Comparing degeneracy and odd cycle bounds for chromatic number

Allan Bickle

Department of Mathematics Purdue University 610 Purdue Mall, West Lafayette IN 47907, U.S.A. aebickle@purdue.edu

Abstract

A graph G is k-degenerate if the vertices of G can be successively deleted, so that when each vertex v is deleted, it has degree at most k in the remaining graph. The degeneracy D(G) is the smallest k such that G is k-degenerate. The chromatic number $\chi(G)$ is bounded by both 1+D(G)and 1+l(G), where l(G) is the length of its longest odd cycle of G. We show that for 2-connected graphs, $D(G) \leq l(G)$, and $K_{l(G)+1}$ is the only extremal graph.

1 Introduction

There are many upper bounds for the chromatic number $\chi(G)$ of a graph. Let G be a graph with maximum degree $\Delta(G)$, independence number $\alpha(G)$, longest path lp(G), degree sequence $d_1 \geq \cdots \geq d_n$, and largest eigenvalue $\lambda_1(G)$. The bounds $\chi(G) \leq 1 + \Delta(G), \chi(G) \leq n + 1 - \alpha(G), \chi(G) \leq 1 + lp(G), \chi(G) \leq 1 + \max_i \min \{d_i, i - 1\}$, and $\chi(G) \leq 1 + \lambda_1(G)$ are well-established [1, 4]. However, all of these bounds are inferior to a bound based on the degeneracy of a graph.

Definition 1.1. A graph G is k-degenerate if the vertices of G can be successively deleted, so that when each vertex v is deleted, it has degree at most k in the remaining graph. The degeneracy D(G) is the smallest k such that G is k-degenerate.

See [3] for a survey of degeneracy and related topics. The degeneracy bound $\chi(G) \leq 1 + D(G)$ follows immediately from the definition. Further, it is not hard to show that $D(G) \leq \min \{\Delta(G), n - \alpha(G), lp(G), \max_i \min \{d_i, i - 1\}, \lambda_1(G)\}$ (see [1, 2]). Thus the degeneracy bound is superior to the other bounds for chromatic number.

Let l(G) be the *odd circumference* of a non-bipartite graph G, the length of its longest odd cycle. Erdös and Hajnal [5] showed that for a non-bipartite graph,

 $\chi(G) \leq 1+l(G)$. This bound can be superior to the degeneracy bound. For example, $K_{r,r} \cup K_3$ has degeneracy r when $r \geq 2$ and odd circumference 3. But this example requires two blocks, one bipartite block to make the degeneracy large, and another containing a relatively short odd cycle. We will show that in the nontrivial case of 2-connected graphs, the odd circumference is at least the degeneracy.

Definitions of terms and notation not defined here appear in [3]. In particular, if vertices u and v are adjacent, we write $u \leftrightarrow v$, and if they are nonadjacent, we write $u \leftrightarrow v$.

2 Main Results

We begin with two lemmas on the existence of odd cycles.

Lemma 2.1. If G is a 2-connected graph containing an odd cycle, then any edge e = uv of G is on a odd cycle.

Proof. Let C be an odd cycle of G and e be not on C. By the vertex form of Menger's Theorem, there are independent paths from u and v to some vertices x and y on C. There are two x - y paths in C whose lengths have opposite parity. Combining one of them with the x - y path containing e produces an odd cycle in G containing e. \Box

Lemma 2.2. [6] If a non-bipartite 2-connected graph G contains a cycle C of length $2r, r \ge 2$, then it contains an odd cycle of length at least r + 1.

Proof. Let C be a cycle of length 2r containing edge e. Now e is on an odd cycle C', which must leave and return to C at some vertices x and y for which the x - y distance on C' has opposite parity from the x - y distance on C. Then combining the x - y path on C' and the longer x - y path on C forms an odd cycle with length at least r + 1.

Theorem 2.3. If G is a 2-connected graph containing an odd cycle, then $l(G) \ge D(G)$.

