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Abstract

According to the Handbook of Combinatorial Designs, the only known
example of a (27, 6, 5) design was given by Hanani. Even though a census
of the designs with these parameters appears to be unfeasible, in this
paper we show how some algebraic methods and the aid of a computer
allow us to say that their number is at least 459. We show, in particular,
that two of them are doubly point-transitive with their full automorphism
groups being AΓL(1, 27) and AGL(1, 27). These two special designs are
both flag-transitive and additive.

1 Introduction

A 2-(v, k, λ)-design, or simply a (v, k, λ)-design, is a pair D = (V,B) where V is
a v-set of points and B is a collection of k-subsets of V called blocks having the
property that each pair of distinct points of V is contained in precisely λ blocks. It
is well known that every point appears in exactly r := λ v−1

k−1
blocks and that the total

number of blocks is b := λ v(v−1)
k(k−1)

. This gives the so-called admissibility conditions

λ(v − 1) ≡ 0 mod k − 1 and λv(v − 1) ≡ 0 mod k(k − 1). (1)

An automorphism of a design D = (V,B) is a permutation on V leaving B
invariant. The following definition is quite important in this paper.

Definition 1. A (v, k, λ)-design is 1-rotational if it admits an automorphism con-
sisting of a fixed point and a cycle of length v − 1.
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Any subgroup of the group Aut(D) of all the automorphisms of a design D is said
to be an automorphism group of D. One refers to Aut(D) as the full automorphism

group of D. Two designs with the same parameters are isomorphic if there exists a
bijection (isomorphism) between their point sets mapping blocks into blocks.

For general background on designs we refer to the excellent textbooks [3, 22].

Saying that the number of (v, k, λ) designs is n one tacitly assumes “up to iso-
morphism”. To establish the precise number n is unfeasible apart from very specific
cases. In general, the number of (v, k, λ) designs whose automorphism group is trivial
(asymmetric designs) is hugely greater than the number of the others. For instance,
there are precisely 11,084,874,829 (19, 3, 1) designs but the number of those with a
non-trivial automorphism group is only 164,758 [16]. In spite of this fact the designs
with a “nice” automorphism group are more easily catchable since they are enlight-
ened by their algebraic properties. For an evidence of the above, we observe that for
a given admissible triple (v, k, λ) with r = λ(v−1)

k−1
≤ 41, the tables of the Handbook

[17] give, in most cases, the best known lower bound for the number of designs with
these parameters, not the precise number. Also, this lower bound often refers to
designs none of which is asymmetric.

We have been surprised to see that the lower bound for the number of (27, 6, 5)
designs given in these tables is only 1. The related reference is an example given
by Hanani [15] and we have checked that its full automorphism group has order 78.
In this paper we significantly improve this bound by finding 458 new examples. As
a matter of fact one of these 458 was already known and constructed by Abel, but
it was not checked that it is not isomorphic to that of Hanani. The paper will be
organized as follows.

In the next section we determine two (27, 6, 5) designs whose related groups of
automorphisms, AΓL(1, 27) and AGL(1, 27), are very rich. We will show that both
these designs are flag-transitive and additive. The one admitting AΓL(1, 27) is worthy
of special attention considering that very little is known about (v, k, λ) designs with
gcd(r, λ) = 1 and a flag-transitive automorphism group G ≤ AΓL(1, q) for some q.

In Section 3 we give the background concerning the 1-rotational difference families

which are fundamental in the construction of 1-rotational designs (see Definition 1).

In Section 4 we revisit the (27, 6, 5) design by Hanani showing that it is 1-
rotational and we compare it with the other 1-rotational (27, 6, 5) design constructed
by Abel.

In Section 5 we determine the structure of the 1-rotational difference families giv-
ing rise to (27, 6, 5) designs. Considering that they depend on too many parameters,
we limit our search to those having a multiplier of order 3 — namely to those giving
rise to a 1-rotational (27, 6, 5) design with an automorphism group of order 78 as the
design by Hanani. We found that their number is 2760. But the number of pairwise
non-isomorphic designs generated by them is 230.

In Section 6, by suitably “distorting” the 1-rotational difference families obtained
before, we find 228 1-rotational difference families without multipliers giving rise to
as many (27, 6, 5) designs with an automorphism group of order 26.
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In the final section we give a table summarizing the results obtained in this paper.

These results were first presented by the second author at the Combinatorics
conference in Carovigno, Italy, in June 2024.

