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Abstract

Convolution sums are introduced and special instances of the cyclic con-
volution on finite sets is examined in more detail. The distributions that
emerge are multidimensional generalizations of the Catalan and Narayana
numbers. This work yields a closed form solution for 1-dimensional
marginals and certain bivariate marginals in the cyclic prime case. It is
explained how a sufficiently high resolution of understanding these mul-
tidimensional distributions yields an approach to attack the Hadamard
matrix conjecture.

1 Convolution sums

Let G be a group acting on a finite set X, and let R be a ring. We let S be a set of
functions from X to R. For σ ∈ G and f, g ∈ S define the element in R

σ(f, g) :=
∑

x∈X

f(x)g(σx),

and call it the σ−convolution of f with g. List the elements of G in some arbitrary
but fixed order; when writing σ ∈ G we assume that σ varies over the elements of G in
this specific order. Consider the vectorG(f, g) = (σ(f, g) : σ ∈ G). Partition S×S by
(f1, g1) ∼ (f2, g2) if G(f1, g1) = G(f2, g2). Denote by {Si} the resulting equivalence
classes. Further, write Gi = G(fi, gi), where (fi, gi) is a class representative of Si.
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Let P be a probability measure on S × S. Induce a probability measure on {Gi} by
assigning P (Gi) = P (Si). The numbers P (Gi) are called convolution numbers.

A case of particular interest occurs when we restrict attention to just σ(f, f),
which we simply write as σ(f); this yields an autocorrelation. We abbreviate G(f, f)
by Gf. In this case P is a measure on S and the Si are a partition of S. The over-
arching goal is to understand this induced probability on {Gi}, for various G,X, S
and R. We refer to [2] for a thorough study of autocorrelation and its many appli-
cations to engineering, probability and other applied branches of science. Studies of
autocorrelation are implicit in proofs of existence of codes and combinatorial designs
as is found in [6] and [11].

2 Definitions and notation in the cyclic case

Of initial interest is the case of G = Cn, the cyclic group of order n, and X = Cn

with cardinality as measure. We take R to be the ring Z of integers. Let S be the
set of functions from X to Z that take value 1 on exactly k elements of X and value
0 on exactly n − k elements of X. Elements of S are called 0,1-binary functions of
weight k on X. Clearly such functions are in bijection with subsets of X with k
elements; evidently the cardinality of S is |S| =

(

n

k

)

. We let G = Cn act on X = Cn

by counterclockwise rotations, as is specified below. It is contextually clear when we
interpret Cn as a group or as the set on which the group acts, and this distinction
is not always explicitly highlighted. We also restrict to the autocorrelated case. (In
most, but not all, situations we may assume, without loss, that k ≤ n

2
.)

Write G = Cn = {σ0 = 0, σ1 = 1, . . . , σn−1 = (n − 1)}. Then σi may be
interpreted as a rotation of ‘distance’ i, in the sense that σix = x + i (mod n),
for all x ∈ X = Cn. The (periodic) autocorrelation σ(f) =

∑

x∈X f(x)f(σx) may
then be viewed as the number of incidences of f at ‘distance’ σ. Put a uniform
measure on S. Write Gf = (σ0(f), . . . , σn−1(f)). Clearly σ0(f) = k, for all f ; and
σi(f) = σn−i(f), for i ≥ 1. It thus suffices to write Gf = (σ1(f), . . . , σm(f)), where
m = ⌊n

2
⌋ and ⌊x⌋ stands for the integer less than or equal to the rational number

x. By writing c(n, k; (d1, . . . , dm)) for the the number of k-subsets of X with di

incidences at distance i, we may express

P (Gf) =

(

n

k

)−1

c(n, k; (σ1(f), . . . , σm(f))).

A couple of observations:

1. The number c(n, k; (d1, . . . , dm)) = 0, unless (d1, . . . dm) = (σ1(f), . . . , σm(f))
for some f ∈ S. Exactly when this number is 0 is a central issue in our undertakings,
as is explained in some detail in Section 6. In essence, it is typically possible to find
three binary vectors that could be included in the Goethals–Seidel construction.
These three vectors uniquely determine what the autocorrelation of the forth binary
vector ought to be. The Hadamard matrix construction can only be completed,
however, if there exists a binary vector with this latter autocorrelation.
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2. We have
∑m

i=1 di =
(

k

2

)

, since for any k-subset we have
(

k

2

)

unordered distances
available in all.

