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Abstract

A derangement is a permutation with no fixed point. We refer to permu-
tations of {1, 2, . . . , n} with at most one fixed point as near-derangements,

and study the corresponding set of permutation matrices P
(≤1)
n . We de-

termine a basis of the linear span of P
(≤1)
n consisting of matrices in P

(≤1)
n .

Also, we study the polytope determined by P
(≤1)
n . In addition, we inves-

tigate the polytope of all n× n doubly stochastic matrices with trace at
most 1 and determine its extreme points, not all of which are permutation
matrices.

1 Introduction

Let Sn be the set of permutations of {1, 2, . . . , n} with corresponding set Pn of n×n
permutation matrices. We call a permutation with at most one fixed point a near-

derangement and call the corresponding permutation matrix a near-derangement

matrix. Near-derangement matrices have at most one 1 on its main diagonal. We
denote the set of near-derangements of {1, 2, . . . , n} by S

(≤1)
n and the corresponding

set of n × n near-derangement matrices by P
(≤1)
n . The set P

(≤1)
n strictly contains

the set Dn of permutation matrices corresponding to the derangements of size n
(permutations without fixed points).
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Let Dn = |Dn| be the n th derangement number. It follows that

|P (≤1)
n | = Dn + nDn−1

where Dn = ⌊(n!+1)/e⌋ with e as Euler’s number. Derangements have been studied
extensively in combinatorics, and we refer to [3] for a survey of the subject, including
an historic account starting with a question by Montmort in 1708 on a certain card
game.

Let Mn denote the (linear) space of real n×n matrices. A matrix A = [aij] ∈ Mn

is doubly stochastic provided that

aij ≥ 0 (i, j ≤ n),
n

∑

j=1

aij = 1 (i ≤ n) and
n

∑

i=1

aij = 1 (j ≤ n).

We let Ωn denote the Birkhoff polytope consisting of all n × n doubly stochastic
matrices. A classical result in combinatorial matrix theory [11] is the Birkhoff-
von Neumann theorem that the convex hull conv (Pn) of the n × n permutation
matrices equals the set of n × n doubly stochastic matrices. This result is also
central in combinatorial optimization and matching theory, see [19, 20, 21]. A general
discussion of many properties of Ωn is found in [7]. In [6] it is shown that every d-
dimensional polytope whose vertices are (0,1)-vectors is affinely equivalent to a face of
Ωn, indeed a face of the subpolytope of Ωn determined by the (n− 1)! permutation
matrices that are cycles of length n, the asymmetric traveling salesman polytope.
The Chan-Robbins-Yuen polytope CRYn defined as the convex hull of the n × n
permutation matrices P = [pij ] such that pij = 0 for all i, j with i − j ≥ 2 is a face
of the Birkhoff polytope (see e.g. [16]).

In particular, there are several related studies on doubly stochastic matrices con-
strained in some way, such as [9, 14]. The goal of this paper is to investigate the

class P
(≤1)
n and the related polytope

Ω(≤1)
n = {A ∈ Ωn : trace(A) ≤ 1}.

We observe that the set P
(≤1)
n of near-derangement matrices consists of the integral

matrices in Ω
(≤1)
n .

The following inclusions hold

Dn ⊆ P (≤1)
n , and conv (Dn) ⊆ conv (P (≤1)

n ) ⊆ Ω(≤1)
n ⊆ Ωn. (1)

We call conv (Dn) the derangement polytope, conv (P (≤1)) the near-derangement poly-

tope, and Ω
(≤1)
n the extended near-derangement polytope. The polytope conv (Dn) is

a face of the Birkhoff polytope Ωn; it consists of all doubly stochastic matrices A
that satisfy A ≤ Jn − In where Jn is the n× n matrix of all 1’s.

This paper is devoted to a study of these polytopes and the corresponding sets
of permutation matrices.

We assume hereafter that n ≥ 2. Then all of the inclusions in (1) are strict.