2 Doubly point-transitive (27, 6, 5) designs

We assume familiarity with the basic notions about group action. As it is standard,
if G is a group of permutations on a set V and B is a subset of V , we denote by GB

and BG, the G-stabilizer and the G-orbit of B, respectively.

A design is said to be doubly point-transitive when its full automorphism group
acts 2-transitively on the points.

The following result is very well-known (see, e.g., Theorem 3.4.3 in [4]).

Theorem 2.1. Let G be a group of permutations acting t-transitively on a v-set
V with t ≥ 2, and let B be a k-subset of V with 1 < k < v − 1. Then the pair

D = (V,BG) is a t-(v, k, λ) design for a suitable λ.

It is evident that the design D of the above theorem admits G as an automor-
phism group acting t-transitively on the points. We apply this theorem with t = 2
to find doubly point-transitive (27, 6, 5) designs. First, we recall that an affine trans-

formation of the field Fq is any map of the form

αm,t : x ∈ Fq −→ mx+ t ∈ Fq

where m and t are elements of Fq with m 6= 0. We also recall that the affine
transformations of Fq form a group under composition which acts (sharply) doubly
transitively on Fq. This group, denoted by AGL(1, q), is called the one dimensional

general affine group over Fq.

Theorem 2.2. There exist at least two doubly transitive (27, 6, 5) designs.

Proof. Let F27 be the finite field of order 27 and let F∗
27 be its multiplicative group.

Take any element x ∈ F27 not belonging to the subfield of order 3 and consider the
6-subset of F27

Bx = {0, 1, 2, x, x+ 1, x+ 2}.

In the following G will denote the group AGL(1, 27) of the affine transformations of
F27. Given that this group is 2-transitive on F27, by Theorem 2.1 we can claim that
Dx := (F27, B

G
x ) is a (27, 6, λ) design for a suitable λ. Let us prove that λ = 5.

The number b of blocks of a (27, 6, λ) design is λ27×26
30

. On the other hand, the

number of blocks of our design Dx is the size of BG
x , that is

|G|
|GBx |

. Note that G has

size 27× 26 and check that

{α1,0, α1,1, α1,2, α2,x, α2,x+1, α2,x+2} ⊂ GBx
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so that GBx
has order at least 6. Thus we have:

λ
27× 26

30
=

27× 26

|GBx
|

≤
27× 26

6

which gives λ ≤ 5. On the other hand, λmust be a multiple of 5 by the first condition
in (1). It necessarily follows that λ = 5.

We conclude that Dx is a doubly point-transitive (27, 6, 5) design for any x ∈
F27 \ {0, 1, 2}.

Note that Dx is 1-rotational. Indeed, denoting by ω a primitive element of F27,
it is clear that the affine transformation αω,0 fixes zero and cyclically permutes all
the other elements of the field. In the following, as primitive element ω we agree to
take a root of the primitive polynomial z3 − z + 1.

We observe that Bx = Bx+1 = Bx+2 for every x ∈ F27 \ {0, 1, 2}. We also observe
that the 3-subsets of F27 \ {0, 1, 2} of the form {x, x+ 1, x+ 2} are precisely

Xi = {xi, xi + 1, xi + 2}, 1 ≤ i ≤ 8

with
(x1, x2, x3, x4, x5, x6, x7, x8) = (ω, ω2, ω4, ω5, ω6, ω8, ω14, ω19).

One can easily check that we have:

X1 = {ω, ω9, ω3}; X2 = {ω2, ω21, ω12};

X3 = {ω4, ω18, ω7}; X4 = {ω5, ω17, ω20};

X5 = {ω6, ω11, ω10}; X6 = {ω8, ω15, ω25};

X7 = {ω14, ω16, ω22}; X8 = {ω19, ω23, ω24}.

Thus, from the previous observations, our construction leads to at most eight designs
that are Dx1 , . . . , Dx8 . Now check that we have:

Bx1 + ω14 = Bx7 ; Bx2 + ω8 = Bx6 ;

Bx3 + ω5 = Bx4 ; Bx5 + ω19 = Bx8 .

It follows that BG
xi

= BG
xj

for each pair (i, j) ∈ {(1, 7), (2, 6), (3, 4), (5, 8)} so that
Dxi

= Dxj
. Thus our construction leads to at most four distinct designs that are

Dx1 , Dx2 , Dx3 and Dx5 .

