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Abstract

We consider the existence problem of uniformly resolvable decompositions
of Kv into subgraphs such that each resolution class contains only blocks
isomorphic to the same graph. We give a complete solution for the case
in which one resolution class is K2 and the rest are K1,5.

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). An H-decomposition

of the graph G is a collection of edge disjoint subgraphs H = {H1, H2, . . . , Ha} such
that every edge of G appears in exactly one graph Hi ∈ H. The subgraphs, Hi ∈ H,
are called blocks. An H-decomposition is called resolvable if the blocks in H can
be partitioned into classes (or factors) Fj, such that every vertex of G appears in
exactly one block of each Fj. A resolvable H-decomposition is also referred to as an
H-factorization of G, whose classes are referred to as H-factors. We say a class (or
factor) F , is uniform if each Hi ∈ F is isomorphic to a given H. An H-decomposition
of G is uniformly resolvable if its blocks can be partitioned into uniform classes. If
H = {K2}, then a K2-factorization of G is known as a 1-factorization and its factors
are called 1-factors. It is well known that a 1-factorization of Kv exists if and only
if v is even ([9]).

Recently, the existence problem for uniformly resolvable H-decompositions of
Kv have been studied, and many results have been obtained. In particular; results
have been given when H is a set of two complete graphs of order at most five in
[2, 12, 13, 14]; when H is a set of two or three paths on two, three or four vertices in
[4, 5, 8]; for H = {P3, K3 + e} in [3]; for H = {K3, K1,3} in [7]; for H = {C4, P3} in
[10]; for H = {K3, P3} in [11]; for H = {K2, K1,3} in [1].

If H = {H1, H2}, then there are many types of uniformly resolvable H-decompos-
itions, depending on how many factors contain copies of H1 and how many factors
contain copies of H2. We let (H1, H2)-URD(v; r, s) denote a uniformly resolvable de-
composition of Kv into r classes containing only copies of H1 and s classes containing
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only copies of H2. We will consider this problem when H1 = K2 and H2 = K1,n.
While the general case (K2, K1,n)-URD(v; r, s) is still open and in progression, we
have observed that the standard methods used for most cases of (r, s) are not ap-
plicable to solve the cases when the number of 1-factors is small. Thus, we studied
these cases separately. With regard to the extremal cases, we have the following
results.

• A (K2, K1,n)-URD(v; r, 0) exists if and only if v is even.

• If n is even, a (K2, K1,n)-URD(v; 0, s) exists if and only if v ≡ 1 (mod 2n) and
v ≡ 0 (mod n+ 1) ([15]).

• If n is odd, there exists no (K2, K1,n)-URD(v; 0, s). This is proven in [6] for
the case n = 3, but the result can easily be generalized for any odd n > 3.

The existence problem for a (K2, K1,3)-URD(v; r, s) for any admissible parame-
ters r, v, and s has been solved in [1]. In this paper, we completely solve the existence

problem of a (K2, K1,5)-URD(v; 1,
3(v−2)

5
) by proving the following result.

Main Theorem. There exists a decomposition of Kv − I into 5-star factors if and
only if v ≡ 12 (mod 30).

2 Necessary Conditions

Lemma 2.1. If a (K2, K1,5)-URD(v; 1, s) exists, then v ≡ 12 (mod 30).

Proof. Let Kv be the complete graph on v vertices. Since a (K2, K1,5)-URD(Kv; 1, s)
contains exactly one 1-factor, v must be divisible by 2. Also, if s ≥ 1, v must be
divisible by 6 and the total number of edges in Kv − I must be divisible by the total
number of edges in one 5-star factor. Thus, v(v−1)

2
− v

2
must be divisible by 5v

6
. If

we divide v(v−2)
2

by 5v
6
, we obtain 3(v−2)

5
. Since 5 cannot divide 3, (v − 2) must be

divisible by 5. Therefore, we obtain the two congruences,

v ≡ 0 (mod 6) (1)

v ≡ 2 (mod 5). (2)

By the Chinese remainder theorem, we have v ≡ 12 (mod 30).

3 Almost 5-star Factors

If S is a set of v vertices, such that v ≡ t (mod n + 1), then we will say the graph
G is almost spanning if it spans all but t vertices. Define an almost n-star factor on
a set of vertices S to be an almost spanning graph on S in which each connected
component of S − t is an n-star, and the t isolated vertices form one (t − 1)-star,
which we will refer to as a little star.
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Let G be a graph with g vertices. The difference of the edge e = {u, v} in G with
u < v, is D(e) = min{v − u, g − (v − u)}. If the difference of an edge e is defined by
(v − u), then we will refer to this edge as a forward edge, and its difference will be
called a forward difference. If the difference of an edge e is defined by g − (v − u),
then we will refer to this edge as a wrap-around edge, and its difference will be called
a wrap-around difference. If any edge is a wrap-around edge, we denote its difference
ℓ as ℓ.

Let F be an almost 5-star factor. Label the edges in F by the differences they
cover. Suppose each forward difference occurs no more than twice among the stars.
If any difference d appears twice, then use the labels d (pure) and d′ (prime) to
distinguish them. Also, if {u, v} is an edge with a prime difference, and u < v, then
we will denote it by {u, v′}. If a star consists of edges whose differences all have
a pure label, we will refer to this star as a pure star. If it consists of edges whose
differences all have a prime label, then it will be referred to as a prime star. We will
refer to the corresponding differences as pure differences or prime differences, and
similarly, we will refer to the corresponding edges as pure edges or prime edges. If
any edge is both a wrap-around edge and a prime edge, we denote its difference ℓ as
ℓ
′
. If a star contains a mixture of pure edges and prime edges, then it will be referred

to as a mixed star.

3.1 t odd

In this section, we construct almost 5-star factors when the number of isolated ver-
tices is odd.

Lemma 3.1. Let m ≥ 1. There exists an almost 5-star factor with t = 1 on G =
{0, 1, . . . , 30m+ 6} with the following properties:

• Each forward difference d ∈ {1, 2, . . . , 15m + 3} appears at least once among
the stars.

• Each forward difference d ∈ {1, 2, . . . , 15m + 3} appears no more than twice
among the stars.

• There are no wrap-around edges.

• There is one mixed star.

Proof. Let V = {0, 1, . . . , 30m+6} be a set of 30m+7 vertices. Let (c; l1, l2, l3, l4, l5)
denote a 5-star with center c and leaves l1, l2, l3, l4, l5. If m is odd, we construct the
following sets of pure stars, P1 and P2, and a mixed star, M on V \{(30m+5)}. Let

P1 = {(i− 1;j, j − 1, j − 2, j − 3, j − 4)},

where i = 1, . . . ,
5m+ 1

2
and j = (15m+ 7)− 5i.
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For P2, if m = 1, P2 is an empty set. If m ≥ 3, then we let

P2 = {(15m+3 + i; j, j − 6, j − 12, j − 18, j − 24)},

where i = 1, 2, . . . ,
m− 1

2
and j = 30m+ 18− 29i.

Let M = {((15m+ 3); (30m+ 6), (30m+ 0), (30m− 6), (30m+ 4)′, (30m+ 3)′)}.

Let D = {1, 2, . . . , 15m + 3} denote the pure edge set. Let D∗
0 = {(15m +

3), (15m−3), (15m−9)} and D∗
1 = {6k | k = 1, . . . , 5m−5

2
}. Note that D∗

1 is empty if
P2 is empty, that is when m = 1. Then the pure edges in M exhaust the differences
in D∗

0. Also, the stars in P2 exhaust the differences in D∗
1, and the stars in P1 exhaust

the differences in D \ (D∗
0 ∪D∗

1).

The mixed star also contains two prime edges covering the forward differences
(15m + 1)′ and (15m)′. We construct a set of 2m more prime stars P3 simply by
always choosing the next available smallest vertex for the center, and the set of next
available largest vertices for the leaves. In this case, the smallest possible vertex
is (15m + 4) when m = 1, and the largest possible vertex is (30m + 2). So, the
maximum possible length of a prime edge among these leftover vertices is (15m− 2).
Note that the largest available vertex (30m+2) is fixed, but the value for the smallest
available vertex grows as m grows. Therefore, the maximum length possible for a
prime edge happens when m = 1, and it only decreases as m increases. However, at
this point, the only prime edges used have differences (15m+1)′ and (15m)′. Hence,
this process guarantees that all prime edges used in P3 will have distinct forward
differences from the set {(15m − 1)′, (15m − 2)′, . . . , 1′}. Thus, P1 ∪ P2 ∪ P3 ∪ M

partition V \ {(30m+ 5)}.

Ifm ≥ 2 is even, then we construct the following sets of pure stars, P1 and P2, and
a mixed star, M on V \{(30m + 1)}. Note that the case of m = 0 will be discussed
in Lemma 6.1. Let

P1 = {(i− 1;j, j − 1, j − 2, j − 3, j − 4)},

where i = 1, . . . ,
5m

2
and j = 15m+ 4− 5i.

If m ≤ 6, then let

P2 = {((15m− 1) + i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 1, . . . ,
m

2
≤ 3 and j = 30m+ 29− 29i.

If m ≥ 8, then let

P2 = {((15m−1) + i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 1, 2, 3 and j = 30m+ 29− 29i.

