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Abstract

Let Z2 × Z2 = {0, α, β, α + β}. Suppose G is a bridgeless cubic graph,
F a perfect matching of G and F the complementary 2-factor of F . A
nowhere-zero Z2×Z2-flow θ of G/F is called non-conflicting with respect
to F if there is no edge e = uv of F such that u is incident to an edge
with θ-value α and v is incident to an edge with θ-value β. In this paper,
we demonstrate the usefulness of non-conflicting flows by showing that if
a cubic graph G admits such a flow with respect to some 2-factor F then
G admits a normal 6-edge-coloring. We use this observation in order to
show that claw-free bridgeless cubic graphs as well as bridgeless cubic
graphs possessing a 2-factor having at most two cycles admit a normal
6-edge-coloring. We demonstrate the usefulness of non-conflicting flows
further by relating them to a recent conjecture of Thomassen about edge-
disjoint perfect matchings in highly connected regular graphs. Finally, we
construct infinitely many 2-edge-connected cubic graphs such that G/F
does not admit a non-conflicting nowhere-zero Z2 ×Z2-flow with respect
to any perfect matching F .

1 Introduction

Graphs considered in this paper are finite and undirected. They do not contain loops,
though they may contain parallel edges. We also consider pseudo-graphs, which may
contain both loops and parallel edges, and simple graphs, which contain neither loops
nor parallel edges. As usual, a loop contributes to the degree of a vertex by two. For
a graph G, V = V (G) and E = E(G) will denote the sets of vertices and edges of
G, respectively. A matching in a graph G is a subset F of edges such that no two
edges of F share a vertex. A matching F is perfect if every vertex of the graph is
incident to an edge from F . A graph G is k-regular if every vertex of G is of degree
k. A graph is cubic if it is 3-regular. For k ≥ 1, a k-factor of a graph G is a spanning
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k-regular subgraph of G. Note that if K is a 1-factor of G, then E(K) is a perfect
matching in G. If K is a 2-factor of G, then K is comprised of vertex disjoint circuits
such that every vertex of G lies on one of these circuits.

If G is a cubic graph then F is a perfect matching in G if and only if G− F is a
2-factor in G. This 2-factor will be called a complementary 2-factor of F in G. For a
perfect matching F of a cubic graph G, its complementary 2-factor will be denoted
by F .

If G is a graph and X ⊆ V (G) then ∂G(X) denotes the set of edges of G that
connect a vertex of X to one from V \X. In particular, for a graph G and a vertex
v the set of edges of G that are incident to v in G is ∂G(v) = ∂G({v}). In the
paper, we will use contractions in order to obtain small graphs from the one under
consideration. If C is a circuit in a graph G then G/V (C) denotes the graph whose
vertices are identical to those of G except that V (C) is replaced with a new vertex vC ,
and the set of edges is the same except that vC is incident to all edges of ∂G(V (C))
in G/V (C). Note that if C has a chord then in G/V (C) we do not get a loop
corresponding to this edge. Moreover, if G is a bridgeless cubic graph and T a
triangle in G then G/T denotes the bridgeless cubic graph in which T is replaced
with a new vertex vT which is incident to the three edges of ∂G(V (T )).

In the paper, we will deal with contractions in cubic graphs. If G is a cubic graph
and F is a 2-factor in G then G/F denotes the graph whose vertices are the circuits
of F and edge-set is F . Note that if a circuit C contains k chords then we get k loops
around the vertex C in G/F . Moreover, if C1 and C2 are two circuits of F that are
joined with t edges of F then we get t parallel edges joining C1 and C2 in G/F .

If G is a graph then its girth is the length of the shortest cycle in G. For n ≥ 1
let Kn denote the unique graph on n vertices where every pair of vertices is an edge
in it. Such a graph is called complete and usually is denoted by Kn (Figure 5). A
graph G is bipartite if V (G) can be partitioned into two sets V1 and V2, such that
every edge of G joins a vertex from V1 to V2. A bipartite graph is called complete if
every vertex of V1 is joined to every vertex of V2. When G is a complete bipartite
graph with |V1| = m and |V2| = n then it will be denoted by Km,n.

For k ≥ 1 a graph G is called cyclically k-edge-connected if we have to delete
at least k edges of G so that the resulting graph contains at least two components
containing a cycle. A simple path of a graph G is called hamiltonian if all vertices of
G lie on it. Similarly, a simple cycle of a graph G is called hamiltonian if all vertices
of G lie on it. A graph G is called hamiltonian if it contains a hamiltonian cycle.

A k-edge-coloring of a graph G is an assignment of colors {1, . . . , k} to edges of
G such that adjacent edges receive different colors [51]. The smallest k for which
G admits a k-edge-coloring is called the chromatic index and is denoted by χ′(G).
Vizing’s classical theorem in the area states that if G is a simple graph then ∆(G) ≤
χ′(G) ≤ ∆(G) + 1 [53]. Here ∆(G) denotes the maximum degree of a vertex in
G. For cubic graphs this becomes 3 ≤ χ′(G) ≤ 4. Holyer’s theorem states that the
problem of testing a given cubic graph for χ′(G) = 3 is an NP-complete problem [11].

Let G and H be two cubic graphs. If there is a mapping φ : E(G) → E(H) such
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that for each v ∈ V (G) there is w ∈ V (H) such that φ(∂G(v)) = ∂H(w) then φ is
called an H-coloring of G. If G admits an H-coloring then we will write H ≺ G. It
can be easily seen that if H ≺ G and K ≺ H, then K ≺ G. In other words, ≺ is a
transitive relation defined on the set of cubic graphs. If G is the complete bipartite
graph K3,3 and H is the complete graph K4 then Figure 1 shows an example of an
H-coloring of G. Here V (H) = {1, 2, 3, 4} and E(H) = {a1, a2, a3, a4, a5, a6}. Figure
1 shows the colors of edges of G with the edges of H and the labels of vertices of G
are the vertices of K4 that this vertex is mapped by the H-coloring of G.