The polytopes Ω
(≤1)
n and conv (P

(≤1)
n ) are both closed under taking the transpose of
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a matrix. Later we show that the dimension of Ω
(≤1)
n is (n − 1)2, the same as the

dimension of Ωn.

We remark that a related subpolytope of Ωn, defined as the convex hull of all
permutation matrices except the identity matrix, was investigated in detail in [7].

Example 1.1. Let n = 2. Then Ω2 consists of all matrices

A(α) =

[

α 1− α
1− α α

]

where 0 ≤ α ≤ 1. The identity matrix I2 ∈ Ω2, but it is not in Ω
(≤1)
2 as its trace is

2. The following two matrices both lie in Ω
(≤1)
2

[

0 1
1 0

]

and

[

1/2 1/2
1/2 1/2

]

.

It follows from a general result we establish later that Ω
(≤1)
2 is the convex hull of

these two matrices, and, in fact, both matrices are extreme points of Ω
(≤1)
2 . ⋄

Let

I2 =

[

1 0
0 1

]

and L2 =

[

0 1
1 0

]

.

An interchange in a permutation matrix P = [pij] is to replace a 2 × 2 submatrix
equal to I2 with L2, or vice versa. Let G(Dn) denote the graph with vertex set Dn and
edges corresponding to interchanges. Then it can be shown that G(Dn) is connected
for all n except n = 3; see Theorem 1 in [15]. A similar problem was discussed in
connection with Gray codes in [4]. Concerning near-derangement matrices one can

also show that the graph G(P
(≤1)
n ) is connected (this graph has vertex set P

(≤1)
n and

edges corresponding to interchanges). We refer to [15] for closely related results.

The rest of the paper is organized as follows. In Section 2 we consider certain
decompositions of Jn and use these to construct bases for the linear span of P

(≤1)
n

and also for the linear span of Dn. In Section 3, we study the polytope Ω
(≤1)
n and

determine all the extreme points of this polytope. Then, in Section 4, we give some
results on the convex hull of P

(≤1)
n while Section 5 deals with a relation between faces

of Ω
(≤1)
n and faces of Ωn. The faces of Ωn are determined by n× n (0,1)-matrices A

of total support, matrices in which every 1 is part of a permutation matrix P ≤ A
(entrywise inequality). The matrix A is fully indecomposable provided that each
(n − 1) × (n − 1) submatrix obtained by crossing out the row and column of an
entry (0 or 1) contains an (n− 1)× (n− 1) permutation matrix. It follows that fully
indecomposable matrices have total support.

Notation: We use the symbol � to denote as usual the end of a proof and the
symbol ⋄ as above to denote the end of an example, remark, and question. Vectors in
R

n are column vectors and we identify these with real n-tuples. The i th component
of a vector x ∈ R

n is usually denoted by xi (i ≤ n). A zero matrix, or vector, is
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denoted by O, and an all ones vector is denoted by e. Mn denotes the space of square
real matrices of order n. The diagonal of a matrix A = [aij] ∈ Mn is diag(A), so
diag(A) = (a11, a22, . . . , ann). The transpose of a matrix A is denoted by At. Finally,

Ln is the n× n backward identity matrix where Ln ∈ P
(≤1)
n .

2 Decompositions and bases of subspaces

Let 〈Tn〉 be the linear span of any subset Tn of n × n permutation matrices. The
dimension of 〈Pn〉 is known to be equal to (n− 1)2+1. In fact, the subspace 〈Pn〉 of
Mn is determined by the 2(n−1) linear equations saying that row sums are equal and
column sums are equal. Several bases have been constructed for 〈Pn〉. The convex
hull Ωn of Pn has dimension (n− 1)2.