P2 = {((15m)+i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 4, . . . ,
m

2
and j = 30m+ 30− 29i.
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Let M = {((15m+ 3); (30m+ 6), (30m+ 5), (30m+ 4), (30m+ 3)′, (30m+ 2)′)}.

Let D = {1, 2, . . . , 15m + 3}, D∗
0 = {(15m + 3), (15m + 2), (15m + 1)}, and

D∗
1 = {6k | k = 1, . . . , 5m

2
}. Then, the pure edges in M exhaust the differences in

D∗
0. Also, the stars in P2 exhaust the differences in D∗

1. Thus, the stars in P1 exhaust
the differences in D \ (D∗

0 ∪D∗
1).

The mixed edges in M use the differences (15m)′ and (15m−1)′. We construct a
set of 2m more prime stars P3 simply by always choosing the next available smallest
vertex for the center and the set of next available largest vertices for the leaves. In this
case, the smallest possible vertex is (15m+ 1) when m = 2, and the largest possible
vertex is (30m− 1). So, the maximum possible length of a prime edge among these
leftover vertices is (15m− 2). Note that the largest available vertex is fixed, but the
smallest available vertex grows as m grows. Therefore, the maximum possible length
for a prime edge occurs whenm = 2 and it only decreases asm increases. However, at
this point, the only prime edges used have differences (15m− 1)′ and (15m)′. Thus,
this process guarantees that all prime edges used in P3 will have distinct forward
differences from the set {(15m − 2)′, (15m − 3)′, . . . , 1′}. Thus, P1 ∪ P2 ∪ P3 ∪ M

partition V \ {(30m+ 1)}.

In each case, we have constructed an almost 5-star factor with one isolated vertex
and the desired properties.

Lemma 3.2. Let m ≥ 0. There exists an almost 5-star factor with t = 3 on G =
{0, 1, . . . , 30m+ 26} with the following properties:

• Each forward difference d ∈ {1, 2, . . . , 30m+26
2

} appears at least once among the
stars.

• Each forward difference d ∈ {1, 2, . . . , 30m+26
2

} appears no more than twice
among the stars.

• There is one mixed star.

• There are no wrap-around edges.

• The three isolated vertices form a prime star of size 2.

Proof. Let V = {0, 1, . . . , 30m + 26} be a set of 30m + 27 vertices. If m is odd, we
give the following sets of pure stars P0, P1 and P2; prime stars P3; a mixed star M
on V \ {(15m+ 9), (30m+ 21), (30m+ 20)}. Let

P0 = {((15m+ 13); (30m+ 26), (30m+ 25), (30m+ 24), (30m+ 23), (30m+ 22))}.

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

where i = 1, 2, . . . ,
5m+ 3

2
and j = 15m+ 13− 5i.

If m = 1, P2 is an empty set. If 3 ≤ m ≤ 5, then let

P2 = {((15m+ 10) + i; j, j − 6, j − 12, j − 18, j − 24)}
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where i = 1, . . . ,
m− 1

2
≤ 2 and j = 30m+ 25− 29i.

If m ≥ 7, let

P2 = {((15m+ 10) + i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 1, 2 and j = 30m+ 25− 29i.

P2 = {((15m+ 11) + i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 3, 4, . . . ,
m− 1

2
and j = 30m+ 26− 29i.

Let M = {((15m+10); (30m+19)′, (30m+18)′, (30m+13), (30m+7), (30m+1))}.

Let D = {1, 2, . . . , 15m+13}, D∗
0 = {(15m+13), (15m+12), (15m+11), (15m+

10), (15m + 9), (15m + 3), (15m− 3), (15m− 9)}, and D∗
1 = {6k | k = 1, . . . , 5m−5

2
}.

Note that D∗
1 is empty if P2 is empty that is when m = 1. The pure edges in P0 and

M exhaust the differences in D∗
0. Also, the stars in P2 exhaust the differences in D∗

1.
Therefore, the stars in P1 exhaust the differences in D \ (D∗

0 ∪D∗
1).

The mixed star also contains two prime edges covering the forward differences
(15m+9)′ and (15m+8)′. We construct a set of 2m+1 more prime stars P3 simply
by always choosing the next available smallest vertex for the center, and the set of
next available largest vertices for the leaves. In this case, the smallest possible vertex
is (15m + 11) when m = 1, and the largest possible vertex is (30m + 17). So, the
maximum possible length of a prime edge among these leftover vertices is (15m+6).
Note that the largest available vertex is fixed, but the smallest available vertex grows
as m grows. Therefore, the maximum length possible for a prime edge occurs when
m = 1 and it only decreases as m increases. However, at this point, the only prime
edges used have differences (15m + 9)′ and (15m + 8)′ in M . Thus, this process
guarantees that all prime edges will have distinct forward differences from the set
{(15m+ 6)′, (15m+ 5)′, . . . , 1′}. Thus, P0 ∪ P1 ∪ P2 ∪ P3 ∪M partition V \ {(15m+
9), (30m+ 21), (30m+ 20)}}. Now let L = {(15m+ 9); (30m+ 21)′, (30m+ 20)′} be
the prime star L, which contains differences {(15m+ 12)′, (15m+ 11)′}.

If m is even, then we give the following sets of pure stars P1 and P2; prime stars
P3; and a mixed star M on V \ {(15m+ 13), (30m+ 21), (30m+ 26)}. Let

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

where i = 1, 2, . . . ,
5m+ 4

2
and j = 15m+ 16− 5i.

If m = 0, then P2 is an empty set. If m ≥ 2, then let

P2 = {((15m+13) + i; j, j − 6, j − 12, j − 18, j − 24)}

where i = 1, 2, . . . ,
m

2
and j = 30m+ 43− 29i.

Let M = {((15m+12); (30m+22)′, (30m+23)′, (30m+25), (30m+24), (30m+18))}.
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Let D = {1, 2, . . . , 15m + 13}, D∗
0 = {(15m + 13), (15m + 12), (15m + 6)}, and

D∗
1 = {6k | k = 1, . . . , 5m

2
}. Note that D∗

1 is empty if P2 is empty, that is when
m = 0. Then the pure edges in M exhaust the differences in D∗

0. Also, the stars
in P2 exhaust the differences in D∗

1, and the stars in P1 exhaust the differences in
D \ (D∗

0 ∪D∗
1).

The mixed star also contains two prime edges covering the forward differences
(15m+11)′ and (15m+10)′. We construct a set of 2m+1 more prime stars P3 simply
by always choosing the next available smallest vertex for the center, and the set of
next available largest vertices for the leaves. In this case, the smallest possible vertex
is (15m + 14) when m = 0, and the largest possible vertex is (30m + 20). So, the
maximum possible length of a prime edge among these leftover vertices is (15m+6).
Note that the largest available vertex is fixed, but the smallest available vertex grows
as m grows. Therefore, the maximum length possible for a prime edge occurs when
m = 0 and it only decreases as m increases. However, at this point, the only prime
edges used have differences (15m + 10)′ and (15m + 11)′ in M . Thus this process
guarantees that all prime edges will have distinct forward differences from the set
{(15m+ 6)′, (15m+ 5)′, . . . , 1′}. Thus, P0 ∪ P1 ∪ P2 ∪ P3 ∪M partition V \ {(15m+
13), (30m+ 21), (30m+ 26)}. Now let L = {(15m+ 13); (30m+ 21), (30m+ 26)} be
the prime star L, which contains differences {(15m+ 8)′, (15m+ 13)′}.

In each case, we have constructed an almost 5-star factor with a little star of size
2 and the desired properties.

Lemma 3.3. Let m ≥ 1. There exists an almost 5-star factor with t = 5 on G =
{0, 1, . . . , 30m+ 16} with the following properties:

• Each forward difference d ∈ {1, 2, . . . , (15m+ 8)} appears at least once among
the stars.

• Each forward difference d ∈ {1, 2, . . . , (15m + 8)} appears no more than twice
among the stars.

• There are no wrap-around edges.

• There is one mixed star.

• The five isolated vertices form a prime star of size 4.

Proof. Let V = {0, 1, . . . , 30m + 16} be a set of 30m + 17 vertices. If m is odd, we
give the following sets of pure stars P1 and P2; prime stars P3; and a mixed star M
on V \ {(15m+ 9), (30m+ 16), (30m+ 15), (30m+ 14), (30m+ 12)}. Let

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)},

where i = 1, 2, . . . ,
5m+ 3

2
and j = 15m+ 13− 5i.

If m = 1, then P2 is an empty set. If m ≥ 3, then let

P2 = {((15m+ 10) + i; j, j − 6, j − 12, j − 18, j − 24)}
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where i = 1, 2, . . . ,
m− 1

2
and j = 30m+ 25− 29i.

Let M = {((15m+10); (30m+13), (30m+11)′, (30m+10)′, (30m+7), (30m+1))}.

Let D = {1, 2, . . . , 15m + 8}, D∗
0 = {(15m + 3), (15m − 3), (15m − 9)}, and

D∗
1 = {6k | k = 1, . . . , 5m−5

2
} if m ≥ 3. Note that D∗

1 is empty if P2 is empty, that
is when m = 1. Then the pure edges in M exhaust the differences in D∗

0. Also,
the stars in P2 exhaust the differences in D∗

1. Hence, the stars in P1 exhaust the
differences in D \ (D∗

0 ∪D∗
1).