An upward-and-right moving path on the integer lattice starting at (0, 0) and
ending at (n− k, k) that touches or stays above the line joining (0, 0) and (n− k, k)
is, for simplicity, just called a path. Note first that any path may be viewed as a
k-subset (and, equivalently, as a 0, 1-binary sequence with k ones), by listing the
indices of the upward moves as elements of the set. To be specific, an upward move
is marked by 1 and a move to the right by 0. We draw further attention to the
following useful observation.

Lemma The Cn-orbit of any binary sequence of length n and weight k contains at
least one path. It contains exactly one path if n and k are coprime.

Proof This is best seen as follows. The line joining (0, 0) and (n − k, k) has slope
k

n−k
. For any 0-1 sequence s = (si : 1 ≤ i ≤ n) of length n, replace the 0s by −k

n−k
and

leave the 1s as they are; call the new sequence s′ = (s′i). Calculate the partial sums
pi of s

′ by setting p1 = s′1, and pi = pi−1+ s′i, 2 ≤ i ≤ n. Let i∗ be an index for which
pi∗ is a minimum. Apply a cyclic rotation to the original sequence s that places in
position 1 the index i∗ + 1. It is evident from this construction, by the choice of i∗,
that the resulting sequence is in the Cn-orbit of s and that it corresponds to a path.
When k and n are coprime the index i∗ is unique; else the path would touch the
diagonal line at (h, v) with (h, v) 6= (0, 0) or (n − k, k). Similar right triangles now
yield v

h
= k

n−k
, or vn = k(v+ h). Since k and n are coprime this forces k to divide v,

but this is not possible because v < k. This ends the proof. �

For instance, if s = (0, 1, 0, 0, 1, 1, 0), then its orbit is represented by the shifted
sequence (1, 1, 0, 0, 1, 0, 0) which corresponds to a path. Note that s itself does not
correspond to a path.

By a descent in a 0,1-binary sequence we mean an occurrence of 10 in the se-
quence. When the binary sequence corresponds to a path, a descent occurs when
an upward move is followed by a right move on the path. (It is easy to see, for
example, that the sequence (0, 1, 0, 0, 1, 1, 0) has exactly two descents.) An ascent is
an occurrence of 01 in the sequence.

A block of ones in a 0,1-binary sequence is a subsequence of consecutive 1s; it is
called a run of ones if it is maximal, by inclusion, with this property. A run of zeros
is analogously defined. Observe that a run of ones always ends in a descent and a
run of zeros always ends in an ascent.

3 The one-dimensional marginals

Define D = (D1, . . . , Dm) to be a random vector, with Di taking values in the
set {0, 1, . . . , k}. The component Di counts the number of incidences at distance
i that can occur for an arbitrary k−subset. Describing explicitly the joint prob-
ability P (D = (d1, . . . , dm)) seems difficult. Tractable are the one and possibly
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two-dimensional marginal distributions of D. We abide by the usual notational con-
ventions when working with binomial numbers but also draw attention to the fact
that we convene to write

(

t

t

)

= 1 for all integers t; thus
(

−3
−3

)

= 1.

Theorem

(a) If i and n are coprime, then Di has the following distribution that does not depend
on i:

(

n

k

)

P (Di = x) =
n

(k − x)

(

k − 1

k − x− 1

)(

n− k − 1

k − x− 1

)

,

for x = 0, 1, . . . , k − 1; k ≤ n
2
, n ≥ 3.

(b) Let a(v, s; j, x) denote the number of s-subsets of a set with v elements that have
x incidences at distance j; define a(v, 0; 1, 0) = 0. If i (> 1) divides n, we obtain the
distribution of Di inductively by writing

a(n, k; i, x) =

(

n

k

)

P (Di = x) =
∑

w

(
∑

kj∈w

a(
n

i
, kj ; 1, x)),

with the sum ranging over all vectors w = (k1, . . . , ki) with 0 ≤ kj ≤
n
i
,
∑

j kj = k.
Here x = 0, 1, . . . , k. Since i > 1, the terms in the sums on the right-hand-side are
known by induction and part (a).

(c) The distribution of Di in part (a) is log-concave, hence unimodal. It increases in

r = k − x from 1 to k(n−k)−1
n

and decreases afterwards; 1 ≤ r ≤ k.

Note that for n odd, k = n−1
2
, and i coprime to n, the above Theorem yields

(

n

k

)

P (Di = x) =
2k + 1

k − x

(

k − 1

k − x− 1

)(

k

k − x− 1

)

= nN(k, x),

with N(k, x) being the Narayana numbers [7].

