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Abstract

Lattices are simplified by removing some of their doubly irreducible ele-
ments, resulting in smaller lattices called racks. All vertically indecom-
posable modular racks of n ≤ 40 elements are listed, and the numbers
of all modular lattices of n ≤ 40 elements are obtained by Pólya count-
ing. SageMath code is provided that allows easy access both to the listed
racks, and to the modular lattices that were not listed. More than 3000-
fold savings in storage space are demonstrated.

1 Introduction

One way to begin studies of a combinatorial family is to list all its members. Such
listings can be quite large. A full listing of unlabeled vertically indecomposable
modular lattices of n elements (here denoted by MVn) for all n ≤ 30 contains more
than 828 million lattices, and measures over two gigabytes in a highly compressed
form [13, 15]. Extending it to bigger n would be impractical.

Another approach to a large family is by structural theorems, such as Herrmann’s
theorem [10, Hauptsatz] that represents every modular lattice as an S-glued sum of
its maximal complemented intervals (see also [7, Theorem 304]).

For practical computation, it is often useful to combine both approaches. A chal-
lenge is then to find structural theorems that balance two competing needs: being
powerful enough to offer significant computational advantages, while remaining sim-
ple enough for efficient implementation.

Here we consider a structural simplification that allows us to represent the vast
majority of MVn as derivatives of a smaller set of lattices that we call racks. They
are similar to Grätzer and Quackenbush’s frames of planar modular lattices [9],
but without the restriction to planarity. For a motivating example, consider the
nonplanar modular lattices in Figure 1. The lattice on the left can be derived from
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Figure 1: A modular lattice and its rack.

the one on the right by adding six doubly irreducible elements. By varying their
placement we can obtain 64 nonisomorphic modular lattices, and by varying the
number of added elements, we obtain many more.

In our approach only the racks are generated and stored. Other lattices in MVn

can then be Pólya-counted, or generated at will by adding doubly irreducible el-
ements. To demonstrate the viability of this approach, a listing of all vertically
indecomposable modular racks for n ≤ 40 has been published [17]. It contains about
1.5 billion lattices and takes 5.7 gigabytes to store. In contrast, an explicit listing of
MVn for n ≤ 40 would contain 5.2 trillion lattices and take about 20 terabytes. Our
storage savings are thus more than 3000-fold. It would also take something like 60
cpu-core-years to produce the explicit listing.

Supplementary SageMath code [16] provides easy access to all modular lattices
of n ≤ 40 elements (both vertically decomposable and indecomposable). The access
is through a virtual listing whose members can be accessed sequentially, by ordinal
index, or uniformly at random. The accessed lattices are created on demand.

Another motivation for the work is that smaller collections are more meaningful
for humans to study, and the removal of doubly irreducible elements may help in
concentrating on other structural properties of the lattices.

2 Definitions and basic results

All our lattices are finite and nonempty. We write ≺ for the cover relation, x and
x for the sets of upper and lower covers of x, and |S| for set cardinality. A lattice
element x is doubly irreducible if |x| = |x| = 1. An unlabeled lattice is an isomorphism
class of lattices.

A lattice is vertically decomposable if it contains a knot, that is, an element
distinct from top and bottom, and comparable with every element. Otherwise it is
vertically indecomposable, or briefly vi. Throughout this work we focus in vi-lattices,
since composing them into vertically decomposable lattices is straightforward.

Unrestricted addition or removal of doubly irreducible elements could severely
affect the structure of a lattice. For example, adding such an element between
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the bottom and a coatom in a Boolean lattice B3 yields a nonmodular lattice. To keep
things in check, we consider addition and removal only at specific locations, called
decoration sites.

For concreteness the following definitions are stated in terms of labeled lattices,
though our main interest is in unlabeled lattices. We assume that the elements
are equipped with an intrinsic linear order (for example, they could be integers).
However, the only role of this intrinsic order is that from a number of similarly-placed
doubly irreducible elements, we can choose a specific subset of a given size: the ones
that have the highest labels. This ensures a well-defined operation for computation,
though for unlabeled lattices the specific choice of elements is inconsequential.

