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Abstract

The smallest possible number of distinct eigenvalues of a graph G, de-
noted by q(G), has a combinatorial bound in terms of unique shortest
paths in the graph. In particular, q(G) is bounded below by k, where k
is the number of vertices of a unique shortest path joining any pair of
vertices in G. Thus, if n is the number of vertices of G, then n− q(G) is
bounded above by the size of the complement (with respect to the vertex
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set of G) of the vertex set of the longest unique shortest path joining
any pair of vertices of G. The purpose of this paper is to commence the
study of the minor-monotone floor of n − k, which is the minimum of
n − k among all graphs of which G is a minor. Accordingly, we prove
some results about this minor-monotone floor.

1 Motivation and background

The Inverse Eigenvalue Problem for a Graph (IEPG) starts with a pattern of zero
and nonzero constraints for a real symmetric matrix, described by a graph G on
n vertices, and asks what spectra are possible for the set of n × n matrices S(G)
that exhibit this pattern. Two narrower questions about the possible spectra of
matrices in S(G) yield important matrix-theoretic graph parameters that motivate
what is studied here. Each of these parameters has a natural combinatorial bound.
Firstly, the highest possible nullity, denoted by M(G), is also equal to the maximum
multiplicity that can be obtained by any eigenvalue, and this is bounded by a process
called zero forcing, giving M(G) ≤ Z(G), where Z(G) is the zero forcing number of G.
(See, for example, [11] for the definition of zero forcing number.) Secondly, the lowest
possible number of distinct eigenvalues is denoted by q(G), and this is bounded by
the number of vertices in a unique shortest path, which we denote by USP(G), thus
giving q(G) ≥ USP(G) [2, Theorem 3.2]. (The parameter q(G) has been studied, for
example, in [2, 6, 8, 12].)

Note that these combinatorial bounds are in opposite directions, and that they
bound matrix parameters that also tend in opposite directions: Zero forcing sets
provide an upper bound on a matrix parameter that

• tends to increase with more eigenvalue coincidences, and that

• tends to increase in denser graphs,

whereas unique shortest paths provide a lower bound on a matrix parameter that

• tends to decrease with more eigenvalue coincidences, and that

• tends to decrease in denser graphs.

One way to harmonize the directions of these inequalities would be to define
mr(G) = n−M(G) and tri(G) = n−Z(G) (these are in fact existing graph parameters,
called respectively the minimum rank of G and the triangle number of G), and to
express the first inequality as mr(G) ≥ tri(G), which now runs in the same direction
as the second inequality. The complemented inequality gives a completely equivalent
statement—but not, as it turns out, an equally useful statement, at least not within
the context of minor monotonicity. Once we start taking minors, including operations
such as contraction that change the number of vertices, it is M(G) rather than mr(G)
that has a natural minor-monotone variant, and it is Z(G) rather than tri(G) that
has a natural minor-monotone variant. This suggests that it may be preferable
to harmonize directions not by complementing the first inequality with respect to
n, but rather by complementing the parameters in the second inequality. For these
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parameters, unlike for M(G) and Z(G), the complements do not have existing names,
and rather than introducing a profusion of names, we adopt a notational convenience
that abuses a common notation for graph complementation. For a graph G, we follow
the convention that G denotes the complement of G, whose edges are precisely the
non-edges of G. The same notation applied to the name of a graph parameter, rather
than to a graph, will however denote numerical complementation with respect to n.
This gives, for example, M(G) = mr(G) and Z(G) = tri(G). (The only purpose
in mentioning the parameters mr(G) and tri(G) was to provide an illustration of
numerical complementation; having served that purpose, they will be of no further
use to us.) In this notation, the complemented second inequality becomes

q(G) ≤ USP(G),

now expressed in terms of parameters that one might hope to have natural minor-
monotone variants.

The graph parameter q(G) is the maximum, over A ∈ S(G), of an identically
named matrix parameter q(A) that counts the number of distinct eigenvalues. The
numerically complemented matrix parameter q(A) has a straightforward interpreta-
tion: Given the ordered spectrum

λ1 ≤ λ2 ≤ · · · ≤ λn

of A, q(A) is precisely the number of eigenvalue coincidences, the number of times
that equality rather than strict inequality holds. Whereas M(A) and M(G) only
count (1 more than the number of) eigenvalue coincidences concentrated at a single
eigenvalue, q(A) and q(G) count all coincidences, which might be taken as a broader
measure of how tightly constrained the spectrum can be. To give a simple example,
both the claw graphK1,3 and the 4-cycle C4 achieve maximummultiplicity M(G) = 2,
but a tree must always have simple eigenvalues at the extremities, and so for the tree
we have only q(K1,3) = 1, but for the cycle we can achieve q(C4) = 2. The number
q(G) will be called the maximum spectral equality of the graph. The graph parameter
USP(G) will also be given a combinatorial interpretation as the spectator number of
a graph.

The motivation for this project concerns the behavior of the four graph parame-
ters M(G), Z(G), q(G), and USP(G) with respect to subgraphs, and more generally
with respect to graph minors. Generally speaking, graphs that are smaller in the
minor ordering impose more constraints on matrix entries, and allow less flexibility
in trying to produce a constrained spectrum. The set S(G) is a manifold, an open
subset of a vector space, and the process of removing an edge from the graph, forcing
a zero entry in the matrix, collapses a coordinate direction of the enveloping vector
space, reducing the dimension of S(G) by one. One might expect, generically, that
removing degrees of freedom in the matrix would not allow greater nullity and would
also not allow more eigenvalue coincidences. In other words, one might expect both
M(G) and n − q(G) to be weakly decreasing as edges are deleted, and might ex-
pect a similar subgraph monotonicity for the related combinatorial bounds Z(G) and
n−USP(G). In most cases this expected behavior is observed to hold, but there are
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counterexamples—an extreme example being that the graph with the fewest edges
of all on n vertices, the edgeless graph Kn = nK1, is the only graph that achieves
a value as high as n for either M(G) or Z(G) and is the only graph that achieves a
value as high as n− 1 for either n− q(G) or n−USP(G). (This extreme example is
also maximally disconnected, but there also exist, for any of these four parameters,
connected counterexample graphs to which an edge can be added while decreasing
the value of the parameter. See, e.g., Example 2.9 in [3] for an example for M(G)
and Z(G), and see, e.g., Figures 6.1 and 6.2 of [2] for an example for n − q(G) and
n− USP(G).)

For three of these four parameters, namely M(G), Z(G), and n − q(G), there is
an established variant of the graph parameter that not only exhibits the generically
expected behavior of weakly decreasing as edges are deleted, but also is monotone
with respect to graph minors more generally. The purpose of this paper is to com-
plete the set of four by introducing, and commencing the study of, a canonically
chosen modification of n−USP(G) that achieves monotonicity with respect to graph
minors. Thus, we study the minor-monotone floor of n−USP(G) = USP(G), that is,
the minimum of USP(H) among all graphs H containing G as a minor. We denote
this minor-monotone floor by ⌊USP⌋(G) and call it the spectator floor of G. (This
perpetuates an existing abuse of the standard notation for integer floor, as distin-
guished by context when it is applied to the name of a graph parameter—typically
one already taking integer values—rather than to a real number.)

One of our main results is that, in order to find a graph G′ containing G as
a minor and such that ⌊USP⌋(G) = USP(G′), one need only add edges to G. In
Section 2, we will prove the following.

Theorem 1.1. For every graph G, there is a graph G′ with the same number of
vertices as G such that G is a subgraph of G′ and such that ⌊USP⌋(G) = USP(G′).

Another main result is that the spectator floor is additive over connected com-
ponents. We prove the following result in Section 3.

Theorem 1.2. For any disjoint union of graphs G = G1 ⊔G2,

⌊USP⌋(G) = ⌊USP⌋(G1) + ⌊USP⌋(G2).

Section 4 gives some results about the spectator floor of trees. In Section 5, we
study graphs with small spectator floors. In particular, we determine the minor
minimal graphs (whether or not parallel edges are allowed) that have spectator floor
k, when k = 1 and when k = 2. In Section 6, we characterize the minor maximal
graphs with a given spectator floor, subject to a restriction on the number of vertices
in the graph and the number of parallel edges between any pair of vertices. Finally,
Section 7 presents some questions for further research. Before moving on to Section 2,
we continue this introduction with some additional preliminary information.

1.1 Definitions

We allow a graph G to have multiple edges (unless G is explicitly stated to be a
simple graph) but not to have loops at its vertices. Moreover, we assume all graphs
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are nonempty, that is every graph has at least one vertex. The multigraph convention
for matrix entries is that each edge of G contributes additively a non-zero amount to
the matrix entry, which in particular allows the contributions from multiple edges to
cancel. The convention is also that diagonal entries are unconstrained. Concretely,
then, given a graph whose vertices are the index set {1, . . . , n}, the space S(G) of
matrices conforming to the pattern of G is the set of all real symmetric n×n matrices
A = [aij] such that

• if i 6= j and there is no edge in G connecting i to j, then aij = 0,

• if i 6= j and there is exactly one edge in G connecting i to j, then aij 6= 0,

• if i 6= j and there is more than one edge in G connecting i to j, then aij is
unconstrained, and

• diagonal entries aii are unconstrained.

A minor of a graph H is obtained from H by a sequence of the following opera-
tions:

1. deletion of an isolated vertex,

2. deletion of an edge, denoted H\e, or

3. contraction of an edge e with no edges in parallel with it, denoted H/e. (If the
minor is to be a simple graph, then the edge cannot be in a triangle.)

A minor obtained by performing exactly one of these operations is called an elemen-
tary minor.

The following definitions lead up to the promised naming and explanation of
n−USP(G), together with its minor-monotone floor. Let G be a graph on n vertices.
We start with some standard definitions.

• A walk in G from u to v is a sequence of edges (e1, . . . , ek) from G and a
sequence of vertices (u = v1, v2, . . . , vk, vk+1 = v) from G such that each edge
ei has endpoints vi and vi+1. The length of the walk is the length k ≥ 0 of the
sequence of edges.

• A path in G is a walk all of whose vertices are distinct. The length of a path is
the number of edges k, but the order of a path is the number of vertices k+1.

• A shortest path in G is a path in G from u to v of order k + 1 such that no
path in G from u to v has order k or smaller.

• A unique shortest path in G is a shortest path P in G from u to v of order k+1
such that every path in G from u to v of order exactly k + 1 is identical to P .
The graph G may be a multigraph, but no edge in a unique shortest path can
have other edges parallel to it, because two paths with a different sequence of
edges are not considered identical, even if the sequence of vertices is the same.
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As is often done in graph theory, we will use the terms walk and path both as
defined above (as a sequence of vertices and edges) but also as the graph or subgraph
with those vertices and edges.

We now introduce the following definitions.

• A parade in G is a unique shortest path in G that achieves the largest possible
order for a unique shortest path in G.

• The parade number of a graph G, denoted USP(G), is the number of vertices
in some parade in G.

• The spectator number of a graph G, denoted USP(G), is the number of vertices
outside some parade in G, hence USP(G) = n− USP(G).

• The spectator floor of a graph G, denoted ⌊USP⌋(G), is the minor-monotone
floor of USP(G); in other words, the minimum value of USP(H) over the set
of all graphs H of which G is a minor.

