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Abstract

A graph G is k-degenerate if the vertices of G' can be successively deleted,
so that when each vertex v is deleted, it has degree at most k£ in the
remaining graph. The degeneracy D (G) is the smallest & such that G is
k-degenerate. The chromatic number x (G) is bounded by both 1+ D (G)
and 1+ [ (G), where [ (G) is the length of its longest odd cycle of G. We
show that for 2-connected graphs, D (G) < 1(G), and Kyg)41 is the only
extremal graph.

1 Introduction

There are many upper bounds for the chromatic number x (G) of a graph. Let G be a
graph with maximum degree A (G), independence number « (G), longest path Ip (G),
degree sequence d; > --- > d,, and largest eigenvalue A\; (G). The bounds x (G) <
1+A(G), x (G) <n+1—-a(G), x (G) <1+Ip(G), x (G) < 14+max; min {d;,i — 1},
and x (G) < 1+ A1 (G) are well-established [1, 4]. However, all of these bounds are
inferior to a bound based on the degeneracy of a graph.

Definition 1.1. A graph G is k-degenerate if the vertices of G can be successively
deleted, so that when each vertex v is deleted, it has degree at most k in the remaining
graph. The degeneracy D (G) is the smallest k such that G is k-degenerate.

See [3] for a survey of degeneracy and related topics. The degeneracy bound
X (G) < 1+ D (G) follows immediately from the definition. Further, it is not hard to
show that D (G) < min {A(G),n —a(G),Ilp(G),max; min {d;,i — 1} , A\ (G)} (see
[1, 2]). Thus the degeneracy bound is superior to the other bounds for chromatic
number.

Let [ (G) be the odd circumference of a non-bipartite graph G, the length of
its longest odd cycle. Erdos and Hajnal [5] showed that for a non-bipartite graph,
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X (G) < 141 (G). This bound can be superior to the degeneracy bound. For example,
K, , U K3 has degeneracy r when r > 2 and odd circumference 3. But this example
requires two blocks, one bipartite block to make the degeneracy large, and another
containing a relatively short odd cycle. We will show that in the nontrivial case of
2-connected graphs, the odd circumference is at least the degeneracy.

Definitions of terms and notation not defined here appear in [3]. In particular, if
vertices v and v are adjacent, we write u <> v, and if they are nonadjacent, we write
U > V.

2 Main Results

We begin with two lemmas on the existence of odd cycles.

Lemma 2.1. If G is a 2-connected graph containing an odd cycle, then any edge
e =uv of G is on a odd cycle.

Proof. Let C' be an odd cycle of G and e be not on C'. By the vertex form of Menger’s
Theorem, there are independent paths from u and v to some vertices x and y on C.
There are two x —y paths in C' whose lengths have opposite parity. Combining one of
them with the x — y path containing e produces an odd cycle in G containing e. [

Lemma 2.2. [6] If a non-bipartite 2-connected graph G contains a cycle C' of length
2r, r > 2, then it contains an odd cycle of length at least r + 1.

Proof. Let C be a cycle of length 2r containing edge e. Now e is on an odd cycle
C’, which must leave and return to C' at some vertices x and y for which the x — y
distance on C’ has opposite parity from the x — y distance on C. Then combining
the x — y path on C’ and the longer  — y path on C forms an odd cycle with length
at least r 4 1. O

Theorem 2.3. If G is a 2-connected graph containing an odd cycle, then [ (G) >
D (G).

Proof. Let d = D (G), and H be the maximal subgraph of G with minimum degree
0 (H) = d. Consider a path P = vyv1v, . .. with maximum length in H, one of whose
ends is v = vyg. Now v has at least d neighbors on P (else it could be extended).

Case 1. If v has an even neighbor vy; with 2 > d — 1, we have an odd cycle
VoUy . . . U9;Ug With length at least d.

Case 2. If v has no even neighbor, then v has an odd neighbor vg; 1, ¢ > d. Thus
G contains a cycle C' of length at least 2d. By Lemma 2.2, there is an odd cycle with
length at least d + 1.