Proof Since the automorphism group of G = Cn acts transitively on the primitive
roots (or generators) of Cn, it suffices to prove part (a) for i = 1. Specifically, if φ
sends i to 1, then a k-subset A with x incidences at distance i is sent by φ into a
k-subset φ(A) that has x incidences at distance 1; this yields

P (Di = x) = P (Dφ(i) = x) = P (D1 = x).

Any cyclic 0,1-binary sequence with k ones can always be listed so as to have the
beginning of a run of ones in position 1. Mark such a cyclic sequence as

1a10b11a20b2 · · · 1ar0br =
r
∏

i=1

1ai0bii,

with 1ai0bi indicating that a run of ai ones is followed by a run of bi zeros; ai, bi ≥ 1.
Evidently

∑

ai = k and
∑

bi = n − k. We seek the number of k-subsets with
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x incidences at distance 1. A run with ai ones yields ai − 1 such incidences and
therefore x =

∑

(ai−1) = (
∑

ai)− r = k− r, where r denotes the number of runs of
ones. Viewing the sequence in terms of runs of ones, it is apparent that the number
we seek is equal to the number of interlaced compositions with r parts (the run sizes
ai of ones) of k, and the compositions with r parts (the run sizes bi of zeros) of
n− k. This yields the product

(

k−1
r−1

)(

n−k−1
r−1

)

as an initial count. However, for a cyclic
sequence we have n places to choose from for an initial first index, so we multiply
this product by n; we also must divide it by r since we can only use one of the r
runs of ones to start in position 1. Using the fact that x = k − r, part (a) is now
demonstrated.

Part (b) addresses the case when i divides n. We provide an inductive answer.
View the k−subset as a binary sequence s. Split s = (sj) into i subsequences each of
length n

i
, the mth subsequence being sm, sm+i, sm+2i, . . . , sm+(n

i
−1)i; 1 ≤ m ≤ i. The

statement becomes clear upon observing that there are k ones in s if and only if the
k ones are partitioned in all ways possible among the i subsequences. Incidences at
distance i in s become incidences at distance 1 within each subsequence.

Part (c) can be verified through a direct calculation. If pr = 1
r

(

k−1
r−1

)(

n−k−1
r−1

)

,
r = 1, . . . , k, then the ratio

pr+1

pr
=

(k − r)(n− k − r)

r(r + 1)

shows that pr increases for 1 ≤ r ≤ k(n−k)−1
n

and decreases afterwards. Log concavity
is also checked directly by verifying that p2r ≥ pr−1pr+1. This inequality is shown
equivalent to 2k(n−k) ≥ (r− 1)(n+1), which suffices to be checked for r = k, since
r ≤ k. Since 2k ≤ n, the inequality is true.

4 Two-dimensional marginals

For n and k (≤ n
2
) we shall give an explicit formula for the number of k-subsets

with x incidences at distance 1 and y incidences at distance 2. This is equivalent to
finding P (D1 = x,D2 = y).

Proposition The number of k-subsets that have x incidences at distance one and
y incidences at distance two is equal to
(

n

k

)

P (D1 = x,D2 = y) =
n

(k−x)

∑

a+b=k+y−2x

(

k−x

a

)(

x−1

k−x−a−1

)(

k−x

b

)(

n−2k+x−1

k−x−b−1

)

.

Proof As in the proof of the Theorem, summarize a k-subset in the notation
∏r

i=1 1
ai0bi , which highlights the runs in the corresponding binary sequence. In a

run of size ai > 1 we have ai − 2 incidences at distance 2, if bi > 1, and ai − 1
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incidences at distance 2, if bi = 1. It follows that

y =
∑

ai>1

(ai − 2) + |{i : bi = 1}|

=
∑

i

(ai − 2) + |{i : ai = 1}|+ |{i : bi = 1}|

= k − 2r + a+ b = (k − r)− r + a+ b = 2x− k + a+ b,

where x = k − r, a = |{i : ai = 1}| and b = |{i : bi = 1}|.

We note that a + b counts the total numbers of runs of size 1 (be they of 1s –
which is a, or of 0s – which is b). By above, a+ b = k+ y−2x. We conclude that the
number of k−subsets with x incidences at distance 1 and y incidences at distance 2
is equal to n

(k−x)
times the number of paths with r = k − x one-runs (or descents)

and with a + b = k + y − 2x runs of size 1. We multiply by n since paths are orbit
representatives (as stated in the Lemma), and divide by r = k − x since only one
of the r expressions for the k-subset in the form

∏r

i=1 1
ai0bi is the path in question.