1.2 Matrix-theoretic graph parameters related to q(G)

The graph parameters qM(G) and qS(G), introduced in [5], satisfy q(G) ≤ qM(G) ≤
qS(G). For these variants of q(G), matrices are restricted to those satisfying the
Strong Multiplicity Property (SMP) or the Strong Spectral Property (SSP), respec-
tively. A consequence of [4] is that the maximum SMP spectral equality, n− qM(G),
and maximum SSP spectral equality, n− qS(G), are minor-monotone graph param-
eters. A consequence of [5] is that n− qM(G) and n− qS(G) each take the sum over
components of a disconnected graph, in contrast for example to minor-monotone
matrix nullity graph parameters that tend to take the maximum over components.
Since q(G) ≤ qM(G) ≤ qS(G), we also have the inequalities

n− qS(G) ≤ n− qM(G) ≤ n− q(G).

The existence of a minor-monotone lower bound invites inquiry into the minor-
monotone floor of the maximum spectral equality, which by general properties of
minor-monotone floors and ceilings shares the same lower bound:

n− qM(G) ≤ ⌊n− q(G)⌋ ≤ n− q(G).

(As with the notation for the spectator floor, we use ⌊n−q(G)⌋ to denote the minor-
monotone floor of n− q(G), which is the minimum of n− q(H) among all graphs H
containing G as a minor.)

Combinatorial bounds. Given a graph G on n vertices, if the vertices u and v
are connected by a unique shortest path on k vertices, then it is straightforward to
show, for any matrix A ∈ S(G), that the powers I = A0, A1, A2, . . . , Ak−1 form a
linearly independent set in the vector space of symmetric n × n matrices, implying
q(G) > k − 1 since the linear combination of powers in the minimal polynomial of
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a matrix is zero. This yields the result that q(G) ≥ k, where k is the number of
vertices in any unique shortest path.

This bound suggests the definition of the spectator number given above. In par-
ticular, the spectator number is the minimum cardinality of a vertex set that is
complementary, relative to the set of all vertices of G, to the set of vertices in a
unique shortest path in G. The above inequality q(G) ≥ k, satisfied whenever there
exist k vertices forming a unique shortest path, guarantees that the spectator number
is an upper bound for the maximum spectral equality n− q(G), just as the combina-
torial parameter Z(G) is an upper bound for the matrix parameter M(G). Maximum
nullity gives a bound on maximum spectral equality,

M(G)− 1 ≤ n− q(G),

because any one eigenvalue of multiplicity k induces k − 1 eigenvalue equalities on
its own. In a parallel way, but for entirely different and combinatorial reasons, the
quantity Z(G) − 1 is a lower bound for the spectator number. Equivalently the
spectator number plus one is an upper bound for Z(G), because the complement of
the vertices in a unique shortest path, together with one endpoint of that path, form
a zero forcing set for which a zero forcing sequence exists with only one non-trivial
zero forcing chain. Unlike zero forcing, whose computation is in general NP-hard [1],
the minimum spectator number can be computed in polynomial time for any graph
(see, e.g., Observation 5.1).

Bounds for minor-monotone floors. The minor-monotone floor of a graph pa-
rameter on a graph G is the minimum of the parameter over the infinite collection
of graphs H of which G is a minor.

When a parameter β(G) is minor-monotone, it is known that for any fixed k the
class of graphs with β(G) ≥ k can be recognized in polynomial time, and in fact
can be recognized in linear time in the special case that the complete list of minor-
minimal graphs for β(G) ≥ k is known and all of them happen to be planar graphs
[7]. In Section 5, we show that the minor-minimal graphs with spectator floor 1 and
2 are all planar.

The parameter ⌊USP⌋(G) extends in a natural way to multigraphs, signed graphs
up to negation, and signed multigraphs up to negation, all of which are categories in
which minor-minimal sets are guaranteed to be finite. The signed variant is in terms
of monotone shortest paths ; a path of length k from vertex u to vertex v in a signed
graph G is a monotone shortest path if there is no path from u to v of length shorter
than k, and if every other path from u to v of length k has the same product of edge
signs.

2 Minor Operations and the Spectator Floor

When calculating the spectator floor, we take the minimum of the spectator number
over any graph that can be made by performing the three minor operations above
(in Section 1.1) in reverse. The following terminology will be useful to describe the
operation that reverses contraction.
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Definition 2.1. If G and H are graphs and e ∈ E(H) such that G = H/e, then we
call the operation used to obtain H from G a decontraction of a vertex.

Note that there may be many ways to decontract a vertex. Therefore, decontrac-
tion is not well-defined without additional context.

The main result of this section is Theorem 2.9, which tells us that in order to
calculate the spectator floor, it is not necessary to add vertices or to perform de-
contraction. The only necessary operation is adding edges. The following lemmas,
Lemmas 2.2 to 2.4 and 2.6 to 2.8, are all in support of the main result.

The lemma below tells us that when taking a minor, it is not necessary to perform
step 1 (deletion of an isolated vertex), and that we may order the steps so that all
instances of step 3 (contraction) appear before all instances of step 2 (edge deletion).
This lemma is a standard fact. For example, it follows from the information given
in [9, Section 1.7].

Lemma 2.2. Let G and H be graphs such that G is a minor of H. If H has no
isolated vertices, then there are sets of edges C and D such that G ∼= H/C\D.

The next lemma tells us that the presence of isolated vertices does not affect the
spectator floor value.

Lemma 2.3. Let G+ v be a graph with an isolated vertex v, and let G be the graph
obtained from G+ v by deleting v. Then ⌊USP⌋(G+ v) = ⌊USP⌋(G).

Moreover, if G is a minor of a graph H and ⌊USP⌋(G) = USP(H), then there is a
graph H+, with exactly one more vertex than H, such that ⌊USP⌋(G+ v) = USP(H+)
and G+ v is a minor of H+.

Proof. Since G is a minor of G+ v, we have ⌊USP⌋(G) ≤ ⌊USP⌋(G+ v).
Let P be a parade in H. Let H+ be obtained from H by adding a vertex v of de-

gree 1 adjacent to one of the endpoints of P . Let P+ be the path inH+ obtained from
P by adding the vertex v. Since P is a parade in H, it has |V (H)| − ⌊USP⌋(G) ver-
tices. Therefore, P+ has |V (H+)|−⌊USP⌋(G) vertices. Thus, USP(H+) ≤ ⌊USP⌋(G).
But G is a minor of H+. Therefore, the reverse inequality holds, and we have
USP(H+) = ⌊USP⌋(G).

Since G+v is a minor of H+, we have ⌊USP⌋(G+ v) ≤ USP(H+) = ⌊USP⌋(G) ≤
⌊USP⌋(G+ v). Therefore, we have equality, and the result holds. �

The next lemma tells us that if H is a graph that realizes the spectator floor
value of a graph G with no isolated vertices, then H also has no isolated vertices.

Lemma 2.4. Suppose G is a graph without isolated vetices, and suppose G is a
minor of H. If ⌊USP⌋(G) = USP(H), then H has no isolated vertices.

Proof. Suppose otherwise for a contradiction. Let W be the set of isolated vertices
of H. It is not difficult to see that deletion of such a vertex results in a graph
with spectator number reduced by 1. (This is because G is neither empty nor K1.
Therefore, H 6= K1.) Therefore, USP(H −W ) = USP(H) − |W |. Since no vertex
of G is isolated, G is a minor of H − W . This contradicts the assumption that
⌊USP⌋(G) = USP(H). �
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The next definition gives us a very precise definition of what it means to contract
an edge in a path. This will be of much use in further proofs.

Definition 2.5. Let P be a path and e an edge in a graph G. We define P/e to be
the subgraph of G/e obtained from P by contracting e. More precisely, if v and w
are the endpoints of e and v′ is the vertex that results from contracting e, then:

• If P contains e, then P/e is the path whose vertex set is (V (P )−{v, w})∪{v′}
and whose edge set is obtained from E(P ) − {e} by relabelling both v and w
as v′.

• If P contains exactly one endpoint of e (say v), then P/e is a path that is
ismorphic to P as a graph. The isomorphism is done by relabelling v as v′.

• If P contains both endpoints of e, but not e itself, then P/e is the graph (with
exactly one cycle) whose vertex set is (V (P ) − {v, w}) ∪ {v′} and whose edge
set is obtained from E(P ) by relabelling both v and w as v′.

• If P contains neither endpoint of e, then P/e = P .

The next lemma is straightforward and tells us that the property of being a
unique shortest path is preserved after contraction of an edge in the path.

Lemma 2.6. Let G = H/e. If P is a unique shortest path in H and P contains e,
then P/e is a unique shortest path in G.

The next lemma tells us that if contracting an edge in a parade increases the
spectator number of the graph, then the resulting contracted parade is no longer a
parade after contraction.

Lemma 2.7. Let G = H/e. If USP(H) < USP(G) and P is a parade in H and P
contains edge e, then P/e is not a parade in G.

Proof. Suppose not. Suppose USP(H) < USP(G) and P is a parade in H and P
contains edge e and P/e is a parade in G. Then

USP(G) = |P/e| = |P | − 1 = USP(H)− 1.

However, since USP(H) < USP(G), we also have

|H| − USP(H) < |G| − USP(G)

|G|+ 1− USP(H) < |G| − USP(G)

1 + USP(G) < USP(H)

USP(G) < USP(H)− 1

USP(G) ≤ USP(H)− 2.

This is a contradiction. �

The next lemma tells us that contracting an edge contained in a parade cannot
increase the spectator number of the graph.
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Lemma 2.8. If P is a parade in H and P contains both of the endpoints of edge e,
then USP(H) ≥ USP(H/e).

Proof. Since P is a parade in H, note that P must contain the edge e. Otherwise,
P is not a unique shortest path.

Suppose for a contradiction that USP(H) < USP(H/e). Call H/e by the name
G. We know from Lemma 2.7 that P/e is not a parade in G. But P/e is still a
unique shortest path by Lemma 2.6, so it must not be a longest unique shortest path
anymore.

However, there must be some parade in G. Let us call that Q/e, so that we can
call the uncontracted version in H by the name Q.

Supposing |P | = ℓ in H, then |Q| ≤ ℓ because P was a parade in H. And since
P/e is not long enough to be a parade in G, |Q/e| > ℓ− 1. Putting these together,
we get

ℓ− 1 < |Q/e| ≤ |Q| ≤ ℓ.

This implies that
|Q/e| = |Q| = ℓ.

(That is, Q/e = Q, and Q does not contain e.)
Hence USP(G) = USP(H). However, USP(H) < USP(G) implies USP(G) ≤

USP(H)− 2. This is a contradiction. �

Finally, we have the main result of this section, which tells us that for any graph
G, we can always find a supergraph G′ with the same number of vertices that realizes
the spectator floor value of G. This is one of the major results of the paper and
supports further results in other sections. We now prove Theorem 1.1 restated below.

Theorem 2.9. For every graph G, there is a graph G′ with the same number of
vertices as G such that G is a subgraph of G′ and such that ⌊USP⌋(G) = USP(G′).

Proof. By Lemma 2.3, it suffices to consider the case whereG has no isolated vertices.
Let H be a graph such that G is a minor of H and such that ⌊USP⌋(G) = USP(H).
By Lemma 2.4, H has no isolated vertices. Therefore, by Lemma 2.2, there are sets
C,D of edges such that G ∼= H/C\D, without the necessity to delete vertices. Now,
suppose that H is such that |C| is minimal among all such graphs. Suppose for a
contradiction that C 6= ∅.