H

1

2 3

4

a1

a2

a3

a4

a5

a5

a6

a6

G

1 3

4

1 3

4

a1 a2

a4 a3

a4 a3

a6

a6

a5

a5a5

a5

Figure 1: An example of an H-coloring of G.

Let P10 be the well-known Petersen graph (Figure 2). The main topic of this
paper is the Petersen Coloring Conjecture of Jaeger. It is a striking conjecture in
graph theory that asserts that the edge-set of every bridgeless cubic graph G can be
colored by E(P10) in such a way that adjacent edges of G receive, as colors, adjacent
edges of P10.

Figure 2: The graph P10.

Conjecture 1.1. (Jaeger, 1988 [16]) For any bridgeless cubic graph G, one has
P10 ≺ G.

The conjecture is well-known and it is largely considered hard to prove since it
implies some other classical conjectures in the field such as the Berge-Fulkerson Con-
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jecture (Conjecture 1.2 below), the Cycle Double Cover Conjecture, the (5, 2)-cycle-
cover conjecture (Conjecture 1.3 below) and the Shortest Cycle Cover Conjecture
(see [6, 15, 55]).

Conjecture 1.2. (Berge-Fulkerson, 1972 [6, 47]) Any bridgeless cubic graph G con-
tains six (not necessarily distinct) perfect matchings F1, . . . , F6 such that any edge of
G belongs to exactly two of them.

Conjecture 1.3. ((5, 2)-cycle-cover conjecture, [3, 40]) Any bridgeless graph G (not
necessarily cubic) contains five even subgraphs such that any edge of G belongs to
exactly two of them.

It can be shown that the Petersen graph is the only 2-edge-connected cubic graph
that can color all bridgeless cubic graphs [37]. In [31] Mazzuoccolo proves that
Conjecture 1.2 is equivalent to proving that the edge-set of all bridgeless cubic graphs
can be covered with five perfect matchings. Moreover, see the recent paper [21]
which shows that every bridgeless cubic graph G has a pair of perfect matchings
F1 and F2 such that G − (F1 ∪ F2) is bipartite. This statement is a corollary of
Conjecture 1.2 which was conjectured by Mazzuoccolo in [33]. More conjectures
similar to Conjecture 1.1 can be found in [9, 37]. In [26, 36] some new results about
H-colorings are presented when the graphs under consideration are regular and not
necessarily cubic.

Jaeger in [15] introduced an equivalent formulation of Conjecture 1.1. Let c be
an edge-coloring of G. For a vertex v of G let Sc(v) be the set of colors that edges
incident to v receive. If uv is an edge of a cubic graph G then 3 ≤ |Sc(u)∪Sc(v)| ≤ 5.

Definition 1.4. Suppose ab is an edge of a cubic graph G and c is an edge-coloring
of G. Then:

• ab is called poor with respect to c if |Sc(a) ∪ Sc(b)| = 3,

• ab is called abnormal with respect to c if |Sc(a) ∪ Sc(b)| = 4,

• ab is called rich with respect to c if |Sc(a) ∪ Sc(b)| = 5.

Edge-colorings having only poor edges are trivially 3-edge-colorings of G. Also
edge-colorings having only rich edges have been considered in recent years, and they
are called strong edge-colorings. In [15] Jaeger focused on the case when all edges
must be either poor or rich.

Definition 1.5. An edge-coloring c of a cubic graph is normal if G does not contain
abnormal edges with respect to c. In other words, any edge is rich or poor with respect
to c.

It is straightforward that an edge-coloring which assigns a different color to every
edge of a simple cubic graph is normal since all edges are rich. Hence, we can define
the normal chromatic index of a simple cubic graph G denoted by χ′

N(G) as the
smallest k for which G admits a normal k-edge-coloring.
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Figure 3: A cubic graph that requires 7 colors in a normal edge-coloring. The
bridge is poor. All other edges are rich. It can be shown that χ′

N (G) = 7.

Figure 4: A cubic graph that does not admit a normal k-edge-coloring for any
k ≥ 1.

Figure 3 provides an example of a normal 7-edge-coloring of a cubic graph. All
edges of this graph are rich in this coloring except the unique bridge which is poor.
In [35] it is shown that χ′

N(G) = 7 if G is the graph from Figure 3. Moreover, [35]
argues that any cubic graph having a subgraph that is isomorphic to the complete
graph K4 with one edge subdivided has χ′

N(G) = 7.

Not all cubic graphs admit a normal k-edge-coloring for some k ≥ 1. Consider
a cubic multi-graph containing a triangle in which one edge is of multiplicity two
(see Figure 4). It can be easily seen that such a cubic graph cannot have a normal
k-edge-coloring because an edge of multiplicity two is going to be abnormal in any
edge-coloring.

Using the notion of normal edge-colorings in [15] Jaeger has shown that:

Proposition 1.6. (Jaeger, [15]) If G is a cubic graph then P10 ≺ G if and only if
G admits a normal 5-edge-coloring.

This implies that Conjecture 1.1 can be stated as follows:

Conjecture 1.7. For any bridgeless cubic graph G, χ′
N(G) ≤ 5.

In these terms, the Petersen Coloring Conjecture is equivalent to saying that
every bridgeless cubic graph has normal chromatic index at most 5. Observe that
Conjecture 1.7 is trivial for 3-edge-colorable cubic graphs. This is true because in
any 3-edge-coloring c of a cubic graph G any edge e is poor, and hence c is a normal
edge-coloring of G. Thus non-3-edge-colorable cubic graphs are the main obstacle
for Conjecture 1.7. Structural properties of non-3-edge-colorable bridgeless cubic
graphs sometimes called snarks are investigated in [48, 50]. Conjecture 1.7 is verified
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for some non-3-edge-colorable bridgeless cubic graphs in [5, 8, 45, 46]. Finally, in [42]
the percentage of edges of a bridgeless cubic graph which can be made poor or rich
in a 5-edge-coloring is investigated. See [30] for a recent paper about the percentage
of normal edges (that is, not abnormal edges) in 5-edge-colored cubic graphs. Other
recent results in this direction are obtained in [34] and [39].