The mixed edges in M use the differences (15m+1)′ and (15m)′. We construct a
set of 2m more prime stars P3 simply by always choosing the next available smallest
vertex for the center, and the set of next available largest vertices for the leaves. In
this case, the smallest possible vertex is (15m + 11) when m = 1, and the largest
possible vertex is (30m+9). So, the maximum possible length of a prime edge among
these leftover vertices is (15m − 2). Note that the largest available vertex is fixed,
but the smallest available vertex grows as m grows. Therefore, the maximum length
possible for a prime edge occurs when m = 1 and it only decreases as m increases.
However, at this point, the only prime edges used have differences (15m + 1)′ and
(15m)′. Hence, this process guarantees that all prime edges used in P3 will have
distinct forward differences from the set {(15m− 2)′, (15m− 3)′, . . . , 1′}. Thus, P1 ∪
P2∪P3∪M partition V \{(15m+9), (30m+16), (30m+15), (30m+14), (30m+12)}.
Let L = {(15m+9); (30m+16)′, (30m+15)′, (30m+14)′, (30m+12)′} be the prime
star L, which contains differences {(15m+ 7)′, (15m+ 6)′, (15m+ 5)′, (15m+ 3)′}.

If m ≥ 2 is even, then we give the following sets of pure stars P1 and P2; prime
stars P3; and a mixed star M on V \ {(15m + 8), (30m + 16), (30m + 15), (30m +
9), (30m+ 8)}. Let

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

where i = 1, 2, . . . ,
5m+ 2

2
and j = 15m+ 10− 5i.

If m = 2, then let

P2 = {((15m+ 7); (30m+ 7), (30m+ 1), (30m− 5), (30m− 11), (30m− 17))}.

If m ≥ 4, then let
P2 = P2a ∪ P2b, where

P2a = {((15m+ 7); (30m+ 7), (30m+ 1), (30m− 5), (30m− 11), (30m− 17))}, and

P2b = {((15m+ 7) + i; j, j − 6, j − 12, j − 18, j − 24)}

for i = 2, 3, . . . ,
m

2
and j = 30m+ 37− 29i.

Let M = {((15m+6); (30m+14), (30m+13), (30m+12), (30m+11)′, (30m+10)′)}.

Let D = {1, 2, . . . , 15m + 8}, D∗
0 = {(15m + 8), (15m + 7), (15m + 6)}, and

D∗
1 = {6k | k = 1, . . . , 5m

2
}. The pure edges in M exhaust the differences in D∗

0.
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Also, the stars in P2 exhaust the differences in D∗
1. Then, the stars in P1 exhaust

the differences in D \ (D∗
0 ∪D∗

1).

The mixed star also contains two prime edges covering the forward differences
(15m + 5)′ and (15m + 4)′. We construct a set of 2m more prime stars P3 simply
by always choosing the next available smallest vertex for the center, and the set
of next available largest vertices for the leaves. In this case, the smallest possible
vertex is (15m + 9) when m = 2, and the largest possible vertex is (30m + 6).
So, the maximum possible length of a prime edge among these leftover vertices is
(15m− 3). Note that the largest available vertex is fixed, but the smallest available
vertex grows as m grows. Therefore, the maximum length possible for a prime edge
occurs when m = 2 and it only decreases as m increases. However, at this point,
the only prime edges used have differences (15m+ 5)′ and (15m+ 4)′ in M . Hence,
this process guarantees that all prime edges used in P3 will have distinct forward
differences from the set {(15m − 3)′, (15m − 2)′, . . . , 1′}. Thus, P1 ∪ P2 ∪ P3 ∪ M

partition V \ {(15m + 8), (30m + 16), (30m + 15), (30m + 9), (30m + 8)}. Let L =
{(15m + 8); (30m + 16)′, (30m + 15)′, (30m + 9)′, (30m + 8)′} be the prime star L,
which contains differences {(15m+ 8)′, (15m+ 7)′ (15m+ 1)′ (15m)′}.

In each case, we have constructed an almost 5-star factor with a little star of size
4 and the desired properties.

3.2 t even

In this section, we construct almost 5-star factors when the number of isolated ver-
tices is even.

Lemma 3.4. Let m ≥ 0. There exists an almost 5-star factor with t = 0 on G =
{0, 1, . . . , 30m+ 11} with the following properties:

• Each forward difference d ∈ {1, 2, . . . , 15m + 5} appears at least once among
the stars.

• Each forward difference d ∈ {1, 2, . . . , 15m + 5} appears no more than twice
among the stars.

• There are no wrap-around edges.

• There is no mixed star.

Proof. Let V = {0, 1, . . . , 30m + 11} be a set of 30m + 12 vertices. If m is odd, we
give the following sets of pure stars P0, P1 and P2; and prime stars P3 on V . Let

P0 = {((15m+ 6);(30m+ 11), (30m+ 10), (30m+ 9), (30m+ 3),

(30m−3))} and P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

for i = 1, . . . ,
5m+ 1

2
and j = (15m+ 7)− 5i.

If m = 1, P2 is an empty set. If m ≥ 3, then let

P2 = {((15m+ 6) + i; j, j − 6, j − 12, j − 18, j − 24)},
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for i = 1, 2, . . . ,
m− 1

2
and j = (30m+ 21)− 29i.

Let D = {1, 2, . . . , 15m + 5}, and D∗
1 = {6k | k = 1, . . . , 5m−5

2
}. Note that D∗

1 is
empty if P2 is empty, that is when m = 1. The stars in P2 exhaust the differences in
D∗

1. Then the stars in P0 ∪ P1 exhaust the differences in D \ (D∗
1).

Next we construct a set of 2m+ 1 prime stars P3, simply by always choosing the
next available smallest vertex for the center, and the set of next available largest
vertices for the leaves. In this case, the smallest possible vertex is (15m + 3) when
m = 1, and the largest possible vertex is (30m + 8). So, the maximum possible
length of a prime edge among these leftover vertices is (15m + 5). Note that the
largest available vertex (30m + 8) is fixed, but the smallest available vertex grows
as m grows. Therefore, the maximum length possible for a prime edge occurs when
m = 1, and it only decreases as m increases. However, at this point, no prime edges
have appeared yet. Hence, this process guarantees that all prime edges used in P3

will have distinct forward differences from the set {(15m + 5)′, (15m + 4)′, . . . , 1′}.
Thus, P0 ∪ P1 ∪ P2 ∪ P3 partition V .

If m ≥ 0 is even, we give the following sets of pure stars P1 and P2; and prime
stars P3; on V . Let

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

for i = 1, . . . ,
5m+ 2

2
and j = (15m+ 10)− 5i

If m = 0, P2 is an empty set. If m ≥ 2, then let

P2 = {((15m+5) + i; j, j − 6, j − 12, j − 18, j − 24)}

for i = 1, 2, . . . ,
m

2
and j = (30m+ 35)− 29i.

Let D = {1, 2, . . . , 15m + 5}, and D∗
1 = {6k | k = 1, . . . , 5m

2
}. Note that D∗

1 is
empty if P2 is empty, that is when m = 0. The stars in P2 exhaust the differences in
D∗

1. Then, the stars in P1 exhaust the differences in D \ (D∗
1).

Next, for the prime edges, we construct a set of 2m + 1 prime stars, P3, simply
by always choosing the next available smallest vertex for the center, and the set of
next available largest vertices for the leaves. In this case, the smallest possible vertex
is (15m + 6) when m = 0, and the largest possible vertex is (30m + 11). So, the
maximum possible length of a prime edge among these leftover vertices is (15m+5).
Note that the largest available vertex (30m+ 11) is fixed, but the smallest available
vertex (15m + 6) grows as m grows. Therefore, the maximum length possible for
a prime edge occurs when m = 0, and it only decreases as m increases. However,
at this point, no prime edges have appeared yet. Hence this process guarantees
that all prime edges used in P3 will have distinct forward differences from the set
{(15m+ 5)′, (15m+ 4)′, . . . , 1′}. Thus, P1 ∪ P2 ∪ P3 partition V .

In each case, we have constructed an almost 5-star factor with no isolated vertex
and the desired properties.
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Lemma 3.5. Let m ≥ 1. There exists an almost 5-star factor with t = 2 on G =
{0, 1, . . . , 30m+ 1} with the following properties:

• Each forward difference d ∈ {1, 2, . . . , 15m} appears at least once among the
stars.

• Each forward difference d ∈ {1, 2, . . . , 15m} appears no more than twice among
the stars.

• There are no wrap-around edges.

• There is an edge on the two isolated vertices.

Proof. Let V = {0, 1, . . . , 30m+1} be a set of 30m+2 vertices. If m is odd, we give
the following sets of pure stars P0, P1 and P2; and prime stars P3 on V \ {(15m −
3), (30m− 3)}. Let

P0 = {((15m+ 1); (30m+ 1), (30m), (30m− 1), (30m− 2), (30m− 8))},

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)}

for i = 1, . . . ,
5m− 1

2
and j = (15m+ 1)− 5i.