For some edge e ∈ C, consider the graph H/e. Let u and v be the endpoints of
e, and let v′ be the vertex that results from contracting e. By minimality of C, we
have USP(H) < USP(H/e). (Otherwise, the set of edges that need to be contracted
from H/e to obtain G is smaller than C.) Let P be a parade of H. By Lemma 2.8,
P does not contain both endpoints of e. Therefore, by Definition 2.5, P/e is a path
in H/e with the same length as P . However, since H/e has one fewer vertex than
H, the fact that USP(H) < USP(H/e) implies that USP(H/e) ≤ USP(H)− 2. This
implies that P/e is not a parade in H/e.

Since P is a shortest path in H, it is clear that P/e is also a shortest path in H/e.
However, since P/e is longer than the parades of H/e, there must be at least one
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path Q 6= P/e in H/e with the same length and endpoints as P/e. Let {P1, . . . , Pt}
be the set of all such paths Q. Note that each Pi is a shortest path in H/e. Since
P is a parade in H, there is no other path in H with the same endpoints and length
as P . Therefore, for each of these paths Pi for 1 ≤ i ≤ t, there is a path P ′

i in H,
containing e, such that P ′

i/e = Pi. Note that this implies that v′ is a vertex on each
of these paths Pi.

Claim 2.9.1. |V (P )| = USP(H) ≥ 3

Proof. Contracting an edge cannot result in an empty graph. Therefore, |V (H/e)| ≥
1, implying that USP(H/e) ≥ 1. Thus, since USP(H) ≥ USP(H/e) + 2, we have
USP(H) ≥ 3. �

We will add an edge f toH/e to result in a graph F such that USP(F ) ≤ USP(H),
contradicting the minimality of H. Let x = v0, e1, v1, . . . , er, vr = y be the succession
of vertices and edges of P/e.

Claim 2.9.2. Suppose x = w0, f1, w1, . . . , fr, wr = y is the succession of vertices and
edges of Pi. If wj is a vertex in P/e, then wj = vj.

Proof. First note that, if wj = vα and wk = vβ are two vertices on both P/e and Pi,
then k− j = β−α. Otherwise, the union of P/e and Pi contains a path from x to y
that is shorter than both P/e and Pi, which cannot be true because P/e and Pi are
shortest paths. Since v0 = w0, the claim follows. �

The previous claim shows that each time P/e and Pi diverge from each other,
the resulting pair of internally disjoint paths have the same length. We claim that
this only happens once, as explained in Claim 2.9.3 below.

For each integer i with 1 ≤ i ≤ t, let m(i) be the smallest nonnegative integer
such that vm(i) is a vertex of Pi but em(i)+1 is not an edge of Pi, and let n(i) be the
largest positive integer such that en(i) is not an edge of Pi but vn(i) is a vertex of Pi.
(These are both well-defined since P/e and Pi have the same endpoints.)

Claim 2.9.3. For each integer i with 1 ≤ i ≤ t, the subpaths of Pi and P/e = P
from vm(i) to vn(i) are internally disjoint.

Proof. Suppose for a contradiction that there is a positive integer p such that m(i) <
p < n(i) and such that Pi contains the vertex vp. Recall that Pi = P ′

i/e, where P ′
i

is a path in H, and e is an edge in P ′
i . If v′ is a vertex in P/e, then let v be the

endpoint of e that is in P , and let u be the other endpoint of e. Then, regardless of
whether v′ is a vertex in P/e, the fact that e is not an edge of P implies that e is
either on the subpath of P ′

i from vm(i) to vp or on the subpath of P ′
i from vp to vn(i).

We may assume without loss of generality that e is on the subpath of P ′
i from

vm(i) to vp. (Otherwise, reverse the order of the vertices in P/e.) This means that v′

is on the subpath of Pi from vm(i) to vp (including the possibility that v′ = vm(i) or
v′ = vp).

Let R be the path consisting of the subpath of P/e from v0 to vp and the subpath
of Pi from vp to vr. Then R is a path from v0 to vr that is either a path in H or
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obtained from a path in H by relabeling the vertex v as v′. In either case, this implies
that R must be longer than P . Thus, the subpath of Pi from vp to vr is longer than
the subpath of P/e from vp to vr, but this contradicts Claim 2.9.2. �

By Claim 2.9.3, there is exactly one subpath of each P ′
i whose intersection with

P/e is the endpoints of the subpath. Let p(i) be the length (number of edges) of the
subpath of Pi from vm(i) to v

′, and let q(i) be the length of the subpath of Pi from v′ to
vn(i). Let the sequence of vertices of Pi be x = v0, v1, . . . , vm(i), u1, . . . , up(i)−1, up(i) =
v′ = wq(i), wq(i)−1, . . . , w1, vn(i), . . . , vr = y. (See Figure 1; note that it is possible
vm(i) = v′ or vn(i) = v′, in which case p(i) = 0 or q(i) = 0, respectively.)

x = v0
v1 vm(i)

vm(i)+1 vn(i)−1

vn(i) vr−1
vr = y

u1

up(i)−1

up(i) = v′ = wq(i)

wq(i)−1

w1

Figure 1: The paths P and Pi

Based on this labeling of the vertices, we see that |P/e| = |Pi| = 1+m(i)+p(i)−
1+ q(i)+ r− (n(i)−1) = m(i)+p(i)+ q(i)+ r−n(i)+1. Recall that Pi and Pj have
the same length, for i, j ∈ {1, . . . , t}. Therefore, for all i, j ∈ {1, . . . , t}, we have

m(i) + p(i) + q(i)− n(i) = m(j) + p(j) + q(j)− n(j).

Claim 2.9.4. For all i, j ∈ {1, . . . , t}, we have m(i) + p(i) = m(j) + p(j) and
q(i)− n(i) = q(j)− n(j).

Proof. Suppose for a contradiction that m(i) + p(i) < m(j) + p(j). Since m(i) +
p(i) + q(i) − n(i) = m(j) + p(j) + q(j) − n(j), we have q(i) − n(i) > q(j) − n(j).
Consider the path in H/e consisting of the subpath of Pi from x to v′ and the
subpath of Pj from v′ to y. This is a path from x to y whose number of vertices is
m(i) + p(i) + q(j) + r − n(j) + 1 < m(j) + p(j) + q(j) + r − n(j) + 1 = |P |. This
path implies the existence of a path in H from x to y whose length is no longer than
that of P , a contradiction.

Thus, we have proved the first equality of the claim. The second equality follows
from the first equality and the fact that m(i) + p(i) + q(i) − n(i) = m(j) + p(j) +
q(j)− n(j). �

Claim 2.9.5. For all i, j ∈ {1, . . . , t}, we have m(i) < n(j).

Proof. Suppose for a contradiction that m(i) ≥ n(j). It follows from Claim 2.9.3
that the number of vertices on the subpaths of P/e and Pi from vm(i) to vn(i) must be
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equal. Similarly, the number of vertices on the subpaths of P/e and Pj from vm(j) to
vn(j) must be equal. The number of vertices of the subpath of P/e from vm(i) to vn(i)
is n(i)−m(i)+1, and the number of vertices of the subpath of P/e from vm(j) to vn(j)
is n(j) −m(j) + 1. The number of vertices of the subpath of Pi from vm(i) to vn(i)
is p(i) + q(i) + 1, and number of vertices of the subpath of Pj from vm(j) to vn(j) is
p(j)+q(j)+1. Thus, we have n(i)−m(i) = p(i)+q(i) and n(j)−m(j) = p(j)+q(j).

Consider the path P̂ in H/e consisting of the subpath of Pj from x to v′ and the
subpath of Pi from v′ to y. This path has m(j) + p(j) + q(i) + r − n(i) + 1 vertices.

Therefore, P̂ is a path from x to y such that |P̂ | ≤ m(j)+p(j)+q(i)+r−n(i)+1. This
path must be at least as long as P . Therefore, r+1 ≤ m(j)+p(j)+q(i)+r−n(i)+1,
implying that n(i)−m(j) ≤ p(j) + q(i).

On the other hand, n(i)−m(j) ≥ n(i)−m(i)+n(j)−m(j) = p(i)+q(i)+p(j)+q(j).
This leads to a contradiction unless p(i) = q(j) = 0.

Thus, vm(i) = v′ = vn(j) is a vertex of P/e. This implies m(i) = n(j). Let u be
the endpoint of e not on P . Consider the path in H consisting of the subpath of
P ′
j from x to u and the subpath of Pi from u to y. This subgraph contains a path

from x to y whose number of vertices is at most m(j) + p(j) + q(i) + r − n(i) + 1 =
m(i) + p(i) + q(j) + r − n(j) + 1 = r + 1 = |P |, a contradiction. �

Let m = max{m(i) : 1 ≤ i ≤ t} and n = min{n(i) : 1 ≤ i ≤ t}. By Claim 2.9.5,
we have m < n. Recall from Claim 2.9.1 that |P | ≥ 3, implying that |P/e| ≥ 3.
Therefore, either n ≥ 2 or m+ 2 ≤ r. (Otherwise, m < n < 2, which implies m = 0.
If m = 0 and m + 2 > r, then r < 2, implying |P/e| = r + 1 < 3.) Without loss
of generality, we assume m + 2 ≤ r, reversing the order of the vertices and edges of
P/e if necessary. Thus, vm+2 is a vertex of P/e.

Construct the graph F from H/e by adding the edge f joining vm and vm+2. We
claim that the resulting path PF whose sequence of vertices is v0, . . . , vm, vm+2, . . . , vr
is the unique shortest path between x and y in F . Suppose otherwise for a contra-
diction. Then F contains a path P ′

F 6= PF from x to y with |P ′
F | ≤ |PF | = |P | − 1.

Suppose P ′
F is a path in H/e. Then H contains a path Q from x to y with at

most |P | vertices such that P ′
F = Q/e. Since P is the unique shortest path from x to

y in H, we must have Q = P . Thus, P ′
F = Q/e = P/e, which has the same length as

P since P does not contain e. This contradicts the assumption that |P ′
F | ≤ |P | − 1.

Therefore, P ′
F is not a path in H/e. Thus, P ′

F contains the edge f .
Let P ′′

F be the path obtained from P ′
F by replacing edge f with the subpath of

P/e from vm to vm+2. Then |P ′′
F | = |P ′

F | + 1 ≤ |P |. Since P ′′
F is a path in H/e, this

implies that P ′′
F = Pi for some i ∈ {1, . . . , t}. Since vm is a vertex of Pi, we must

have m(i) = m. Since vm+2 is a vertex of Pi, we must have n(i) ∈ {m + 1,m + 2}.
But then P ′

F = PF , a contradiction.
Thus, we have shown that PF is the unique shortest path between x and y in

F . Therefore, USP(F ) ≥ |V (P )| − 1 = USP(H) − 1. Thus, USP(F ) = |V (H/e)| −
USP(F ) = |V (H)|−1−USP(F ) ≤ |V (H)|−1−USP(H)+1 = USP(H), contradicting
the minimality of H. �
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3 Disconnected Graphs

In this section, we establish that the spectator floor is additive over disconnected
graph components. We proved Theorem 3.1 independently of Theorem 2.9 and have
decided to include both proofs in their entirety. However, it is interesting to note
that either result could be used to prove the other. We will now prove Theorem 1.2
restated below.

Theorem 3.1. For any disjoint union of graphs G = G1 ⊔G2,

⌊USP⌋(G) = ⌊USP⌋(G1) + ⌊USP⌋(G2).