We will make use of the cyclic-Toeplitz decomposition Jn = T1 + T2 + · · · + Tn

and the cyclic-Hankel decomposition Jn = H1 +H2 + · · · +Hn of the n × n matrix
Jn of all 1’s into n permutation matrices as defined in [8]. The matrices Ti are
obtained from the identity matrix In (=T1) by successively rotating its rows. The
matrices Hi are obtained from the matrix Ln (=H1) by successively rotating its
columns. These are illustrated below for n = 5 using letters a, b, c, d, e, respectively,
to distinguish the permutation matrices T1 = I5, T2, T3, T4, T5, and the permutation
matrices H5, H4, H3, H2, H1:













a b c d e
e a b c d
d e a b c
c d e a b
b c d e a













,













e d c b a
d c b a e
c b a e d
b a e d c
a e d c b













.

For n odd the permutation matrices in the cyclic-Hankel decomposition have exactly
one 1 on the main diagonal and thus correspond to permutations with exactly one
fixed point. This is not the case for n even as illustrated for n = 4 below:









d c b a
c b a d
b a d c
a d c b









.

The cyclic-Toeplitz decomposition contains the identity matrix and thus the other
permutation matrices correspond to permutations without any fixed point, that is,
to derangements.

Theorem 2.1. Let n ≥ 3. Every permutation matrix P in Pn is a ±1 linear com-

bination of permutation matrices in P
(≤1)
n . In particular, there is a basis of 〈Pn〉

consisting of (n− 1)2 + 1 permutation matrices in P
(≤1)
n .

Proof. First assume that P ∈ Pn has an odd number k ≥ 3 of fixed points.
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Using the cyclic-Hankel decomposition and the cyclic-Toeplitz decomposition of
Jk with the identity matrix T1 = Ik removed, we obtain for k odd that

Ik = (H1 +H2 + · · ·+Hk)− (T2 + T3 + · · ·+ Tk),

a decomposition of Ik into matrices in P
(≤1)
k . For example with k = 3,





1

1

1



 =





1

1

1



+





1

1

1



+





1

1

1



−





1

1

1



−





1

1

1



 .

(2)

Without loss of generality, we assume that the k fixed points of P ∈ Pn are
{1, 2, . . . , k}. Thus P = Ik ⊕R where R ∈ Dn−k. Then the desired decomposition is

P = Ik ⊕R =
k

∑

i=1

(Hi ⊕R)−
k

∑

i=2

(Ti ⊕R). (3)

We now consider k ≥ 4 even. Let K∗
k be the complete digraph of n vertices ob-

tained from Kk by replacing each edge with two directed edges in opposite directions.
For instance, consider k = 4 and the decomposition of J4 given by

J4 =









1
1

1
1









+









1
1

1
1









+









1
1

1
1









+









1
1

1
1









.

This corresponds to a decomposition of K∗
4 into directed cycles of length 3, where an

additional 1 on the main diagonal has been included in each matrix. By subtracting
the permutation matrices in the cyclic-Toeplitz decomposition of J4 with the identity
matrix I4 removed, that is,

−









1
1

1
1









−









1
1

1
1









−









1
1

1
1









we get I4 expressed as a ±1 linear combination of permutation matrices in P
(≤1)
4 .

In [2] it is shown that there is a decomposition of the complete digraph K∗
n into

directed cycles of lengthm if and only ifm|n(n−1) and (n,m) 6∈ {(4, 4), (6, 3), (6, 6)}.
Thus if m = n− 1, such a decomposition exists into n cycles of length n− 1. In fact,
in [5] it is proved directly that K∗

n can always be decomposed into directed cycles
of length n − 1. Generalizing the preceding construction for k = 4 in the obvious
way, we see that for k even, Ik is a ±1 linear combination of permutation matrices
in P

(≤1)
k . Then, as in the odd case (see (3)), we see that every permutation matrix

in Pn is a ±1 linear combination of permutation matrices in P
(≤1)
n . Thus there is a

basis of 〈Pn〉 consisting of permutation matrices in P
(≤1)
n .
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Corollary 2.2.

dim〈P (≤1)
n 〉 = dim〈Pn〉 = (n− 1)2 + 1.