Now let φ : x ∈ F27 −→ x3 ∈ F27 be the Frobenius automorphism of F27 and check
that it cyclically permutes Bx2 , Bx5 and Bx3 . It follows that φ is an isomorphism
between Dxi

and Dxj
for each pair (i, j) ∈ {(2, 5), (5, 3), (3, 2)}. Indeed, if (i, j) is

any of these pairs and (m, t) any pair of F∗
27 × F27, keeping in mind that F27 has

characteristic 3 we can write:

φ(αm,t(Bxi
)) = φ(mBxi

+ t) = (mBxi
+ t)3 = m3Bxj

+ t3 = αm3,t3(Bxj
). (2)
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Thus φ maps every block of BG
xi

into a block of BG
xj
, i.e., φ turns the block set of Dxi

into the block set of Dxj
. Hence Dx2 , Dx3 and Dx5 are pairwise isomorphic.

Finally note that φ fixes Bx1 so that, reasoning similarly as in (2), we can see
that φ is an automorphism of Dx1 . It follows that the group generated by G and φ,
that is the semidirect product G ⋊ 〈φ〉, is an automorphism group of Dx1 of order
27×26×3 = 2106. This group, denoted by AΓL(1, 27), is called the one-dimensional

general affine semilinear group over F27.

Using GAP [14] we have checked that the full automorphism group of Dx1 is
actually G ⋊ 〈φ〉 whereas the full automorphism group of Dx2 is “only” G. We
conclude that our construction leads to exactly two non-isomorphic doubly transitive
(27, 6, 5) designs. The first one is Dω = (F27, B

G
ω ) where

Bω = {0, 1, 2, ω, ω + 1, ω + 2} = {0, 1, 2, ω, ω3, ω9} (3)

and its full automorphism group of order 2106 is AΓL(1, 27). The second one is
Dω2 = (F27, B

G
ω2) where

Bω2 = {0, 1, 2, ω2, ω2 + 1, ω2 + 2} = {0, 1, 2, ω2, ω12, ω21} (4)

and its full automorphism group of order 702 is AGL(1, 27).

We note that both the designs Dω and Dω2 are point-primitive and block-imprim-
itive. The primitivity on the points obviously derives from the fact that they are
doubly point-transitive. The imprimitivity on the blocks is a consequence of the well-
known fact that a transitive permutation group is primitive if and only if a point
stabilizer is a maximal subgroup (see, e.g., [12, Corollary 1.5A]).

2.1 A connection with flag-transitive designs

A flag of a design (V,B) is any pair (x,B) ∈ V × B with x ∈ B. A design is flag-

transitive if it admits an automorphism group acting transitively on its flags. There
is very extensive literature on this topic (see, e.g., [2, 19, 5]).

Proposition 2.3. The designs Dω and Dω2 constructed above are flag-transitive. In

particular, they are sharply flag-transitive under the action of AGL(1, 27).

Proof. Keeping the same notation used in Theorem 2.2, we note that GBx
is isomor-

phic to the dihedral group of order 6 and acts sharply transitively on the points of
Bx for any x ∈ F27 \ {0, 1, 2}. Fix x ∈ {ω, ω2} and take any two flags f1, f2 of the
design Dx. For i = 1, 2, we have fi = (ygii , B

gi
x ) for a suitable yi ∈ Bx and a suitable

gi ∈ G by definition of Dx. Given that the points y1, y2 are in Bx, from the previous
observation about GBx

there is exactly one element h ∈ GBx
such that yh1 = y2. Then

we see that g−1
1 hg2 brings the flag f1 into the flag f2 so that Dx is flag-transitive.

Clearly, a (v, k, λ) design has precisely λv(v−1)
k−1

flags. Thus, in particular, the
number of flags of a (27, 6, 5) design is 27 · 26 which is also the order of the group
G = AGL(1, 27). It follows that G is sharply flag-transitive on both Dω and Dω2 .
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The (v, k, λ) designs with gcd(r, λ) = 1 having a flag-transitive automorphism
group G have been completely classified except when G is a subgroup of a semilinear
affine group. Some examples lying in this exceptional situation are provided in
Section 4 of [2]. We note that our design Dω is one more example in view of Prop-
osition 2.3.

2.2 A connection with additive designs

A design is said to be additive if, up to isomorphism, its point set V is a subset of
an abelian group G and its blocks are all zero-sum in G. In particular, it is strictly
additive if V is the whole group G. This is a very interesting topic introduced in [10],
further developed in [11, 13, 21], and generalized in [6]. It seems that an additive
(v, k, λ) design is harder to construct the smaller the λ. For instance, the only known
classes of additive (v, k, 1) designs are the point-line designs associated to an affine or
projective geometry [9]. Infinitely many other constructions can be found in [8] but
they are unwieldy since v is huge in comparison with k. A sporadic example of an
additive (124, 4, 1) design was constructed in [6]. An example of a strictly additive
(81, 6, 2) design was constructed in [20].