Proof. Let G = G1 ⊔ G2, where G contains no edges connecting G1 to G2. The
statement is trivially true when either G1 or G2 is empty, so assume that neither G1

nor G2 is empty.
For i = 1, 2, let Fi be a graph that realizes ⌊USP⌋(Gi); that is, Fi is such that Gi

is a minor of Fi, and Fi has a unique shortest path Pi with |Fi|−⌊USP⌋(Gi) vertices.
Let F be F1 ⊔ F2 with an edge e added to make a path P that connects P1 and

P2 end-to-end. Then G is a minor of F , and P is a unique shortest path in F with

|F1| − ⌊USP⌋(G1) + |F2| − ⌊USP⌋(G2) = |F | − ⌊USP⌋(G1)− ⌊USP⌋(G2)

vertices. Hence USP(F ) ≤ ⌊USP⌋(G1)+⌊USP⌋(G2) and so ⌊USP⌋(G) ≤ ⌊USP⌋(G1)+
⌊USP⌋(G2).

Now, contrary to the statement of the result, suppose that ⌊USP⌋(G) <
⌊USP⌋(G1) + ⌊USP⌋(G2). Then there is some graph H, of which G is a minor,
such that USP(H) = ⌊USP⌋(G) < ⌊USP⌋(G1) + ⌊USP⌋(G2). Since G is a minor of
H, we can build H from G by a sequence of decontracting vertices, adding edges,
and/or adding isolated vertices. We will now construct a partition of H into three
parts: a subgraph H1, a subgraph H2, and a set of “bridge” edges B.

Let us start by defining H1 as G1 and H2 as G2. Next, for each time that a
vertex is decontracted while transforming G into H, any vertices or edges that are
doubled by the decontraction will remain in the same set that they were in before.
Whenever a new edge is added, if it connects two vertices in the same Hi, that edge
will be added to Hi. If the new edge connects a vertex from H1 to a vertex from H2,
the edge will be added to the bridge edge set B. Whenever a new isolated vertex is
added, it will be randomly placed into either H1 or H2.

At the end of this process, we have that all the vertices of H are in either H1 or
H2, all the edges of H are in H1, H2, or B, and no vertex or edge is in more than
one of these. Furthermore, G1 is a minor of H1 and G2 is a minor of H2.

Let P be a path in H that contains USP(H) vertices. P cannot be entirely
within either H1 or H2 for the following reasons. Suppose, without loss of gen-
erality, that P is a subgraph of H1. Since G is a minor of H1 ∪ G2, that means
⌊USP⌋(G) ≤ ⌊USP⌋(H1 ∪G2). Since H1 and G2 are disjoint, by the same ar-
guments used for G,G1, G2 previously, we can conclude that ⌊USP⌋(H1 ∪G2) ≤
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⌊USP⌋(H1)+ ⌊USP⌋(G2). Hence, ⌊USP⌋(G) ≤ ⌊USP⌋(H1)+ ⌊USP⌋(G2). This implies
that

⌊USP⌋(G) ≤ USP(H1) + ⌊USP⌋(G2) = |H1| − USP(H1) + ⌊USP⌋(G2)

= |H1| − USP(H) + ⌊USP⌋(G2)

= |H1|+ |H2| − USP(H) + ⌊USP⌋(G2)− |H2|

= |H| − USP(H) + ⌊USP⌋(G2)− |H2|

= USP(H) + ⌊USP⌋(G2)− |H2|.

By definition, ⌊USP⌋(G) = USP(H), so the above inequality simplifies to 0 ≤
⌊USP⌋(G2)− |H2|. Furthermore, ⌊USP⌋(G2) ≤ USP(G2) = |G2| − USP(G2). Hence,
0 ≤ |G2| − USP(G2) − |H2|. However, since G2 is a minor of H2, the quantity
|G2| − |H2| ≤ 0. Hence, we have 0 ≤ −USP(G2), which implies that G2 is an empty
graph, in contradiction to our assumption that neither G1 nor G2 is empty.

Returning to our discussion of the graph H, we now know that the path P with
USP(H) vertices must contain vertices from both H1 and H2, and so P must contain
at least one edge in B. We will now show that this leads to a contradiction as well.

Suppose that P contains m edges in B, where m ≥ 1. Assume without loss
of generality that P has at least one end in H1. Then we can break P up into
disjoint subpaths Q1, Q2, ..., Qj in H1 and R1, R2, ..., Rk in H2, such that P consists
of Q1 followed by R1 followed by Q2 followed by R2, etc., with these subpaths linked
together by edges in the bridge B. (See Figure 2.) Note that if m is even, then
j = k + 1 and m = 2k, whereas if m is odd, then j = k and m = 2k − 1.

H1 H2B

a1 b1
Q1

Q2

Q3

R1

R2

R3

c1

d1a2

b2 c2

d2a3

b3 c3

Figure 2: A generalized diagram of the subgraph ofH induced by the path P . Dashed
lines indicate edges that will be added to form the graphs H ′

1, H
′, H ′′

2 , and H ′′.

Furthermore, let us label the first vertex of each Qi by the name ai, and the last
vertex of each Qi by bi, the first vertex of each Ri by ci, and the last vertex of each
Ri by di. Hence, each vertex bi is connected to the vertex ci by an edge in B, except
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possibly for bj, and each vertex di is connected to the vertex ai+1 by an edge in B,
except possibly for dk.

Let p stand for the number of vertices in P , q the total number of vertices in
Q1, Q2, ..., Qj , and r the total number of vertices in R1, R2, ..., Rk. Hence p = q + r.
By assumption, USP(H) = |H| − p < ⌊USP⌋(G1) + ⌊USP⌋(G2). Since |H| − p =
|H1| − q + |H2| − r, it must be the case that either |H1| − q < ⌊USP⌋(G1) or |H2| −
r < ⌊USP⌋(G2) (since, if both of these were false, it would contradict the original
inequality). However, we will now show that neither of these is true.

Observe that since P is a unique shortest path in H, there cannot be an edge
in H1 connecting any bi to ai+1, because that would form a shorter path. Likewise,
there cannot be an edge in H2 connecting any di to ci+1.

Let H ′
1 (respectively, H ′) be formed by taking H1 (respectively, H) and adding

an edge from each bi to ai+1, except for bj, the last one. (Note that if j = 1, then
H ′

1 = H1.) These edges are indicated by dashed lines in Figure 2. Since P was a
unique shortest path in H and none of these new edges were present previously, we
now have a shorter unique path connecting the endpoints of P .

Let us call the portion of this new unique shortest path that lies in H ′
1 by the

name P ′. (Unless j = 1, then let P ′ be the portion of P in H1.) Since any subpath
of a unique shortest path is also a unique shortest path, P ′ is a unique shortest path
with q vertices contained in H ′

1, hence USP(H
′
1) ≤ |H ′

1|− q = |H1|− q. Furthermore,
since G1 is a minor of H ′

1, we have ⌊USP⌋(G1) ≤ USP(H ′
1) ≤ |H1| − q.

Now, let H ′′
2 (respectively, H ′′) be formed by taking H2 (respectively, H) and

adding an edge from each di to ci+1, except for dk, the last one. (Note that if k = 1,
then H ′′

2 = H2.) These edges are indicated by dashed lines in Figure 2. Since P was
a unique shortest path in H and none of these new edges were present previously,
we now have a shorter unique path connecting the endpoints of P .

Let us call the portion of this new unique shortest path that lies in H ′′
2 by the

name P ′′. (Unless k = 1, then let P ′′ be the portion of P in H2.) Since any subpath
of a unique shortest path is also a unique shortest path, P ′′ is a unique shortest path
with r vertices contained in H ′′

2 , hence USP(H
′′
2 ) ≤ |H ′′

2 |−r = |H2|−r. Furthermore,
since G2 is a minor of H ′′

2 , we have ⌊USP⌋(G2) ≤ USP(H ′′
2 ) ≤ |H2| − r. �

The following is a direct consequence of the last proposition.

Corollary 3.2. For any graph G that consists of connected components G1, G2,
. . . , Gn,

⌊USP⌋(G) = ⌊USP⌋(G1) + ⌊USP⌋(G2) + · · ·+ ⌊USP⌋(Gn).

4 Trees

This section contains results that apply to trees, with the exception of Observation 4.1
and Theorem 4.6, which offer bounds that apply to all graphs, and were inspired by
the consideration of trees.

We begin by noting that since USP(G) is the number of vertices in the longest
unique shortest path and diam(G) is the length of the longest shortest path in G,
which may or may not be unique, we have the following:
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Observation 4.1. For any graph G, USP(G) ≤ diam(G) + 1 and so USP(G) ≥
|G| − diam(G)− 1.

Next, we parlay Observation 4.1 into an exact formula for the spectator floor of
a tree.

Theorem 4.2. For a tree T , ⌊USP⌋(T ) = |T | − diam(T )− 1.

Proof. Let T be a tree. Since all paths in a tree are unique, USP(T ) = diam(T ) + 1,
and so USP(T ) = |T | − diam(T )− 1.

Suppose that ⌊USP⌋(T ) < |T | − diam(T ) − 1. Then there exists some graph G
which has T as a minor, such that ⌊USP⌋(T ) = USP(G) < |T | − diam(T )− 1.

The bound USP(G) ≤ diam(G) + 1 implies that |G| − diam(G) − 1 ≤ USP(G).
Then we have

|G| − diam(G)− 1 < |T | − diam(T )− 1,

and rearranging this, we get

|G| − |T | < diam(G)− diam(T ).

The quantity on the left, |G| − |T |, is the number of decontractions performed to
transform T into G. Note that one decontraction can increase the diameter of a graph
by at most 1. Furthermore, adding an edge cannot increase the diameter of a graph.
Therefore, the quantity diam(G)−diam(T ) must be less than or equal to the number
of decontractions performed to transform T into G. This is a contradiction. �

The next theorem is important in establishing Corollary 4.4, which tells us the
conditions under which a tree is minor minimal for a given value of the spectator
floor. First we need two definitions.

A diametric path of a graph is a path whose length is the diameter. The endpoints
of such a path are called a diametric pair of vertices.

Theorem 4.3. For any tree T , there exists a non-empty elementary minor of T
with the same spectator floor as T if and only if there exists an edge e of T such that
contracting e reduces the diameter of T .

Proof. The reverse implication is the easy direction: Suppose that e is an edge such
that the contracted tree T ′ = T/e has diameter less than the diameter of T . The
distance between vertices in a tree is given by the unique path that joins them, and
so contracting e in T reduces the distance of any pair by exactly 1 in the case that
e belongs to the unique path joining the pair, and leaves the distance unchanged
otherwise. In particular, the difference between the diameter of T ′ and the diameter
of T can be at most one, and so diam(T ′) = diam(T ) − 1. The number of vertices
also differs by exactly 1, and so the elementary minor T ′ of T satisfies

⌊USP⌋(T ′) = |T ′| − diam(T ′)− 1 = |T | − diam(T )− 1 = ⌊USP⌋(T ).