Proof. This follows from the proof of Theorem 2.1. See also Theorem 2.5 for a
different proof.

Example 2.3. We illustrate the construction in [5] in the case of even k = 8.
Consider K∗

9 with vertices Z8 ∪{∞} = {∞, 0, 1, . . . , 7} and the cycle in K∗
9 given by

∞ → 0 → 7 → 1 → 6 → 2 → 5 → 3 → 4 → ∞.

Using arithmetic in Z8 with ∞+x = ∞ for all x ∈ Z8, we get by adding 1, the eight
cycles in K∗

9 :
∞ → 0 → 7 → 1 → 6 → 2 → 5 → 3 → ∞,
∞ → 1 → 0 → 2 → 7 → 3 → 6 → 4 → ∞,
∞ → 2 → 1 → 3 → 0 → 4 → 7 → 5 → ∞,
∞ → 3 → 2 → 4 → 1 → 5 → 0 → 6 → ∞,
∞ → 4 → 3 → 5 → 2 → 6 → 1 → 7 → ∞,
∞ → 5 → 4 → 6 → 3 → 7 → 2 → 0 → ∞,
∞ → 6 → 5 → 7 → 4 → 0 → 3 → 1 → ∞,
∞ → 7 → 6 → 0 → 5 → 1 → 4 → 2 → ∞.

With the additional cycle

0 → 1 → 2 → 3 → 4 → 5 → 6 → 7 → 0,

we get a decomposition of K∗
9 into 9 cycles of length 8. This corresponds to the

decomposition of J9:


































0 1 2 3 4 5 6 7 ∞

0 (e) i b g c h d a f
1 b (f) i c h d a e g
2 f c (g) i d a e b h
3 c g d (h) i e b f a
4 g d h e (a) i f c b
5 d h e a f (b) i g c
6 h e a f b g (c) i d
7 i a f b g c h (d) e
∞ a b c d e f g h (i)



































.

⋄

In the previous theorem we assumed n ≥ 3. In fact, for n = 2, since P
(≤1)
2

contains only the matrix
[

0 1
1 0

]

,

I2 is not a ±1 linear combination of permutation matrices in P
(≤1)
2 . Thus 〈P

(≤1)
2 〉 6=

〈P2〉.
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We now consider the subspace 〈Dn〉 spanned by the derangements of {1, 2, . . . , n}
represented, as we do, by permutation matrices. First we consider an example.

Example 2.4. If n = 3, there are only two derangements





1
1

1



 and





1
1

1



 ,

and these are linearly independent. Thus dim〈D3〉 = 2.

Now let n = 4. We have D4 = 9, and D4 consists of the matrices

P1 =









1
1

1
1









, P2 =









1
1

1
1









, P3 =









1
1

1
1









,

Q1 =









1
1

1
1









, Q2 =









1
1

1
1









, Q3 =









1
1

1
1









,

Q4 =









1
1

1
1









, Q5 =









1
1

1
1









, Q6 =









1
1

1
1









.

The first three, the Pi’s, correspond to two cycles of length 2; the last six, the Qi’s
correspond to 4-cycles.

We have

Q1 +Q3 = P2 + P3 =









1 1
1 1

1 1
1 1









,

Q2 +Q4 = P1 + P3 =









1 1
1 1

1 1
1 1









,

and

Q5 +Q6 = P1 + P2 =









1 1
1 1
1 1

1 1









.

Thus, for example, Q3, Q4, Q6 are redundant and a basis is contained in {P1, P2, P3,
Q1, Q2, Q5}. P1, P2, P3 are clearly linearly independent as each has a 1 where the
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other two have 0’s; similarly, Q1, Q2, Q5 are linearly independent. Moreover, P1, P2,
P3, Q1, Q2, Q5 are linearly independent, since each of P1, P2, P3 has a 1 where all of
Q1, Q2, Q5 have a 0. Hence we have: dim〈D4〉 = 6 and P1, P2, P3, Q1, Q2, Q5 is a
basis of 〈D4〉.