If m = 1, P2 is an empty set. If m ≥ 3, then let

P2 = {((15m+ 1) + i; j, j − 6, j − 12, j − 18, j − 24)}

for i = 1, 2, . . . ,
m− 1

2
and j = (30m+ 16)− 29i.

Let D = {1, 2, . . . , 15m}, and D∗
1 = {6k | k = 1, . . . , 5m−5

2
}. Note that D∗

1 is
empty if P2 is empty, that is when m = 1. The stars in P2 exhaust the differences in
D∗

1. Then the stars in P0 ∪ P1 exhaust the differences in D \ (D∗
1).

Next we construct a set of 2m prime stars P3 simply by always choosing the next
available smallest vertex for the center, and the set of next available largest vertices
for the leaves. In this case, the smallest possible vertex is (15m− 2), and the largest
possible vertex is (30m−4). So, the maximum possible length of a prime edge among
these leftover vertices is (15m−2) for any m. However, at this point, no prime edges
have appeared yet. Hence this process guarantees that all prime edges used in P3

will have distinct forward differences from the set {(15m − 2)′, (15m − 3)′, . . . , 1′}.
Thus, P0 ∪P1 ∪P2 ∪P3 partition V \ {(15m− 3), (30m− 3)}. Now let L = {(15m−
3), (30m− 3)′} be the prime star L, which contains difference {(15m)′}.

If m ≥ 2 is even, we give the following sets of pure stars P1 and P2; and prime
stars P3 on V \ {(15m), (30m)}. Let

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)},

for i = 1, . . . ,
5m

2
and j = (15m+ 4)− 5i, and
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P2 = {((15m) + i; j, j − 6, j − 12, j − 18, j − 24)}

for i = 1, 2, . . . ,
m

2
and j = (30m+ 30)− 29i.

Let D = {1, 2, . . . , 15m}, and D∗
1 = {6k | k = 1, . . . , 5m

2
}. Note that D∗

1 is empty
if P2 is empty, that is when m = 0. The stars in P2 exhaust the differences in D∗

1.
Then the stars in P1 exhaust the differences in D \ (D∗

1).

Next we construct a set of 2m prime stars P3 simply by always choosing the
next available smallest vertex for the center, and the set of next available largest
vertices for the leaves. In this case, the smallest possible vertex is (15m + 2), and
the largest possible vertex is (30m− 1). So, the maximum possible length of a prime
edge among these leftover vertices is (15m − 3). However, at this point, no prime
edges have appeared yet. Hence, this process guarantees that all prime edges used in
P3 will have distinct forward differences from the set {(15m−3)′, (15m−4)′, . . . , 1′}.
Thus, P1 ∪ P2 ∪ P3 partition V \ {(15m), (30m)}. Now let L = {(15m), (30m)′} be
the prime star L, which contains difference {(15m)′}.

In each case, we have constructed an almost 5-star factor with two isolated vertex
and the desired properties.

Lemma 3.6. Let m ≥ 0. There exists an almost 5-star factor with t = 4 on G =
{0, 1, . . . , 30m+ 21} where m ≥ 0 with the following properties:

• Each forward difference d ∈ {1, 2, . . . , 15m + 10} appears at least once among
the stars.

• Each forward difference d ∈ {1, 2, . . . , 15m + 10} appears no more than twice
among the stars.

• There are no wrap-around edges.

• The 4 isolated vertices form a prime star of size 3.

Proof. Let V = {0, 1, . . . , 30m + 21} be a set of 30m + 22 vertices. If m is odd, we
give the following sets of pure stars P0, P1 and P2; and prime stars P3 on V \{(30m+
19), (30m+ 18), (30m+ 17), (15m+ 9)}. Let

P0 = {((15m+ 11); (30m+ 21), (30m+ 20), (30m+ 14), (30m+ 8), (30m+ 2))},

and P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)},

for i = 1, . . . ,
5m+ 3

2
and j = (15m+ 13)− 5i.

If m = 1, P2 is an empty set. If m ≥ 3, then let

P2 = {((15m+ 11) + i; j, j − 6, j − 12, j − 18, j − 24)},

for i = 1, 2, . . . ,
m− 1

2
and j = (30m+ 26)− 29i.
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Let D = {1, 2, . . . , 15m+ 10}, and D∗
1 = {6k | k = 1, . . . , 5m−5

2
}. Note that D∗

1 is
empty if P2 is empty, that is when m = 1. The stars in P2 exhaust the differences in
D∗

1. Then the stars in P0 ∪ P1 exhaust the differences in D \ (D∗
1).

Next we construct a set of 2m + 1 prime stars P3 simply by always choosing
the next available smallest vertex for the center, and the set of next available largest
vertices for the leaves. In this case, the smallest possible vertex is (15m+10), and the
largest possible vertex is (30m+16). So, the maximum possible length of a prime edge
among these leftover vertices is (15m+6) at any m. However, at this point, no prime
edges have appeared yet. Hence, this process guarantees that all prime edges used in
P3 will have distinct forward differences from the set {(15m+6)′, (15m+5)′, . . . , 1′}.
Thus, P0∪P1∪P2∪P3 partition V \{(30m+19), (30m+18), (30m+17), (15m+9)}.
Now let L = {(15m+9); (30m+19)′, (30m+18)′, (30m+17)′} be the prime star L,
which contains difference {(15m+ 10)′, (15m+ 9)′, (15m+ 8)′}.

If m ≥ 0 is even, we give the following sets of pure stars P0, P1 and P2; and prime
stars P3 on V \ {(30m+ 16), (30m+ 15), (30m+ 14), (15m+ 6)}. Let

P0 = {((15m+ 11); (30m+ 21), (30m+ 20), (30m+ 19), (30m+ 18), (30m+ 17))},

P1 = {(i− 1; j, j − 1, j − 2, j − 3, j − 4)},

for i = 1, . . . ,
5m+ 2

2
and j = (15m+ 10)− 5i.

If m = 0, P2 is an empty set. If m ≥ 2, then let

P2 = {((15m+ 11) + i; j, j − 6, j − 12, j − 18, j − 24)},

for i = 1, 2, . . . ,
m

2
and j = (30m+ 41)− 29i.

Let D = {1, 2, . . . , 15m + 10}, and D∗
1 = {6k | k = 1, . . . , 5m

2
}. Note that D∗

1 is
empty if P2 is empty, that is, when m = 0. The stars in P2 exhaust the differences
in D∗

1. Then the stars in P0 ∪ P1 exhaust the differences in D \ (D∗
1).

Next, we construct a set of 2m+1 prime stars P3 simply by always choosing the
next available smallest vertex for the center, and the set of next available largest
vertices for the leaves. In this case, the smallest possible vertex is (15m+7), and the
largest possible vertex is (30m+13). So, the maximum possible length of a prime edge
among these leftover vertices is (15m+6) at any m. However, at this point, no prime
edges have appeared yet. Hence, this process guarantees that all prime edges used in
P3 will have distinct forward differences from the set {(15m+6)′, (15m+5)′, . . . , 1′}.
Thus, P0∪P1∪P2∪P3 partition V \{(30m+16), (30m+15), (30m+14), (15m+6)}.
Now let L = {(15m+6); (30m+16)′, (30m+15)′, (30m+14)′} be the prime star L,
which contains difference {(15m+ 10)′, (15m+ 9)′, (15m+ 8)′}.

In each case, we have constructed an almost 5-star factor with four isolated
vertices and the desired properties.
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4 Part I factors

In this section, we use almost 5-star factors on a set of v vertices to build 5-star
factors on a set of 6v vertices.

Lemma 4.1. (Part I factors) If there exists an almost 5-star factor on v vertices
with t isolated vertices, then there exists v 5-star factors on 6v vertices.

Proof. Case t = 1 : Suppose v = 30m+7 where m ≥ 1. Let F be the almost 5-star
factor constructed in Lemma 3.1 on {0, 1, . . . , 30m+6} with the one isolated vertex,
x. We will form a set of base blocks on V = {0, 1, . . . , 180m+ 41}. Let V =

⋃5
i=0 Vi

where Vi = {v ∈ V | v ≡ i (mod 6)}. Recall that F consists of 3m pure stars, one
mixed star with three pure edges and two prime edges, and 2m prime stars.

For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the stars si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. The mixed star has 3
pure edges and 2 prime edges. For the mixed star m = (c; l1, l2, l3, l

′
4, l

′
5), construct

the stars mi = (6c + i; 6l1 + i, 6l2 + i, 6l3 + i, 6l′4 + ((i + 1) (mod 6)), 6l′5 + ((i + 2)
(mod 6))) for i = 0, 1, 2, 3, 4, 5. For each prime star p = (c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct

the prime stars pi = (6c+i; 6l′1+((1+i) (mod 6)), 6l′2+((2+i) (mod 6)), 6l′3+((3+i)
(mod 6)), 6l′4 + ((4 + i) (mod 6)), 6l′5 + ((5 + i) (mod 6))) for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V except
the vertices in the set {6x, 6x+1, 6x+2, 6x+3, 6x+4, 6x+5}. Create one more star,
s⋆ = (6x; 6x+1, 6x+2, 6x+3, 6x+4, 6x+5). These base blocks give a factor of 5-stars
on V called B0. For i = 1, 2, . . . , 30m+6, let Bi = {s+6i (mod 180m+42) : s ∈ B0}.
Then, ∪30m+6

i=0 Bi is a set of 30m+ 7 5-star factors on V .