Now we prove that the two (27, 6, 5) designs Dω and Dω2 constructed above are
strictly additive.

Proposition 2.4. The doubly transitive designs Dω and Dω2 are strictly additive.

Proof. For i = 1, 2, the point set of Dωi is the additive group of F27 and a block of
Dωi is of the form mBωi + t for a suitable pair (m, t) ∈ F

∗
27 × F27. Recalling that

Bωi
= {0, 1, 2, ωi, ωi + 1, ωi + 2}, we can write

mBωi + t = {t, m+ t, 2m+ t, mωi + t, mωi +m+ t, mωi + 2m+ t}.

Thus we see that the elements of mBωi + t sum up to 3(2m + mωi + 2t) which is
clearly equal to zero since we are in characteristic 3. The assertion follows.

The results of this section can be summarized as follows.

Theorem 2.5. Let G = AGL(1, 27) and let Bω and Bω2 be the subsets of F27 defined

in (3) and (4), respectively.

The pair Dω = (F27, B
G

ω ) is a (27, 6, 5) design with full automorphism group

AΓL(1, 27) which is doubly point-transitive, flag-transitive, and strictly additive.

The pair Dω2 = (F27, B
G

ω2 ) is a (27, 6, 5) design with full automorphism group G
which is doubly point-transitive, flag-transitive, and strictly additive.

3 1-rotational difference families

The fundamental tool for getting 1-rotational designs are the so-called 1-rotational
difference families (see §16.6 in [1]). We recall here all the basic definitions for the
comprehension of this matter.
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In the following, given any positive integer v, we consider the action of the group
G = (Zv−1,+) on the set Zv−1 ∪ {∞} (with ∞ being a symbol not in Zv−1) defined
by g(x) = x + g for every pair (g, x) ∈ Zv−1 × Zv−1 and by g(∞) = ∞ for every
g ∈ Zv−1. Again, given a k-subset B of Zv−1 ∪ {∞}, we denote by GB and BG the
G-stabilizer and the G-orbit of B, respectively.

The list of differences of B is the multiset ∆B defined as follows:

∆B = {b− b′ | b, b′ ∈ B; b 6= b′} if ∞ /∈ B,

or

∆B = {b− b′ | b, b′ ∈ B \ {∞}; b 6= b′} ∪ {∞,∞, . . . ,∞}
︸ ︷︷ ︸

|B| − 1 times

if ∞ ∈ B.

It is possible to see that the list ∆B defined above is the multiset union of |GB|
copies of a multiset ∂B which is called the list of partial differences of B.

Remark 2. It is very easy to see that the following facts hold.

(i) ∂B = ∆B ⇐⇒ GB = {0};

(ii) |GB| is a divisor of |B \ {∞}|;

(iii) |∂B| =







k(k−1)
|GB |

if ∞ /∈ B

(k−1)2

|GB |
if ∞ ∈ B

Definition 3. A 1-rotational (v, k, λ) difference family is a collection F =
{B1, . . . , Bn} of k-subsets (base blocks) of Zv−1 ∪ {∞} such that every non-zero ele-
ment of Zv−1 ∪ {∞} occurs λ times in ∂B1 ∪ . . . ∪ ∂Bn. A base block Bi is full or
short according to whether BG

i has full order v − 1 or not, respectively.

Equivalently, a base block is full if and only if its G-stabilizer is trivial. The
importance of 1-rotational difference families is clarified by the following theorem.

Theorem 3.1. Let F = {B1, . . . , Bn} be a 1-rotational (v, k, λ) difference family

and let B = BG
1 ∪ . . . ∪ BG

n . Then D = (Zv−1 ∪ {∞},B) is a 1-rotational (v, k, λ)
design.

An automorphism of the design D in Theorem 3.1 with a fixed point and a cycle
of length v − 1 is the permutation π on Zv−1 ∪ {∞} defined by π(∞) = ∞ and
π(x) = x + 1 for every x ∈ Zv−1. The group 〈π〉 of permutations generated by π is
clearly a group of automorphisms of D isomorphic to Zv−1 acting sharply transitively
on all but one point.

