

Without loss of generality, assume u and w are source vertices. Therefore wu is
an edge in G. Since Γ has degree 3, the only copy of K3 in Γ that contains wu is
the one with vertex set {u, v, w}. Therefore uvw is a 2-dipath (in some direction).
Hence v is not a source nor a sink, a contradiction.

Lemma 3.4 restricts induced subgraphs containing copies of K3 in reduced graphs
with maximum degree 3 that admit a partial orientation as a quasi-transitive mixed
graph. The subsequent lemma characterises these subgraphs as those appearing in
Figure 4.

x

w

u v

w′

Σ1

w′ w

z

u

v

Σ2

w′ w

u

v

x′ x

Σ3

u v

w

x

Σ4

Figure 4: Configurations of K3 in graphs with maximum degree 3 that
admit a partial orientation as a quasi-transitive mixed graph.

Lemma 3.5. Let Γ be a reduced graph with maximum degree 3 such that Γ 6=
K3, K4, K4 − e. Consider a copy of K3 in Γ with vertices u, v and w. If Γ is Π-
free, then u, v and w are contained in an induced subgraph as shown in Figure 4.

Proof. We proceed based on the degree of each of u, v and w in Γ.

If u and v have degree 2, then since Γ 6= K3, w must have degree 3. And so u, v
and w are configured as in Σ4.
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x

w

u v

w′

S1

w′ w

z

u

v

S2

w′ w

u

v

x′ x

S′
3

w′ w

u

v

x′ x

S3

u v

w

x

S4

Figure 5: Partial orientations of graphs in Figure 4 as quasi-transitive
mixed graphs.

Consider now the case where each of u, v have degree 3. Since Γ is reduced and
Π-free, u and v have a second common neighbour, w′ 6= w. Since Γ 6= K4, w is not
adjacent to w′.

• If deg(w) = 3 and deg(w′) = 2, then u, v and w are configured as in Σ1.

• If deg(w) = deg(w′) = 3 and w and w′ have a common neighbour other than u
and v, then u, v and w are configured as in Σ2.

• If deg(w) = deg(w′) = 3 and w and w′ have no common neighbour other than
u and v then u, v and w are configured as in Σ3.

One observes that the case deg(w) = 2 and deg(w′) = 3 is symmetric with the
case deg(w) = 3 and deg(w′) = 2 by swapping the label of w and w′.

If Σ ∈ {Σ1,Σ2,Σ3,Σ4} is an induced subgraph of Γ, then Γ contains an indepen-
dent vertex cut. Thus in determining if a graph containing a copy of Σi admits a
partial orientation as a quasi-transitive mixed graph we may appeal to the Vertex
Cut Lemma. With this strategy in mind, we observe in Figure 5 a partial orientation
as a quasi-transitive mixed graph for each of the graphs in Figure 4.

Theorem 3.6. Let Γ be a reduced graph with maximum degree 3. The graph Γ admits
a partial orientation as a quasi-transitive mixed graph if and only if Γ contains no
copy of Π and the subgraph formed by the set of edges of Γ that are not contained in
a copy of K3 contains no odd cycle.
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Proof. Let Γ be a reduced graph with maximum degree 3.

Assume Γ admits a partial orientation as a quasi-transitive mixed graph. By
Lemma 3.4, Γ is Π-free. By Lemma 2.2, the set of edges of Γ that are not contained
in a copy of K3 is bipartite.

To prove the converse we proceed by disproving the existence of a minimum
counter example. Let Γ be a reduced graph with maximum degree 3 that is Π-free
and such that the subgraph formed by the set of edges of Γ that are not contained
in a copy of K3 is bipartite and Γ does not admit a partial orientation as a quasi-
transitive mixed graph. Among all choices for Γ, choose one with the fewest number
of vertices.

Notice that each of K3, K4 and Γ = K4 − e are comparability graphs, and
thus admit a partial orientation as a quasi-transitive mixed graph. Therefore Γ 6=
K3, K4, K4 − e.

Let Y be the set of edges contained in no copy of K3 in Γ. Notice Y 6= ∅, as
otherwise, by Theorem 2.3, Γ admits a partial orientation as a quasi-transitive mixed
graph. Since Y 6= ∅, by Lemma 3.5, Γ contains one of Σ1,Σ2,Σ3 or Σ4 as an induced
subgraph.