Proof. Let d = D(G), and H be the maximal subgraph of G with minimum degree $\delta(H) = d$. Consider a path $P = v_0 v_1 v_2 \dots$ with maximum length in H, one of whose ends is $v = v_0$. Now v has at least d neighbors on P (else it could be extended).

Case 1. If v has an even neighbor v_{2i} with $2i \ge d-1$, we have an odd cycle $v_0v_1 \ldots v_{2i}v_0$ with length at least d.

Case 2. If v has no even neighbor, then v has an odd neighbor v_{2i-1} , $i \ge d$. Thus G contains a cycle C of length at least 2d. By Lemma 2.2, there is an odd cycle with length at least d + 1.

Case 3. The previous cases show that v has both an even neighbor and an odd neighbor. Suppose v has $k \ge 1$ odd neighbors, and at least $d - k \ge 1$ even neighbors up to v_{d-2} . Let v_{2j-1} , $j \ge k$, be the largest (odd) neighbor. Then an even neighbor v_{2i} , $2i \le 2j - 1 - (d-2)$, would create an odd cycle $v_0v_{2i} \dots v_{2j-1}v_0$ with length at

least d. Otherwise all the even neighbors are between 2j - d + 2 and d - 2, which leaves at most $\frac{(d-2)-(2j-d+2)}{2} + 1 = d - j - 1 \leq d - k - 1$ of them, a contradiction. \Box

This implies that the degeneracy bound is superior to the odd cycle bound for 2-connected graphs.

Corollary 2.4. Let G be a 2-connected graph containing an odd cycle with odd circumference l(G). Then $\chi(G) \leq 1 + D(G) \leq 1 + l(G)$.

Kenkre and Vishwanathan [6] characterized the extremal graphs for the bound $\chi(G) \leq 1 + l(G)$ as those containing $K_{l(G)+1}$. Their proof depends on several other theorems on cycles in graphs. We can provide a proof that depends only on the previous theorem. This is also a stronger result, since it characterizes graphs with 1 + D(G) = 1 + l(G), rather than $\chi(G) = 1 + l(G)$.

Theorem 2.5. Let G be a 2-connected graph with odd circumference l = l(G). Then D(G) = l(G) if and only if $G = K_{l+1}$.

Proof. (\Leftarrow) Certainly $D(K_{l+1}) = l(K_{l+1}) = l$.

 (\Rightarrow) Consider the proof of Theorem 2.3. In Case 3, there must be an odd cycle with length at least l + 2. In Case 2, there must be an odd cycle of length at least l + 1. Thus the longest odd cycle has length l only when Case 1 holds. Then d(v) = D(G) = d, and v has consecutive neighbors v_i and v_{i+1} on P. Then $P_1 =$ $v_1v_2 \ldots v_iv_0v_{i+1} \ldots$ has the same length as P. Then v_1 has a neighbor v_j on $P, j \ge d$, and $v_1v_2 \ldots v_jv_1$ and $v_1 \ldots v_iv_0v_{i+1} \ldots v_jv_1$ are cycles of length at least d and d + 1. Then $d(v_1) = d$, d is odd, and $v_1 \leftrightarrow v_k$, $2 \le k \le d$.

Now the path $P_i = v_i v_{i-1} \dots v_1 v_0 v_{i+1} \dots, i < d$, has the same length as P. The same argument as for v shows that $v_i \leftrightarrow v_j, 0 \le j \le d, i \ne j$. Thus v_0, \dots, v_d induce K_{d+1} . If G contains any other vertex x, then it is on a path between some v_i and v_j , and this can be used to construct a longer odd cycle. Thus $G = K_{l+1}$. \Box

Kenkre and Vishwanathan [6] proved that if G does not contain $K_{l(G)}$, then $\chi(G) \leq l(G) - 1$. To characterize the graphs with D(G) = l(G) - 1, we first consider l(G) = 3.

Theorem 2.6. Let G be a 2-connected graph with l(G) = 3. Then D(G) = 2 if and only if $G = K_2 + \overline{K}_r$, where $r \ge 1$.