Definition 2.1. A decoration site is a pair (a, b) of lattice elements with a = b and
|a| ≥ 2. We say that a is its lower corner and b is its upper corner.

Definition 2.2. The trinkets of a decoration site (a, b) are the min(d, |a|−2) highest-
labeled doubly irreducible elements between a and b, where d is the number of doubly
irreducible elements there. A decoration site without trinkets is empty.

Definition 2.3. A rack is a lattice that contains no trinkets. If L is a lattice, RackL
is the sublattice obtained by removing its trinkets.

Put another way, RackL is obtained by removing from each decoration site
as many double irreducible elements as possible, while leaving at least two (pos-
sibly doubly irreducible) elements between the corners. The rationale for leaving
two elements is that we want to retain the overall structure of the lattice.

Example 2.4. Let Mk denote a modular lattice that has k atoms and length 2.
Then Mk has k − 2 trinkets, and RackMk

∼= M2.

Example 2.5. Both lattices in Figure 1 contain five decoration sites. On the left,
one site has 4 trinkets, one has 2 trinkets, and three are empty. On the right, all
sites are empty.

It is easy to see that racks of isomorphic lattices are isomorphic. Thus we can
define the rack of an unlabeled lattice as Rack[L] = [RackL], where [ · ] denotes “the
isomorphism class of”. The lower corner of a decoration site can be the upper corner
of another site, but otherwise decoration sites are disjoint: no two sites can have
the same lower corner, or the same upper corner; and trinkets of one site cannot be
corners or trinkets of another site.

Now it should be emphasized that the trinket-adding operation considered here
is not novel as such. Indeed it is a special case of one-point extension [7, §1.1]. Also,
Grätzer and Quackenbush [9] define a similar operation when L is a planar modular
lattice with a given planar diagram: From each interval [a, b] isomorphic to some Mk,
consider the k elements between a and b in the order that they appear in the planar
diagram. Keep the first and the last, and remove the other k − 2 internal elements,
which are by construction doubly irreducible. The result is a planar distributive
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lattice called FrameL. In the planar case we have FrameL ∼= RackL, but our
construction is more general since L need not be planar, and RackL need not be
distributive. We prefer the name rack because “frame” and “modular frame” are
overloaded with other meanings.

Next we observe some structural properties that are preserved upon trinket ad-
dition and removal.

Lemma 2.6. L and RackL have the same decoration sites, and RackL is a rack.

Proof. Let R = RackL, and let T = L− R. First we show that all decoration sites
of L are still present in R. Let (a, b) be a decoration site in L. Since |a| = |b| ≥ 2,
the elements a and b are not trinkets, so they are also present in R. Also in R the
upper covers of a are the same as the lower covers of b, because

aR = aL − T = bL − T = bR.

Here subscripts indicate the ambient lattice, so aR means the upper covers of a in R.
By construction we also have |aR| ≥ 2. Thus (a, b) is a decoration site in R.

Next we prove that removing all trinkets from L does not create any new decora-
tion sites. If some elements (a, b) of L are not a decoration site, it is either because
aL 6= bL, or because |aL| < 2. In either case, removing some trinkets does not make
(a, b) a decoration site in R.

Because RackL has the same decoration sites as L, and their trinkets have been
removed, it follows that RackL has no trinkets, and is indeed a rack.

From Lemma 2.6 it follows that Rack(RackL) = RackL, or in other words, Rack
is an idempotent operation. This is convenient for our computations: every modular
lattice can be reduced into a rack in a single step of removing all trinkets. In the
opposite direction, any modular lattice can be created from its rack by decorating
with some trinkets. The result of such decoration is, up to the naming of the trinkets,
uniquely determined by two things: the rack itself, and the numbers of trinkets added
to each decoration site.

Lemma 2.7. RackL is vertically decomposable if and only if L is vertically decom-
posable.

Proof. For the “if” direction, let L contain a knot x. If a ≺ x ≺ b in L, then |a| = 1,
thus x is not a trinket. Then x is not removed, and it is a knot in RackL as well.