If we consider the larger class of simple cubic graphs without any assumption on
connectivity, some interesting questions naturally arise. Indeed, examples of simple
cubic graphs with χ′

N(G) > 5 can be constructed in this class (Figure 3). Hence it
is natural to ask for a possible upper bound for this parameter.

Let us remark that any strong edge-coloring is a normal edge-coloring. Andersen
has shown in [1] that any simple cubic graph admits a strong edge-coloring with ten
colors. Hence ten is also an upper-bound for the normal chromatic index. The result
was improved following the approach of Andersen. In [2] it is shown that any simple
cubic graph admits a normal edge-coloring with nine colors. In [35] it is proved that
if G is any simple cubic graph then χ′

N(G) ≤ 7. This result is complemented with
an infinite family of simple cubic graphs in which χ′

N(G) = 7 [35]. Thus, the upper
bound seven is (asymptotically) best-possible.

Once the upper bound seven for all simple cubic graphs is established, one may
wonder about improving it for some interesting graph classes. Of course, the first
class that comes to one’s mind is the class of bridgeless cubic graphs. Conjecture
1.7 predicts an upper bound five which is difficult to prove. Thus the following
intermediate conjecture could be an excellent step in this direction.

Conjecture 1.8. (R. Šámal, [43]) For any bridgeless cubic graph G, χ′
N(G) ≤ 6.

In this paper, we focus on Conjecture 1.8. For a given perfect matching F of a
bridgeless cubic graph G we introduce the notion of a non-conflicting nowhere-zero
Z2 × Z2-flow of G/F (Definition 2.4). Recall that if A is an abelian group and H is
a graph then a nowhere-zero A-flow of H is a pair (D, f) where D is an orientation
of H and f is a mapping f : E(H) → A− {0} such that for any vertex v ∈ V (H)

f(∂+
H(v)) = f(∂−

H(v)).

Here 0 stands for the zero of A, ∂+
H(v) is the set of arcs (with respect to D) that leave

the vertex v and ∂−
H(v) is the set of arcs (with respect to D) that enter the vertex v.

We demonstrate the usefulness of non-conflicting nowhere-zero Z2 × Z2-flows by
showing that if a bridgeless cubic graph G has a perfect matching F such that G/F
admits a non-conflicting nowhere-zero Z2 ×Z2-flow then G admits a normal 6-edge-
coloring (Lemma 2.6). Moreover, we relate non-conflicting nowhere-zero Z2×Z2-flows
in cubic graphs to a recent conjecture of Thomassen about the existence of a pair
of edge-disjoint perfect matchings in highly edge-connected regular graphs [52] (see
Lemma 2.9). Then we obtain the main results of the paper. The first one states
that claw-free bridgeless cubic graphs G have a perfect matching F with respect
to which G/F admits a non-conflicting nowhere-zero Z2 × Z2-flow (see Theorem
2.17). Moreover, one can find such a perfect matching in bridgeless cubic graphs
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which have a 2-factor that contains at most two cycles if G is not the Petersen
graph (see Theorem 2.19). In the end of the paper we construct infinitely many
2-edge-connected cubic graphs G that do not admit a non-conflicting nowhere-zero
Z2 × Z2-flow with respect to F for any perfect matching F of G (see Proposition
2.21 and Theorem 2.22). We conclude the paper in Section 3 where we summarize
the paper and present some questions that could be a direction of future research.
Non-defined terms and concepts can be found in [54].

2 Main results

In this section we obtain the main results of the paper. We will need some definitions.
Let T be a triangle in a cubic graph G such that each edge of T is of multiplicity
one. If e is an edge of T , then let f be the edge of G that is incident to a vertex of
T and is not adjacent to e. The edges e and f will be called opposite. We start with
the following proposition:

Proposition 2.1. The minimum counterexample to Conjecture 1.8 is a 3-edge-
connected cubic graph of girth at least four.

Proof. Let G be a counterexample to the statement minimizing |V (G)|. Clearly, G
is connected. Let us show that it has no 2-edge-cuts. Assume that C = {e1, e2} is a
2-edge-cut. Let G1 and G2 be the two smaller bridgeless cubic graphs arising from
the two components of G − C by adding one edge connecting the two degree-two
vertices in the same component. We let h1 and h2 be the two added edges of these
two graphs, respectively. Since the graphs G1 and G2 are smaller we have that they
admit normal 6-edge-colorings f1 and f2. By renaming the colors in G2 we can always
assume that the colors of h1 and h2 are the same and moreover, the colors appearing
in the ends of e1 are also the same. Now, if we color e1 and e2 with the color of h1

then we will have that e1 is always poor, moreover if at least one of h1 and h2 is
normal then e2 will also be normal. This means that the resulting 6-edge-coloring of
G will be normal, too. Thus, G must be 3-connected.

Since we do not have 2-edge-cuts in G we cannot have 2-cycles in G. Let us
show that G cannot contain a triangle. On the opposite assumption, assume that G
contains a triangle T . Consider the bridgeless cubic graph G/T . It is smaller than G.
Hence it has a normal 6-edge-coloring. We can extend it to a normal 6-edge-coloring
of G as follows: for any edge e of T color e with the color of f , where f is the opposite
edge of e. This leads to a normal 6-edge-coloring of G in which the edges of T are
poor. Thus, G has girth at least four.

Remark 2.2. We presented the proof of Proposition 2.1 for the sake of completeness.
It is implicit in [34].

Remark 2.3. In [13], Jaeger himself proved that the smallest counterexample to
Conjectures 1.1 and 1.7 is a cyclically 4-edge-connected cubic graph. Unfortunately,
we are not able to get rid of non-trivial 3-edge-cuts in the smallest counterexample
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for Conjecture 1.8. So if one is able to prove Conjecture 1.8 for cyclically 4-edge-
connected cubic graphs it is not obvious how to derive the proof of the full conjecture.

The situation is different for Conjecture 1.2. By answering a question raised back
in [47] Máčajová and Mazzuoccolo proved in [27] that it suffices to prove Conjecture
1.2 for cyclically 5-edge-connected cubic graphs.