Let Σ′ be an induced subgraph of Γ such that Σ′ ∈ {Σ1,Σ2,Σ3,Σ4}. Consider
the graph Γ−X where

• if Σ′ = Σ1, then X = {u, v, w′};

• if Σ′ = Σ2, then X = {u, v, w, w′}; and

• if if Σ′ = Σ3,Σ4, then X = {u, v}.

By minimality of Γ and Lemma 3.2, Γ − X admits a partial orientation G as a
quasi-transitive mixed graph.

We extend this partial orientation of Γ−X to one of Γ as follows:

• If Σ′ = Σ1 and xw ∈ A(G), then orient the edges uw,wv, vw′, w′u as in S1

in Figure 5. If wx ∈ A(G), then orient the edges as in the converse of S1 in
Figure 5.

• If Σ′ = Σ2 and z is the head of an arc in Γ − X, then orient the edges
uw,wz, zw′, w′u, uv, vw and vw′ as in S2 in Figure 5.

• If Σ′ = Σ2 and z is not the head of an arc in Γ − X, then orient the edges
uw,wz, zw′, w′u, uv, vw and vw′ as in the converse of S2 in Figure 5.

• If Σ′ = Σ3 and w′x′, xw ∈ A(G) , then orient the edges w′v, vu and uv as in S3

in Figure 5. If x′w′, wx ∈ A(G), then orient the edges as in the converse of S3

in Figure 5.

• If Σ′ = Σ3 and x′w′, xw ∈ A(G), then orient the edges w′v, vw,wu, uw and
uv as in S ′

3 in Figure 5. If w′x′, wx ∈ A(G), then orient the edges as in the
converse of S3 in Figure 5.

• If Σ′ = Σ4 and xw ∈ A(G), then orient the edges uv, vw and wu as in S4

in Figure 5. If wx ∈ A(G), then orient the edges as in the converse of S4 in
Figure 5.
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This construction contradicts the fact that Γ admits no partial orientation as a quasi-
transitive mixed graph, which completes the proof.

By noticing that a cubic graph is necessarily reduced, we arrive at the following
classification of cubic graphs that admit a partial orientation as a quasi-transitive
mixed graph

Corollary 3.7. A cubic graph Γ admits a partial orientation as a quasi-transitive
mixed graph if and only if Γ is Π-free and the subgraph of Γ formed by the set of
edges of Γ that are not contained in a copy of K3 contains no odd cycle.

As the collection of edges that are contained in no copy of K3 and removable
vertices can be found in polynomial time, Theorem 3.6 implies that it is Polynomial
to decide whether a graph with maximum degree 3 is an oriented graph square.

4 Decision Problems and Computational Complexity

Recall than a boolean formula is monotone when it has no negated literals. We prove
the problem of deciding whether a graph is an oriented graph square is NP-complete
via reduction from the problem of monotone not-all-equal 3-satisfiability.

Monotone NAE3SAT
Instance: A monotone boolean formula Y = (L,C) in conjunctive normal form with
three literals in each clause
Question: Does there exist a not-all-equal satisfying assignment for the elements
of L?

Theorem 4.1. [20] Monotone NAE3SAT is NP-complete.

MIXEDQT
Instance: A graph Γ
Question Does Γ admit a partial orientation as a mixed quasi-transitive graph?

UNDIRSQUARE
Instance: A graph Γ
Question Does Γ arise as an undirected square of an oriented graph?

Our proof proceeds by constructing a gadget graph for each clause such that the
truth value of a literal in the clause corresponds to whether a specified vertex is a
source or a sink in the gadget graph.

Let Y = (L,C) be an instance of Monotone NAE3SAT. Let c ∈ C and let Σc be
the graph shown in Figure 6. We refer to Σc as a clause graph.

Let Sc be a partial orientation of Σc in which the edges uu′, vv′, ww′ are all oriented
as arcs in some direction. We associate with Sc a vector σc = (σu,c, σv,c, σw,c) ∈
{−,+}3 where σu,c (respectively σv,c, σw,c) is + when u (respectively v, w) is a source
in Sc and − when u (respectively v, w) is a sink in Sc. We call σc the signature of
Sc. See Figure 7 for an example. We will use the signature of a partial orientation
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u u′ z4 z2 w′ w

z1

v′

v

z3

Σc

Figure 6: The clause graph, Σc, for c = u ∨ v ∨ w

of a clause graph to denote the truth values of the literals in the clause graph. The
literal u (respectively v and w) will be TRUE in C if and only if σu,c (respectively,
σv,c and σw,c) is + .