Case t = 3 : Suppose v = 30m + 27 for any non-negative integer m. Let F be
the almost 5-star factor constructed in Lemma 3.2 on {0, 1, . . . , 30m+ 26} with the
little prime star of size 2, L. Let L = {x1; x2, x3} where x1 < x2 < x3. We will
form a set of base blocks on V = {0, 1, . . . , 180m + 161}. Let V =

⋃5
i=0 Vi where

Vi = {v ∈ V | v ≡ i (mod 6)}. Recall that F consists of 3m + 2 pure stars, one
mixed star with 3 pure edges and 2 prime edges, and 2m+ 1 prime stars.

For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the stars si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. The mixed star has 3
pure edges and 2 prime edges. For the mixed stars m = (c; l1, l2, l3, l

′
4, l

′
5), construct

the star mi = (6c + i; 6l1 + i, 6l2 + i, 6l3 + i, 6l′4 + ((i + 1) (mod 6)), 6l′5 + ((i + 2)
(mod 6))) for i = 0, 1, 2, 3, 4, 5. For each prime star p = (c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct

the prime stars pi = (6c+i; 6l′1+((1+i) (mod 6)), 6l′2+((2+i) (mod 6)), 6l′3+((3+i)
(mod 6)), 6l′4 + ((4 + i) (mod 6)), 6l′5 + ((5 + i) (mod 6))) for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V except the
vertices in the set {6x, 6x+1, 6x+2, 6x+3, 6x+4, 6x+5} for each x ∈ {x1, x2, x3}.
So for the little prime star L = {x1; x2, x3}, we construct three more stars; s⋆1 =
(6x1; 6x1 + 1, 6x1 + 2, 6x2 + 3, 6x1 + 4, 6x2 + 5), s⋆2 = (6x1 + 1; 6x3 + 2, 6x3 + 3, 6x3 +
4, 6x3+5, 6x3), s

⋆
3 = (6x1+5; 6x2, 6x2+1, 6x2+2, 6x3+3, 6x2+4). These base blocks

give a factor of 5-stars on V called B0. For i = 1, 2, . . . , 30m + 26, let Bi = {s + 6i



J. LEE AND M. KERANEN/AUSTRALAS. J. COMBIN. 92 (2) (2025), 116–141 130

(mod 180m + 162) : s ∈ B0}. Then, ∪30m+26
i=0 Bi is a set of 30m + 27 5-star factors

on V .

Case t = 5 : Suppose v = 30m + 17 where m ≥ 1. Let F be the almost 5-star
factor constructed in Lemma 3.3 on {0, 1, . . . , 30m + 16} with the little prime star
of size 4, L. Let L = {x1; x2, x3, x4, x5} where x1 < x2 < x3 < x4 < x5. We will
form a set of base blocks on V = {0, 1, . . . , 180m + 101}. Let V =

⋃5
i=0 Vi where

Vi = {v ∈ V | v ≡ i (mod 6)}. Recall that F consists of 3m + 1 pure stars, one
mixed star with 3 pure edges and 2 prime edges, and 2m prime stars.

For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the stars si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. The mixed star has 3
pure edges and 2 prime edges. For the mixed stars m = (c; l1, l2, l3, l

′
4, l

′
5), construct

the star mi = (6c + i; 6l1 + i, 6l2 + i, 6l3 + i, 6l′4 + ((i + 1) (mod 6)), 6l′5 + ((i + 2)
(mod 6))) for i = 0, 1, 2, 3, 4, 5. For each prime star p = (c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct

the prime stars pi = (6c+i; 6l′1+((1+i) (mod 6)), 6l′2+((2+i) (mod 6)), 6l′3+((3+i)
(mod 6)), 6l′4 + ((4 + i) (mod 6)), 6l′5 + ((5 + i) (mod 6))) for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V except the
vertices in the set {6x, 6x+1, 6x+2, 6x+3, 6x+4, 6x+5} for all x ∈ {x1, x2, x3, x4, x5}.
So for the little prime star L = {x1; x2, x3, x4, x5}, we construct five more stars;
s⋆1 = (6x1; 6x2+1, 6x2+2, 6x2+3, 6x2+4, 6x2+5), s⋆2 = (6x1+1; 6x3+2, 6x3+3, 6x3+
4, 6x3+5, 6x3), s

⋆
3 = (6x1+2; 6x4+3, 6x4+4, 6x4+5, 6x4, 6x4+1). s⋆4 = (6x1+3; 6x5+

4, 6x5 +5, 6x5, 6x5 +1, 6x5 +2). s⋆5 = (6x1 +4; 6x1 +5, 6x2, 6x3 +1, 6x4 +2, 6x5 +3).

These base blocks give a factor of 5-stars on V called B0. For i = 1, 2, . . . ,
30m+16, let Bi = {s+6i (mod 180m+102) : s ∈ B0}. Then, ∪

30m+16
i=0 Bi is a set of

30m+ 17 5-star factors on V .

Case t = 0 : Suppose v = 30m + 12 where m ≥ 0. Let F be the 5-star factor
constructed in Lemma 3.4 on {0, 1, . . . , 30m+11}. We will form a set of base blocks
on V = {0, 1, . . . , 180m+71}. Let V =

⋃5
i=0 Vi where Vi = {v ∈ V | v ≡ i (mod 6)}.

Recall that F consists of 3m+ 1 pure stars and 2m+ 1 prime stars.

For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the star si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. For each prime star p =
(c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct the prime stars pi = (6c+ i; 6l′1 +((1+ i) (mod 6)), 6l′2 +

((2+i) (mod 6)), 6l′3+((3+i) (mod 6)), 6l′4+((4+i) (mod 6)), 6l′5+((5+i) (mod 6)))
for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V . These
base blocks give a factor of 5-stars on V called B0. For i = 1, 2, . . . , 30m + 11, let
Bi = {s + 6i (mod 180m + 72) : s ∈ B0}. Then, ∪30m+11

i=0 Bi is a set of 30m + 12
5-star factors on V .

Case t = 2 : Suppose v = 30m + 2 for any m ≥ 1. Let F be the almost 5-star
factor constructed in Lemma 3.5 on {0, 1, . . . , 30m + 1} with the edge L = {x1, x2}
where x1 < x2. We will form a set of base blocks on V = {0, 1, . . . , 180m+ 11}. Let
V =

⋃5
i=0 Vi where Vi = {v ∈ V | v ≡ i (mod 6)}. Recall that F consists of 3m pure

stars and 2m prime stars.
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For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the stars si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. For each prime star p =
(c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct the prime stars pi = (6c+ i; 6l′1 +((1+ i) (mod 6)), 6l′2 +

((2+i) (mod 6)), 6l′3+((3+i) (mod 6)), 6l′4+((4+i) (mod 6)), 6l′5+((5+i) (mod 6)))
for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V except
the vertices in the set {6x, 6x+ 1, 6x+ 2, 6x+ 3, 6x+ 4, 6x+ 5} for all x ∈ {x1, x2}.
So for the edge L = {x1, x2}, we construct two more stars; s⋆1 = (6x1; 6x2 + 1, 6x2 +
2, 6x2 + 3, 6x2 + 4, 6x2 + 5), s⋆2 = (6x1 + 1; 6x1 + 2, 6x1 + 3, 6x1 + 4, 6x1 + 5, 6x2).
These base blocks give a factor of 5-stars on V called B0. For i = 1, 2, . . . , 30m+ 1,
let Bi = {s + 6i (mod 180m + 6) : s ∈ B0}. Then, ∪30m+1

i=0 Bi is a set of 30m + 2
5-star factors on V .

Case t = 4 : Suppose v = 30m + 22 for any non negative integer m. Let F be
the almost 5-star factor constructed in Lemma 3.6 on {0, 1, . . . , 30m+ 21} with the
little prime star of size 3, L. Let L = {x1; x2, x3, x4} where x1 < x2 < x3 < x4. We
will form a set of base blocks on V = {0, 1, . . . , 180m+131}. Let V =

⋃5
i=0 Vi where

Vi = {v ∈ V | v ≡ i (mod 6)}. Recall that F consists of 3m + 2 pure stars and
2m+ 1 prime stars.

For each pure star s = (c; l1, l2, l3, l4, l5) ∈ F , construct the stars si = (6c +
i; 6l1 + i, 6l2 + i, 6l3 + i, 6l4 + i, 6l5 + i) for i = 0, 1, 2, 3, 4, 5. For each prime star p =
(c; l′1, l

′
2, l

′
3, l

′
4, l

′
5), construct the prime stars pi = (6c+ i; 6l′1 +((1+ i) (mod 6)), 6l′2 +

((2+i) (mod 6)), 6l′3+((3+i) (mod 6)), 6l′4+((4+i) (mod 6)), 6l′5+((5+i) (mod 6)))
for i = 0, 1, 2, 3, 4, 5.