Conjecture 1.8 predicts an upper bound six for χ′
N in the class of all bridgeless

cubic graphs. We would like to mention that seven is relatively easy to prove via
flows [2, 35]. The classical 8-flow theorem [55] implies that every bridgeless cubic
graph G admits a nowhere-zero Z2 ×Z2 ×Z2-flow. It can be easily verified that any
such flow yields a normal 7-edge-coloring of G (see [2, 35] for details). In [35], the
authors managed to show that all simple, cubic graphs (not necessarily bridgeless)
admit a normal 7-edge-coloring. The proof given in [35] heavily uses flows. So an
interesting question is whether flows can be helpful in proving Conjecture 1.8. If
they are then one may wonder what kind of flow results we need in order to prove
Conjecture 1.8. The following approach is due to Mazzuoccolo:

Definition 2.4. Let G be a bridgeless cubic graph, F a perfect matching of G and
F the complementary 2-factor of F in G. A nowhere-zero Z2 × Z2-flow θ of G/F is
called non-conflicting with respect to F (or with respect to F ) if F contains no edge
e = uv such that u is incident to an edge with θ-value α and v is incident to an edge
with θ-value β.

In this paper, an edge e = uv ∈ E(F ) such that u is incident to an edge with
θ-value α and v is incident to an edge with θ-value β will be called a conflicting edge
or just a conflict.

Remark 2.5. If F contains a triangle then G/F does not admit a non-conflicting
nowhere-zero Z2 × Z2-flow with respect to F .

Proof. Suppose F contains a triangle T . Since G is bridgeless, the vertex of G/F
corresponding to T has degree three. Thus, any nowhere-zero Z2×Z2-flow θ of G/F
has exactly one edge of values α, β and α + β. Hence T contains a conflict.

Lemma 2.6 proved below demonstrates the usefulness of non-conflicting flows for
Conjecture 1.8.

Lemma 2.6. Let G be a bridgeless cubic graph and let F be a perfect matching in
it. If G/F admits a non-conflicting nowhere-zero Z2 × Z2-flow θ with respect to F
then χ′

N(G) ≤ 6.

Proof. We follow the approach of the proof of Lemma 5.2 in [12]. Suppose θ is a non-
conflicting nowhere-zero Z2 × Z2-flow of G/F where Z2 × Z2 = {0, α, β, α + β} and
α = (1, 0), β = (0, 1). Consider a nowhere-zero Z2×Z2×Z2-flow µ ofG obtained from
θ as follows: for any edge h ∈ F we define the triple µ(h) as follows: µ(h) = (0, θ(h)).
Then let C be any cycle of F . Let x0 be any element of Z2 × Z2 × Z2 whose first
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coordinate is 1 (for example, x0 = (1, 0, 1)). Assign x0 to an edge of C. Then observe
that the rest of the values of edges of C are defined uniquely in µ. Moreover, the
first coordinate of the values of µ on C is 1. Hence for any edges h1 ∈ F and h2 ∈ F
we have µ(h1) 6= µ(h2). Also observe that for different cycles of F we can choose x0

differently. It can be easily checked that µ is a nowhere-zero Z2 ×Z2 ×Z2-flow of G.
Hence, it yields a normal 7-edge-coloring of G as we mentioned before. Now let us
consider an edge-coloring of G obtained from µ by changing the values of all edges e
with µ(e) = (0, β) to µ(e) = (0, α). The resulting coloring is not a flow however it is
a normal 6-edge-coloring since θ was non-conflicting by assumption.

As an approach towards Conjecture 1.8, in [34] the following conjecture is pre-
sented:

Conjecture 2.7. ([34]) Let G be a 3-edge-connected cubic graph different from the
Petersen graph. Then G admits a nowhere-zero Z2 × Z2 × Z2-flow f such that there
are two elements x, y ∈ Z2 × Z2 × Z2 with

(1) f−1({x, y}) is a matching in G,

(2) there is no edge e = uv of G such that u is incident to an edge eu and v is
incident to an edge ev with f(eu) = x and f(ev) = y.

The paper [34] shows that Conjecture 2.7 implies Conjecture 1.8.

Remark 2.8. The nowhere-zero Z2×Z2×Z2-flow µ that we constructed in the proof
of Lemma 2.6 satisfies the assumption of Conjecture 2.7.

Lemma 2.6 demonstrates the usefulness of non-conflicting nowhere-zero Z2 ×Z2-
flows for obtaining normal 6-edge-colorings of cubic graphs. Rather surprisingly as
our next statement demonstrates they are useful for a recent and influential conjec-
ture of Thomassen [52] that deals with the problem of existence of pairs of edge-
disjoint perfect matchings in highly connected regular graphs. In [52], Thomassen
conjectured that there is an integer r0 such that any r-regular r-edge-connected
graph on an even number of vertices with r ≥ r0 contains a pair of edge-disjoint
perfect matchings. Snarks (graphs like P10) demonstrate that r0 ≥ 4. Now, using
completely different approaches Rizzi in [41] and Mazzuoccolo in [32] constructed a
4-regular 4-edge-connected graph on an even number of vertices in which every pair
of perfect matchings have a common edge. The two constructions lead to the same
4-regular graph up to graph isomorphisms. This implies that r0 ≥ 5. Now, we prove
a statement that shows the usefulness of non-conflicting nowhere-zero Z2 ×Z2-flows
for this conjecture when r = 5.

Lemma 2.9. Let H be any 5-regular 5-edge-connected graph. Consider a bridgeless
cubic graph G obtained from H by replacing every vertex of H with a cycle of length
five. Let F be the 2-factor of G comprised of these 5-cycles corresponding to vertices
of H. If H = G/F admits a non-conflicting nowhere-zero Z2 × Z2-flow with respect
to F then H contains a pair of edge-disjoint perfect matchings.
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Proof. Suppose θ is a non-conflicting nowhere-zero Z2 × Z2-flow of G/F = H with
respect to F . Since every vertex of H has odd degree (in fact, it is 5-regular) we have
that around every vertex of H there should be an odd number of edges with θ-value
α, β and α + β. In particular, there should be edges e ∈ F and f ∈ F such that
θ(e) = α and θ(f) = β. If around some vertex of H there are at least three edges
with θ-value α or at least three edges with θ-value β then since our cycles of F are
of length five it can be easily checked that there is a conflict. Thus, around every
vertex of H there is exactly one edge of θ-value α and exactly one edge of θ-value β.
Now, these edges induce a pair of edge-disjoint perfect matchings in H.