Since dim〈P
(≤1)
4 〉 = 10, including four permutation matrices each with exactly

one 1 on the main diagonal in different positions, gives a basis of 〈P
(≤1)
4 〉. ⋄

We now give a different proof of the dimension formulas which is also constructive.

Theorem 2.5. There is a basis of 〈P
(≤1)
n 〉, so of 〈Pn〉, containing exactly n permu-

tation matrices with a 1 in different positions on the main diagonal and so

dim〈P (≤1)
n 〉 = dim〈Pn〉 = dim〈Dn〉+ n.

Proof. Consider the n × n (0, 1)-matrix J∗
n = Jn − In. Then J∗

n determines a
face F(J∗

n) of Ωn consisting of all the n × n doubly stochastic matrices with only
0’s on the main diagonal. From the formula for faces of Ωn corresponding to fully
indecomposable matrices, given e.g. in Theorem 9.2.1 in [7], the dimension of this
face is

(n2 − n)− 2n+ 1 = n2 − 3n+ 1 = (n− 1)2 − n.

Thus this face determines an affine set (translation of a linear space) aff(F(J∗
n)) of

dimension n2−3n+1, so containing t := n2−3n+2 affinely independent permutation
matrices P1, P2, . . . , Pt (all in the face F(J∗

n), so derangements). Now, the zero matrix
O does not lie in aff(F(J∗

n)) and hence O,P1, P2, . . . , Pt are affinely independent. This
implies that P1−O,P2 −O, . . . , Pt −O, i.e., P1, P2, . . . , Pt, are linearly independent.
By choosing for 1 ≤ i ≤ n an n×n permutation matrixWi with a 1 in the i th position
of the main diagonal and 0’s elsewhere we get an additional n linearly independent
permutation matrices. Since

(n2 − 3n+ 2) + n = n2 − 2n+ 1 = (n− 1)2 = dimΩn,

it follows that
dim〈Dn〉 = n2 − 3n+ 2 = (n− 1)2 − n+ 1

and thus there is a basis of 〈P1
n〉 = 〈Pn〉 containing exactly n permutation matrices

(freely chosen) with a 1 on the main diagonal (in different positions).

Example 2.6. We construct a basis of 〈Dn〉 as follows. Consider the n × n fully
indecomposable matrix Fn illustrated in (4) for n = 6 (all (n2−3n) unspecified entries
are assumed to equal 0). In general. Fn = Un + Vn where Un is the permutation
matrix in Fn containing a 1 in position (1, n) and Vn is the permutation matrix in Fn

containing the 1 in positions (1, n−1). These are the only two permutation matrices
contained in Fn.

F6 =

















0 1 1
1 0 1
1 1 0

1 1 0
1 1 0

1 1 0

















. (4)
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Since Fn is easily seen to be fully indecomposable, each of the n2 − 3n positions of
Fn with an unspecified 0 belongs to a permutation matrix with a 1 in that position
where all of its other 1’s are 1’s in Fn. This gives a set Rn of n2 − 3n linearly
independent derangements. The permutation matrices Un and Vn are clearly linearly
independent of the permutation matrices in Rn. This gives a total of n2 − 3n + 2
linearly independent derangements. Since dim〈Dn〉 = n2 − 3n + 2, we have a basis
of 〈Dn〉. ⋄

Remark 2.7. Let A be an n × n (0, 1)-matrix (or a nonnegative integral matrix).
Then A is the sum of permutation matrices in Dn if and only if A has constant row
and column sums and all 0’s on its main diagonal. On the other hand, characterizing
thoseA that are sums of permutation matrices in P

(≤1)
n seems to be a difficult problem

since there may be many nonzeros on the main diagonal of A. Let T
(≤1)
n be the class

of (0, 1)-matrices that are a sum of matrices in P
(≤1)
n . Then A ∈ T

(≤1)
n satisfies:

(i) A has constant row and column sums k.