Therefore, we have formed a set of 5-stars that spans every vertex in V except the
vertices in the set {6x, 6x+1, 6x+2, 6x+3, 6x+4, 6x+5} for all x ∈ {x1, x2, x3, x4}.
So for the little prime star L = {x1; x2, x3, x4}, we construct four more stars; s⋆1 =
(6x1; 6x2 + 1, 6x2 + 2, 6x2 + 3, 6x2 + 4, 6x2 + 5), s⋆2 = (6x1 + 1; 6x3 + 2, 6x3 + 3, 6x3 +
4, 6x3 + 5, 6x3), s

⋆
3 = (6x1 + 2; 6x4 + 3, 6x4 + 4, 6x4 + 5, 6x4, 6x4 + 1), s⋆4 = (6x1 +

3; 6x1+4, 6x1+5, 6x2, 6x3+1, 6x4+2). These base blocks give a factor of 5-stars on
V called B0. For i = 1, 2, . . . , 30m+21, let Bi = {s+6i (mod 180m+132) : s ∈ B0}.
Then, ∪30m+21

i=0 Bi is a set of 30m+ 22 5-star factors on V .

5 Balanced Star Arrays

In the graph Kv, for each difference d, there are v edges with that difference. So
when decomposing Kv − I into 5-star factors, we must ensure that for any difference
d, each edge with difference d appears exactly once in a star. To keep track of the
differences that were used in the Part I factors and the differences we still need to
cover to complete the decomposition, we will use a structure called a balanced star
array for each set of vertices, Vi, i = 0, 1, . . . , 5.

A balanced star array, for a set of vertices V , is a ⌈v−2
12

⌉×5 array T = T 1∪T 2 whose
entries partition the set D′ where D = {0, 1, . . . , v−2

2
} and D′ = D \ {d ∈ D | d ≡ 0
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(mod 6)}, and satisfies the following properties:

• The columns are indexed by {1, 2, . . . , 5}, and all entries in column j are con-
gruent to j (mod (6)).

• T 1 is a subarray of T whose entries represent the differences covered by the
stars in the Part I factors, and one row of T 1 contains 5− r empty cells where
r is the remainder when v−2

2
is divided by 6.

• T 2 is a subarray of T with no empty cells.

Each entry d in T represents all edges {u, v}, with difference d such that u < v

and u ∈ V . The entries in T 1 are differences from D′ that have been covered in the
Part I factors, and the entries in T 2 are differences that have not yet been covered.
Note that none of the differences in D′ are congruent to 0 (mod 6). This is because
every edge with difference d ≡ 0 (mod 6) is contained in exactly one pure or mixed
star. Thus, we are only concerned with the differences that are covered by prime
edges. We will build the arrays so that each full row of T 1 corresponds to the set of
5 differences covered by a particular Part I prime star. If v−2

2
is not divisible by 6,

then one row of T 1 will contain 5− r empty cells, where r is the remainder when v−2
2

is divisible by 6. The non-empty cells in this row corresponds to the prime edges in
the mixed star from Part I.

Lemma 5.1. (Part II factors) If there exists a balanced star array for each set
Vi, i ∈ Z6, then there is a decomposition of Kv − I into 5-star factors.

Proof. Every edge with difference d ≡ 0 (mod 6) is contained in exactly one pure
or mixed star from Part I. Therefore, we need only be concerned with ensuring that
each edge with difference d 6≡ 0 (mod 6) is contained in exactly one 5-star. Let V =⋃5

i=0 Vi, and let Ti be the balanced star array for the set Vi. The differences in T 1
i are

covered by the factors given in Part I. For each row of the subarray T 2
i , we construct

a 5-star factor as follows. Let the entries in the given row be (d1, d2, d3, d4, d5).
Construct the base star to be s = (i; i + d1, i + d2, i + d3, i + d4, i + d5). We obtain
v−6
6

more stars by taking s+ 6j (mod v) for j = 1, 2, . . . , v−6
6
. Because each dk ≡ k

(mod 6), for k = 1, 2, 3, 4, 5, we are guaranteed that these stars are disjoint and will
span the set V . Furthermore, each forward edge of difference dk on the vertices of Vi

has been covered exactly once by this 5-star factor. Because the balanced star array
for Vi partitions D

′, we have exhausted all of edges {u, v} with difference d such that
u < v and u ∈ Vi. Because there is a balanced star array for each Vi, we have covered
all edges of each difference. Thus we have decomposed Kv−I into 5-star factors.

Next, we build the balanced star arrays that we need.

Lemma 5.2. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+42
with m ≥ 1.
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Proof. We first build the array for V0. We build the rows in T 1
0 based on the stars

that are given in Lemma 4.1, case t = 1. Let one row be [1, 2, 3, 4, 5], corresponding
to the forward differences on V0 from the star s⋆. Each prime star p, produces the
row [d1, d2, d3, d4, d5], where dj = 6l′j + j − 6c for j = 1, 2, 3, 4, 5. Note that dj ≡ j

(mod 6). For the mixed star m, the differences covered are: 6l1−6c, 6l2−6c, 6l3−6c,
6l′4 + 1− 6c, and 6l′5 + 2− 6c. Thus the mixed star produces the row [d1, d2, φ, φ, φ]
corresponding to d1 = 6l′4+1−6c and d2 = 6l′5+2−6c, in which dj ≡ j (mod 6) for
j = 1, 2. Because |D′| = 75m+17 ≡ 2 (mod 5), it follows that there are three sets of
15m+3 differences, where the differences in these sets are all equivalent to j (mod 6),
for j = 3, 4, 5, and there are two sets of 15m+4 differences, where the differences in
these sets all equivalent to j (mod 6) for j = 1, 2. The differences from D′ that are
covered by the Part I stars are such that there are three sets of 2m + 1 differences,
where the differences in these sets are all equivalent to j (mod 6) for j = 3, 4, 5.
Also, there are two sets of 2m+ 2 differences, where the differences in these sets all
equivalent to j (mod 6), for j = 1, 2. This leaves five sets of 13m + 2 differences,
where the differences in each set are all equivalent to j (mod 5) for j = 1, 2, 3, 4, 5.
Therefore, these remaining differences have the property that they can be partitioned
into the (13m+ 2)× 5 subarray, T 2

0 .

Now for i = 1, 2, 3, 4, 5, we build the balanced star array for Vi as follows.
Beginning with T 1

i , for each prime star pi, the differences covered gives the row
[d1, d2, d3, d4, d5] where

dj = 6l′j + ((i+ j) (mod 6))− (6c+ i)

≡ j (mod 6).

For the mixed star mi, the differences covered are: 6(l1 − c), 6(l2 − c), 6(l3 −
c), 6l′4 + ((i + 1) (mod 6)) − (6c + i), 6l′5 + ((i + 2) (mod 6)) − (6c + i). Create
the row [d1, d2, φ, φ, φ], corresponding to d1 = 6(l′4 − c) + ((i + 1) (mod 6)) − i and
d2 = 6(l′5 − c) + ((i + 2) (mod 6)) − i, in which dj ≡ j (mod 6) for j = 1, 2. This
accounts for three sets of 2m differences, in which the differences in each set are
equivalent to j (mod 6), for j = 3, 4, 5, and two sets of 2m+ 1 differences, in which
the differences in each set are equivalent to j (mod 6), for j = 1, 2. This leaves
a total of 65m + 15 differences which can be partitioned into the (13m + 3) × 5
subarray, T 2

i .

Lemma 5.3. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+102
with m ≥ 1.

Proof. We first build the array for Vi where i = 0, 1, 2, 3, 4. We build the rows in
T 1
i based on the stars that are given in Lemma 4.1, case t = 5. Let one row be

[s1 − s0, s2 − s0, s3 − s0, s4 − s0, s5 − s0], corresponding to the forward differences on
Vi from the star s⋆i+1 = (s0; s1, s2, s3, s4, s5). Each prime star p, produces the row
[d1, d2, d3, d4, d5], where dj = 6l′j+((i+j) (mod 6))−(6c+i) for j = 1, 2, 3, 4, 5. Note
that dj ≡ j (mod 6). For the mixed star m, the differences covered are: 6l1 − 6c,
6l2−6c, 6l3−6c, 6l′4+((i+1) (mod 6))−(6c+i), and 6l′5+((i+2) (mod 6))−(6c+i).
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Thus the mixed star produces the row [d1, d2, φ, φ, φ] corresponding to d1 = 6l′4 +
((i + 1) (mod 6)) − (6c + i) and d2 = 6l′5 + ((i + 2) (mod 6)) − (6c + i), in which
dj ≡ j (mod 6) for j = 1, 2. Because |D′| = 75m + 42 ≡ 2 (mod 5), it means that
there are three sets of 15m+ 8 differences, where the differences in these sets are all
equivalent to j (mod 6), for j = 3, 4, 5, and there are two sets of 15m+9 differences,
where the differences in these sets all equivalent to j (mod 6) for j = 1, 2. The
differences from D′ that are covered by the Part I stars are such that there are three
sets of 2m + 1 differences where the differences in these sets are all equivalent to
j (mod 6) for j = 3, 4, 5. Also, there are two sets of 2m + 2 differences where the
differences in these sets all equivalent to j (mod 6), for j = 1, 2. This leaves five
sets of 13m + 7 differences where the differences in each set are all equivalent to j

(mod 5) for j = 1, 2, 3, 4, 5. Therefore, these remaining differences have the property
that they can be partitioned into the (13m+ 7)× 5 subarray, T 2

i .