Previewing our approach to an NP-completeness proof, we take a moment to
justify collapsing discussion of not-all-equal cases to one where we may restrict our
consideration to satisfying assignments of a YES instance of not-all-equal satisfiabil-
ity where we may assume without loss of generality for c = u ∨ v ∨ w we have that
u and v are FALSE and w is TRUE, or u and w are FALSE and v is TRUE.

Consider the two partial orientations given in Figure 7. Reversing the orientation
of each of the arcs yields partial orientations with σc = (+,+,−) and σc = (+,−,+).
Moreover, notice the existence of an automorphism of Σc that swaps u and w. Ap-
plying this automorphism to the partial orientation on the left permits us to gen-
erate partial orientations with σc = (−,+,+) and σc = (+,−,−). Thus there are
partial orientations of Σc as a quasi-transitive mixed graphs for each signature in
{−,+}3 \ {(−,−,−), (+,+,+)}. The signature of a clause graph for c = u ∨ v ∨ w
will give the truth value of the literals u, v and w in c.

Lemma 4.2. There exists a partial orientation Sc of Σc as a quasi-transitive mixed
graph if and only if σc ∈ {−,+}3 \ {(−,−,−), (+,+,+)}

Proof. Consider σc ∈ {−,+}3 \{(−,−,−), (+,+,+)}. Figure 7 gives a partial orien-
tation of Sc of Σc as a quasi-transitive mixed graph for σc ∈ {(−,−,+), (−,+,−)}.
The other cases are obtained by applying the automorphism of Σc that swaps u and
w and/or reversing the orientation of every arc.

To complete the proof it suffices to prove there is no partial orientation of Σc as
a quasi-transitive mixed graph with σc = (−,−,−) or σc = (+,+,+). By computer
search (see Appendix) no such partial orientation exists.

To prove MIXEDQT is NP-hard, given an instance of Y = (L,C) of Monotone
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u u′ z4 z2 w′ w

z1

z3

v′

v

σc = (−,−,+)

u u′ z4 z2 w′ w

z1

z3

v′

v

σc = (−,+,−)

Figure 7: Partial orientations of a clause graph with signatures σc =
(−,−,+) and σc = (−,+,−)

NAE3SAT we construct a graph, ΓY , that admits a partial orientation as a quasi-
transitive mixed graph if and only if Y is a YES instance of Monotone NAE3SAT.

We construct ΓY from the disjoint union of paths and copies of Σc by taking

• for each c ∈ C, a copy of Σc; and

• for each x ∈ L, a path Px with 2|C|+ 2 vertices: x0, x1, . . . , x2|C|+2

and by identifying vertices as follows.

For every 1 ≤ k ≤ |C| with ck = u ∨ v ∨ w, identify vertex u2k (respectively v2k
and w2k) in Pu (respectively Pv and Pw) with vertex u (respectively v and w) in Σck

(see Figure 8). In other words, if x ∈ L appears in clause ck ∈ C, then vertex x in
Σk is identified with vertex x2k in Px.

Notice that for every variable x ∈ L, no edge in Px is contained in a copy of K3 in
ΓY . Therefore by Lemma 2.2, in every partial orientation of ΓY as a quasi-transitive
mixed graph, every such edge is oriented as an arc. And so in every every partial
orientation of ΓY as a quasi-transitive mixed graph, every path Px is oriented as
alternating path where every vertex of the form x2k is a source (respectively, a sink)
if and only if x0 is a source (respectively, a sink).

Lemma 4.3. Let Y = (L,C) be an instance of Monotone NAE3SAT and consider
x ∈ L. In every partial orientation of ΓY as a quasi-transitive mixed graph

• the path Px is oriented as an alternating path; and

• for every 1 ≤ k ≤ |C|/2, x2k is a source if and only if x0 is a source.