For the forward implication, there are three sorts of elementary minors. Since
T is a connected tree, deletion of an isolated vertex can only happen in the case
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T = K1, leaving the empty graph as a minor. Contraction of an edge e that leaves the
spectator number unchanged must reduce the diameter by 1 by the same calculation
as above. This leaves only the case of edge deletion. Assume by way of contradiction,
then, firstly that there does exist a specific edge e whose deletion produces a disjoint
union of trees T1 and T2 satisfying

⌊USP⌋(T1 ∪ T2) = ⌊USP⌋(T1) + ⌊USP⌋(T2) = ⌊USP⌋(T ),

and secondly that no edge contraction reduces the diameter of T . Using the diameter
formula to substitute for ⌊USP⌋(T1), ⌊USP⌋(T2), and ⌊USP⌋(T ) produces an equation

|T1| − diam(T1)− 1 + |T2| − diam(T2)− 1 = |T | − diam(T )− 1

whose simplification

diam(T ) = diam(T1) + diam(T2) + 1

implies the strict inequality

diam(T ) > diam(T1)

since diam(T2) ≥ 0.
If no edge contraction reduces the diameter of T , then in particular the contrac-

tion T ′ = T/e has the same diameter as T . Let p′ and q′ be a diametric pair of
vertices in T ′; then e cannot be part of the unique path that joins their preimages
p and q in T . It follows that p and q are in the same component T1 or T2 of T \ e.
Without loss of generality, both are in T1, and thus that the diameter of T1 is at
least the diameter of T :

diam(T ) ≤ diam(T1).

This contradicts the previous strict inequality and completes the proof. �

Corollary 4.4. A tree T is minor-minimal for the spectator floor if and only if no
edge lies in the intersection of all diametric paths in T .

Proof. The contraction of an edge e reduces the diameter of T if and only e lies in
the intersection of all diametric paths in T , and T is minor-minimal for the spectator
floor if and only if no elementary minor of T has the same spectator floor. �

As a result of Corollary 4.4, we have the following, which tells us that star graphs
are minor minimal for a given value of the spectator floor.

Corollary 4.5. For k ≥ 1, the graph K1,k+2 is minor-minimal among graphs with
spectator floor k.

Proof. By Theorem 4.2, ⌊USP⌋(K1,k+2) = k+3−2−1 = k. Since k+2 ≥ 3, no edge
of K1,k+2 lies in all of the diametric paths of K1.k+2. Therefore, by Corollary 4.4,
K1,k+2 is minor-minimal among graphs with spectator floor k. �
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In the final result of this section, we slightly improve upon the bound of Obser-
vation 4.1.

Theorem 4.6. For every graph G, we have ⌊USP⌋(G) ≥ |G| − diam(G)− 1. More-
over, if USP(G) ≤ diam(G), then ⌊USP⌋(G) ≥ |G| − diam(G).

Proof. By Theorem 2.9, there is a supergraph G′ of G such that ⌊USP⌋(G)=USP(G′)
and |G| = |G′|. Since G′ is obtained from G by adding edges but no vertices, we
have diam(G′) ≤ diam(G).

Recalling Observation 4.1, we have ⌊USP⌋(G) = USP(G′) ≥ |G′|−diam(G′)−1 ≥
|G| − diam(G)− 1.

Now, suppose USP(G) ≤ diam(G). Consider a parade in G′, and let u and v be its
endpoints. We will show that the length of this parade in G′ is at most diam(G)−1.

If the distance between u and v in G is at most diam(G) − 1, then the distance
between u and v in G′ must be at most diam(G)−1 also. On the other hand, consider
the case that the distance in G between u and v is diam(G). Since USP(G) ≤
diam(G), every parade in G has at most diam(G) vertices, which implies that every
parade in G has length at most diam(G)− 1. Thus, the shortest paths joining u and
v in G are not unique. These paths are all still present in G′. Thus, since u and
v are joined by a unique shortest path in G′, this path must have length at most
diam(G)− 1.

Thus, we have USP(G′) ≤ diam(G), implying that ⌊USP⌋(G) = USP(G′) ≥
|G′| − diam(G) = |G| − diam(G). �

5 Graphs of Spectator Floor 0, 1, and 2

If A is the adjacency matrix of a graph G and k is a nonnegative integer, then the
(i, j)-entry of Ak counts the number of distinct walks of length exactly k from vertex
i to vertex j in G, including for example any paths of order k + 1. This leads to the
following efficient way of computing the parade number of a given graph.

Observation 5.1. Let G be a connected graph and let k range from 0 to n. Then

USP(G) = 1 + max{k : (A+ 2I)k has a 1 in some entry}.

We use (A + 2I)k rather than Ak in order to include a contribution of at least
2Aj for all j < k, which ensures that an entry equal to 1 represents not just a
unique walk but a unique shortest walk, and therefore a unique shortest path. The
calculation terminates once every entry is strictly greater than 1. Recall that the
binomial expansion of (A+2I)k includes all powers of A from A0 = I through Ak so
the (i, j)-entry of (A+2I)k is a weighted accumulation of the number of walks from i
to j of length at most k. The need of 2I rather than I can be seen by considering K1;
the parade number of K1 is one but the adjacency matrix is [0] and ([0] + I)k = [1]
for all k. Note that the choice of the multiplier 2 is arbitrary, any integer greater
than one is sufficient.



S. ALLRED ET AL. /AUSTRALAS. J. COMBIN. 92 (1) (2025), 12–48 31

The discussion above, along with Theorem 2.9 and Corollary 3.2 led to algorithms
which were implemented in a SageMath [13] program to calculate the spectator floor
of simple graphs and to determine which simple graphs are minor-minimal, with the
code available at [10]. These investigations helped lead to the characterizations in
Corollary 5.3, Proposition 5.6, and Theorem 5.11. However, these algorithms became
very slow for graphs with large numbers of vertices. Therefore, an analytic approach
was still needed.

In the remainder of this section, we give the complete list of minor-minimal
graphs of spectator floor 0, 1, and 2. Along the way, we characterize those graphs
with USP(G) > 0, USP(G) > 1, and USP(G) > 2, allowing quick recognition of such
graphs.

We begin with graphs of spectator floor 0.

Proposition 5.2. Let G be a graph. Then ⌊USP⌋(G) = 0 if and only if G is a
disjoint union of paths.

Proof. By definition of USP(G) and ⌊USP⌋(G), it is clear that a path P has USP(P )
= 0 and ⌊USP⌋(P ) = 0.

First suppose G is the disjoint union of paths P1, P2, . . . Pt, and let the endpoints
of Pi be xi and yi. Form a supergraph G′ of G by adding edges joining yi and xi+1, for
1 ≤ i ≤ t− 1. Since G′ is a path, we have USP(G′) = 0 and therefore ⌊USP⌋(G) = 0.

Now, suppose ⌊USP⌋(G) = 0. There must be a graph G′ such that G is a minor
of G′ and such that all vertices of G′ are contained in a unique shortest path P . Any
edge added in parallel to an edge of P causes P to no longer be unique. If any other
edge is added, it causes P to not be a shortest path. Therefore, G′ must be a path.
Since G is a minor of a path, G must be a disjoint union of paths. �

We now turn our attention to minor-minimal graphs with spectator floor 1. The
first results is a corollary that follows from Proposition 5.2.

Corollary 5.3. The complete list of minor-minimal graphs with spectator floor 1 is
C2 and K1,3. The complete list of minor-minimal simple graphs with spectator floor
1 is K3 and K1,3.

Proof. For the first statement, if G does not have spectator floor 0, then by Propoi-
sition 5.2 G is not a disjoint union of paths, and so G either has a vertex of degree
at least 3, or G contains a cycle. If G has a vertex of degree at least 3, then it
contains K1,3 as a subgraph; if G contains a cycle, then G con be contracted to C2

(for multigraphs) or K3 (for simple graphs). �

Next we begin our investigation of minor-minimal graphs with spectator floor 2.
The following lemma will be used later to prove that certain graphs have spectator
floor 2.

Lemma 5.4. All of the graphs in Figures 3a to 3d have spectator floor 1.
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Proof. Consider the graphs in Figures 3a to 3d. (The vertex labels and captions will
be used in the proof of Theorem 5.11 below.) If we ignore the vertex labels, we note
that all of these graphs are subgraphs of the graph in Figure 3a. By Proposition 5.2,
all of these graphs have spectator floor at least 1. It is clear that the graph in
Figure 3a has spectator number 1. Therefore, all of the graphs in Figures 3a to 3d
have spectator floor at most 1. �

u w

v

(a) G if two cycles share exactly one vertex

u v

w

(b) G if it has at least two cycles

u

v

(c) One possibility if G has exactly one
cycle

u v

(d) Another possibility if G has exactly one
cycle

Figure 3: Some graphs with spectator floor 1

Our first pair of results for spectator floor 2 are concerning simple graphs. The
lemma below gives a list of minor-minimal simple graphs with spectator floor 2, and
in the following Proposition 5.6 we will also show that this is the complete list of
such graphs.

Lemma 5.5. The following graphs are minor-minimal among simple graphs with
spectator floor 2: K3⊔K3, K3⊔K1,3, K1,3⊔K1,3, C4, K1,4, the 3-sun (see Figure 4a),
and the long Y (see Figure 4b).

(a) The 3-sun (b) The long Y

Figure 4: Two graphs from Lemma 5.5
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Proof. It follows from Theorem 3.1 that a disconnected graph is minor-minimal
among simple graphs with spectator floor 2 if and only if it has exactly two compo-
nents, each of which have spectator floor 1. Therefore, by Corollary 5.3, K3 ⊔ K3,
K3 ⊔ K1,3, K1,3 ⊔ K1,3 are all minor-minimal among simple graphs with spectator
floor 2.

The fact that K1,4 is minor-minimal among simple graphs with spectator floor 2
follows directly from Corollary 4.5. It follows from Theorem 4.2 and Corollary 4.4
that the long Y is also minor-minimal among simple graphs with spectator floor 2.

Note that USP(C4) = diam(C4) = 2. By the second statement of Theorem 4.6,
we have ⌊USP⌋(C4) ≥ 4 − 2 = 2. Since ⌊USP⌋(C4) ≥ USP(C4) = 2, we have
⌊USP⌋(C4) = 2. To see that C4 is minor-minimal, note that deletion of any edge,
results in a path, which has spectator floor 0 and that contraction of any edge results
in a triangle, which has spectator floor 1.

Let G be the 3-sun, and note that |G| = 6 and diam(G) = 3. By the first
statement in Theorem 4.6, we have ⌊USP⌋(G) ≥ 6 − 3 − 1 = 2. Since ⌊USP⌋(G) ≤
USP(G) = 2, we have ⌊USP⌋(G) = 2.

To see that the 3-sun is minor-minimal, first recall from Lemma 2.3 that isolated
vertices have no effect on the spectator floor of a graph. If we delete any edge
from the 3-sun and then disregard any isolated vertices that may result, we obtain
a subgraph of a graph of the form given in Figure 3a. Thus, deletion of any edge of
the 3-sun results in a graph with spectator floor 1.

We now consider the effect of contracting an edge from the 3-sun. Since we want
to show that the 3-sun is minor-minimal among simple graphs, we should immediately
simplify once if any parallel edges result from the contraction. One can easily check
that, if any edge is contracted and the resulting graph is simplified, then the result
is a subgraph of a graph of the form given in Figure 3a. Thus, the resulting graph
has spectator floor 1. �

We are now prepared to show that the list of graphs in Lemma 5.5 is in fact the
complete list of minor-minimal simple graphs with spectator floor 2.

Proposition 5.6. The complete list of minor-minimal (simple) graphs with spectator
floor 2 is K3 ⊔K3, K3 ⊔K1,3, K1,3 ⊔K1,3, C4, K1,4, the long Y , and the 3-sun.