(ii) If A has t 1’s on the diagonal, then k ≥ t. (This is because A must be a sum
of at least t permutation matrices.)

Thus, for instance, if A is the identity matrix In, with n > 1, then condition (ii) is
violated. ⋄

Example 2.8. Consider the (0, 1)-matrix

A =









1 1
1 1

1 1
1 1









.

Then A satisfies the conditions (i) and (ii) with k = t = 2. However, A 6∈ T 1
4 . In fact,

A has the following unique decomposition as a sum of two permutation matrices

A =









1 1
1 1

1 1
1 1









=









1
1

1
1









+









1
1

1
1









and the first matrix is not in P1
4 . ⋄

This example shows that further conditions than (i) and (ii) are required to
characterize the class T 1

n . In fact, at least the following additional condition is
needed:

(iii) For each 1 on the main diagonal of A the submatrix obtained by deleting the
row and column of that 1 must contain a derangement matrix.

This condition (iii) is violated by the matrix A above.
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Example 2.9. Consider the n× n matrix Jn of all 1’s. If n is odd, then the cyclic-
Hankel decomposition shows that Jn is a sum of n permutation matrices of P

(≤1)
n .

Now assume that n is even so that the cyclic-Hankel decomposition fails. As already
discussed, in [2] it is shown that there is a decomposition of the complete digraph
K∗

n into directed cycles of length (n− 1). Using a 1 on the main diagonal, it follows

that Jn has a decomposition into permutation matrices in P
(≤1)
n . ⋄

3 The extended near-derangement polytope Ω
(≤1)
n

We study the polytope Ω
(≤1)
n and begin by computing its dimension. We refer to [20]

for polyhedral theory. In general, for a polyhedron C, its dimension is the dimension
of its affine hull aff(C), Moreover, aff(C) may be determined as the solutions of all
the implicit equalities in the linear system that defines C where an implicit equality

is an inequality that holds with equality for all points in C.

Lemma 3.1.

dimΩ(≤1)
n = (n− 1)2.

Proof. Consider the polyhedron Ω
(≤1)
n . Clearly all the line sum equations are

implicit equalities, and aij ≥ 0 is not an implicit equality (i, j ≤ n). Consider the
final defining inequality,

∑n

i=1 aii ≤ 1 for A = [aij] ∈ Mn. This is not an implicit
equality since every derangement satisfies the inequality strictly. It follows that the
affine hull of Ω

(≤1)
n equals the affine hull of Ωn, and therefore dimΩ

(≤1)
n = (n − 1)2.

The result may also be derived from Theorem 2.1.

The next result deals with the facets of the polytope Ω
(≤1)
n .

Theorem 3.2. Ω
(≤1)
n has n2 + 1 facets. These facets are induced by each of the

inequalities aij ≥ 0 (where A = [aij ] ∈ Ω
(≤1)
n ) for i, j ≤ n and the trace inequality

∑

i aii ≤ 1.

Proof. Of the linear inequalities defining a polyhedron Q, those that are not
implicit equalities are called plus-inequalities. There is a one-to-one correspondence
between the facets and the plus-inequalities, and the facet is obtained by setting that
plus-inequality to equality [20] . The desired result follows from this as (i) for each
i, j there is a near-derangement matrix with a 1 in position (i, j), and (ii) there is a
derangement matrix (so satisfying the trace inequality strictly).