It is an open problem whether there is a 5-edge-connected 5-regular graph that is
not 5-edge-colorable [25]. Next, we discuss non-conflicting nowhere-zero Z2×Z2-flows
in bipartite graphs and 3-edge-colorable cubic graphs. We start with:

Observation 2.10. Let G be a bridgeless cubic graph and let F be a perfect matching
of G. If all cycles of F are even then G/F admits a non-conflicting nowhere-zero
Z2 × Z2-flow with respect to F .

Proof. Let x ∈ {α, β, α + β}. For any edge e ∈ E(G/F ) set θ(e) = x. Since all
cycles of F are even and x+ x = 0 we have that θ is a non-conflicting nowhere-zero
Z2 × Z2-flow with respect to F .

Observation 2.11. Let G be an arbitrary bipartite cubic graph and let F be a perfect
matching of G. Then G/F admits a non-conflicting nowhere-zero Z2 ×Z2-flow with
respect to F .

Proof. Since G is bipartite, all cycles in F are even. Hence the statement follows
from Observation 2.10.

Observation 2.12. Every 3-edge-colorable cubic graph G has a perfect matching F
such that G/F admits a non-conflicting nowhere-zero Z2×Z2-flow with respect to F .

Proof. If G is 3-edge-colorable then there is a perfect matching F such that F has
only even cycles. Hence the statement follows from Observation 2.10.

Recall that a graph G is claw-free if it does not contain four vertices such that the
subgraph of G induced on these vertices is isomorphic to K1,3. Next, we are going
to show that claw-free bridgeless cubic graphs have a perfect matching F such that
G/F admits a non-conflicting nowhere-zero Z2×Z2-flow with respect to F . Since in
[34] it is shown that all such graphs admit a normal 6-edge-coloring our statement
is going to strengthen the corresponding result from [34]. Proving upper bounds for
χ′
N in this class is important as if one shows that all claw-free simple bridgeless cubic

graphs admit a normal 5-edge-coloring then Conjecture 1.7 follows (see [34] for all
details on this).

We will need some results on claw-free simple cubic graphs. In [4] arbitrary
claw-free graphs are characterized. In [38] Oum has characterized simple claw-free
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bridgeless cubic graphs. In order to formulate Oum’s result we need some definitions.
In a claw-free simple cubic graph G any vertex belongs to one, two, or three triangles.
If a vertex v belongs to three triangles of G then the component of G containing v is
isomorphic to K4 (Figure 5). An induced subgraph of G that is isomorphic to K4−e
is called a diamond [38]. It can be easily checked that in a claw-free cubic graph no
two diamonds intersect.

Figure 5: The graph K4. Figure 6: The graph K3
2 .

A string of diamonds of G is a maximal sequence F1, . . . , Fk of diamonds in which
Fi has a vertex adjacent to a vertex of Fi+1, 1 ≤ i ≤ k − 1. A string of diamonds
has exactly two vertices of degree two which are called the head and the tail of the
string. Replacing an edge e = uv with a string of diamonds with the head x and the
tail y is to remove e and add edges (u, x) and (v, y).

If G is a connected claw-free simple cubic graph such that each vertex lies in a
diamond then G is called a ring of diamonds. It can be easily checked that each
vertex of a ring of diamonds lies in exactly one diamond. As in [38] we require that
a ring of diamonds contains at least two diamonds.

Proposition 2.13. (Oum, [38]) G is a connected claw-free simple bridgeless cubic
graph if and only if

(1) G is isomorphic to K4, or

(2) G is a ring of diamonds, or

(3) there is a connected bridgeless cubic graph H such that G can be obtained from
H by replacing some edges of H with strings of diamonds and by replacing any
vertex of H with a triangle.

We would like to present the following simple extension of Proposition 2.13 when
G may have a parallel edge or just a cycle of length two.

Proposition 2.14. ([10]) G is a connected claw-free bridgeless cubic graph if and
only if

(1) G is isomorphic to K4 (Figure 5) or to K3
2 (Figure 6), or

(2) G is a ring of diamonds or 2-cycles, or

(3) there is a connected bridgeless cubic graph H such that G can be obtained from
H by replacing some edges of H with strings of diamonds or 2-cycles (Figure
7) and by replacing any vertex of H with a triangle.
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u v

Figure 7: Replacing an edge uv with a string of diamonds or 2-cycles.

It is known that:

Theorem 2.15. ([24, 44]) Every edge of a bridgeless cubic graph G belongs to some
perfect matching of G.

Using the theory of fractional perfect matchings and Edmonds’ matching polytope
theorem it is not hard to prove:

Theorem 2.16. ([18, 19, 55]) For every edge e of a bridgeless cubic graph G there
is a perfect matching F of G such that e ∈ F and F intersects every 3-edge-cut of G
in a single edge.

We are ready to prove our main result for claw-free bridgeless cubic graphs.

Theorem 2.17. Let e be an edge of a claw-free bridgeless cubic graph G. Then G
has a perfect matching F with e ∈ F and G/F admits a non-conflicting Z2×Z2-flow
with respect to F .

Proof. Take a perfect matching F of G such that e ∈ F and F intersects all 3-
edge-cuts of G in a single edge (see Theorem 2.16). F intersects all triangles of G
in a single edge. Moreover, G/F is bridgeless and contains no 3-edge-cuts. Hence
by Proposition 10 of [14] G/F admits a nowhere-zero Z2 × Z2-flow. Consider all
nowhere-zero Z2 × Z2-flows of G/F and among them choose the one with smallest
number of conflicts. Let us show that this number is zero.

