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Abstract

A graph G is k-degenerate if the vertices of G can be successively deleted,
so that when each vertex v is deleted, it has degree at most k in the
remaining graph. The degeneracy D (G) is the smallest k such that G is
k-degenerate. The chromatic number χ (G) is bounded by both 1+D (G)
and 1 + l (G), where l (G) is the length of its longest odd cycle of G. We
show that for 2-connected graphs, D (G) ≤ l (G), and Kl(G)+1 is the only
extremal graph.

1 Introduction

There are many upper bounds for the chromatic number χ (G) of a graph. Let G be a
graph with maximum degree ∆ (G), independence number α (G), longest path lp (G),
degree sequence d1 ≥ · · · ≥ dn, and largest eigenvalue λ1 (G). The bounds χ (G) ≤
1+∆ (G), χ (G) ≤ n+1−α (G), χ (G) ≤ 1+ lp (G), χ (G) ≤ 1+maxi min {di, i− 1},
and χ (G) ≤ 1 + λ1 (G) are well-established [1, 4]. However, all of these bounds are
inferior to a bound based on the degeneracy of a graph.

Definition 1.1. A graph G is k-degenerate if the vertices of G can be successively
deleted, so that when each vertex v is deleted, it has degree at most k in the remaining
graph. The degeneracy D (G) is the smallest k such that G is k-degenerate.

See [3] for a survey of degeneracy and related topics. The degeneracy bound

χ (G) ≤ 1+D (G) follows immediately from the definition. Further, it is not hard to
show that D (G) ≤ min {∆(G) , n− α (G) , lp (G) ,maxi min {di, i− 1} , λ1 (G)} (see
[1, 2]). Thus the degeneracy bound is superior to the other bounds for chromatic
number.

Let l (G) be the odd circumference of a non-bipartite graph G, the length of
its longest odd cycle. Erdös and Hajnal [5] showed that for a non-bipartite graph,
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χ (G) ≤ 1+l (G). This bound can be superior to the degeneracy bound. For example,
Kr,r ∪K3 has degeneracy r when r ≥ 2 and odd circumference 3. But this example
requires two blocks, one bipartite block to make the degeneracy large, and another
containing a relatively short odd cycle. We will show that in the nontrivial case of
2-connected graphs, the odd circumference is at least the degeneracy.

Definitions of terms and notation not defined here appear in [3]. In particular, if
vertices u and v are adjacent, we write u ↔ v, and if they are nonadjacent, we write
u = v.

2 Main Results

We begin with two lemmas on the existence of odd cycles.

Lemma 2.1. If G is a 2-connected graph containing an odd cycle, then any edge

e = uv of G is on a odd cycle.

Proof. Let C be an odd cycle of G and e be not on C. By the vertex form of Menger’s
Theorem, there are independent paths from u and v to some vertices x and y on C.
There are two x−y paths in C whose lengths have opposite parity. Combining one of
them with the x− y path containing e produces an odd cycle in G containing e.

Lemma 2.2. [6] If a non-bipartite 2-connected graph G contains a cycle C of length

2r, r ≥ 2, then it contains an odd cycle of length at least r + 1.

Proof. Let C be a cycle of length 2r containing edge e. Now e is on an odd cycle
C ′, which must leave and return to C at some vertices x and y for which the x − y

distance on C ′ has opposite parity from the x − y distance on C. Then combining
the x− y path on C ′ and the longer x− y path on C forms an odd cycle with length
at least r + 1.

Theorem 2.3. If G is a 2-connected graph containing an odd cycle, then l (G) ≥
D (G).

Proof. Let d = D (G), and H be the maximal subgraph of G with minimum degree
δ (H) = d. Consider a path P = v0v1v2 . . . with maximum length in H, one of whose
ends is v = v0. Now v has at least d neighbors on P (else it could be extended).

Case 1. If v has an even neighbor v2i with 2i ≥ d − 1, we have an odd cycle
v0v1 . . . v2iv0 with length at least d.

Case 2. If v has no even neighbor, then v has an odd neighbor v2i−1, i ≥ d. Thus
G contains a cycle C of length at least 2d. By Lemma 2.2, there is an odd cycle with
length at least d+ 1.