For the “only if” direction, let RackL contain a knot x. If u ≺ x ≺ v in RackL,
then (u, v) is not a decoration site because |u| = 1. Thus in L there are no other
elements between u and v than x itself. To see that x is a knot in L as well, we
observe that every y ∈ L is either also in RackL, thus comparable to x; or a trinket
of a decoration site (a, b), with either y ≺ b � x or x � a ≺ y. In either case, y is
comparable to x in L. It follows that x is comparable to all elements of L, and L is
vertically decomposable.
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Lemma 2.8. If the dual of L is Lδ, then the dual of RackL is Rack(Lδ).

Proof. The decoration sites of Lδ are exactly the pairs (b, a) such that (a, b) is a dec-
oration site of L, so L and Lδ have the same trinkets. Thus RackL and Rack(Lδ)
have the same elements. The duality of their order is clear.

Lemma 2.9. RackL is semimodular if and only if L is semimodular.

Proof. We use Birkhoff’s condition [7, Theorem 375]. Let R = RackL.

For the “if” direction, let L be semimodular, and let x, y, a ∈ R be distinct
elements such that x, y � a. Then also in L we have x, y � a, so there exists b ∈ L
such that b � x, y. Clearly b is not a trinket, so b ∈ R and b � x, y in R. Thus R is
semimodular.

For the “only if” direction, let R be semimodular, and let x, y, a be distinct
elements of L such that x, y � a. There are two cases: (1) If x, y ∈ R, then by
semimodularity there exists b ∈ R such that b � x, y. Then b � x, y also in L.
(2) If x or y is a trinket in L, then it belongs to a decoration site whose lower corner
is a. Let b be the upper corner of that site. Since a = b, it follows that b � x, y. In
both cases Birkhoff’s condition is satisfied, so L is semimodular.

Theorem 2.10. RackL is modular if and only if L is modular.

Proof. Apply Lemmas 2.8 and 2.9 to the duals of RackL and L.

Theorem 2.11. Every distributive lattice is a rack.

Proof. Suppose that L is a lattice that is not a rack. Then it contains a decora-
tion site (a, b) with a trinket t, and a = b contains at least three elements t, u, v.
Thus the elements a, t, u, v, b are a diamond (a sublattice isomorphic to M3). By [7,
Theorem 102], L is not distributive.

Theorem 2.12 (Grätzer and Quackenbush [9]). If L is a planar modular lattice,
then RackL is planar and distributive.

Corollary 2.13. Every planar modular rack is distributive.

In contrast to Theorem 2.11 and Corollary 2.13, a modular rack need not be
distributive, and a distributive rack need not be planar. Some examples can be
found in Figure 2, where all vertically indecomposable modular racks of 1 to 13
elements are displayed. Nondistributive racks include 10.0 (no decoration sites) and
12.22 (B+

3 in [9]; has five decoration sites). Distributive nonplanar racks include 8.0
(B3, no decoration sites) and 10.1 (has one decoration site).

Planar distributive lattices are well understood. Every planar distributive lattice
can be obtained from the direct product of two finite chains by removing two arbi-
trarily shaped “corners” from left and right [8]. With this characterization they are
easily counted: OEIS gives a simple recurrence and counts them up to n = 1000 [19,
A343161]. In the nonplanar, nondistributive case we have no such nice characteriza-
tion, and computational methods are needed to obtain all racks.
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1.0
2.0

4.0 6.0 8.0 8.1 8.2

9.0 10.0 10.1 10.2 10.3 10.4 10.5

10.6 11.0 11.1
12.0

12.1 12.2 12.3

12.4 12.5 12.6 12.7 12.8 12.9 12.10

12.11 12.12 12.13 12.14 12.15 12.16 12.17

12.18 12.19 12.20 12.21 12.22 12.23 13.0

13.1 13.2 13.3 13.4 13.5 13.6 13.7

Figure 2: All modular vi-racks of 1 to 13 elements, labeled with the number
of elements and an ordinal index.



J. KOHONEN/AUSTRALAS. J. COMBIN. 92 (1) (2025), 49–64 55

3 Decoration under symmetry

From the previous section we know that every modular lattice L can be created
by decorating a modular rack with trinkets. Let us now investigate two questions:
Given a rack R and an integer m, how many nonisomorphic modular lattices can be
created by placing m trinkets, and how can we actually construct them?