Now for V5, we build the balanced star array as follows. Beginning with T 1
5 , for

each prime star p5, the differences covered gives the row [d1, d2, d3, d4, d5] where

dj =6l′j + ((5 + j) (mod 6))− (6c+ 5)

≡j (mod 6).

For the mixed star m5, the differences covered are: 6(l1 − c), 6(l2 − c), 6(l3 −
c), 6l′4 − (6c+ 5), 6l′5 + 1− (6c+ 5). Create the row [d1, d2, φ, φ, φ], corresponding to
d1 = 6(l′4 − c)− 5 and d2 = 6(l′5 − c)− 4, in which dj ≡ j (mod 6) for j = 1, 2.

This accounts for three sets of 2m differences in which the differences in each
set are equivalent to j (mod 6) for j = 3, 4, 5, and two sets of 2m + 1 differences
in which the differences in each set are equivalent to j (mod 6), for j = 1, 2. This
leaves a total of 65m+40 differences which can be partitioned into the (13m+8)×5
subarray, T 2

i .

Lemma 5.4. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+162
with m ≥ 0.

Proof. We first build the array for Vi where i = 0, 1, 2. We build the rows in T 1
i

based on the stars that are given in Lemma 4.1, Case t = 3.

Let one row be [s1 − s0, s2 − s0, s3 − s0, s4 − s0, s5 − s0], corresponding to the
forward differences on Vi from the star s⋆i+1 = (s0; s1, s2, s3, s4, s5). Each prime star
p, produces the row [d1, d2, d3, d4, d5], where dj = 6l′j + ((i + j) (mod 6)) − (6c + i)
for j = 1, 2, 3, 4, 5. Note that dj ≡ j (mod 6). For the mixed star m, the differences
covered are: 6l1 − 6c, 6l2 − 6c, 6l3 − 6c, 6l′4 + ((i + 1) (mod 6)) − (6c + i), and
6l′5+((i+2) (mod 6))−(6c+i). Thus the mixed star produces the row [d1, d2, φ, φ, φ]
corresponding to d1 = 6l′4 + ((i + 1) (mod 6)) − (6c + i) and d2 = 6l′5 + ((i + 2)
(mod 6))−(6c+ i), in which dj ≡ j (mod 6) for j = 1, 2. Because |D′| = 75m+67 ≡
2 (mod 5), it means that there are three sets of 15m + 13 differences, where the
differences in these sets are all equivalent to j (mod 6), for j = 3, 4, 5, and there are
two sets of 15m + 14 differences, where the differences in these sets all equivalent
to j (mod 6) for j = 1, 2. The differences from D′ that are covered by the Part I
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stars are such that there are three sets of 2m+2 differences, where the differences in
these sets are all equivalent to j (mod 6) for j = 3, 4, 5. Also, there are two sets of
2m+3 differences, where the differences in these sets all equivalent to j (mod 6), for
j = 1, 2. This leaves five sets of 13m + 11 differences, where the differences in each
set are all equivalent to j (mod 5) for j = 1, 2, 3, 4, 5. Therefore, these remaining
differences have the property that they can be partitioned into the (13m + 11) × 5
subarray, T 2

0 .

Now for i = 3, 4, 5, we build the balanced star array for Vi as follows. Beginning
with T 1

i , for each prime star pi, the differences covered gives the row [d1, d2, d3, d4, d5]
where

dj =6l′j + ((i+ j) (mod 6))− (6c+ i)

≡j (mod 6).

For the mixed star mi, the differences covered are: 6(l1 − c), 6(l2 − c), 6(l3 −
c), 6l′4 + ((i + 1) (mod 6)) − (6c + i), 6l′5 + ((i + 2) (mod 6)) − (6c + i). Create
the row [d1, d2, φ, φ, φ], corresponding to d1 = 6(l′4 − c) + ((i + 1) (mod 6)) − i and
d2 = 6(l′5 − c) + ((i + 2) (mod 6)) − i, in which dj ≡ j (mod 6) for j = 1, 2. This
accounts for three sets of 2m+ 1 differences, in which the differences in each set are
equivalent to j (mod 6), for j = 3, 4, 5, and two sets of 2m+ 2 differences, in which
the differences in each set are equivalent to j (mod 6), for j = 1, 2. This leaves
a total of 65m + 60 differences which can be partitioned into the (13m + 12) × 5
subarray, T 2

i .

Lemma 5.5. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+72
with m ≥ 0.

Proof. We first build the array for Vi where i = 0, 1, 2, 3, 4, 5. We build the rows in
T 1
0 based on the stars that are given in Lemma 4.1, case t = 0. Each prime star

p, produces the row [d1, d2, d3, d4, d5], where dj = 6l′j + ((i + j) (mod 6)) − (6c + i)
for j = 1, 2, 3, 4, 5. Note that dj ≡ j (mod 6). Here we have |D′| = 75m + 30 ≡ 0
(mod 5), so it follows that there are five sets of 15m+ 6 differences. The differences
from D′ that are covered by the Part I stars are such that there are five sets of 2m+1
differences. This leaves five sets of 13m+5 differences, where the differences in each
set are all equivalent to j (mod 5) for j = 1, 2, 3, 4, 5. Therefore, these remaining
differences have the property that they can be partitioned into the (13m + 5) × 5
subarray, T 2

0 .

Lemma 5.6. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+12
with m ≥ 1.

Proof. We first build the array for Vi where i = 0, 1. We build the rows in T 1
0 based

on the stars that are given in Lemma 4.1, case t = 2. Let one row be [s1 − s0, s2 −
s0, s3−s0, s4−s0, s5−s0], corresponding to the forward differences on Vi from the star
s⋆i+1 = (s0; s1, s2, s3, s4, s5). Each prime star p, produces the row [d1, d2, d3, d4, d5],
where dj = 6l′j + ((i + j) (mod 6)) − (6c + i) for j = 1, 2, 3, 4, 5. Note that dj ≡ j
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(mod 6). Here we have |D′| = 75m + 5 ≡ 0 (mod 5), it follows that there are five
sets of 15m + 1 differences. The differences from D′ that are covered by the Part I
stars are such that there are five sets of 2m + 1 differences. This leaves five sets of
13m+1 differences, where the differences in each set are all equivalent to j (mod 5)
for j = 1, 2, 3, 4, 5. Therefore, these remaining differences have the property that
they can be partitioned into the (13m)× 5 subarray, T 2

0 .

Now for i = 2, 3, 4, 5, we build the balanced star array for Vi as follows. Beginning
with T 1

i , for each prime star pi, the differences covered gives the row [d1, d2, d3, d4, d5]
where

dj =6l′j + ((i+ j) (mod 6))− (6c+ i)

≡j (mod 6).

This leaves a total of 65m + 5 differences which can be partitioned into the
(13m+ 1)× 5 subarray, T 2

i .

Lemma 5.7. There is a balanced star array for each Vi, i ∈ Z6 when v = 180m+132
with m ≥ 1.

Proof. We first build the array for Vi where i = 0, 1, 2, 3. We build the rows in
T 1
0 based on the stars that are given in Lemma 4.1, case t = 4. Let one row be

[s1 − s0, s2 − s0, s3 − s0, s4 − s0, s5 − s0], corresponding to the forward differences on
Vi from the star s⋆i+1 = (s0; s1, s2, s3, s4, s5). Each prime star p, produces the row
[d1, d2, d3, d4, d5], where dj = 6l′j + ((i + j) (mod 6)) − (6c + i) for j = 1, 2, 3, 4, 5.
Note that dj ≡ j (mod 6). Here we have |D′| = 75m + 55 ≡ 0 (mod 5), it follows
that there are five sets of 15m + 11 differences. The differences from D′ that are
covered by the Part I stars are such that there are five sets of 2m + 2 differences.
This leaves five sets of 13m+ 10 differences, where the differences in each set are all
equivalent to j (mod 5) for j = 1, 2, 3, 4, 5. Therefore, these remaining differences
have the property that they can be partitioned into the (13m+ 9)× 5 subarray, T 2

0 .

Now for i = 4, 5, we build the balanced star array for Vi as follows. Beginning
with T 1

i , for each prime star pi, the differences covered gives the row [d1, d2, d3, d4, d5]
where

dj =6l′j + ((i+ j) (mod 6))− (6c+ i)

≡j (mod 6).

This leaves a total of 65m + 50 differences which can be partitioned into the
(13m+ 10)× 5 subarray, T 2

i .

6 Results

We begin by giving some direct results.

Lemma 6.1. Let v = 42. There is a decomposition of Kv − I into 5-star factors.
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Proof. Let V = {0, 1, . . . , 41} be the vertex set, and Vi = {v ∈ V | v ≡ i (mod 6)}.
Let I = {(i, i+21) : i ∈ {0, 1, 2, . . . , 20}} be the 1-factor, and we give a decomposition
of Kv − I as follows. Let F = {s0, s1, s2, s3, s4, s5, s6} be a 5-star factor with stars si
where i = 0, 1, . . . , 6. For each si, we let lsi be the set of differences covered by si.
Recall, if any edge is a wrap-around prime edge, then we denote its difference l by l̄′.