Proof. Suppose for a contradiction that G is a minor-minimal simple graph with
spectator floor 2. If G is not connected, then by Theorem 3.1, G is the disjoint
union of graphs G1 and G2, each with spectator floor 1. The minor-minimal graphs
with spectator floor 1 are K3 and K1,3. Therefore, G is K3 ⊔ K3, K3 ⊔ K1,3, or
K1,3 ⊔K1,3. Thus, we may assume that G is connected.

Since G is minor-minimal, it does not contain C4 or K1,4 as a minor. Therefore,
the maximum degree of G is 3, and G has no cycle of length greater than 3.

We now show that G has at most one triangle. If G has two disjoint triangles,
then G has K3 ⊔ K3 as a minor. If two triangles of G share exactly one vertex,
then that vertex has degree 4. If two triangles share an edge, then G contains C4.
Therefore, G has at most one triangle.
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If G has two vertices of degree 3 that are not contained in a triangle, then by
contracting a path joining the vertices, we obtain K1,4 as a minor. Thus, either

(i) G has exactly one triangle, and all vertices not in the triangle have degree 1 or
2, or

(ii) G is a tree with at most one vertex of degree 3, and all other vertices of G have
degree 1 or 2.

We first consider case (i). If every vertex of the triangle has degree 3, then G has
the 3-sun as a minor. Otherwise, G consists of a path with one additional vertex
forming a triangle with two vertices in the path. Then USP(G) = 1, and we have a
contradiction.

Now we consider case (ii). If G has no vertex of degree 3, then G is a path, and
USP(G) = 0, a contradiction. Thus, we may assume that G has exactly one vertex
v of degree 3. If all three vertices adjacent to v have degree 2, then G has the long
Y as a minor. Otherwise, G consists of a path with one additional vertex adjacent
to one vertex on the path. Then USP(G) = 1, and we have a contradiction. �

Our next pair of results for spectator floor 2 are concerning the more general case
of multigraphs. We first need to define the graphs H1 through H5.

Definition 5.7. Let H1 be obtained from K3 by doubling every edge. Let H2 be
obtained from K1,3 by doubling two of the edges. Let H3 be the 1-sum of K3 and
C2, and let H4 be obtained by contracting one edge of the triangle in the 3-sun. Let
H5 be the graph shown in Figure 5.

Figure 5: H5

The lemma below gives a list of minor-minimal (multi)graphs with spectator floor
2, and in the following Theorem 5.11 we will also show that this is the complete list
of such graphs.

Lemma 5.8. The following graphs are all minor-minimal among graphs with spec-
tator floor 2: C2 ⊔C2, C2 ⊔K1,3, K1,3 ⊔K1,3, C4, H1, H2, H3, H4, H5, K1,4, and the
long Y .

Proof. It follows from Theorem 3.1 that a disconnected graph is minor-minimal
among simple graphs with spectator floor 2 if and only if it has exactly two com-
ponents, each of which have spectator floor 1. Therefore, by Corollary 5.3, C2 ⊔ C2,
C2⊔K1,3, and K1,3⊔K1,3 are all minor-minimal among graphs with spectator floor 2.

Every single-edge deletion and every single-edge contraction of C4, K1,4, and
the long Y is a simple graph. Therefore, Lemma 5.5 implies that these graphs are
minor-minimal among graphs with spectator floor 2.
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One can check that diam(H1) = 1, that diam(H2) = diam(H3) = 2, and
that diam(H4) = diam(H5) = 3. One can also check that USP(H1) = 1, that
USP(H2) = USP(H3) = 2, and that USP(H4) = USP(H5) = 3. It follows that, if
G ∈ {H1, H2, H3, H4, H5}, then USP(G) = 2. Thus, ⌊USP⌋(G) ≤ 2. Moreover, since
USP(G) = diam(G), Theorem 4.6 implies that ⌊USP⌋(G) ≥ |G| − diam(G) = 2.
Therefore, ⌊USP⌋(G) = 2.

To show that H1, H2, H3, H4, and H5 are minor-minimal, we must show that
every single-edge deletion and every single-edge contraction from each of these graphs
is a graph with spectator number less than 2. Since every edge of H1 is in parallel
with another edge, no edge can be contracted. If an edge is deleted from H1, then
the resulting graph is a subgraph of a graph of the form given in Figure 3a, which
has spectator number 1. If G ∈ {H2, H3, H4, H5}, then one can check that every
single-edge deletion and every single-edge contraction of G is a subgraph of a graph
of the form given in Figure 3a, which has spectator number 1. �

Next, we have a couple of technical lemmas that will support the proof of
Theorem 5.11.

Lemma 5.9. Let G be a graph such that two or more edges join vertices v and w.
If e is one of these edges, then USP(G\e) ≥ USP(G) and USP(G\e) ≤ USP(G).
Moreover, if three or more edges join vertices v and w, then USP(G\e) = USP(G)
and USP(G\e) = USP(G).

Proof. No unique shortest path in G contains e since there is at least one other
edge in parallel with e. Therefore, every unique shortest path in G is also a unique
shortest path in G\e.

The only case where a unique shortest path in G\e is not a unique shortest path
in G is if G\e has exactly one edge joining v and w and this path contains that edge.

Therefore, the set of unique shortest paths of G is a subset of the set of unique
shortest paths of G\e, implying that USP(G\e)≥USP(G) and USP(G\e)≤USP(G).

Moreover, if three or more edges join v and w in G, then two or more edges
join v and w in G\e. Therefore, the set of unique shortest paths of G is equal to
the set of unique shortest paths of G\e, implying that USP(G\e) = USP(G) and
USP(G\e) = USP(G). �

Lemma 5.10. Let G be a graph such that three or more edges join vertices v and
w. If e is one of these edges, then ⌊USP⌋(G\e) = ⌊USP⌋(G).

Proof. Since G\e is a minor of G, we have ⌊USP⌋(G\e) ≤ ⌊USP⌋(G).
Now, let H be a graph containing G\e as a minor such that ⌊USP⌋(G\e) =

USP(H). By Theorem 2.9, we may assume that G\e is obtained from H by deleting
edges. Therefore, there are at least two edges joining v and w inH. Add an additional
edge joining v and w in H to form the graph H+, which contains G as a minor. By
Lemma 5.9, we have USP(H) = USP(H+). We then have ⌊USP⌋(G\e) = USP(H) =
USP(H+) ≥ ⌊USP⌋(G) �
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In our final result for this section, we are able to prove that the list of graphs in
Lemma 5.8 is in fact the complete list of minor-minimal (multi)graphs with spectator
floor 2.

Theorem 5.11. The complete list of minor-minimal graphs with spectator floor 2 is
C2 ⊔ C2, C2 ⊔K1,3, K1,3 ⊔K1,3, C4, H1, H2, H3, H4, H5, K1,4, and the long Y .

Proof. Let G be a minor-minimal graph with spectator floor 2, and suppose for a
contradiction that G is not one of the graphs given in the statement of the result.
By Lemma 5.10, there are at most two edges joining each pair of vertices of G.

Claim 5.11.1. G is connected.

Proof. If G is not connected, then by Theorem 3.1, G is the disjoint union of graphs
G1 and G2, each with spectator floor 1. By Corollary 5.3, the minor-minimal graphs
with spectator floor 1 are C2 and K1,3. Therefore, G is C2 ⊔ C2, C2 ⊔ K1,3, or
K1,3 ⊔K1,3, each of which are graphs given in the statement of the result. �

Since G does not contain C4 as a minor, we have the following.

Claim 5.11.2. G has no cycle of length at least 4.

Since G does not contain K1,4 as a minor, we have the following.

Claim 5.11.3. G has no vertex with a neighborhood of cardinality at least 4.

Claim 5.11.4. G has no pair of disjoint cycles and no pair of cycles that share
exactly one vertex.

Proof. Since C2 ⊔ C2 is not a minor of G, there is no pair of disjoint cycles in G.
Since H3 is not a minor of G, if two cycles share exactly one vertex, both cycles must
have length 2.

Now, suppose for a contradiction that G contains two copies of C2 as subgraphs
and that these copies share exactly one vertex v. Let u and w be the other vertices in
these copies of C2. BecauseH2 is not a minor of G, we have NG(v) = {u, w}. Because
H4 is not a minor of G, we have |NG(u) − {v, w}| ≤ 1 and |NG(w) − {u, v}| ≤ 1.
Moreover, since C4 and H1 are not minors of G, there is no path from u to w in G−v
except possibly at most one edge joining u and w. Finally, because H5 is not a minor
of G, no vertex in V (G) − {u, v, w} has a neighborhood of cardinality greater than
2. Therefore, G is a subgraph of the graph in Figure 3a. This graph has spectator
number 1, Thus ⌊USP⌋(G) = 1, a contradiction. �

Claim 5.11.5. No pair of triangles of G share exactly one edge.

Proof. Otherwise, the union of these triangles contains a cycle of length 4, violating
Claim 5.11.2. �

Claim 5.11.6. G has at most one cycle.
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Proof. Suppose for a contradiction that G has more than one cycle. We know that
each pair of vertices of G is joined by at most two edges. Therefore, Claims 5.11.2,
5.11.4 and 5.11.5 imply that G contains a triangle with vertices u, v, and w with a
second edge joining u and w.

By Claim 5.11.4, there is no path in G− w from u to v other than the edge uv.
Similarly, there is no path in G − u from w to v other than the edge wv. We can
also see that there is no path from u to w in G− v other than the two edges joining
u and w. This is because G has no cycle of length at least 4 and at most two edges
joining u and w.

Therefore, there are subgraphs Gu, Gv, and Gw of G such that, for each vertex
x in Gi, the path from x to {u, v, w} has endpoints x and i. (For each i ∈ {u, v, w},
we have i ∈ V (Gi).) This path must be unique; otherwise, Claim 5.11.4 is violated.
Thus, each of Gu, Gv, and Gw is a tree. Moreover, if we denote by F the set of four
edges both of whose endpoints are in {u, v, w}, then G is the graph whose vertex set
is V (Gu) ⊔ V (Gv) ⊔ V (Gw) and whose edge set is E(Gu) ⊔ E(Gv) ⊔ E(Gw) ⊔ F .

For i ∈ {u, v, w}, vertex i has at most one neighbor in Gi. Otherwise, G has K1,4

as a minor. Similarly, since G does not have K1,4 as a minor, no vertex in V (Gi)−{i}
has more than two neighbors.

If u and w have neighbors in Gu and Gw, respectively, then G contains H4 as
a minor. Therefore, either NG(u) = {v, w} or NG(w) = {u, v}. Without loss of
generality, let NG(w) = {u, v}. Then G is a subgraph of a graph of the form given in
Figure 3b. This graph has spectator number 1, Thus ⌊USP⌋(G) = 1, a contradiction.

�

Therefore, one of the following holds:

(i) G is a tree,

(ii) G has exactly one cycle, which is a triangle, or

(iii) G has exactly one cycle, which is a C2.

In cases (i) and (ii), G is a simple graph. Since G is not any of the graphs
listed above, and since G is connected, Proposition 5.6 implies that G is the 3-sun.
However, by contracting an edge of the triangle in the 3-sun, we obtainH4. Therefore,
G has exactly one cycle, which is a C2.

Let u and v be the vertices of C2. Because H5 is not a minor of G, every
vertex in V (G) − {u, v} has degree 1 or 2. Since K1,4 is not a minor of G, we have
|NG(u) − {v}| ≤ 2 and |NG(v) − {u}| ≤ 2. Moreover, either |NG(u) − {v}| < 2 or
|NG(v)− {u}| < 2. Without loss of generality, let |NG(v)− {u}| < 2.