Proof. (\Leftarrow) If $G = K_2 + \overline{K}_r$, certainly D(G) = 2 and l(G) = 3.

 (\Rightarrow) Assume the hypothesis and consider a path $P = v_0 v_1 v_2 \dots$ with maximum length. Now v_0 is not adjacent to an even-numbered vertex other than v_2 . We consider two cases.

Suppose $v_0 \leftrightarrow v_2$ and v_3 exists. Now v_2 is not a cutvertex. Then one of v_0 or v_1 , say v_1 , is adjacent to another vertex, which must be v_3 , or else there is a longer odd cycle. Then there cannot be a v_4 , since some later vertex on P must be adjacent to one of v_0 , v_1 , or v_2 , which would create a longer odd cycle. There could be another

vertex u adjacent to v_1 or v_2 (say v_2). Now u cannot be adjacent to v_0 or v_3 , but it can be adjacent to v_1 . As before, u cannot have any other neighbors not on P. Similarly, we find that any other vertex must neighbor v_1 and v_2 , so $G = K_2 + \overline{K}_r$, $r \ge 1$.

Now suppose $v_0 \nleftrightarrow v_2$. By Lemma 2.1, v_0v_1 is on a triangle with v_0v_{2i+1} for some i. But then v_1v_{2i+1} is also on the triangle, so $v_{2i+1} = v_3$, or else there is a longer odd cycle. Now we have a copy of $K_2 + \overline{K}_2$ in G, so we can relabel the vertices and repeat the previous case.

When $l(G) \ge 5$, we determine graphs with D(G) = l(G) - 1 given the added restriction that $\delta(G) = l(G) - 1$.

Theorem 2.7. Let G be a 2-connected graph with $l = l(G) \ge 5$ and $\delta(G) = l - 1$. Then D(G) = l - 1 if and only if $G = K_{l+1} - rK_2$, $1 \le r \le \frac{l+1}{2}$, or $G = K_l$.

Proof. (\Leftarrow) These graphs have $\delta(G) = D(G) = l(G) - 1$.

 (\Rightarrow) Let G be 2-connected graph with $l \geq 5$ and $D(G) = \delta(G) = l - 1$. Consider a path $P = v_0 v_1 v_2 \dots$ with maximum length. We say a *long odd cycle* is one with length more than l. Now v_0 is not adjacent to an even-numbered vertex beyond v_l , since this would create a long odd cycle. Also, v_0 is not adjacent to an odd-numbered vertex beyond v_{2l-3} , since by Lemma 2.2 an even cycle of length at least 2l would force a long odd cycle.

Case 1. Suppose v_0 has adjacent neighbors v_i and v_{i+1} on P, $i \leq l-1$. Then $v_1v_2\ldots v_iv_0v_{i+1}\ldots$ has the same length as P. Now v_1 has a neighbor v_j on P, $j \geq l-1$. Thus v_1 has no neighbor beyond v_l , or else one of $v_1v_2\ldots v_jv_1$ and $v_1\ldots v_iv_0v_{i+1}\ldots v_jv_1$ is a long odd cycle.

If v_0 has a neighbor beyond v_{l+2} , v_1 being adjacent to v_3 or v_5 would create a long odd cycle. Then v_1 has at most l-2 neighbors, so v_0 has no neighbor beyond v_{l+2} .

Suppose further that $v_0 \leftrightarrow v_{l+2}$. If $v_1 \leftrightarrow v_3$, $v_0v_1v_3 \ldots v_{l+2}v_0$ is a long odd cycle, so v_1 is adjacent to v_4, \ldots, v_l . If $v_0 \leftrightarrow v_2$, $v_0v_2 \ldots v_{l+2}v_0$ is a long odd cycle, and if $v_0 \leftrightarrow v_3$, $v_0v_3v_4v_1v_5 \ldots v_{l+2}v_0$ is a long odd cycle. Thus v_0 is adjacent to v_4, \ldots, v_l . Now v_2 has no neighbor beyond v_{l+1} , and $v_2 \nleftrightarrow v_4$, so v_2 is adjacent to v_5, \ldots, v_{l+1} . Then $v_2v_3v_4v_0v_1v_5 \ldots v_{l+1}v_2$ is a long odd cycle, a contradiction.