Suppose there is a conflict with edges f ∈ F and f ′ ∈ F . Then at least one of f
and f ′ belongs to a new triangle of G that is this triangle was replacing a vertex of
H. Thus, at least one of f and f ′ is a chord in the corresponding 2-factor F . Hence it
is a loop in G/F . Thus, by changing the flow value there to α+β we will still obtain
a nowhere-zero Z2 × Z2-flow with less conflicts. This contradicts our choice. Thus,
F contains the edge e and G/F admits a nowhere-zero Z2 × Z2-flow with respect to
F as needed.

Combined with Lemma 2.6 we get the following result from [34]:

Corollary 2.18.All claw-free bridgeless cubic graphs admit a normal 6-edge-coloring.

In [34] it is shown that every cubic permutation graph admits a normal 6-edge-
coloring. Our next result strengthens this statement by showing that all bridgeless
cubic graphs containing a 2-factor having at most two cycles admit such an edge-
coloring.
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Theorem 2.19. Let G be a bridgeless cubic graph containing a 2-factor F having
at most two cycles. Then G/F0 admits a non-conflicting nowhere-zero Z2 × Z2-flow
with respect to some 2-factor F0 unless G is the Petersen graph.

Proof. Our proof is by induction on the number of vertices of G. Clearly, our state-
ment is true when |V | = 2. By induction assume that the statement is true for all
graphs with less than |V | vertices, and let us consider a bridgeless cubic graph G
containing a 2-factor F having at most two cycles. If the number of cycles in F is one
or two and both of the cycles are even then our statement follows from Observation
2.10. Thus, we can focus on the case when F has two odd cycles C1 and C2. In great
contrast with cubic permutation graphs our cycles C1 and C2 may have chords. Let
n be the number of edges of F joining a vertex of C1 to a vertex of C2. Moreover,
let u1, . . . , un be these n vertices of C1 that are joined to n vertices v1, . . . , vn from
C2, respectively. We assume ujvj ∈ F for j = 1, 2, . . . , n. Since C1 and C2 are odd
cycles we have that n is odd.

Assume that u1, . . . , un appear on C1 in this order. Let n1 be the number of pairs
ujuj+1, such that ujuj+1 ∈ E(G) (1 ≤ j ≤ n). If j = n we set uj+1 = u1. Similarly,
assume that the vertices v1, . . . , vn appear on C2 in this order. Let n2 be the number
of pairs vjvj+1, such that vjvj+1 ∈ E(G) (1 ≤ j ≤ n). If j = n we set vj+1 = v1.

We have n1, n2 ≤ n. Let us consider two cases.

Case 1: n ≥ 5. Hence

(

n

2

)

− n1 ≥

(

n

2

)

− n ≥ n ≥ n2, (1)

as n ≥ 5. Suppose that
(

n

2

)

− n1 > n2. Then, there is a pair ui, uj with uiuj /∈ E(G)
such that vivj /∈ E(G). Define a function θ on F as follows: θ(uivi) = α, θ(ujvj) = β,
and on the remaining edges of F we set the value of θ as α + β. Since C1 and C2

are odd cycles there are exactly one edge of θ-value α and β (by definition of θ uivi
and ujvj are these two edges) we have that θ is a nowhere-zero Z2×Z2-flow in G/F .
Since there is no edge of F connecting an endpoint of uivi and ujvj we have θ is a
non-conflicting nowhere-zero Z2 × Z2-flow in G/F with respect to the 2-factor F .

Thus, it remains to consider the case
(

n

2

)

−n1 = n2. From the chain of inequalities
(1) we have that

(

n

2

)

− n1 =

(

n

2

)

− n = n = n2.

This implies that n = 5 and C1, C2 have no chords. Thus, either G is 3-edge-colorable
hence we have the statement via Observation 2.12 or G is the Petersen graph.

Case 2: n = 3. If
(

n

2

)

− n1 > n2 the same reasoning from Case 1 works. Thus, we
can assume

(

n

2

)

− n1 ≤ n2 or

3 =

(

3

2

)

=

(

n

2

)

≤ n1 + n2.
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Since n1, n2 ≤ n = 3 this means that either n1 ≥ 1 and n2 ≥ 1 or (n1, n2) ∈
{(3, 0), (0, 3)}.

Case 2a: n1 ≥ 1 and n2 ≥ 1. Consider the graphs G/V (C1) and G/V (C2). Since
n1 ≥ 1 the new vertex of G/V (C2) is adjacent to two consecutive vertices of C1.
Similarly, since n2 ≥ 1 the new vertex of G/V (C1) is adjacent to two consecutive
vertices of C2. These observations imply that both of G/V (C1) and G/V (C2) are
hamiltonian as it is not hard to extend C1 to a hamiltonian cycle of G/V (C2) and
extend C2 to a hamiltonian cycle of G/V (C1). Thus, both of these cubic graphs are
3-edge-colorable. Thus, G is 3-edge-colorable. Hence, our statement for this case
follows from Observation 2.12.

Case 2b: (n1, n2) ∈ {(3, 0), (0, 3)}. Since the cases are symmetric it suffices to
consider the case n1 = 3 and n2 = 0. Since n1 = 3, it means one of the cycles of the
2-factor is a triangle. Let C1 = T = u1u2u3 be this triangle. For i = 1, 2, 3 let vi
be the unique neighbor of ui on C2. Consider a cubic graph H obtained from G by
removing all vertices of T and v2, and adding the edges g = v1v3 and f connecting
the two neighbors of v2 on C2. The cubic graph H is hamiltonian as D = C2−v2+f
is a hamiltonian cycle in it. Consider the perfect matching F given by every other
edge of D (which has even length) such that f is not in F . It does not contain the
edge g, too. Observe that H − F is 2-edge-colorable hence all circuits of H − F are
even. Consider a 2-factor F ′ of G obtained from F by replacing the edge f with the
two edges of C2 incident to v2 and replacing g with four edges v1u1, u1u2, u2u3 and
u3v3. Let Cf and Cg be the circuits of F ′ such that Cf contains the edges incident
to v2 and Cg be the circuit containing the edge v1u1. If Cf = Cg or these circuits
are different but both of them are of even length then by defining θ(e) = α + β for
every edge e ∈ F ′ we will obtain a non-conflicting nowhere-zero Z2×Z2-flow of G/F ′

with respect to the 2-factor F ′. Thus it remains to consider the case when Cf and
Cg are different and both of them are of odd length. Cf and Cg are the only odd
cycles of F ′. Hence if we set θ(e) = α+β for every edge e ∈ F ′ we will have that the
definition of nowhere-zero Z2 × Z2-flow of G/F ′ is violated only at the two vertices
of G/F ′ corresponding to Cf and Cg.