The converse of Theorem 3.1 holds, namely every 1-rotational (v, k, λ) design
D = (V,B) is generated, up to isomorphism, by a suitable 1-rotational (v, k, λ)
difference family F which can be constructed in five steps as follows.
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1st step. Take an automorphism α of D fixing one point z and cyclically permuting
the others (it exists by definition of a 1-rotational design).

2nd step. Choose a point y ∈ V \ {z}.

3rd step. Take the function f : V −→ Zv−1 ∪ {∞} mapping z to ∞, and mapping
αi(y) to i for 0 ≤ i ≤ v − 2.

4th step. Take a complete system S of representatives for the 〈α〉-orbits on B.

5th step. F = {f(B) | B ∈ S} is a 1-rotational (v, k, λ) difference family giving
rise to a design isomorphic to D.

Example 4. Let us examine which is the 1-rotational difference family Fω giving
rise to the doubly transitive design Dω constructed in Section 2.

1st step. Take the permutation α on F27 defined by α(x) = ωx for every x ∈ F27.
This is an automorphism fixing the point z = 0 and cyclically permuting all the
others.

2nd step. Take y = 1 as auxiliary point in F27 \ {0}.

3rd step. We have αi(y) = αi(1) = ωi. Hence we have to consider the function
f : F27 −→ Z26 ∪ {∞} defined by f(0) = ∞ and f(ωi) = i for 0 ≤ i ≤ 25.

4th step. We have checked that

S = {Bω, Bω + ω, Bω + ω2, Bω + ω4, Bω + ω5}

is a complete system of representatives for the 〈α〉-orbits on B and we have:

Bω = {0, ω0, ω13, ω, ω3, ω9};

Bω + ω = {ω, ω9, ω3, ω14, ω16, ω22}; Bω + ω2 = {ω2, ω21, ω12, ω10, ω6, ω11};

Bω + ω4 = {ω4, ω18, ω7, ω2, ω21, ω12}; Bω + ω5 = {ω5, ω17, ω20, ω19, ω23, ω24}.

5th step. Taking the images of the members of S under f we obtain the 1-rotational
(27, 6, 5) difference family Fω whose base blocks are:

B1 = {∞, 0, 13, 1, 3, 9};

B2 = {1, 9, 3, 14, 16, 22};

B3 = {2, 21, 12, 10, 6, 11};

B4 = {4, 18, 7, 2, 21, 12};

B5 = {5, 17, 20, 19, 23, 24}.

Example 5. By proceeding as in Example 4 one finds that the base blocks of a
1-rotational (27, 6, 5) difference family Fω2 giving rise to Dω2 are the following:

B1 = {∞, 0, 13, 2, 21, 12};

B2 = {2, 21, 12, 15, 25, 8};

B3 = {1, 9, 3, 10, 6, 11};

B4 = {4, 18, 7, 23, 24, 19};

B5 = {5, 17, 20, 3, 1, 9}.
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It is quite obvious that if F = {B1, . . . , Bn} is a 1-rotational (v, k, λ) difference
family, then F ′ = {uB1+ t1, . . . , uBn+ tn} is a 1-rotational (v, k, λ) difference family
as well, for any unit u of Zv−1 and for any n-tuple (t1, . . . , tn) of elements of Zv−1

(it is understood that u∞ = ∞). Two difference families F and F ′ as above are
said to be equivalent. It is also evident that equivalent difference families generate
isomorphic designs.

A multiplier of a 1-rotational (v, k, λ) difference family F = {B1, . . . , Bn} is a
unit u of Zv−1 such that uBi is a translate of Bπ(i) for a suitable permutation π of
{1, . . . , n}.

We note that 3 is a multiplier of the difference family Fω constructed in Exam-
ple 4. This is a consequence of the fact that the Frobenius automorphism of F27

is an automorphism of Dω. More concretely, we can see that multiplying by 3 the
base blocks B1, . . . , B5 of Example 4 we get the following: 3B1 = B1; 3B2 = B2;
3B3 = B5 + 13; 3B4 = B3; 3B5 = B4 + 13.

On the contrary, one can check that the difference family Fω2 constructed in
Example 5 does not have any non-trivial multiplier.

All the multipliers of a 1-rotational (v, k, λ) difference family F form a subgroup
of the group U(Zv−1) of all the units of Zv−1. We also note that if u is a multiplier of
F , then the permutation µu on Zv−1 ∪ {∞} defined by µu(∞) = ∞ and µu(x) = ux
for every x ∈ Zv−1 is an automorphism of the design D generated by F . It follows
that if M is the group of the multipliers of F , then the semidirect product Zv−1⋊M
is an automorphism group of D.