These tasks are complicated by the symmetries of the rack. Consider the rack in
Figure 3. It has four decoration sites: (0, 4), (1, 6), (2, 7) and (4, 8). We can treat
them as boxes where indistinguishable balls, or trinkets, are distributed. With (say)
two trinkets, the number of ways is

(
2+4−1

2

)
= 10 by the stars-and-bars method, but

only 7 of the resulting lattices are nonisomorphic.

In order to count the nonisomorphic results, we employ Pólya counting as follows.
Suppose that we are decorating a rack that has k decoration sites, and their symmetry
group is G. Let Z be the cycle index of G, that is, the polynomial

Z(t1, . . . , tk) =
1

|G|
∑
g∈G

t
c1(g)
1 t

c2(g)
2 · · · tck(g)k ,

where ci(g) is the number of cycles of length i in permutation g. Define the figure-
counting series

A(x) = 1 + x + x2 + x3 + . . . = 1/(1− x),

indicating that each decoration site can be allocated any nonnegative integer number
of trinkets. Now by the Cycle Index Theorem [3, p. 77], the series

B(x) = Z(A(x), A(x2), . . . , A(xk))

is the so-called function-counting series: the coefficient of its xm term is the number
of nonisomorphic ways to distribute a total of m trinkets to the k decoration sites.

Example 3.1. The rack in Figure 3 has mirror symmetry. Let us refer to the
decoration sites by their lower corners. G has two elements, the identity (0)(1)(2)(4)

0

1

3

2

4

6

5

7

8

Figure 3: A modular rack and its seven nonisomorphic decorations with two
trinkets.
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and the mirroring (0)(1 2)(4), so Z = 1
2
t41 + 1

2
t21t2. We obtain

B(x) = 1 + 3x + 7x2 + 13x3 + 22x4 + 34x5 + . . . ,

which tells us that there is 1 decoration with zero trinkets, 3 nonisomorphic decora-
tions with one trinket, 7 with two trinkets, and so on.

Example 3.2. The rack in Figure 4 is more complicated. It has eleven decoration
sites, and their symmetry group is isomorphic to the dihedral group D4. The group
fixes three sites and moves eight sites in a nontrivial way. It would be tedious to
work out the symmetry and count the decorations manually. But in the supplemen-
tary SageMath code we have the function count_decorations that implements the
method described above. With this function we find (in a few milliseconds) that if we
were to decorate this rack with, say, 20 trinkets, we would obtain exactly 5 371 900
nonisomorphic modular lattices.

If we require the actual lattices (and not just their count), then we need a different
tool. For this we use IntegerVectorsModPermutationGroup developed by Borie [2]
and incorporated into the SageMath Combinatorics library. Given the symmetry
group of a rack’s decoration sites, and a number of trinkets m, this tool lists the
different ways of distributing m balls to boxes under that symmetry. It is then
straightforward to create the lattices by adding those numbers of trinkets to the
sites. This is implemented in our function list_decorations. Explicit listing is of
course much slower than counting.

Example 3.3. With the rack of Figure 3 (left), the possible allocations of two trin-
kets to the four decoration sites, subject to the symmetry, are (2, 0, 0, 0), (1, 1, 0, 0),
(1, 0, 0, 1), (0, 2, 0, 0), (0, 1, 1, 0), (0, 1, 0, 1), and (0, 0, 0, 2). By adding these numbers
of trinkets, we obtain the modular lattices in Figure 3 (right).

Figure 4: A rack with eleven decoration sites.
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4 Generating and classifying the racks

Computations were performed in phases. First, all unlabeled modular vi-racks of
n ≤ 40 elements were listed using essentially the same C++ program that has been
used in earlier works [13, 14]. Conditions were added to the program so that lattices
with trinkets are not generated. This phase took 70.4 cpu-core days in total, running
on a variety of AMD EPYC 7713 and Intel Xeon processors with nominal clock rates
mostly between 2.0 and 2.5 GHz. The parts for n = 36, 37, 38, 39, 40 took 1.6, 3.6,
8.1, 17.7 and 38.5 cpu-core days, respectively, showing roughly 2.2-fold growth when
n increases by one.