To count the number of such paths, express a path in the form 1a10b1 · · · 1ar0br in
which a of the ais are 1 and b of the bis are 1, with a + b = k + y − 2x. The vector
(a1, . . . , ar) is a composition of k, and (b1, . . . , br) is a composition of n − k. Focus
on the composition of k. Place a 1 in each of its r parts; we now count unrestricted
compositions of k − a with r − a classes; this yields

(

r

a

)(

k−r−1
r−a−1

)

as answer. Argue
analogously for the composition on n− k. This completes the proof. �

5 Examples and connection to Catalan numbers

We begin with a motivational example. Take a set with n = 15 elements and
examine all its subsets of size k = 6. Our interest is in counting the number of
(circular) incidences that occur at distance i across all such subsets, as explained
at the beginning of Section 2. Table 1 displays, by a direct count, the number of
k-subsets with x incidences at distance i, for i = 1, 3, 5 and x = 0, 1, 2, 3, 4, 5, 6.
Provided that j is coprime to 15, it is verified that the number of incidences at
distance j are equinumerous to those at distance 1; this is highlighted in part (a) of
the Theorem. All entries in Table 1 are in agreement with the values provided by
our Theorem.

Table 1:

x
i 0 1 2 3 4 5 6
1 140 1050 2100 1400 300 15 0
3 125 1125 1950 1550 225 30 0
5 0 1215 2430 810 540 0 10

The numbers displayed in a row in Table 1 are
(

15
6

)

P (Di = x), as counted in our
Theorem. It may be worth noticing that for i = 5, a divisor of 15, the sequence of
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probabilities is not log-concave. We point out that the Theorem makes no statement
on log-concavity in such cases.

We outline now in some detail how the entries in the row i = 5 are obtained,
using part (b) of the Theorem. The split subsequences of indices are 1 6 11; 2 7 12;
3 8 13; 4 9 14; 5 10 15. The possible compositions of k = 6 (we just list partitions,
for brevity) are 2 1 1 1 1, 3 1 1 1 0, 2 2 1 1 0, 3 2 1 0 0, 2 2 2 0 0, and 3 3 0 0 0. For
instance, partition 2 2 1 1 0—which carries two incidences—indicates the fact that,
of the k = 6 available ones, we distribute 2 ones in two subsequences, 1 one in two
subsequences, and 0 ones in one subsequence. The number of ways of doing this is
5 ·

(

3
2

)

· 4 ·
(

3
2

)

· 3 ·
(

3
1

)

· 2 ·
(

3
1

)

/(2! · 2!) = 2430, which explains the entry corresponding
to x = 2 in the i = 5 row. The other entries are analogously explained; observe, for
example, that x = 3 arises from both 3 1 1 1 0 and 2 2 2 0 0.

We shall now explore a couple of consequences of the Theorem. Assume that n
and k are coprime and fixed, and let a(i, x) := a(n, k; i, x) =

(

n

k

)

P (Di = x), with the
latter having the explicit form written in the Theorem. As G = Cn acts on k-subsets,
notice that coprimality implies that each orbit has length n; this is either seen directly
or can be a consequence of the Cauchy-Frobenius lemma, since no element except
the identity has fixed points. This tells us that 1

n

(

n

k

)

counts the number of Cn-orbits
and is therefore an integer. It tells us also that a(i, x) counts the lengths of certain

types of orbits and is itself necessarily divisible by n. By letting b(i, x) = a(i,x)
n

and
bn,k =

1
n

(

n

k

)

, we obtain from the Theorem the following consequence.

Corollary 1 If n and k are coprime, then b(i, x) counts the number of Cn-orbits that
have x incidences at distance i, 1 ≤ i ≤ n−1

2
. These numbers satisfy

∑

x b(i, x) = bn,k,
for all i, and provide a refinement of the numbers bn,k. When i is coprime to n the
numbers b(i, x) are all positive integers. In particular, for n odd and k = n−1

2
, b(1, x)

are the Narayana numbers and bn,n−1

2

is the Catalan number.

For n = 21 and k = 10 we obtain the refinement of the Catalan number [12] as a
sum of Narayana numbers as follows:

1 + 45 + 540 + 2520 + 5292 + 5292 + 2520 + 540 + 45 + 1 = 16796.