Suppose that Cf has a vertex w not adjacent to v2 such that the edge ew of
F ′ incident to w connects w to a vertex outside V (Cf ) (Figure 8). Since G is
bridgeless we have that G/F ′ is bridgeless, too. Hence G/F ′ contains a simple cycle
C ′ containing u2v2 and ew (Figure 8). We modify the above defined function θ as
follows: it is equal to θ(e) = α+β for every edge e ∈ F ′ except on edges of C ′ where
we have θ(u2v2) = α and θ(e) = β for all edges of e ∈ C ′ − {u2v2} (Figure 8). θ is a
nowhere-zero Z2 × Z2-flow of G/F ′. Let us show that it is non-conflicting. We have
only one edge with θ-value α which is u2v2. The edge u1u3 is a chord of F ′ hence we
can take its flow value α+β. This does not violate the definition of the flow. On the
other hand, the two edges of F ′ that are incident to a vertex adjacent to v2 do not
lie on C ′ the flow values of these edges will be α+ β, too. Hence we will not have a
conflict.

Thus, we are left with the case when V (Cf ) is joined to V \V (Cf ) with exactly
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w

ew

v2 u2

C ′

Cf Cg
α

β β

β β

Figure 8: The simple cycle C ′ of G/F ′ containing the edges u2v2 and ew.

three edges. One of them is u2v2 ∈ F ′ and the others are g ∈ F ′ and h ∈ F ′.
Moreover, g and h are incident to vertices that are adjacent to v2 on C2. Let K =
{u2v2, g, h} be the non-trivial 3-edge-cut joining V (Cf ) to V \V (Cf ). Consider the
graphs

H1 = G/V (Cf ) and H2 = G/(V \V (Cf )).

Since the new vertex of H2 corresponding to V \V (Cf ) is joined to two neighboring
vertices on Cf we have that H2 has a hamiltonian cycle hence it is 3-edge-colorable.
On the other hand, H1 is a bridgeless cubic graph containing a 2-factor with at most
two cycles (C1 and the restriction of C2 to H1). Since |V (H1)| < |V |, H1 contains
a triangle hence it is different from P10 by induction we have that H1 has a perfect
matching F0 such that H1/F0 admits a non-conflicting nowhere-zero Z2 × Z2-flow.
By Remark 2.5, F0 intersects {u1v1, u2v2, u3v3} in a single edge. Moreover, trivially
F0 intersects K in a single edge. Let this edge of K be t. Suppose that the value
of non-conflicting nowhere-zero Z2 × Z2-flow of H1/F0 on t is x. Since H2 is 3-edge-
colorable we have that H2 has a perfect matching J such that t ∈ J and H2 − J is
comprised of even cycles. Extend the perfect matching F0 to a perfect matching J ′

of our original graph G by adding the edges of J to it and taking the flow value on
them as x. We will get a perfect matching J ′ of G with respect to which G/J admits
a non-conflicting nowhere-zero Z2 × Z2-flow.

Combined with Lemma 2.6 we get the following result from [34]:

Corollary 2.20. All cubic permutation graphs admit a normal 6-edge-coloring.

In the previous statements we explicitly required that the cubic graph under
consideration differs from P10. The reader probably guessed that the main reason
why we did this is that it does not admit a non-conflicting flow with respect to
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any 2-factor F . Since P10 is triangle-free the presence of a triangle in a 2-factor
(see Remark 2.5) is not the only obstruction for the existence of a non-conflicting
nowhere-zero Z2 × Z2-flow.

Proposition 2.21. The Petersen graph P10 does not admit a non-conflicting no-
where-zero Z2 × Z2-flow with respect to any 2-factor F .

Proof. The complementary 1-factor F is a 5-edge-cut that separates the two 5-cycles
of F . Since it is an odd edge-cut in any nowhere-zero Z2 × Z2-flow of G/F an odd
number of α, β and α+ β edges must appear on it. Assume that on one of them the
value α appears. Then this edge is joined to the other four edges of F with an edge
from F . Thus, we cannot put the value β on either of them.

The Petersen graph P10 is exceptional in many cases. In other words, there
are statements where the only counterexample to them is P10 (Theorem 2.19, or
the main result of [23] are typical cases of this phenomenon). So one may wonder
whether P10 is the only 2-edge-connected cubic graph which does not admit a non-
conflicting nowhere-zero Z2×Z2-flow with respect to any 2-factor F . Unfortunately,
this statement fails as our next result shows.

Theorem 2.22. There exist infinitely many 2-edge-connected cubic graphs G that
do not admit a non-conflicting nowhere-zero Z2 × Z2-flow with respect to F for any
perfect matching F of G.

Proof. For ℓ ≥ 1 take 3ℓ vertex-disjoint copies of P10 − e. Let H1, . . . , H3ℓ be these
graphs. Join H1, . . . , H3ℓ cyclically by paths of length two. Now introduce ℓ new
vertices u1, . . . , uℓ and join each of them to exactly three central vertices of these
paths of length two so that the resulting graph G is cubic (see Figure 9). G is
2-edge-connected.

u1

P10 − e P10 − e

P10 − e P10 − e

Figure 9: Examples of arbitrary large 2-edge-connected cubic graphs.
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Let us show that G does not admit a non-conflicting nowhere-zero Z2 × Z2-flow
with respect to F for any perfect matching F of G. Let F be a perfect matching of
G and let θ be a nowhere-zero Z2 × Z2-flow of G/F . Consider the vertex u1. Then,
there is an edge u1w1 of G such that u1w1 /∈ F . Here w1 is a central vertex of a path
of length two. Thus, there is j, 1 ≤ j ≤ 3ℓ such that the two edges of G that connect
Hj to V (G)\V (Hj) belong to F . Hence, they have the same flow value with respect
to θ. Now, with the same approach as we did in Proposition 2.21 one can show that
Hj contains a conflict with respect to the flow θ.