Case 2. If v_0 has no adjacent neighbors, its neighbors are the odd vertices $v_1, v_3, \ldots, v_{2l-3}$. Now $v_{2l-4}v_{2l-5} \ldots v_0v_{2l-3} \ldots$ is a path with the same length as P. If v_{2l-4} has any neighbor beyond v_{2l-3} , we find a cycle with length more than 2l-2, which by Lemma 2.2 forces a long odd cycle. If v_{2l-4} has adjacent neighbors on P, we can relabel P and repeat the argument from Case 1. Thus v_{2l-4} is adjacent to odd vertices $v_1, v_3, \ldots, v_{2l-3}$. Similarly, we find paths of maximum length that start at $v_2, v_4, \ldots, v_{2l-6}$. Adding edges while avoiding creating a long odd cycle eventually induces $K_{l-1,l-1}$ on $\{v_0, \ldots, v_{2l-3}\}$, but this contains no odd cycle. Adding any path to create an odd cycle will create a long odd cycle, a contradiction.

Thus v_0 has adjacent neighbors and no neighbor beyond v_l , so v_0 is nonadjacent

to at most one vertex in $\{v_1, \ldots, v_l\}$. We want to show that each vertex before v_l on P is the start of a path with the same length as P. If $v_0 \leftrightarrow v_{i+1}$, then $v_i \ldots v_0 v_{i+1} \ldots$ is such a path. If $v_0 \nleftrightarrow v_2$, $v_1 v_2 v_3 v_0 v_4 \ldots$ is a maximum length path.

If $v_0 \nleftrightarrow v_j$, j < l, there is a maximum length path $v_j v_{j-1} \dots v_0 v_{j+1} \dots$ starting at v_j . By the previous paragraph, there is also a maximum length path starting at v_{j-1} . If $v_0 \nleftrightarrow v_l$ and $v_i \leftrightarrow v_l$, $i \leq l-2$, then $v_l \dots v_{i+1} v_0 \dots v_i v_l \dots$ is a maximum length path.

Since each vertex in $\{v_0, \ldots, v_{l-1}\}$ is the start of a path of maximum length, there are no vertices outside $\{v_0, \ldots, v_l\}$. Thus $G \subseteq K_{l+1}$. To have D(G) = l - 1, a matching with at least one edge must be deleted.

If $v_i \nleftrightarrow v_l$, $0 \le i \le l-2$, then v_{l-1} is a cut-vertex. Thus v_l does not exist, so $G \subseteq K_l$. To have D(G) = l-1, $G = K_l$.

Any graph with $\chi(G) = l(G)$ contains a critical subgraph with $\delta(G) \ge l(G) - 1$. Of the graphs in Theorem 2.7, the only *l*-critical subgraph is K_l . Thus Theorem 2.7 implies the result in [6] that if G does not contain $K_{l(G)}$, then $\chi(G) \le l(G) - 1$.

Without the restriction that $\delta(G) = l - 1$, there are other graphs with D(G) = l - 1. One example is the graphs formed from K_l by adding $r \ge 0$ vertices, each adjacent to the same two vertices in K_l .

References

- [1] A. Bickle, The k-Cores of a Graph, Ph.D. Dissertation, Western Michigan University, 2010.
- [2] A. Bickle, Fundamentals of Graph Theory, AMS (2020).
- [3] A. Bickle, A survey of maximal k-degenerate graphs and k-trees, Theory and Applications of Graphs 0(1) (2024), Article 5.
- [4] G. Chartrand and P. Zhang, Chromatic Graph Theory, CRC Press, (2009).
- [5] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar. 17 (1-2) (1966), 61–99.
- [6] S. Kenkre and S. Vishwanathan, A bound on the chromatic number using the longest odd cycle length, J. Graph Theory 54 (4) (2007), 267–276.

(Received 15 June 2024; revised 1 Dec 2024)