Case 3. The previous cases show that v has both an even neighbor and an odd
neighbor. Suppose v has k ≥ 1 odd neighbors, and at least d− k ≥ 1 even neighbors
up to vd−2. Let v2j−1, j ≥ k, be the largest (odd) neighbor. Then an even neighbor
v2i, 2i ≤ 2j − 1− (d− 2), would create an odd cycle v0v2i . . . v2j−1v0 with length at
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least d. Otherwise all the even neighbors are between 2j − d + 2 and d − 2, which
leaves at most (d−2)−(2j−d+2)

2
+1 = d− j−1 ≤ d−k−1 of them, a contradiction.

This implies that the degeneracy bound is superior to the odd cycle bound for
2-connected graphs.

Corollary 2.4. Let G be a 2-connected graph containing an odd cycle with odd

circumference l (G). Then χ (G) ≤ 1 +D (G) ≤ 1 + l (G).

Kenkre and Vishwanathan [6] characterized the extremal graphs for the bound
χ (G) ≤ 1 + l (G) as those containing Kl(G)+1. Their proof depends on several other
theorems on cycles in graphs. We can provide a proof that depends only on the
previous theorem. This is also a stronger result, since it characterizes graphs with
1 +D (G) = 1 + l (G), rather than χ (G) = 1 + l (G).

Theorem 2.5. Let G be a 2-connected graph with odd circumference l = l (G). Then
D (G) = l (G) if and only if G = Kl+1.

Proof. (⇐) Certainly D (Kl+1) = l (Kl+1) = l.

(⇒) Consider the proof of Theorem 2.3. In Case 3, there must be an odd cycle
with length at least l + 2. In Case 2, there must be an odd cycle of length at
least l + 1. Thus the longest odd cycle has length l only when Case 1 holds. Then
d (v) = D (G) = d, and v has consecutive neighbors vi and vi+1 on P . Then P1 =
v1v2 . . . viv0vi+1 . . . has the same length as P . Then v1 has a neighbor vj on P , j ≥ d,
and v1v2 . . . vjv1 and v1 . . . viv0vi+1 . . . vjv1 are cycles of length at least d and d + 1.
Then d (v1) = d, d is odd, and v1 ↔ vk, 2 ≤ k ≤ d.

Now the path Pi = vivi−1 . . . v1v0vi+1 . . ., i < d, has the same length as P . The
same argument as for v shows that vi ↔ vj, 0 ≤ j ≤ d, i 6= j. Thus v0, . . . , vd induce
Kd+1. If G contains any other vertex x, then it is on a path between some vi and vj,
and this can be used to construct a longer odd cycle. Thus G = Kl+1.

Kenkre and Vishwanathan [6] proved that if G does not contain Kl(G), then
χ (G) ≤ l (G) − 1. To characterize the graphs with D (G) = l (G) − 1, we first
consider l (G) = 3.

Theorem 2.6. Let G be a 2-connected graph with l (G) = 3. Then D (G) = 2 if and

only if G = K2 +Kr, where r ≥ 1.

Proof. (⇐) If G = K2 +Kr, certainly D (G) = 2 and l (G) = 3.

(⇒) Assume the hypothesis and consider a path P = v0v1v2 . . . with maximum
length. Now v0 is not adjacent to an even-numbered vertex other than v2. We
consider two cases.

Suppose v0 ↔ v2 and v3 exists. Now v2 is not a cutvertex. Then one of v0 or v1,
say v1, is adjacent to another vertex, which must be v3, or else there is a longer odd
cycle. Then there cannot be a v4, since some later vertex on P must be adjacent to
one of v0, v1, or v2, which would create a longer odd cycle. There could be another
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vertex u adjacent to v1 or v2 (say v2). Now u cannot be adjacent to v0 or v3, but
it can be adjacent to v1. As before, u cannot have any other neighbors not on P .
Similarly, we find that any other vertex must neighbor v1 and v2, so G = K2 +Kr,
r ≥ 1.

Now suppose v0 = v2. By Lemma 2.1, v0v1 is on a triangle with v0v2i+1 for some
i. But then v1v2i+1 is also on the triangle, so v2i+1 = v3, or else there is a longer
odd cycle. Now we have a copy of K2 +K2 in G, so we can relabel the vertices and
repeat the previous case.

When l (G) ≥ 5, we determine graphs with D (G) = l (G) − 1 given the added
restriction that δ (G) = l (G)− 1.

Theorem 2.7. Let G be a 2-connected graph with l = l (G) ≥ 5 and δ (G) = l − 1.
Then D (G) = l − 1 if and only if G = Kl+1 − rK2, 1 ≤ r ≤ l+1

2
, or G = Kl.

Proof. (⇐) These graphs have δ (G) = D (G) = l (G)− 1.