3 Conclusion and future work

From our perspective there are some questions that deserve further consideration. In
Proposition 2.1 we showed that the smallest counterexample to Conjecture 1.8 is 3-
edge-connected. Hence they do not contain 2-edge-cuts. This prompted Mazzuoccolo
to ask whether P10 is the only 3-edge-connected cubic graph which does not admit a
non-conflicting nowhere-zero Z2×Z2-flow with respect to F for any perfect matching
F of G. Since P10 admits a normal 5-edge-coloring it is not a counterexample to
Conjecture 1.8. Thus, Mazzuoccolo’s statement combined with Proposition 2.1 and
Lemma 2.6 implies Conjecture 1.8.

The author suspects that this statement is not true. Thus, Mazzuoccolo asked
whether P10 is the only cyclically 4-edge-connected cubic graph G which does not
have a non-conflicting nowhere-zero Z2 × Z2-flow with respect to F for any perfect
matching F of G. If this statement is true then cyclically 4-edge-connected cubic
graphs will admit a normal 6-edge-coloring. Unfortunately, as we stated in Remark
2.3 this does not directly imply Conjecture 1.8. Nevertheless, the author thinks
that this is a question deserving further consideration. The author suspects that the
answer to this question should be negative, too. As a result he would like to offer:

Conjecture 3.1. There exist infinitely many cyclically 6-edge-connected cubic graphs
G which do not have a non-conflicting nowhere-zero Z2 × Z2-flow with respect to F
for any perfect matching F of G.

In Conjecture 3.1 for cyclic edge-connectivity we write six and not a larger number
because of the Jaeger-Swart conjecture [17] which predicts that all cyclically 7-edge-
connected cubic graphs are 3-edge-colorable. Thomassen has a related conjecture
that predicts the Hamiltonicity of all cyclically 8-edge-connected cubic graphs. The
latter conjecture is open even when cyclic edge-connectivity is a constant greater
than eight.

Another interesting problem by Mazzuoccolo is the following one:

Problem 3.2. For every integer g ≥ 3 construct infinitely many 3-edge-connected
cubic graphs G of girth at least g that do not admit a non-conflicting nowhere-zero
Z2 × Z2-flow with respect to F for any perfect matching F of G.

This problem is reminiscent of the girth conjecture that was predicting that all
snarks should have bounded girth. Recall that the girth conjecture has been refuted
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by Kochol in [22] where he constructed snarks of arbitrary large girth. Kochol’s
approach has been simplified in papers [20] and [28].

As we mentioned in Observation 2.11 every bipartite cubic graph admits a non-
conflicting flow with respect to every 2-factor F . One can state a conjecture that
predicts the converse: if a cubic graph G admits a non-conflicting flow with respect
to every 2-factor F then G is bipartite. Unfortunately, this statement is not true.
Consider a cubic graph such that its every 2-factor is a hamiltonian cycle (such asK4,
Figure 5). Then it is an obvious counterexample to our conjecture by Observation
2.10. One can construct more connected examples as follows: consider a graph
G which is a ring of diamonds or 2-cycles (see Theorem 2.14). The components of
every 2-factor F of such a graph are even cycles. Hence, they admit a non-conflicting
nowhere-zero Z2 × Z2-flow with respect to F for any perfect matching F of G by
Observation 2.10. These graphs are not bipartite as diamonds contain triangles. The
examples described above are 3-edge-colorable. If one takes the graph K3

2 (Figure
6) and replaces both of its vertices with a P10 − v then the resulting graph is not
3-edge-colorable. However G/F admits a non-conflicting nowhere-zero Z2 × Z2-flow
with respect to every 2-factor F . Thus, as an interesting problem we would like to
offer:

Problem 3.3. Characterize 2-edge-connected cubic graphs in which G/F admits a
non-conflicting nowhere-zero Z2 × Z2-flow with respect to every 2-factor F .

As we mentioned in Remark 2.5 if F contains a triangle then G/F does not
admit a non-conflicting nowhere-zero Z2 × Z2-flow with respect to F . Thus, graphs
satisfying the conditions of Problem 3.3 should not contain a triangle in any of its
2-factor. As rings of diamonds demonstrate this does not necessarily mean that G
should not contain a triangle.

Our last conjecture states:

Conjecture 3.4. Let G be a bridgeless cubic graph containing a hamiltonian path.
Then G/F admits a non-conflicting nowhere-zero Z2 × Z2-flow with respect to some
2-factor F unless G is the Petersen graph.

Conjecture 3.4 implies that if a bridgeless cubic graph G has a vertex z such
that G − z has a hamiltonian cycle then G/F admits a non-conflicting nowhere-
zero Z2 × Z2-flow with respect to some 2-factor F unless G is the Petersen graph.
The latter implies that if G is a cubic graph such that for every vertex z the graph
G− z contains a hamiltonian cycle then G/F admits a non-conflicting nowhere-zero
Z2 × Z2-flow with respect to some 2-factor F unless G is the Petersen graph. Non-
3-edge-colorable bridgeless cubic graphs in which for every vertex z the graph G− z
contains a hamiltonian cycle are called hypo-hamiltonian snarks and examples of
such graphs can be found in [29] and Theorem 2.5 from [49]. The orders for which
hypo-hamiltonian snarks of that order exist are characterized in [7].
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[39] F. Pirot, J. S. Sereni and R. Škrekovski, Variations on the Petersen Colouring
Conjecture, Electron. J. Combin. 27(1) (2020), #P1.81.

[40] M. Preissmann, Sur les colorations des arêtes des graphes cubiques, Thèse de
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