The speed benefits of our method were tested as follows. All unlabeled modular
vi-lattices of 30 elements were explicitly listed using the same C++ program. This
took 27.7 hours; in comparison, listing only the 30-element modular vi-racks took
0.36 hours. The time savings grow with n, and we estimate, very roughly, that
an explicit listing for n = 40 would have taken 60 cpu-core years.

In the second phase the modular racks were analyzed and postprocessed. For
each modular rack, the decoration sites were located, and the cycle index of their
symmetry group was computed. A tally of racks was kept for each different cycle
index encountered. The racks were also converted to a canonical form for ease of
later use, and stored in XZ-compressed dig6 format [21]. This phase took 237.6 cpu-
core days, somewhat more than the first phase, but this can be accounted to the
relatively slow SageMath code that was used. A faster (e.g. C++) program for this
phase could be written if necessary.

In the third phase all unlabeled modular vi-lattices of n ≤ 40 elements were
counted. This is a matter of seconds, because all that remains to do in this phase is to
combine the counts of racks, from each cycle index, with the numbers of decorations
per rack. More precisely, we have

|MVn| =
n∑
k=1

∑
Z∈Z(k)

R(k, Z) ·D(Z, n− k),

where Z(k) is the set of all different cycle indices in k-element modular vi-racks,
R(k, Z) is the number of unlabeled k-element modular vi-racks whose decoration
sites have a symmetry group with cycle index Z, and D(Z, n − k) is the number
of decorations of each such rack with n − k trinkets. Here R(k, Z) comes from our
tallying in the second phase, and D(Z, n−k) is calculated with the method described
in Section 3. The summation is fast, because it does not involve very many terms:
even |Z(40)| is only 1614 (see Table 1). Although there are hundreds of millions of
different racks, they can be grouped into a relatively few types by their decoration
symmetry.

Finally the numbers of unlabeled modular lattices of n elements (Mn) were cal-
culated using the well-known recurrence [11]

|Mn| =
n∑
j=2

|MVj| · |Mn−j+1|,
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which counts the ways of composing the vi-lattices vertically.

Several consistency checks were performed in order to increase the reliability of the
computational results. First, the racks were generated twice on different computer
systems. The output files were verified to be byte-by-byte identical by comparing
their MD5 checksums.

Secondly we counted the occurrences of each rank sequence in the rack listings,
and verified that all those counts are consistent with duality. For example, among
all unlabeled modular vi-racks of 40 elements, exactly 4 265 have the rank sequence
1, 3, 5, 6, 7, 7, 6, 4, 1, and another 4 265 (their duals) have the reverse of that, namely
1, 4, 6, 7, 7, 6, 5, 3, 1.

Thirdly the numbers of modular vi-lattices were verified against previous results,
which went to n = 30 [13] and to n = 35 [14]. We must note that those two previous
countings are based on the same underlying lattice-listing C++ program that was
also used here. However, the combinatorial methods are quite different, so we are
reaching the same numbers by three different methods.

Fourthly, a listing of n-element modular vi-racks must contain all distributive
vi-lattices of that size. We scanned the rack lists for distributive lattices of up to 40
elements, and verified that the counts match earlier results [6, 14].

Finally, the rack listings and their decorations were comprehensively compared,
lattice by lattice, against the explicit listings of modular vi-lattices published ear-
lier [13, 15]. This test went both ways. We scanned the explicit listings for racks,
and verified that they are the same racks as those listed in the present work. Also,
we listed all decorations from our racks, and verified that this exactly re-creates
the modular vi-lattices that were listed earlier, up to isomorphism. This test was
computationally intensive, and was performed only up to 19 elements.

5 Numerical results

The counting results are displayed in Table 1. The second column contains |Z(n)|,
the number of different cycle indices of the decoration symmetries in n-element mod-
ular vi-racks. The last three columns contain the numbers of unlabeled modular vi-
racks, modular vi-lattices, and modular lattices, respectively. The last two columns
were previously known up to n = 35 from a different method of counting [14].