In particular, the facet of Ω
(≤1)
n

{A ∈ Ω(≤1)
n :

∑

i

aii = 1},

induced by the trace inequality has dimension (n−1)2−1. This facet clearly contains
the permutation matrices with exactly one 1 on the main diagonal, and these are
extreme points. But there are many other extreme points. The next goal is to
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determine the extreme points of Ω
(≤1)
n . To this end we define a new class of sparse

doubly stochastic matrices. Let

P (≥2)
n = {P ∈ Pn : tr(P ) ≥ 2}.

Thus, P
(≤1)
n , P

(≥2)
n is a partition of the set Pn of permutation matrices of order n.

Let P ∈ P
(≥2)
n and Q ∈ Dn, and consider the convex combination

R = R(P,Q) = (1/k)P + (1− 1/k)Q (5)

where k = tr(P ) ≥ 2 is the number of 1’s on the diagonal of P . Then R ∈ Ωn and

tr(R) = (1/k)tr(P ) + (1− 1/k)tr(Q) = 1, so that R ∈ Ω
(≤1)
n .

Let C∗
n be the class of n×n doubly stochastic matrices of the form (5). Note that

each matrix R ∈ C∗
n has one or two nonzeros in every line; if there are two nonzeros,

these are 1/k and 1−1/k and they are in positions corresponding to a 1 in P and a 1
in Q, respectively. Consider the bipartite graph GR with vertices (i, j) (i, j ≤ n) and
an edge between (two distinct) vertices in the same row or column whenever both
entries in R are positive. Then GR contains vertex-disjoint even cycles C1, C2, . . . , Cs

for some s ≥ 1. The vertices of these cycles alternate between the positions of 1’s in
P and Q.

Let C∗∗
n be the subset of C∗

n consisting of matrices R ∈ C∗
n such that GR has exactly

one cycle; such a cycle must contain all the k positions on the main diagonal of P
containing a 1 of P . This is because Q is a derangement and thus does not contain
any 1’s on its main diagonal.

We now determine the set of extreme points of the extended near-derangement
polytope Ω

(≤1)
n .

Theorem 3.3. The extreme points of Ω
(≤1)
n are the permutation matrices in P

(≤1)
n

and the doubly stochastic matrices in C∗∗
n . Therefore

Ω(≤1)
n = conv (P (≤1)

n ∪ C∗∗
n ).

Proof. Our main tool will be the so-called double description method, developed
by Motzkin et al. [17]; the method is described for polyhedral cones in [19]. The
starting point is the Birkhoff polytope Ωn where we know all extreme points (the
n× n permutation matrices) and a complete linear inequality description. We have

Ω(≤1)
n = Ωn ∩ {A = [aij] ∈ Mn :

n
∑

i=1

aii ≤ 1}.

Clearly every permutation matrix in P
(≤1)
n is an extreme point of Ω

(≤1)
n ; this follows

by convexity as Ω1
n is contained in the unit cube.

First we show that any matrix A ∈ Ω
(≤1)
n can be written as a convex combination

of matrices in P1
n ∪ C∗

n. As A ∈ Ωn we may write

A =
m
∑

k=1

λkPk (6)
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for permutation matrices Pk and positive scalars λk (k ≤ m) where
∑

k λk = 1. If

none of these Pk’s are in P
(≥2)
n , we are done, so assume that Pk∗ ∈ P

(≥2)
n for some

k∗. Then there exists an s where Ps ∈ Dn; otherwise tr(A) > 1 which is impossible.
We can therefore rewrite A as a convex combination of the Pj’s with j 6= k∗ and
the matrix R = R(Pk∗ , Ps) with a positive weight λR associated with R. We here
choose λR largest possible, and this means that one of the updated weights λk∗ or
λs will be zero. Thus, the number of positive weights λk is reduced by at least 1.
We continue this process a finite number of times and gradually change the convex
combination by introducing further matrices R(Pi, Pj) ∈ C∗

n. Eventually we end up
with A written as a convex combination of matrices in P1

n ∪ C∗
n. The fact that a

finite number of such transformations suffices is due to the strict reduction of the
number of positive weights λk associated with permutation matrices. This proves
that Ω1

n = conv (P
(≤1)
n ∪ C∗

n). Thus all extreme points of Ω1
n are in P

(≤1)
n ∪ C∗

n. It
remains to show that this set of “fractional” extreme points in C∗

n is precisely C∗∗
n .