In parallel, for n = 21 and k = 8 a refinement of b21,8 in terms of the b(1, x) given
by Corollary 1 is

99 + 924 + 2772 + 3465 + 1925 + 462 + 42 + 1 = 9690.

Corollary 2 If n is odd, k = n−1
2
, and i is coprime to n, then b(i, x) are the

Narayana numbers; when i is not coprime to n the non-negative integers b(i, x) pro-
vide a refinement of the Catalan number bn,k that is different from the Narayana
numbers.

For example, the Catalan number b15,7 = 429 has the following three refinements,
displayed in Table 2 below, offered by Corollary 2. The middle row, corresponding
to i = 4, displays the Narayana sequence.
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Table 2:

x
i 0 1 2 3 4 5 6
3 0 25 100 175 110 17 2
4 1 21 105 175 105 21 1
5 0 0 162 135 108 18 6

In general, with the exception of the Narayana case, integer sequences b(i, x) and
a(i, x) are not found in Sloane’s Encyclopedia of Integer Sequences [9].

6 A connection to the construction of Hadamard matrices

A Hadamard matrix is a square matrix with entries −1 or 1 and orthogonal rows.
It is easy to see that the dimension of such a matrix is either 2 or a multiple of
4. A remaining central question is whether these conditions are also sufficient for
existence. A leading and remarkable result found in [10] informs us that if the
dimension is divisible by a sufficiently high power of 2, then a Hadamard matrix
of that dimension exists. A detailed research resource on the subject appears in
[11]. Sporadic yet useful constructions are found in [4]. Goethals and Seidel [5]
give a method of using four circulant matrices, each of dimension n, to construct a
Hadamard matrix of order 4n ([8] and [3]). Each circulant can be specified by a binary
(say 0, 1) vector of length n; the sufficient condition which yields the Hadamard
matrix is that the four binary 0, 1 vectors f1, f2, f3, f4 (with fi of weight ki) have
(cyclic) autocorrelations σ(fi) that sum to the constant vector with all its entries

equal to k1 + k2 + k3 + k4 − n. Vectors σ(fi) are of length m = (n−1)
2

, as explained
in Section 1.

Any autocorrelation vector of a k-subset has nonnegative integral entries that sum
to

(

k

2

)

; but these necessary conditions are far from being sufficient. The content of this
paper can be viewed as an attempt to make headway toward establishing necessary
and sufficient conditions in the form of understanding the joint distribution of the
autocorrelation vector; and, in particular, in having a complete understanding of its
(nonzero) support. In other words, holding in our hand a vector with nonnegative
entries that sum to

(

k

2

)

we should be able to tell with certainty whether or not this
is the autocorrelation vector of some k-subset. This paper established the one and
two-dimensional marginal distributions of the autocorrelation. Even this limited
information proves (marginally) helpful, as we shall see in the examples below.

A manageable case is n = 19, with (k1, k2, k3, k4) = (7, 6, 9, 9). We can take both
f3 and f4 to be the quadratic residue binary sequence that has autocorrelation vector
of length 9 with all entries equal to 4. We now seek a 7-subset f1 and a 6-subset f2
whose autocorrelation sequences sum to (7 + 6 + 9 + 9 − 19) − (4 + 4) = 4 in each
of the 9 components. Such pairs of subsets are called supplementary difference sets
and they are generally difficult to construct.
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Typically, starting with a 7-subset f1 we attempt to supplement it with a 6-subset
f2. There are obvious necessary conditions on f1 but no complete understanding exits
on how to complete this task. For instance, we may start with the 7-subset

f1 = (0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0)

and attempt to supplement it. In this case σ(f1) = (0, 3, 3, 1, 4, 3, 1, 4, 2). This forces
σ(f2) = (4, 1, 1, 3, 0, 1, 3, 0, 2), the supplement to the vector with all entries 4. But
such a 6-subset f2 does not exist. Indeed our Proposition tells us that there are no
6-subsets with 4 incidences at distance 1 and 1 incidence at distance 2 (this can also
be verified directly in this small case).

But such a supplementary pair does exist. Were we to start with

f1 = (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0),

which has σ(f1) = (2, 1, 3, 2, 2, 3, 3, 3, 2), we would be seeking a supplement f2 that
must have σ(f2) = (2, 3, 1, 2, 2, 1, 1, 1, 2). Indeed, such f2 exists, an example being

f2 = (1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0).