If |NG(v) − {u}| = 0, then G is a subgraph of a graph of the form shown in
Figure 3c. Thus, we have have USP(G) = ⌊USP⌋(G) = 1, a contradiction.

If |NG(v) − {u}| = 1, then since H4 is not a subgraph of G, we must also
have |NG(u) − {v}| = 1. Therefore, G is a subgraph of a graph of the form
given in Figure 3d, which is isomorphic to a subgraph of a graph of the form
shown in Figure 3b. The graph in Figure 3b has spectator number 1. Therefore,
⌊USP⌋(G) = 1, a contradiction.

Therefore, by contradiction, we conclude that the result holds. �
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6 Minor Maximal Graphs

To this point in the paper, we have discussed minor minimal graphs at some length;
in this sense, we have only looked downwards. We shall now look upwards and
consider the possibilities of minor maximal graphs of a given spectator floor.

We begin with the observation that, without additional restrictions, there are no
minor maximal graphs with a given spectator floor. This is so because, given any
graph G, if we add a new isolated vertex to G in order to obtain G′, then G is a
minor of G′, and by Theorem 3.1, G′ has the same spectator floor as G. Hence,
we can construct an infinite chain of graphs which are above G and have the same
spectator floor.

Therefore, in order to obtain any meaningful information, we must search for
minor maximal graphs amongst subsets of graphs which are restricted in some way.
The most natural restriction to make is on the number of vertices and on the number
of parallel edges allowed, for which we can completely characterize the minor maximal
graphs.

In order to present the result, we first must present new definitions.

Definition 6.1. If p ≥ 2, then a crowded p-parade is a graph G with a parade of p
vertices that has the following properties:

• Every vertex outside the parade is connected to exactly two vertices in the
parade, and those two parade vertices are adjacent to each other.

• Any two vertices outside the parade that are adjacent to a common parade
vertex are also adjacent to each other.

A crowded 1-parade is a graph whose simplification is a complete graph.

Since a parade is a unique shortest path between two vertices, it follows that
two non-parade vertices of a crowded parade can only be adjacent if they share a
neighbor on the parade.

Definition 6.2. If p ≥ 2, an m-saturated crowded p-parade is a crowded p-parade
where every edge which is not in the parade has m parallel copies, including itself.
An m-saturated crowded 1-parade is a graph such that every pair of vertices is joined
by exactly m edges.

Figure 6: An example of a 2-saturated crowded 7-parade.

With these definitions in hand, we will show that a graph is minor maximal
amongst graphs of a given spectator floor value and given number of vertices if and
only if the graph is a crowded parade.
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Before presenting this characterization of minor maximal graphs, however, we
first have two technical lemmas that we will use repeatedly in the proof of the char-
acterization. In the first lemma, we use the notation dS(x, y) to refer to the distance
between vertices x and y in graph S.

Lemma 6.3. Let G be a graph that is minor maximal amongst graphs with n vertices,
at most m parallel edges between any given vertices, and spectator floor k. Let a, b
be the endpoints of a parade in G. Let H be G with one edge added between some
vertices v and w where no edge was present in G. Then at least one of the following
is true:

dH(a, b) = dG(a, v) + 1 + dG(w, b), or

dH(a, b) = dG(a, w) + 1 + dG(v, b).

Proof. By Theorem 2.9, there is a graph G′ with the same number of vertices as G
such that G is a subgraph of G′ and such that ⌊USP⌋(G) = USP(G′). Further, we
may also assume that G′ has at most m parallel edges between any given vertices.
(It follows from Lemma 5.9 that adding an edge in parallel with an edge in G can
only increase the spectator number.) Since we assumed that G is maximal amongst
such graphs, we conclude that G′ = G. Hence USP(G) = k.

Now consider the graph H, which is the same as G but with an edge added
between v and w, which are some vertices of G that are not adjacent in G. Since
G is a proper subgraph of H, and H is a graph with n vertices and at most m
parallel edges between any given vertices, and G is maximal amongst graphs with
n vertices, at most m parallel edges between any given vertices, and spectator floor
k, we conclude that H does not have spectator floor k. Furthermore, since G is a
subgraph of H, ⌊USP⌋(H) > ⌊USP⌋(G). Thus, USP(H) > USP(G).

Since USP(G) = k, G has a parade P of n−k vertices. Let us call the endpoints of
P by the names a and b. Since H still contains P but USP(H) 6= k, we conclude that
P is no longer a longest unique shortest path in H. There cannot be a longer unique
shortest path than P in H, however, since that would result in USP(H) < USP(G),
so it must be that P is not a unique shortest path in H. There are two possibilities:
either P is still a shortest path in H but no longer unique, or P is no longer a shortest
path in H. Either way, there must be a new shortest path in H between a and b
that is of the same or shorter length than P ; let us call this new path Q.

Q must contain the edge {v, w}, since that edge is the only difference between
G and H. There are two possibilities. If Q connects a, v, w, b in that order, then we
have

dH(a, b) = dG(a, v) + 1 + dG(w, b).

Otherwise, if Q connects a, w, v, b in that order, then we have

dH(a, b) = dG(a, w) + 1 + dG(v, b). �

We now present another technical lemma to be used in proving the characteriza-
tion of minor maximal graphs. This lemma tells us that minor maximal graphs must
be connected.
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Lemma 6.4. Let G be a graph that is minor maximal amongst graphs with n vertices,
at most m parallel edges between any given vertices, and spectator floor k. Then G
is connected.

Proof. Suppose to the contrary that G is not connected, but rather consists of
connected components G1, G2, ..., Gr. We know from the proof of Lemma 6.3 that
USP(G) = ⌊USP⌋(G) = k, and from Theorem 3.1 we know that

⌊USP⌋(G) = ⌊USP⌋(G1) + ⌊USP⌋(G2) + · · ·+ ⌊USP⌋(Gr).

For each i = 1, 2, ..., r, let Hi be a supergraph of Gi that realizes ⌊USP⌋(Gi)
without adding any additional vertices; that is, USP(Hi) = ⌊USP⌋(Gi). We know
such Hi exist from Theorem 2.9. Then let H be a supergraph of H1 ∪H2 ∪ · · · ∪Hr

in which we add r − 1 edges to the graph in order to take one parade from each of
the Hi and connect them into one long parade.

Then we have thatH is a supergraph ofG andH still has n vertices. Furthermore,
due to the way we constructed H, we have

USP(H) = USP(H1) + USP(H2) + · · ·+USP(Hr)

= ⌊USP⌋(G1) + ⌊USP⌋(G2) + · · ·+ ⌊USP⌋(Gr)

= ⌊USP⌋(G) = USP(G).

Since H is a supergraph of G, it follows that ⌊USP⌋(H) ≥ ⌊USP⌋(G) = USP(G).
Furthermore, since USP(H) = USP(G), it follows that ⌊USP⌋(H) ≤ USP(G). Hence
⌊USP⌋(H) = USP(G) = k.

Thus, since H has n vertices and spectator floor k, and is a supergraph of G,
and since we assumed G was maximal amongst such graphs, it must be that G = H.
Since we assumed that G was disconnected and H is connected by construction, this
is a contradiction. �

Before presenting the main results of this section, we prove a lemma that takes
care of a special case.

Lemma 6.5. Let m ≥ 2. Then G is minor maximal amongst graphs with n vertices,
at most m parallel edges between any given pair of vertices, and spectator floor n−1,
if and only if G is an m-saturated crowded 1-parade.

Proof. Note that there is exactly one m-saturated crowded 1-parade H with n ver-
tices. Since m 6= 1, no edge in H is a unique shortest path. This implies that the
unique shortest paths of H each contain only one vertex. Therefore, USP(H) = 1,
implying that ⌊USP⌋(H) = 1. Every graph containing H as a minor either has more
than n vertices or a pair of vertices with more than m edges joining them. Therefore,
H is maximal.

Conversely, note that every graph G with n vertices and at most m parallel
edges between any given pair of vertices is a minor of H. Therefore, the only minor
maximal graph amongst graphs with n vertices, at most m parallel edges between
any given pair of vertices, and spectator floor n− 1 is H. �
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We now present the first of the two main results of this section, which together
provide a complete characterization of the minor maximal graphs with a given spec-
tator floor value. Note that complete graphs are both 1-saturated 1-parades and
1-saturated 2-parades. This gives some intuition for the reason the first sentence of
the theorem is needed.

Theorem 6.6. Let k ≤ n−2 and m ≥ 1, or let k = n−1 and m ≥ 2. If G is minor
maximal amongst graphs with n vertices, at most m parallel edges between any given
vertices, and spectator floor k, then G is an m-saturated crowded (n− k)-parade.

Proof. By Lemma 6.5, the result holds when k = n− 1. Therefore, we may assume
that k ≤ n− 2.

Suppose that G is minor maximal amongst graphs with n vertices, at most m
parallel edges between any given vertices, and spectator floor k. We will show that
G is an m-saturated crowded (n− k)-parade.

As was shown in the proof of Lemma 6.3, USP(G) = k and so G has a parade P
of n− k ≥ 2 vertices. We will call the endpoints of P by the names a and b. We will
now show that P has the properties in the definition of a crowded (n − k)-parade,
Definition 6.1. Let v be a vertex outside the parade P . We will consider cases based
on the number of vertices in P that are adjacent to v.

Suppose v is adjacent to three or more vertices in P . Then two of the parade
vertices that v is adjacent to have a distance of 2 or more within the parade. Hence
going through v would provide a path of the same or lesser length between those two
vertices as compared to the parade. This contradicts the properties of a parade. So
v cannot be adjacent to three or more vertices in the parade.

Now suppose that v is adjacent to two vertices in P , and those two vertices have a
distance of 2 or more along the parade. The same argument from the last paragraph
applies; this is a contradiction. Hence, if v is adjacent to exactly two vertices in the
parade, then those two vertices must also be adjacent to each other.

Next, suppose that v is adjacent to exactly one vertex in P . There are two cases:
either v is adjacent to an endpoint of P , or not.

Suppose v is adjacent to an endpoint of the parade; without loss of generality, let
us assume v is adjacent to a. Let x be the vertex of P that is adjacent to a, and let
H be the graph made from G by adding edge {v, x}, as shown in Figure 7.

a x b

v

(a) The subgraph of G induced by P ∪{v}.

a x b

v

(b) The subgraph of H induced by P ∪{v}.

Figure 7

Then by Lemma 6.3, one of the following is true:

dH(a, b) = dG(a, v) + 1 + dG(x, b) = 1 + dG(a, x) + dG(x, b) ≥ 1 + dG(a, b), or

dH(a, b) = dG(a, x) + 1 + dG(v, b) = 1 + dG(a, v) + dG(v, b) ≥ 1 + dG(a, b).
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However, since G is a subgraph of H, we must have dH(a, b) ≤ dG(a, b). This is a
contradiction.

Now we consider the situation where v is adjacent to exactly one vertex of P ,
and that vertex is not an endpoint of P . Let w be the vertex of P adjacent to v, and
let w and x be the vertices of P adjacent to w, where x is closer to a than y is. Now
consider the graph X, which is the same as G but with an edge from v to x added,
and the graph Y , which is the same as G but with an edge from v to y added. G,
X, and Y are as shown in Figure 8.

a x w y b

v

(a) The subgraph of G in-
duced by P ∪ {v}.

a x w y b

v

(b) The subgraph of X in-
duced by P ∪ {v}.

a x w y b

v

(c) The subgraph of Y in-
duced by P ∪ {v}.