Figure 5 illustrates how the numbers of unlabeled lattices in different families
depend on the number of elements. The data are from Table 1 and the OEIS entries
A072361 and A345734 [19]. Although precise asymptotics are not known, empirically
the growth rate of modular vi-racks is about Θ(1.9n), and it is closer to distributive vi-
lattices than to modular vi-lattices. We can see that much of the apparent multitude
of modular vi-lattices is just decoration.
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Table 1: Numbers of unlabeled modular lattices of n elements.

n Cycle indices Mod. vi-racks Mod. vi-lattices Mod. lattices
A342132 A006981 [19]

1 1 1 1 1
2 1 1 1 1
3 0 0 0 1
4 1 1 1 2
5 0 0 1 4
6 1 1 2 8
7 0 0 3 16
8 2 3 7 34
9 1 1 12 72

10 3 7 28 157
11 1 2 54 343
12 7 24 127 766
13 2 8 266 1718
14 8 70 614 3899
15 13 44 1356 8898
16 12 215 3134 20475
17 16 173 7091 47321
18 23 711 16482 110024
19 27 657 37929 256791
20 33 2367 88622 601991
21 42 2561 206295 1415768
22 57 7989 484445 3340847
23 60 9745 1136897 7904700
24 80 27540 2682451 18752943
25 98 36744 6333249 44588803
26 115 95975 15005945 106247120
27 140 137895 35595805 253644319
28 179 337911 84649515 606603025
29 212 514821 201560350 1453029516
30 251 1200282 480845007 3485707007
31 318 1915896 1148537092 8373273835
32 375 4291336 2747477575 20139498217
33 440 7113503 6579923491 48496079939
34 549 15430316 15777658535 116905715114
35 655 26356273 37871501929 282098869730
36 772 55742330 90998884153 681357605302
37 944 97509982 218856768070 1647135247659
38 1133 202116488 526836817969 3985106742170
39 1319 360362439 1269255959032 9649048527989
40 1614 735089580 3060315929993 23379906035595
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10 15 20 25 30 35 40

 10 3

 10 6

 10 9

 10 12

 10 15

modular

mod.vi

mod.vi.rack

dist.vi

dist.vi.planar

Figure 5: Numbers of modular lattices, modular vi-lattices, modular vi-
racks, distributive vi-lattices, and planar distributive vi-lattices of n ele-
ments (all up to isomorphism).

6 SageMath implementation

A library of SageMath code was developed to support the use of the rack listings [16].
An overview of its capabilities is given here.

The library contains utility functions for reading lattices from text files, adding
and removing trinkets, finding the decoration sites of a lattice, and so on. But the
central part of the library is the combinatorial core of our approach: given a rack
and a number of trinkets, functions count_decorations and list_decorations can
count and list all the ensuing nonisomorphic decorations. Counting is much faster
than listing, because it is done through Pólya counting as described in Section 3.
Instead of listing all decorations, one can also ask for a specific decoration by its
ordinal index. This is useful, for example, if one wants to sample uniformly at random
from a large set of decorations.

Both the file access and the combinatorial core are encapsulated into classes be-
longing to the category FiniteEnumeratedSets. From the outside, such a class
appears as a virtual list whose members can be iterated (accessed sequentially) and
unranked (accessed by an integer index). It is up to the implementation how the
members are produced when asked for. We have nested levels of wrappers. The
lowest-level wrapper encapsulates a rack listing that resides in an XZ-compressed
text file. The unranker seeks to the correct position and reads one lattice from there.
Further wrappers encapsulate decoration and vertical composition. The unrankers
obtain the appropriate racks from the file wrapper, decorate with trinkets, and com-
pose vertically as needed. As a result we have easily accessible virtual lists of modular
vi-lattices and modular lattices of n ≤ 40 elements.
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40.0 40.5844976508899 40.11689953017797 40.17534929526696 40.23379906035594

Figure 6: An evenly spaced sample of five 40-element modular lattices, from
the first to the last in our virtual listing.