Proof. Let Y = (L,C) be an instance of Monotone NAE3SAT and let G be a partial
orientation of ΓY as a quasi-transitive mixed graph. Consider x ∈ L. By construc-
tion, no vertex of Px is contained in a copy of K3. And so by Lemma 2.2, every edge
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of this path is oriented as an arc in G and every vertex of this path is either a source
or a sink. Noting that there cannot be an arc with both ends at a source or sink
vertex, it then follows that Px is oriented as an alternating path in G. From this it
follows directly that for every 1 ≤ k ≤ |C|/2, x2k is a source if and only if x0 is a
source.

u2i+3

u2i+2

u2i+1

u = u2i

u2i−1

u2i−2

u2i−3

w2i+3

w2i+2

w2i+1

w = w2i

w2i−1

w2i−2

w2i−3

u′ z4 z2 w′

z1

z3

v2i−2

v2i−1

v = v2i

v2i+1

v2i+2

v′

Figure 8: A clause subgraph in the construction of ΓY for the clause
ci = u ∨ v ∨ w

In our mapping between YES instances of Monotone NAE3SAT and partial ori-
entations of ΓY as a quasi-transitive mixed graph, x0 as a source (respectively, a
sink) corresponds to x being TRUE (respectively, FALSE) in a satisfying assignment
of the instance of Monotone NAE3SAT.

Lemma 4.4. An instance Y = (L,C) of Monotone NAE3SAT is a YES instance if
and only if ΓY admits a partial orientation as a mixed quasi-transitive graph.

Proof. Let Y = (L,C) be a YES instance of Monotone NAE3SAT. Consider the
following partial orientation of G of ΓY :

• for each x ∈ L, if x is true, then orient Px as an alternating path where x0 is
a source;

• for each x ∈ L, if x is false, then orient Px as an alternating path where x0 is
a sink; and

• for each clause c = u ∨ v ∨ w, partially orient Σc as a quasi-transitive mixed
oriented graph whose signature matches the truth values of the literals u, v
and w.
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Note that by Lemmas 4.2 and 4.3 such a partial orientation necessarily exists. (See
Figure 9 for the case ci = u∨v∨w where u, v and w are respectively FALSE, FALSE
and TRUE.)

u2i+2

u2i+1

u = u2i

u2i−1

u2i−2

w2i+2

w2i+1

w = w2i

w2i−1

w2i−2

u′ z4 z2 w′

z1

z3

v2i−2

v2i−1

v = v2i

v2i+1

v2i+2

v′

Figure 9: A clause subgraph in the partial orientation of G in the proof
of Theorem 4.4 where u, v and w are respectively FALSE, FALSE and
TRUE.

We claim G is a quasi-transitive mixed graph. We proceed by appealing to the
definition of quasi-transitive mixed graph.

Let y ∈ V (Γ). We prove y is not the centre vertex of any induced 2-dipath. We
proceed in cases based on whether y is contained in a clause graph.

If there exists c ∈ C such that y ∈ V (Σc), then, without loss of generality, y is
configured as one of the vertices in Figure 7. If y 6= u, v, w, then by observing the
partial orientations in vertices in Figure 7, we see that y is not the centre vertex
of an induced 2-dipath. If y ∈ {u, v, w}, then by construction of ΓY there exists
1 ≤ i ≤ |C|/2 such that y = u2i, y = v2i or y = w2i. By the Vertex Cut Lemma with
I = {u2i, v2i, w2i}, y is a source or a sink. Therefore y is not the centre vertex of an
induced 2-dipath in G.

If y is contained in no clause graph, then there exists x ∈ L such that y = x0 or
y = x2i+1 for 1 ≤ i ≤ |C|/2. In either case, we note that by Lemma 4.3, y is a source
or a sink in G. And so we conclude y is not the centre vertex of an induced 2-dipath
in G.

Consider e ∈ E(G). By construction, there exists c ∈ C such that e ∈ E(Σc).
Without loss of generality, assume σc ∈ {(−,−,+), (−,+,−)}. Therefore Σc is
partially oriented as one of the mixed graphs in Figure 7. We observe that in either
case the end points of every edge are also the endpoints of a 2-dipath. Therefore G
is a quasi-transitive mixed graph.
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Let G be a partial orientation of Γ as a quasi-transitive mixed graph. We assign
the truth value of the variable x based on whether x0 ∈ V (G) is a source or sink.
Let f : L → {TRUE,FALSE} such that f(x) = TRUE if and only if x0 is a source
in G. Notice that since x0 has degree 1 in Γ, x0 is necessarily a source or a sink in
G. And so f(x) = FALSE if and only if x0 is a sink in G.