F : s0 ={36; 37, 38, 39, 40, 41}, ls0 = {1, 2, 3, 4, 5}

s1 ={0; 6, 12, 18, 28
′
, 35

′
}, ls1 = {6, 12, 18, 14

′
, 7

′
}

s2 ={1; 7, 13, 19, 29
′
, 30

′
}, ls2 = {6, 12, 18, 13

′
, 14

′
}

s3 ={2; 8, 14, 20, 24
′
, 31

′
}, ls3 = {6, 12, 18, 20

′
, 13

′
}

s4 ={3; 9, 15, 21, 25
′
, 32

′
}, ls4 = {6, 12, 18, 20

′
, 13

′
}

s5 ={4; 10, 16, 22, 26
′
, 33

′
}, ls5 = {6, 12, 18, 20

′
, 13

′
}

s6 ={5; 11, 17, 23, 27
′
, 34

′
}, ls6 = {6, 12, 18, 20

′
, 13

′
}

We record the differences used in balanced star arrays, which are given in Figure 1.
Let Ti denote the balanced star array for Vi, i ∈ Z6. Then, by Lemma 5.1, there is
a decomposition of K42 − I into 5-star factors.

Lemma 6.2. Let v = 102. There is a decomposition of Kv − I into 5-star factors.

Proof. Let V = {0, 1, . . . , 101}, Vi = {v ∈ V | v ≡ i (mod 6)} with i ∈ Z6, and let
I = {(i, i+51) : i ∈ {0, 1, 2, . . . , 50}} be the 1-factor. We give F = F1∪F2∪F3, which
is a 5-star factor with 17 5-stars. For each star si, let lsi be the set of differences
covered by si.

Recall, if any edge is a wrap-around prime edge, we denote its difference l as l̄′.
We give F1 = {s1, s2, s3, s4, s5, s6} as follows.

s1 ={0; 6, 12, 18, 24, 30}, ls1 = {6, 12, 18, 24, 30}

s2 ={1; 7, 13, 19, 25, 31}, ls2 = {6, 12, 18, 24, 30}

s3 ={2; 8, 14, 20, 26, 32}, ls3 = {6, 12, 18, 24, 30}

s4 ={3; 9, 15, 21, 27, 33}, ls4 = {6, 12, 18, 24, 30}

s5 ={4; 10, 16, 22, 28, 34}, ls5 = {6, 12, 18, 24, 30}

s6 ={5; 11, 17, 23, 29, 35}, ls6 = {6, 12, 18, 24, 30}

We give F2 = {s1, s2, s3, s4, s5, s6} as follows.

s1 ={36; 72, 78, 84, 94
′
, 101

′
}, ls1 = {36, 42, 48, 37

′
, 44

′
}

s2 ={37; 73, 79, 85, 95
′
, 96

′
}, ls2 = {36, 42, 48, 43

′
, 44

′
}

s3 ={38; 74, 80, 86, 90
′
, 97

′
}, ls3 = {36, 42, 48, 43

′
, 50

′
}

s4 ={39; 75, 81, 87, 91
′
, 98

′
}, ls4 = {36, 42, 48, 43

′
, 50

′
}



J. LEE AND M. KERANEN/AUSTRALAS. J. COMBIN. 92 (2) (2025), 116–141 138

T0

T 1
0 1 2 3 4 5

13 20 * * *
T 2
0 7 8 9 10 11

19 14 15 16 17

T1

T 1
1 13 20 * * *

T 2
1 1 2 3 4 5

7 8 9 10 11
19 14 15 16 17

T2

T 1
2 13 20 * * *

T 2
2 1 2 3 4 5

7 8 9 10 11
19 14 15 16 17

T3

T 1
3 13 20 * * *

T 2
3 1 2 3 4 5

7 8 9 10 11
19 14 15 16 17

T4

T 1
4 13 14 * * *

T 2
4 1 2 3 4 5

7 8 9 10 11
19 20 15 16 17

T5

T 1
5 7 14 * * *

T 2
5 1 2 3 4 5

13 8 9 10 11
19 20 15 16 17

Figure 1: Balanced star array for v = 42

s5 ={40; 76, 82, 88, 92
′
, 99

′
}, ls5 = {36, 42, 48, 43

′
, 50

′
}

s6 ={41; 77, 83, 89, 93
′
, 100

′
}, ls6 = {36, 42, 48, 43

′
, 50

′
}

We give F3 = {s1, s2, s3, s4, s5} as follows.

s1 ={42; 49′, 50′, 51′, 52′, 53′}, ls1 = {7′, 8′, 9′, 10′, 11′}

s2 ={43; 54′, 56′, 57′, 58′, 59′}, ls2 = {11′, 13′, 14′, 15′, 16′}

s3 ={44; 60′, 61′, 63′, 64′, 65′}, ls3 = {16′, 17′, 19′, 20′, 21′}

s4 ={45; 66′, 67′, 68′, 70′, 71′}, ls4 = {21′, 22′, 23′, 25′, 26′}

s5 ={46; 47′, 48′, 55′, 62′, 69′}, ls5 = {1′, 2′, 9′, 16′, 23′}

We record the differences covered by F in balanced star arrays, which are given in
Figure 2. Let Ti denote the balanced star array for Vi, i ∈ Z6. Then, by Lemma 5.1,
there is a decomposition of K102 − I into 5-star factors.

Lemma 6.3. Let v = 12. There is a decomposition of Kv − I into 5-star factors.
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T0

T 1
0 7 8 9 10 11

43 50 * * *
T 2
0 1 2 3 4 5

13 14 15 16 17
19 20 21 22 23
25 26 27 28 29
31 32 33 34 35
37 38 39 40 41
49 44 45 46 47

T1

T 1
1 13 14 15 16 11

43 50 * * *
T 2
1 1 2 3 4 5

7 8 9 10 17
19 20 21 22 23
25 26 27 28 29
31 32 33 34 35
37 38 39 40 41
49 44 45 46 47

T2

T 1
2 19 20 21 16 17

43 50 * * *
T 2
2 1 2 3 4 5

7 8 9 10 11
13 14 15 22 23
25 26 27 28 29
31 32 33 34 35
37 38 39 40 41
49 44 45 46 47

T3

T 1
3 25 26 21 22 23

43 50 * * *
T 2
3 1 2 3 4 5

7 8 9 10 11
13 14 15 16 17
19 20 27 28 29
31 32 33 34 35
37 38 39 40 41
49 44 45 46 47

T4

T 1
4 1 2 9 16 23

43 44 * * *
T 2
4 7 8 3 4 5

13 14 15 10 11
19 20 21 22 17
25 26 27 28 29
31 32 33 34 35
37 38 39 40 41
49 50 45 46 47

T5

T 1
5 37 44 * * *

T 2
5 1 2 3 4 5

7 8 9 10 11
13 14 15 16 17
19 20 21 22 23
25 26 27 28 29
31 32 33 34 35
43 38 39 40 41
49 50 45 46 47

Figure 2: Balanced star array for v = 102

Proof. Let V = {0, 1, . . . , 11} be the vertex set, and let I = {{0, 6}, {1, 7}, {2, 8},
{3, 9}, {4, 10}, {5, 11}}.

Let F1 ={{0; 1, 2, 3, 4, 5}, {6; 7, 8, 9, 10, 11}}

F2 ={{1; 2, 3, 4, 5, 6}, {7; 8, 9, 10, 11, 0}}
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F3 ={{2; 3, 4, 5, 6, 7}, {8; 9, 10, 11, 0, 1}}

F4 ={{3; 4, 5, 6, 7, 8}, {9; 10, 11, 0, 1, 2}}

F5 ={{4; 5, 6, 7, 8, 9}, {10; 11, 0, 1, 2, 3}}

F6 ={{5; 6, 7, 8, 9, 10}, {11; 0, 1, 2, 3, 4}}

Then F = ∪6
i=1Fi gives the desired decomposition.

We are now in a position to prove the main theorem.

Theorem 6.4. There exists a decomposition of Kv−I into 5-star factors if and only
if v ≡ 12 (mod 30).

Proof. Lemma 2.1 gives the necessary conditions. If v ≡ 12 (mod 30), then v ≡
12, 42, 72, 102, 132, or 162 (mod 180). The decompositions of Kv for v = 12, 42,
and 102 are given in Lemma 6.3, Lemma 6.1, and Lemma 6.2 respectively. Let
v = 30m + 12, and let I = {{u, v} : D{u, v} = v

2
}. If m ≥ 0 for v ≡ 72, 132, or 162

(mod 180) and if m ≥ 1 for v ≡ 12, 42, or 102 (mod 180), then by Lemmas 3.1 – 3.6,
there exists an almost 5-star factor with t isolated vertices on G = {0, 1, 2, . . . , v

6
−1},

where t ≡ v
6
(mod 6). Therefore, by Lemma 4.1, there exists v

6
5-star factors on v

vertices. By Lemmas 5.2 – 5.7, there is a balanced star array for each Vi, i ∈ Z6.
Thus, by Lemma 5.1, the remaining edges of Kv − I can be decomposed into 5-star
factors.

We believe that the technique of using balanced star arrays will be helpful when
considering decompositions of Kv − I into n-star factors for n > 5.
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