Case 3. The previous cases show that v has both an even neighbor and an odd
neighbor. Suppose v has k > 1 odd neighbors, and at least d — k > 1 even neighbors
up to vg_o. Let vy;_1, j > k, be the largest (odd) neighbor. Then an even neighbor
Vg, 20 < 2j —1 — (d — 2), would create an odd cycle vovy; . .. v2;_1v9 with length at
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least d. Otherwise all the even neighbors are between 2j — d + 2 and d — 2, which
leaves at most w +1=d—j—1<d—k—1 of them, a contradiction. []

This implies that the degeneracy bound is superior to the odd cycle bound for
2-connected graphs.

Corollary 2.4. Let G be a 2-connected graph containing an odd cycle with odd
circumference [ (G). Then x (G) <1+ D (G) <1+4+1(G).

Kenkre and Vishwanathan [6] characterized the extremal graphs for the bound
X (G) £ 1+1(G) as those containing Kjgy41. Their proof depends on several other
theorems on cycles in graphs. We can provide a proof that depends only on the
previous theorem. This is also a stronger result, since it characterizes graphs with
14+ D (G) = 1+1(GQ), rather than x (G) =1+ 1(G).

Theorem 2.5. Let G be a 2-connected graph with odd circumference | = 1(G). Then
D (G) =1(G) if and only if G = K;41.

Proof. (<) Certainly D (K1) =1 (Kj41) = L.

(=) Consider the proof of Theorem 2.3. In Case 3, there must be an odd cycle
with length at least [ + 2. In Case 2, there must be an odd cycle of length at
least [ + 1. Thus the longest odd cycle has length [ only when Case 1 holds. Then
d(v) = D(G) = d, and v has consecutive neighbors v; and v;41 on P. Then P, =
V1V2 ... V;VoVi41 - . . has the same length as P. Then v; has a neighbor v; on P, j > d,

and vivy...v;v1 and vy ...V VoVi41 ... VU1 are cycles of length at least d and d + 1.
Then d (vy) = d, d is odd, and vy <> vy, 2 < k < d.

Now the path P, = vv;_1...0190V11 ..., © < d, has the same length as P. The

same argument as for v shows that v; <> v;, 0 < 7 <d, i # j. Thus vy, ..., v4 induce
Kg41. If G contains any other vertex z, then it is on a path between some v; and v;,
and this can be used to construct a longer odd cycle. Thus G = K. O

Kenkre and Vishwanathan [6] proved that if G does not contain Kj), then
X (G) < I(G) — 1. To characterize the graphs with D (G) = [(G) — 1, we first
consider [ (G) = 3.

Theorem 2.6. Let G be a 2-connected graph with [ (G) = 3. Then D (G) = 2 if and
only if G = Ky + K., where r > 1.

Proof. (<) If G = Ky + K, certainly D (G) =2 and [ (G) = 3.
(=) Assume the hypothesis and consider a path P = vyv vy ... with maximum

length. Now vy is not adjacent to an even-numbered vertex other than vy,. We
consider two cases.

Suppose vy <+ v9 and vz exists. Now vy is not a cutvertex. Then one of vy or vy,
say vy, is adjacent to another vertex, which must be v3, or else there is a longer odd
cycle. Then there cannot be a vy, since some later vertex on P must be adjacent to
one of vy, vy, or ve, which would create a longer odd cycle. There could be another
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vertex u adjacent to vy or vy (say vy). Now u cannot be adjacent to vy or vz, but
it can be adjacent to v;. As before, u cannot have any other neighbors not on P.
Similarly, we find that any other vertex must neighbor v; and v,, so G = Ky + K,
r>1.

Now suppose vg <~ v5. By Lemma 2.1, vy is on a triangle with vgvg; 1 for some
1. But then vyvy; 1 is also on the triangle, so vy; 11 = w3, or else there is a longer
odd cycle. Now we have a copy of Ky + K, in G, so we can relabel the vertices and
repeat the previous case. 0

When [ (G) > 5, we determine graphs with D (G) = [ (G) — 1 given the added
restriction that 0 (G) =1 (G) — 1.

Theorem 2.7. Let G be a 2-connected graph with | =1(G) > 5 and 6 (G) =1 — 1.
Then D (G) =1—1if and only if G = K11 —rKs, 1 <r < Bl or G =K,.
Proof. (<) These graphs have 6 (G) = D (G) =1(G) — 1.