Notice that for any clause ci = u ∨ v ∨ w, the set I = {u2i, v2i, w2i} satisfies the
hypothesis of the Vertex Cut Lemma. Therefore for each x ∈ L and each 1 ≤ i ≤
|C|/2, x2i is a source or a sink. Note that if x is not contained in clause ci, then x2i is
a source or a sink by Lemma 4.3. By Lemma 4.3, x2i is a source if and only if x0 is a
source. Therefore for every c ∈ C with c = u∨ v ∨w, we have σc,u = + if and only if
u0 (respectively v0 and w0) is a source. By Lemma 4.2, σc /∈ {(−,−,−), (+,+,+)}.
Therefore f is a satisfying assignment for Y .

Theorem 4.5. The decision problem MIXEDQT is NP-complete. The problem is
Polynomial when restricted to inputs of maximum degree 3, but remains NP-complete
when restricted to inputs of maximum degree k for all k ≥ 5.

Proof. The reduction is from Monotone NAE-3SAT, noting that given an instance
Y of Monotone NAE3SAT, ΓY can be constructed in polynomial time. By Lemma
4.4, ΓY admits a partial orientation as a quasi-transitive mixed graph if and only if
Y is a YES instance. Therefore the problem is NP-complete.

For every instance Y , ΓY has maximum degree 5, thus problem remains NP-
complete when restricted to inputs with maximum degree 5. Further, ΓY can be
modified by adding arbitrarily many pendants to a vertex x0 without changing the
correspondence between YES instances and partial orientations as a quasi-transitive
mixed graphs. Therefore the problem remains NP-complete when restricted to inputs
with maximum degree k for any k ≥ 5. By Theorem 3.6, the problem is Polynomial
when restricted to inputs with maximum degree 3.

Corollary 4.6. The decision problem UNDIRSQUARE is NP-complete. The prob-
lem is Polynomial when restricted to inputs of maximum degree 3, but remains NP-
complete when restricted to inputs of maximum degree k for all k ≥ 5.

We notice here the gap in the analysis for the case ∆ = 4. It is possible that the
analysis done in Section 3 can be undertaken for graphs with maximum degree 4.
However in this case Π is not a forbidden subgraph, as demonstrated by the example
in Figure 1.

Let F be a family of oriented graphs. Consider the following decision problem.

F -UNDIRSQUARE
Instance: A graph Γ.
Question Does Γ arise as an undirected square of an oriented graph G ∈ F?

Using the proof of Theorem 4.5, we consider Fk-UNDIRSQUARE where Fk is
the family of orientations of graphs with maximum degree k.
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Theorem 4.7. Let k be a fixed positive integer and let Fk be the family of orientations
of graphs with ∆ = k. For k ≥ 3 the decision problem Fk-UNDIRSQUARE is NP-
complete.

Proof. The reduction is from Monotone NAE3SAT, noting that given an instance Y
of Monotone NAE3SAT, ΓY can be constructed in polynomial time.

In any YES instance Y of Monotone NAE-3SAT, there is a corresponding partial
orientation of ΓY as a quasi-transitive mixed graph in which every vertex is incident
with at most 3 arcs (see Figure 5). Therefore Y is a YES instance if and only if

there exists an oriented graph
−→
H with maximum degree 3 such that ΓY = U(

−→
H 2).

And so it is NP-complete to decide whether a graph is an oriented graph square of
an oriented graph with maximum degree 3.

For fixed k > 3, as in the proof of Theorem 4.5, we can modify the construction
of ΓY by adding arbitrarily many pendants to a vertex x0 without changing the
correspondence between YES instances and partial orientations as a quasi-transitive
mixed graphs. In these partial orientations every edge incident with x0 is oriented as

an arc. Therefore Y is a YES instance if and only if there exists an oriented graph
−→
H

with maximum degree k such that ΓY = U(
−→
H 2). And so it is NP-complete to decide

whether a graph is an oriented graph square of an oriented graph with maximum
degree k for any fixed k ≥ 3.

5 Discussion and Future Work

As with other extensions of graph theoretic concepts to the study of oriented graphs,
the landscape of open areas for investigation on this topic is vast. For example, one
may consider graphs arising from orientations of trees. As with the case for graphs,
we expect there to be a classification that yields a polynomial time algorithm for
identifying graphs that arise as undirected squares of orientations of trees.