4 Previously known (27, 6, 5) designs

Up to our knowledge, there were only two known (27, 6, 5) designs in the literature.

The first example was given by Hanani [15, Table 5.18]; it arises from the 1-
rotational (27, 6, 5) difference family H = {H1, . . . , H5} whose base blocks are the
following:

H1 = {∞, 0, 13, 1, 3, 9};

H2 = {14, 16, 22, 1, 3, 9};

H3 = {2, 6, 13, 1, 3, 9};

H4 = {6, 18, 13, 1, 3, 9};

H5 = {18, 2, 13, 1, 3, 9}.

We note that the second block is short; indeed it is readily seen that GH2 = {0, 13}.
All the other blocks are full.

Remark 6. We warn the reader that Hanani presented the above example using a
different notation. More precisely, the group Z26 was given as direct product Z2×Z13.
The elements 0 and 1 of Z2 were represented with ∅ and 0, respectively. The zero of
Z13 was also represented with the symbol ∅ whereas any other element x of Z13 was
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represented with its “logarithm” in base 2 (if x = 2y mod 13, then x was represented
by y).

Another (27, 6, 5) design has been constructed by R.J.R. Abel [1, Example 16.86]
and it is generated by the 1-rotational (27, 6, 5) difference family A = {A1, . . . , A5}
whose base blocks are the following:

A1 = {∞, 0, 7, 11, 13, 21};
A2 = {2, 5, 6, 15, 18, 19};
A3 = {0, 1, 2, 8, 22, 23};
A4 = {0, 3, 6, 24, 14, 17};
A5 = {0, 9, 18, 20, 16, 25}.

As in Hanani’s example, only the second block is short.

Both the 1-rotational designs by Abel and Hanani have an automorphism group
isomorphic to Z26 ⋊ Z3. Indeed their related 1-rotational difference families admit
3 as a multiplier of order 3; µ3 fixes Hi and Ai for i = 1, 2 whereas it cyclically
permutes the triples (H3, H4, H5) and (A3, A4, A5).

On the other hand, using GAP [14] we have checked the block intersection num-
bers of these two designs to show that they are not isomorphic.

Abel[1] Hanani[15]
|B ∩ B′| = 0 1040 702
|B ∩ B′| = 1 3198 3900
|B ∩ B′| = 2 2067 1911
|B ∩ B′| = 3 481 117
|B ∩ B′| = 4 0 78
|B ∩ B′| = 5 0 78

Using nauty, [18], we have also checked that the full automorphism group of both
the designs by Abel and Hanani has order 78 so that none of them is isomorphic to
one of the two doubly point-transitive designs Dω, Dω2 considered in Section 2.

5 The structure of a 1-rotational (27, 6, 5) difference family

Let us determine the size n and the structure of a 1-rotational (27, 6, 5) difference
family F = {B1, . . . , Bn}.

First, it is obvious that each Bi must be a 6-subset of G ∪ {∞} where G = Z26.

It is also obvious that at least one base block contains ∞. So, without loss of
generality, we can assume that ∞ ∈ B1. Note that |GB1| must divide both 26 (by the
theorem of Lagrange) and |B1 \ {∞}| = 5 by Remark 2(ii). It follows that |GB1 | = 1

so that ∂B1 contains ∞ exactly |B1\{∞}|
|GB1

|
= 5 times. Therefore there is no other base

block of F containing ∞, as the list of partial differences of B1 already covers all the
required number of occurrences of ∞ in ∂B1 ∪ · · · ∪ ∂Bn, that is 5.



M. BURATTI ET AL. /AUSTRALAS. J. COMBIN. 92 (1) (2025), 80–95 90

Given that the set of non-zero elements of G ∪ {∞} has size 26, by Definition 3
we have

|∂B1|+ |∂B2|+ · · ·+ |∂Bn| = 5× 26 = 130

and then, considering that |∂B1| = 25 by Remark 2(iii), we can write

|∂B2|+ · · ·+ |∂Bn| = 130− 25 = 105. (5)

It follows that there is at least one Bi with 2 ≤ i ≤ n that is short. Indeed, in the
opposite case, we would have |∂Bi| = |∆Bi| = 6× 5 = 30 for 2 ≤ i ≤ n and then, by
(5), 30(n− 1) = 105 which is absurd.