(=) Let G be 2-connected graph with [ > 5 and D (G) = 0 (G) = [ — 1. Consider
a path P = vyvivy ... with maximum length. We say a long odd cycle is one with
length more than [. Now v, is not adjacent to an even-numbered vertex beyond vy,
since this would create a long odd cycle. Also, vg is not adjacent to an odd-numbered
vertex beyond wy;_3, since by Lemma 2.2 an even cycle of length at least 2] would
force a long odd cycle.

Case 1. Suppose vy has adjacent neighbors v; and v;,; on P, ¢ <[ — 1. Then
V1V2 ... VjVoVi41 - .. has the same length as P. Now wv; has a neighbor v; on P,
j = 1l — 1. Thus v; has no neighbor beyond v;, or else one of vjvy...v;v; and
V1 ... VU041 ... VU1 is a long odd cycle.

If vy has a neighbor beyond v;.5, v; being adjacent to vs or vs would create a
long odd cycle. Then v; has at most [ — 2 neighbors, so vy has no neighbor beyond
Vi4-2-

Suppose further that vy <> vio. If v <> v3, Vov1V3 ... V02V is a long odd cycle,
so vy is adjacent to vy, ..., v;. If vy > v9, VoUa ... U2y 18 & long odd cycle, and if
Vg 4> Uz, VU3V U1U5 . .. Uty is a long odd cycle. Thus vy is adjacent to vy, ..., v;.
Now v, has no neighbor beyond v;,1, and vy <~ vy, so vy is adjacent to vs, ..., v;41.
Then vov3v4vVU1V5 . .. V11102 1S & long odd cycle, a contradiction.

Case 2. If vy has no adjacent neighbors, its neighbors are the odd vertices
V1, U3, ..., Vg _3. NOW VUgy_4Ug_5...0Ug_3 ... 18 a path with the same length as P. If
Vg4 has any neighbor beyond wvq;_3, we find a cycle with length more than 27 — 2,
which by Lemma 2.2 forces a long odd cycle. If vy, 4 has adjacent neighbors on P,
we can relabel P and repeat the argument from Case 1. Thus vy _4 is adjacent to
odd vertices vy, vs, ..., vy_3. Similarly, we find paths of maximum length that start
at vg, vy, ..., vy_g. Adding edges while avoiding creating a long odd cycle eventually
induces K;_1,-1 on {vp,...,vy_3}, but this contains no odd cycle. Adding any path
to create an odd cycle will create a long odd cycle, a contradiction.

Thus vy has adjacent neighbors and no neighbor beyond v;, so vy is nonadjacent
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to at most one vertex in {vq,...,v;}. We want to show that each vertex before v; on
P is the start of a path with the same length as P. If vy <> v;11, then v; ... vov41 ...
is such a path. If vy <» v9, V1V2U3VYVy . .. is & maximum length path.

If vg +» v;, 7 < [, there is a maximum length path v;v;_y...vv;41 ... starting
at v;. By the previous paragraph, there is also a maximum length path starting at

vj_1. If vg «» vy and v; < v, @ < 1 — 2, then vy ... v; 1100 ... 007 .. is & maximum
length path.
Since each vertex in {vg,...,v_1} is the start of a path of maximum length,

there are no vertices outside {vg,...,v;}. Thus G C K;44. To have D (G) =1—1, a
matching with at least one edge must be deleted.

If v; «» v, 0 < i <1 —2, then v;_; is a cut-vertex. Thus v; does not exist, so
G CK;. Tohave D(G)=1-1,G =K. O

Any graph with x (G) = [ (G) contains a critical subgraph with § (G) > [ (G) — 1.
Of the graphs in Theorem 2.7, the only [-critical subgraph is K;. Thus Theorem 2.7
implies the result in [6] that if G' does not contain K¢, then x (G) < 1(G) — 1.

Without the restriction that 6 (G) = [ — 1, there are other graphs with D (G) =
[ — 1. One example is the graphs formed from K; by adding r > 0 vertices, each
adjacent to the same two vertices in Kj.
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