Recall that one may extend the definition of graph colouring to oriented graphs
by way of oriented graph homomorphism (see [21]). In this context, an oriented k-

colouring of an oriented graph
−→
G is a homomorphism to a tournament on k vertices.

The oriented chromatic number, denoted χo(
−→
G ), is the least integer k such that

−→
G admits an oriented k-colouring. In every oriented colouring vertices at directed

distance 2 necessarily are assigned different colours. Hence χ(U(
−→
G 2)) ≤ χo(

−→
G ). And

so the oriented chromatic number of the underlying oriented graph gives an upper
bound for the chromatic number of undirected square.

For many fundamental families of oriented graph, the problem of computing the
oriented chromatic number remains open. For example, the best known upper bound
on the chromatic number of the family of orientations of planar graphs is 80 [18].
This bound is not expected to be tight; there are no known constructions for oriented
planar graphs for which the chromatic number exceeds 16 [5]. The example of an

orientation of a planar graph
−→
G with oriented chromatic number 16 has 16 vertices
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and thus satisfies U(
−→
G 2) = K16. Hence χ(U(

−→
G 2)) = 16 = χo(

−→
G ).

Oriented cliques (i.e., oriented graphs for which χo(G) = |V (G)|) present an
example of pairs of non-isomorphic oriented graphs that have the same undirected
square. For example, K5 is an oriented graph square of both the directed 5-cycle
and the transitive tournament on five vertices. And so K5 does not have a unique
square root with respect to oriented graphs. Graphs with a unique square root (with
respect to graphs) are known to exist. For example, tree squares are unique and,
more generally, so are squares of graphs with girth at least 6 [1, 19]. The former of
these results does not extend to graphs arising as undirected squares of orientations
of trees. The directed path on 3 vertices and an orientation of K1,3 in which the
vertex of degree 3 is not a source nor a sink generates the same undirected square.

Appendix

This code checks that Σ has no partial orientation as a quasi-transitive graph with
σc = (+,+,+) or σ = (−,−,−). We proceed by generating all partial orientations
as a quasi-transitive graph via brute force search of all mixed graphs that can be
formed from Σ.

We generate mixed graphs as follows: for every subset of the edge set of Σ we
assign these edges to remain edges in the mixed graphs and the iterate over all
orientations of the remaining edges, testing for each orientation if the constructed
mixed graph is quasi-transitive. Those that are valid are stored. We then iterate
over all of the valid partial orientations and check that none has σc = (+,+,+) or
σc = (−,−,−). The expected output is 0,0.
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sigma = graphs.PathGraph(6)

D = Graph(9)

G = Graph(9)

dict = [] # This list stores all possible partial orientations of

\Sigma as a mQT

ttt = [] # This list stores all mQTs with \sigma_c = (+,+,+)

fff = [] # This list stores all mQTs with \sigma_c = (-,-,-)

sigma.add_edges([(2, 7), (7, 3), (6, 7), (1, 6), (6, 4), (2, 6),

(3, 6), (7, 8)])

# Generate all subsets of edges of \Sigma

edgeSet = sigma.edges()

subgraphs = [[]]

for e in edgeSet:

for i in range(len(subgraphs)):

subgraphs += [subgraphs[i] + [e]]

# Iterate over all choices of edges

for subEdge in subgraphs:

D = Graph(9)

G = Graph(9)

for e in sigma.edges():

G.add_edge(e)

D.add_edges(subEdge)

G.delete_edges(subEdge)

# Iterate over all orientations of the edges that were not chosen

allOrientations = D.orientations ()

for J in allOrientations:

isValid = isMQT(G, J)

if isValid == True:

dict.append ((G, J))

# At this stage , dict holds all mQTs that can be formed from \Sigma.

# We now count the number that have \sigma_c = (+,+,+) or \sigma_c =

(-,-,-).

for i in range(len(dict)):

D = dict[i]

edges = D[1].edges ()

if (0, 1, None) in edges and (7, 8, None) in edges and (5, 4,None)

in edges:

ttt.append(D[1])

elif (1, 0, None) in edges and (8, 7, None) in edges and (4, 5,

None) in edges:

fff.append(D[1])

print(len(ttt), len(fff))
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[12] A. Ghouilà-Houri, Caractérisation des graphes non orientés dont on peut ori-
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