Example 6.1. The following code asks for a nonrandom, approximately evenly
spaced sample of five modular lattices of 40 elements, ranging from the first one
to the last one in the virtual listing, according to an intrinsic order. The sample is
promptly returned without ever having to construct 23 trillion lattices.

sage: M = ModularLattices(40)

sage: card = M.cardinality(); print(card)

23379906035595

sage: LL = list(M[round((card-1)*i/4)] for i in [0,1,2,3,4]]

The first line takes five seconds on a laptop computer, as it opens the files and sets
things up for fast retrieval. The next lines take less than a second. The sample
is displayed in Figure 6. Note that in our virtual listing, racks are ordered by the
number of decoration sites, and vertically decomposable lattices are ordered by the
size of the lowest vertically indecomposable component. So it is not a coincidence
that the first lattice in the listing is the chain, and the last one is a planar distributive
lattice with many (empty) decoration sites.

We note in passing that for automatically generated modular lattices, SageMath’s
plot often produces diagrams that contain unnecessarily many crossing edges. Our
lattice_plot attempts to draw somewhat prettier lattice diagrams. It recognizes
trinkets and hangs them out in an aptly trinketlike fashion. All lattice diagrams in
this paper, including Figure 6, were automatically produced with this function.
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7 Related work

This work was initially inspired by the simple observation that modular lattices con-
tain lots of doubly irreducible elements. Several previous works share the idea of
adding single elements or other simple features to a lattice, sometimes using enumer-
ative combinatorics to count the ways of doing that.

As already mentioned, Grätzer and Quackenbush described a reduction similar to
ours, where internal doubly irreducible elements are removed from a planar modular
lattice [9]. The present work removes the restriction to planarity, so that we can
represent all modular lattices.

Jipsen and Lawless proved an Ω(2n) lower bound for the number of unlabeled
modular lattices using a recursive construction, where each step either extends the
lattice vertically, or adds a doubly irreducible element [11].

Bhavale and Waphare studied dismantlable lattices whose reducible elements are
comparable to each other; such lattices consist of a single main chain with attached
side chains. The possible placements of the side chains were counted using binomial
coefficients [1].

The present author studied rank-three graded lattices (without modularity) and
reduced them by removing all doubly irreducible atoms; those atoms were then
treated as indistinguishable balls to be placed into partially distinguishable boxes,
leading to Pólya counting [12].

8 Concluding remarks

We have seen that the removal of some doubly irreducible elements can lead to big
savings in computation and storage. Both theoretical and practical tools were needed
to make it happen. Structural theorems provide the foundation for such work, but
algorithms and computations bring the theorems to life. The operation considered
here, where racks are decorated with trinkets, is at the same time a special case
of one-point extension (for lattices in general), and a generalization of Grätzer and
Quackenbush’s operation of adding eyes (for planar modular lattices). The level of
specialization has been chosen so as to be amenable to efficient computation (counting
and access to individual lattices).

From Figure 2 one may observe that many of our racks could be composed from
smaller components by gluing constructions. For example, lattice 10.1 is the Dil-
worth gluing of a B3 with a B2 over a two-element lattice, and lattice 9.0 could be
represented as an S-glued system of four copies of B2 (cf. Figures 1 and 2 of Day
and Freese [5] for a similar gluing of copies of B3). Conceivably, such decompositions
could be used to further simplify and reduce our exhaustive listings of lattices. The
challenge then is to employ gluing in a computationally efficient manner, so that one
can still effectively access the individual lattices at will. This is an interesting topic
for further study.
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This work provides a virtual listing of modular lattices. For some uses one might
want a database that would allow efficient queries according to various criteria, such
as number of levels, numbers of elements at specific levels, whether the lattice is slim,
complemented, planar, and so on. This could be similar to what the online House of
Graphs provides for graphs [4]. An intriguing prospect is a virtual database, one that
would represent a large collection in terms of a smaller explicit collection, similarly
to what was done here, and would still support efficient queries. For this to work,
one would have to take into account how some properties are preserved and others
affected by whatever structural reductions one is employing. Making it click together
might involve some interesting combinatorics.
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