Let us assume, without loss of generality, that B2 is short. Thus |GB2| is a divisor
of 26 greater than 1. On the other hand, by Remark 2(ii), |GB2| is also a divisor of
|B2| = 6. It necessarily follows that GB2 has order 2, hence GB2 = {0, 13} so that
we have

B2 = {a, b, c, a+ 13, b+ 13, c+ 13}

for suitable elements a, b, c ∈ G. Now note that 13 appears six times in the list ∆B2

of differences of B2. Indeed we have:

13 = (a+ 13)− a = (b+ 13)− b = (c+ 13)− c

= a− (a+ 13) = b− (b+ 13) = c− (c+ 13).

Thus 13 appears 6
|GB2

|
= 3 times in ∂B2. Then none of the remaining n − 2 blocks

B3, . . . , Bn can be short. Indeed, if for instance B3 was short, repeating the same
reasoning done for B2 we would conclude that 13 appears 3 times in ∂B3, hence 6
times in ∂B2 ∪ ∂B3. This contradicts the fact that the number of occurrences of
every non-zero element of G in ∂B1∪ · · · ∪∂Bn is 5. Thus for 3 ≤ i ≤ n the block Bi

is full and then |∂Bi| = |∆Bi| = 6× 5 = 30. Taking into account (5) we also deduce
that F has size n = 5. To summarize, up to equivalence, any 1-rotational (27, 6, 5)
difference family is of the form {B1, B2, B3, B4, B5} with

B1 = {∞, 0, x1, x2, x3, x4},

B2 = {0, x5, x6, 13, x5 + 13, x6 + 13},

B3 = {0, x7, x8, x9, x10, x11}, (6)

B4 = {0, x12, x13, x14, x15, x16},

B5 = {0, x17, x18, x19, x20, x21}.

So it depends on a massive twenty-one parameters. Although these parameters are
not completely independent 1, it is understandable that an exhaustive computer
search for all the inequivalent 1-rotational (27, 6, 5) difference families would require
a long time.

We are going to see that if we add the requirement that 3 is a multiplier (as it
happens for the difference families by Hanani and Abel), the number of parameters
essentially falls to six.

1For instance, it is possible to see that, up to equivalence, we can take 0 < x1 < x2 < x3 <

x4 < 26, 0 < x5 < x6 < 13, x7 = 1 ≤ x12 ≤ x17 ≤ 21, and xi < xi+1 < xi+2 < xi+3 < xi+4 <

26 for i = 7, 12, 17.
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Proposition 5.1. Up to equivalence, a 1-rotational (27, 6, 5) difference family ad-

mitting 3 as a multiplier is necessarily of the form {X, Y, Z, 3Z, 9Z} where:

• X = {∞, 0, 13, x, 3x, 9x} with x ∈ {±1,±2,±4,±5};

• Y = {1, 3, 9, 14, 16, 22};

• Z is a suitable 6-subset of G.

Proof. Let F be a 1-rotational (27, 6, 5) difference family as in (6) and assume that
3 is a multiplier of F . Thus we have 3Bi = Bπ(i) + ti for a suitable permutation π of
{1, . . . , 5} and a suitable 5-tuple (t1, . . . , t5) ∈ G5.

We have ∞ ∈ B1 so that ∞ ∈ 3B1 = Bπ(1) + t1 which obviously implies that
∞ ∈ Bπ(1). This gives π(1) = 1 since Bi does not contain ∞ for each i 6= 1. Thus
we have 3B1 = B1 + t1 for a suitable t1. Up to translations, one can see that this is
possible only if we have B1 = X with X as in the statement.

Given that 3 · 13 = 13 and that B2 + 13 = B2, we can write

3B2 + 13 = 3(B2 + 13) = 3B2

which means that 13 ∈ G3B2 . Thus, given that 3B2 = Bπ(2) + t2, we have GBπ(2)
=

GBπ(2)+t2 = {0, 13}. This gives π(2) = 2 since GBi
is trivial for each i 6= 2. We

conclude that B2 is a 6-subset of G such that

• GB2 = {0, 13};

• 3B2 is a translate of B2 itself.

Up to translations, one can see that a 6-subset with these properties necessarily is
of the form mY with m ∈ {1, 5, 7, 17} and Y as in the statement.

Assume that we have π(i) = i for some i ∈ {3, 4, 5}. In this case Bi would be a
6-subset of G such that

• GBi
= {0};

• 3Bi is a translate of Bi itself.

Up to translations one can see that there are twelve 6-subsets of G with these proper-
ties. They are those of the form {t, 3t, 9t, τ, 3τ, 9τ} or of the form {t, 3t, 9t, 2τ, 6τ, 18τ}
where, in both cases, {t, τ} is a 2-subset of {±1,±5}. In the following, T will denote
the set of these twelve subsets of G.