Figure 8

For X, Lemma 6.3 tells us that one of two equations must hold. We have a first
possibility

dX(a, b) = dG(a, v) + 1 + dG(x, b)

= dG(a, v) + dG(v, w) + dG(x, b)

≥ dG(a, w) + dG(x, b)

= dG(a, b) + 1,

(1)

or a second possibility

dX(a, b) = dG(a, x) + 1 + dG(v, b)

= dG(a, x) + 1 + dG(x, v)− dG(x, v) + dG(v, b)

> dG(a, x) + dG(x, v) + dG(v, b)− 1

> dG(a, b)− 1.

(2)

Note that the second strict inequality in Equation (2) is because an off-parade path
between two parade vertices is longer than the parade route.

Since G is a subgraph of X, we must have dX(a, b) ≤ dG(a, b), therefore Equa-
tion (1) is a contradiction, and so Equation (2) is true and implies dX(a, b) = dG(a, b).

For Y , Lemma 6.3 tells us that one of the following is true: either

dY (a, b) = dG(a, v) + 1 + dG(y, b) (3)

or
dY (a, b) = dG(a, y) + 1 + dG(v, b). (4)
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However, Equation (4) leads to a contradiction by the same logic as for Equa-
tion (1). Hence Equation (3) is true and by the same logic as for Equation (2) it
implies dY (a, b) = dG(a, b).

When we replace the left-hand sides of Equations (2) and (3) with dG(a, b) and
add them together, we obtain

2dG(a, b) = dG(a, v) + dG(v, b) + dG(a, x) + dG(y, b) + 2

> dG(a, b) + dG(a, x) + dG(y, b) + 2 =⇒

dG(a, b) > dG(a, x) + dG(y, b) + 2

= dG(a, b).

(5)

(Note that strict inequality is required because an off-parade path between two pa-
rade vertices is longer than the parade route.) This yields a contradiction.

Thus we conclude that in G, a vertex v that is not in P cannot be adjacent to
exactly one vertex in P .

For the last case, let us consider vertices of G that are not in P and are not
adjacent to any vertices in P . We will show these cannot exist. First note that G
must be connected because of Lemma 6.4. Let dG(v, P ) denote the distance from
any vertex v to the path P ; we define

dG(v, P ) := min
p∈P

{dG(v, p)}.

Since G is connected, dG(v, P ) is finite for all v ∈ G. For any vertex v that is not in
P and not adjacent to P , either dG(v, P ) = 2 or dG(v, P ) > 2. If dG(v, P ) > 2, then
there is a path of length dG(v, P ) from v to a vertex p ∈ P , and so there is some
vertex v′ along that path that has dG(v

′, P ) = 2.
Hence, if there are any vertices of G that are not in P and are not adjacent to

P , then there is some vertex v with dG(v, P ) = 2. We will show this leads to a
contradiction. Since dG(v, P ) = 2, there is some vertex, call it w, that is adjacent
to v and adjacent to P . We have already shown in this proof that if w is adjacent
to any vertex of P , then it is adjacent to exactly two vertices of P , which are also
adjacent to each other. Let us call the two vertices of P that w is adjacent to by the
names x and y, and the endpoints of P by the names a and b. As before, we shall
assume the a is the endpoint that is closer to x.

Now consider the graph X, which is the same as G but with an edge from v to
x added, and the graph Y , which is the same as G but with an edge from v to y
added. The situation is shown in Figure 9.

These graphs are not the same as the previous X and Y , but all of the arguments
from before regarding Equations (1) to (4) still apply. Most of Equation (5) applies
as well, with the exception of the last line, where we used the fact that dG(a, x) +
dG(y, b)+2 = dG(a, b), which is no longer true. Now we have dG(a, x)+dG(y, b)+2 =
dG(a, b)+1, which still leads to a contradiction when applied to the penultimate line
of Equation (5).

Thus we conclude that there are no vertices of G that are not in P and not
adjacent to P . Every vertex of G which is not in P must be adjacent to two adjacent
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a x

w

y b

v

(a) The subgraph of G in-
duced by P ∪ {v, w}.

a x

w

y b

v

(b) The subgraph of X in-
duced by P ∪ {v, w}.

a x

w

y b

v

(c) The subgraph of Y in-
duced by P ∪ {v, w}.

Figure 9

vertices in P . This fulfills the first condition for G to be a crowded (n− k)-parade.
We will now show that the second condition is also true.

Let v and v′ be two vertices outside P that are adjacent to a common vertex w
in P , and suppose v, v′ are not adjacent to each other. Let F be the graph made
from G by adding an edge between v and v′. Now we can assume without loss of
generality that the first equation from Lemma 6.3 is true (if the second equation is
the true one, just swap the names of a and b). Then we have

dF (a, b) = dG(a, v) + 1 + dG(v
′, b)

= dG(a, v) + dG(v, w)− dG(v, w) + 1− dG(w, v
′) + dG(w, v

′) + dG(v
′, b)

= dG(a, v) + dG(v, w)− 1 + dG(w, v
′) + dG(v

′, b)

≥ dG(a, w) + dG(w, b) + 1

= dG(a, b) + 1.

(Note that to get from line 3 to line 4, we are applying the fact that an off-parade
path between two parade vertices is strictly longer than the parade route.)

However, G is a subgraph of F , so we also have dF (a, b) ≤ dG(a, b). This is a
contradiction. Hence, G is a crowded (n− k)-parade.

We will now argue that G is m-saturated. For any edge e of G that is not in P , if
there are fewer than m parallel copies of e, then we can add another parallel copy of
e without changing any distances in G, and without creating any new paths between
the endpoints of P that have the same length as P . Hence, adding such an edge does
not change the spectator floor value of the graph. Given that G is maximal amongst
graphs with n vertices, at most m parallel copies of each edge, and spectator floor
k, then, G must already contain all such edges. Hence G is an m-saturated crowded
(n− k)-parade. �

We will now present the second of the two main results in this section, which is
the converse of the last theorem, showing that we have a complete characterization
of the minor maximal graphs.

Theorem 6.7. Let k ≤ n − 2 and m ≥ 1, or let k = n − 1 and m ≥ 2. If G is an
m-saturated crowded (n− k)-parade, then G is minor maximal amongst graphs with
n vertices, at most m parallel edges between any given vertices, and spectator floor k.
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Proof. By Lemma 6.5, the result holds when k = n− 1. Therefore, we may assume
that k ≤ n− 2.

Suppose that G is an m-saturated crowded (n − k)-parade, but G is not minor
maximal amongst graphs with n vertices, at most m parallel edges between any given
vertices, and spectator floor k. Then there is some other graph, call it G′, which is
minor maximal on that set and of which G is a proper subgraph. Since G′ is minor
maximal, it must be an m-saturated (n− k)-parade as well.

Let us call the parade for which G fulfills the definition of a crowded parade,
Definition 6.1, by the name P . First note that if m > 1, then there are no unique
paths in G′ except P and its subpaths, hence for m > 1, P is still the parade for
which G′ is a crowded parade.

Now suppose m = 1 (in other words, we are working with simple graphs only)
and suppose P is either not a parade in G′ or not a parade for which G′ is crowded.

Let us call the parade for which G′ is a crowded parade by the name P ′, and the
endpoints of P by the names a, b and of P ′ by the names a′, b′. Since P 6= P ′, at
least one of a′, b′ is not in P . Since G is a subgraph of G′, dG′(v, w) ≤ dG(v, w) for
all pairs of vertices v, w. So dG(a

′, b′) ≥ dG′(a′, b′) = dG(a, b) = n− k − 1.
A generalized figure of graph G is shown in Figure 10, where path P consists

of the vertices labeled v1 = a to vn−k = b. Nodes labeled Kmi
represent complete

subgraphs on mi vertices, and bold edges represent a complete set of edges between
the connected structures. It should be understood, however, that it is possible for
some mi to be 0, in which case Kmi

is an empty graph, and there are no edges
connecting Kmi−1

, Kmi
, and Kmi+1

. For example, in the previous Figure 6, we had
{m1,m2,m3,m4,m5,m6} = {0, 1, 2, 1, 0, 3}.

v1 = a v2 v3 vn−k−2 vn−k−1 vn−k = b

Km1
Km2

Km3
Kmn−k−2

Kmn−k−1

Figure 10: A generalized figure of G, a simple crowded (n− k)-parade.

For graph G, since dG(a
′, b′) ≥ n−k−1, it must be the case that either a′ or b′ is in

Km1
or Kmn−k−1

, which are on opposite ends of the graph. Furthermore, in order for
the path P ′ from a′ to b′ to be a unique shortest path in G′, it is necessary that Km′

2

and Km′

n−k−2
be empty, where by Km′

i
we mean the subgraph in G′ corresponding

to Kmi
in G. If these are not empty, then there would be many alternate routes of

equal length connecting a′ to b′.
Since Km′

2
and Km′

n−k−2
are empty, and G′ is simple, there are graph symmetries

identifying any vertex in Km′

1
with any other vertex in Km′

1
as well as v1. Likewise,

there are graph symmetries identifying any vertex in Km′

n−k−1
with any other vertex

in Km′

n−k−1
and vn−k. Thus, there is a graph symmetry identifying P with P ′.
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Therefore, P is still a parade in G′. Moreover, we can assume that P is the parade
for which G′ is a crowded parade.

In any case, we now have that both G and G′ are crowded (n−k)-parades on the
same number of vertices and are crowded on the same parade P , and G is a proper
subgraph of G′. Thus G′ contains at least one edge e that is not in G. There are
three cases: either e connects two vertices in P , or it connects a vertex in P to a
vertex not in P , or it connects two vertices not in P .

If e connects two vertices in P , then P would not be a parade of n− k vertices in
G′, so this is a contradiction. If e connects a vertex in P to a vertex not in P , then
this provides an alternate path of the same or shorter length between the endpoints
of P , in contradiction to P being a parade. Finally, if e connects two vertices not
in P , this also provides an alternate path of the same or shorter length between the
endpoints of P . In any case, we get a contradiction. The theorem is thus proven. �

7 Further Questions

There are many additional questions that one may consider in this line of research.
In this paper, we have characterized the minor-minimal graphs G with ⌊USP⌋(G) = k
for k = 1 and k = 2. For larger, k, consider the following.

Question 7.1. Can we characterize the minor-minimal graphs G with ⌊USP⌋(G) = k
for k = 3? k = 4? Etc.

Algorithmic questions related to the spectator number and spectator floor of a
graph have not been considered in this paper, but we hope to work on some of these
questions in the future.

Question 7.2. Can the minor-monotone floor of the spectator number be computed
in polynomial time?

Question 7.3. In the algorithm for calculating the minor-monotone floor of the
spectator number, what are the optimal edges to add?

Question 7.4. Can the minor-monotone floor of the spectator number be computed
with a “greedy algorithm”? (That is, can we add a set of edges to a graph G to obtain
a supergraph H such that each time we add an edge the spectator number is weakly
decreasing? strictly decreasing?)

A related, but distinct question is the following.

Question 7.5. If USP(G) = k and ⌊USP⌋(G) = m, can we always find a supergraph
F of G that achieves USP(F ) = i for all i such that m ≤ i ≤ k?

Finally, one can consider how well this bound relates to our original motivation.

Question 7.6. For what graphs G do we have USP(G) = n− q(G)?
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