(⇒) Let G be 2-connected graph with l ≥ 5 and D (G) = δ (G) = l−1. Consider
a path P = v0v1v2 . . . with maximum length. We say a long odd cycle is one with
length more than l. Now v0 is not adjacent to an even-numbered vertex beyond vl,
since this would create a long odd cycle. Also, v0 is not adjacent to an odd-numbered
vertex beyond v2l−3, since by Lemma 2.2 an even cycle of length at least 2l would
force a long odd cycle.

Case 1. Suppose v0 has adjacent neighbors vi and vi+1 on P , i ≤ l − 1. Then
v1v2 . . . viv0vi+1 . . . has the same length as P . Now v1 has a neighbor vj on P ,
j ≥ l − 1. Thus v1 has no neighbor beyond vl, or else one of v1v2 . . . vjv1 and
v1 . . . viv0vi+1 . . . vjv1 is a long odd cycle.

If v0 has a neighbor beyond vl+2, v1 being adjacent to v3 or v5 would create a
long odd cycle. Then v1 has at most l − 2 neighbors, so v0 has no neighbor beyond
vl+2.

Suppose further that v0 ↔ vl+2. If v1 ↔ v3, v0v1v3 . . . vl+2v0 is a long odd cycle,
so v1 is adjacent to v4, . . . , vl. If v0 ↔ v2, v0v2 . . . vl+2v0 is a long odd cycle, and if
v0 ↔ v3, v0v3v4v1v5 . . . vl+2v0 is a long odd cycle. Thus v0 is adjacent to v4, . . . , vl.
Now v2 has no neighbor beyond vl+1, and v2 = v4, so v2 is adjacent to v5, . . . , vl+1.
Then v2v3v4v0v1v5 . . . vl+1v2 is a long odd cycle, a contradiction.

Case 2. If v0 has no adjacent neighbors, its neighbors are the odd vertices
v1, v3, . . . , v2l−3. Now v2l−4v2l−5 . . . v0v2l−3 . . . is a path with the same length as P . If
v2l−4 has any neighbor beyond v2l−3, we find a cycle with length more than 2l − 2,
which by Lemma 2.2 forces a long odd cycle. If v2l−4 has adjacent neighbors on P ,
we can relabel P and repeat the argument from Case 1. Thus v2l−4 is adjacent to
odd vertices v1, v3, . . . , v2l−3. Similarly, we find paths of maximum length that start
at v2, v4, . . . , v2l−6. Adding edges while avoiding creating a long odd cycle eventually
induces Kl−1,l−1 on {v0, . . . , v2l−3}, but this contains no odd cycle. Adding any path
to create an odd cycle will create a long odd cycle, a contradiction.

Thus v0 has adjacent neighbors and no neighbor beyond vl, so v0 is nonadjacent



A. BICKLE/AUSTRALAS. J. COMBIN. 91 (3) (2025), 387–391 391

to at most one vertex in {v1, . . . , vl}. We want to show that each vertex before vl on
P is the start of a path with the same length as P . If v0 ↔ vi+1, then vi . . . v0vi+1 . . .

is such a path. If v0 = v2, v1v2v3v0v4 . . . is a maximum length path.

If v0 = vj, j < l, there is a maximum length path vjvj−1 . . . v0vj+1 . . . starting
at vj. By the previous paragraph, there is also a maximum length path starting at
vj−1. If v0 = vl and vi ↔ vl, i ≤ l − 2, then vl . . . vi+1v0 . . . vivl . . . is a maximum
length path.

Since each vertex in {v0, . . . , vl−1} is the start of a path of maximum length,
there are no vertices outside {v0, . . . , vl}. Thus G ⊆ Kl+1. To have D (G) = l − 1, a
matching with at least one edge must be deleted.

If vi = vl, 0 ≤ i ≤ l − 2, then vl−1 is a cut-vertex. Thus vl does not exist, so
G ⊆ Kl. To have D (G) = l − 1, G = Kl.

Any graph with χ (G) = l (G) contains a critical subgraph with δ (G) ≥ l (G)−1.
Of the graphs in Theorem 2.7, the only l-critical subgraph is Kl. Thus Theorem 2.7
implies the result in [6] that if G does not contain Kl(G), then χ (G) ≤ l (G)− 1.

Without the restriction that δ (G) = l − 1, there are other graphs with D (G) =
l − 1. One example is the graphs formed from Kl by adding r ≥ 0 vertices, each
adjacent to the same two vertices in Kl.
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