Now assume that π switches two elements j, k ∈ {3, 4, 5} so that 3Bj is a translate
of Bk and 3Bk is a translate of Bj. Thus, up to equivalence, we may assume that
we have Bj = 3Bk and Bk = 3Bj. These equalities give Bj = 9Bj and Bk = 9Bk.
Multiplying by 3 we get 3Bj = Bj and 3Bk = Bk so that both Bj and Bk belong
to T .

From the above two paragraphs, we deduce that if π fixes an element of {3, 4, 5},
then, up to translations, the three blocks B3, B4, B5 belong to T , hence F =
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{X,mY, T, T ′, T ′′} with X as in the statement, m ∈ {1, 5, 7, 17}, and T, T ′, T ′′ ∈
T . On the other hand, this is contradicted by the fact that we have checked by
elementary calculation that every F of this form is not a 1-rotational difference
family.

We conclude that, up to a reordering of the indices, π cyclically permutes the
three blocks B3, B4, B5. Then, up to translations, we have F = {X,mY,Z, 3Z, 9Z}
for a suitable 6-subset Z of Z26. Let µ be the inverse of m modulo 26 and set
F ′ = µF . Of course, by definition, F and F ′ are equivalent 1-rotational (27, 6, 5)
difference families. We also note that F ′ = {X ′, Y ′, Z ′, 3Z ′, 9Z ′} with X ′ = µX,
Y ′ = µmY = Y , and Z ′ = µZ. It is easy to check that X ′ = {∞, 0, 13, x′, 3x′, 9x′}
for a suitable x′ ∈ {±1,±2,±4,±5} so that F ′ has the form claimed in the statement
and the assertion follows.

Note that Hanani’s difference familyH has precisely the form described by Propo-
sition 5.1.

This is not true for Abel’s difference family A only because its second block
A2 = {2, 5, 6, 15, 18, 19} is different from Y = {1, 3, 9, 14, 16, 22}. Note that we have
A2 = mY with m = 5. Thus Y = µA2 where µ = 21 is the inverse of m modulo
26. It follows that A is equivalent to A′ = {X, Y, Z, 3Z, 9Z} with X = µA1 =
{0, 13, 17, 23, 25} and Z = µA3 = {0, 21, 16, 12, 20, 15}. We finally note that A′ has
the form described by Proposition 5.1 since X = {0, 13, x, 3x, 9x} with x = −1.

By using GAP [14] we counted precisely 2760 difference families as prescribed
by Proposition 5.1 up to translations of the block Z. After that, we constructed
the designs generated by them and, using nauty [18], we have established that their
number up to isomorphism is 230, and they include the design Dw constructed in
Section 2.

6 More (27, 6, 5) designs by flipping the signs

Even though to determine all the 1-rotational (27, 6, 5) difference families without
multipliers appears to be hard, a small fraction of them can be determined easily by
using similar difference families as in [7].

It is quite clear that ∂B = ∂(−B) for any subset B of Zv−1∪{∞}. It immediately
follows that by flipping the sign of some (possibly none) base blocks of a given 1-
rotational difference family F we get another difference family F ′ with the same
parameters. We say that F and F ′ are similar. The related designs D(F) and
D(F ′) are also said to be similar. It is possible to have similar designs which are not
isomorphic. Of course, there are precisely 2n difference families which are similar to
F , where n is the size of F . Note, however, that if F ′ is obtained from F by flipping
the sign of all the base blocks, then the permutation of Zv−1 ∪ {∞} mapping any
x into −x is an isomorphism between D(F) and D(F ′). Thus the number of non-
isomorphic designs arising from the difference families similar to F is at most 2n−1.

Let F be the set of the 230 1-rotational (27, 6, 5) difference families constructed
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in the above section. For each F ∈ F, we have constructed the 32 designs arising
from all difference families similar to F and then, using nauty [18] again, we have
got 228 pairwise non-isomorphic designs none of which is isomorphic to the starting
230.

7 Conclusion

We have found 459 (27, 6, 5) designs D with a “nice” automorphism group. Our
results about them are summarized in the following table.

Aut(D) |Aut(D)| ♯D properties

AΓL(27, 1) 2106 1 doubly point-transitive; flag-transitive;
AGL(27, 1) 702 1 1-rotational; additive.
Z26 ⋊ Z3 78 229 1-rotational with a multiplier of order 3.

Z26 26 > 228 1-rotational without multipliers.
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