(As an aside that might make us aware of the delicate combinatorics involved: if we
switch just entries 17 and 18 in the vector f1 above, a solution ceases to exist!)

We examine now a couple of larger cases. A Hadamard matrix of order 4 · 79
is known to exist. We use the Goethals-Seidel method to construct one here. Four
binary vectors of length 79 and weights 34, 34, 42, 43 are needed, whose autocorre-
lations must sum to 74 in each of the 39 entries. Initially we build three such vectors
of weights 34, 34, 42 the sum of autocorrelations of which differs from the vector
with all entries equal to 74 by the vector

a = 22 23 25 25 26 24 25 21 22 23 24 22 24 21 24 21 24 26 25 24 24 21 25 25 22 24
21 22 21 26 20 21 23 23 23 21 25 23 22.

Our Theorem and Proposition do not preclude the existence of a binary vector
v of length 79 and weight 43 that has a as its autocorrelation. Indeed, a computer
search yields such a vector. Position the initial three binary vectors as rows of a
matrix. To save space, we encode the the columns of this binary matrix as the digits
0 through 7 in base 10, with (0, 0, 1)t representing the number 1. The encoded vectors
are

4 3 3 2 7 1 0 1 7 4 6 3 1 0 0 0 1 5 7 3 6 1 1 1 6 5 5 4 3 4 7 4 6 2 0 2 7 0 5 4 0 1 0 3 2
0 6 6 4 3 0 3 4 1 1 2 5 1 5 2 7 7 1 5 4 0 0 1 3 2 0 7 5 0 5 7 2 7 3.

The sought-after vector v, which allows us to complete the Goethals-Seidel con-
struction in this case, is

v = 1 1 1 0 1 1 0 1 1 0 0 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 0 1 0 1 0 0 0 0 0 1 0 1 0 0 1 0
1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 0 0 1 1 0 1 1 0 1 1.

The first open case for which a Hadamard matrix is not known to exist involves
dimension 668. Using the same Goethals-Seidel method, one way to attempt to



G.M. CONSTANTINE & R.R.A. CONSTANTINE/AUSTRALAS. J. COMBIN. 92 (1) (2025), 1–11 10

construct one is to proceed as in the 79-case studied above and use four binary
vectors, each of length 167, of weights 76, 76, 77, 80 whose four autocorrelations sum
to 142 in each of the 83 = (167− 1)/2 components. With some effort, it is possible
to find three vectors of weights 76, 76, 77 whose sum of the three autocorrelations
differ from 142 in each component as shown in the vector b written below.

b = 41 37 40 39 41 39 35 38 36 34 42 39 37 37 32 37 37 36 36 36 40 39 36 37 39 38 35
33 39 35 37 41 42 40 41 38 43 41 34 39 39 36 42 39 38 41 40 40 37 38 37 37 35 37 37
37 36 38 37 34 37 40 39 37 38 38 42 38 42 37 34 39 39 37 41 36 34 37 38 42 45 39 40.

The three binary vectors, coded in base 10 as 0 through 7, as before, are as follows:

1 6 1 6 7 1 1 6 1 0 7 6 6 0 6 0 7 0 1 7 0 0 1 6 1 0 6 7 7 6 0 1 6 7 1 6 0 0 0 0 6 7 7 1 1
0 1 0 1 0 1 1 7 0 0 1 0 1 1 1 6 6 7 6 1 0 1 7 6 1 7 6 1 0 1 1 0 6 6 6 0 1 6 0 7 0 0 6 0 7
7 0 6 0 7 1 0 7 0 0 6 6 7 0 6 6 1 0 0 0 1 7 0 0 1 7 0 6 6 0 1 0 6 7 7 7 1 0 7 6 1 7 7 0 7
6 6 0 7 1 7 1 7 1 7 0 0 6 1 6 6 6 1 7 7 7 6 1 6 7 0 0 0 1 6 0 0.

To have a successful construction one must verify that the vector b is indeed the
autocorrelation of a binary vector of length 167 and weight 80. Recognizing whether
this is the case or not is the central motivational issue for this paper. Currently we
simply do not know whether this is true or not, but this article does not center on
this issue. Recent advances in algorithmic verification along these lines are found
in [1].

The parting remark is that if the full joint distribution (or the support of positive
probability) of the autocorrelation is understood, then we can decide whether or
not a Hadamard matrix can be constructed by the Goethals-Seidel circulant method
without necessarily explicitly providing the four required circulants. The approach
may, in other words, assert existence without relying on explicit construction.
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