Let R = R(P,Q) ∈ C∗
n be an extreme point of Ω

(≤1)
n where P ∈ P

(≥2)
n and

Q ∈ Dn. Assume GR contains a cycle C with no position on the main diagonal.
Let R1 be obtained from R by adding a small number ǫ > 0 to each entry in the
P -positions (as defined above) and subtracting ǫ from each entry in the Q-positions.
Similarly, we construct R2, but we interchange the role of adding/subtracting. For
suitably small ǫ the matrices R1 and R2 are doubly stochastic. Moreover, as C has
no entry on the main diagonal, tr(Ri) = tr(R) = 1, so Ri ∈ Ω1

n (i = 1, 2). Finally,
R = (1/2)R1+(1/2)R2, and this contradicts that R is an extreme point. This proves
that each cycle in GR contains a position on the main diagonal.

Assume GR has (at least) two cycles C1 and C2. Then Ci contains some number
γi ≥ 1 of positions on the main diagonal (i = 1, 2). Let ǫ1, ǫ2 > 0 be “small” numbers
to be determined. Let R1 be obtained from R by (i) adding ǫ1 to each entry in the
P -positions of C1 and subtracting ǫ1 from each entry in the Q-positions of C1, and
(ii) subtracting ǫ2 from each entry in the P -positions of C2 and adding ǫ2 to each
entry in the Q-positions of C1. Then, for suitably small ǫi (i = 1, 2) the matrix R1

is doubly stochastic and

tr(R1) = tr(R) + γ1ǫ1 − γ2ǫ2 = tr(R) = 1

by choosing ǫ2 = (γ1/γ2)ǫ1. Thus, with suitably small ǫ1, R1 ∈ Ω
(≤1)
n . Now let R2 be

obtained from R1 by changing the signs of ǫ1 and ǫ2. Then R2 ∈ Ω
(≤1)
n , and clearly

R = (1/2)R1+(1/2)R2, and this contradicts that R is an extreme point. This proves
thatGR has exactly one cycle, and this cycle contains a position on the main diagonal.
Conversely, if GR has exactly one such cycle, then it is easy to use the variational
technique above to show that R cannot be written as a convex combination of two
distinct matrices in Ω

(≤1)
n , and therefore R is an extreme point.

We illustrate the construction of extreme points as given in the proof of Theo-
rem 3.3.
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Example 3.4. Let n = 5,

P =













1 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1













and Q =













0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1
1 0 0 0 0













.

Then tr(P ) = 3, tr(Q) = 0 and

R = R(P,Q) =













1/3 0 2/3 0 0
0 0 1/3 2/3 0
0 1 0 0 0
0 0 0 1/3 2/3
2/3 0 0 0 1/3













∈ C∗
5 .

GR contains exactly one cycle (with three vertices on the main diagonal), so R ∈ C∗∗
5

and R is an extreme point of Ω
(≤1)
5 . ⋄

Example 3.5. Consider the following two permutation matrices in P5

I5 =













1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1













and Q =













0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0













.

So I5 ∈ P
(≥2)
5 and Q ∈ D5. Then

R = R(I5, Q) =













1
5

4
5

0 0 0
0 1

5
4
5

0 0
4
5

0 1
5

0 0
0 0 0 1

5
4
5

0 0 0 4
5

1
5













∈ C∗
5 .

However, R is not an extreme point of Ω
(≤1)
5 because GR contains two cycles. ⋄

Example 3.6. Consider the following two permutation matrices in P5

P =













1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0













and Q =













0 0 1 0 0
0 0 0 0 1
0 0 0 1 0
1 0 0 0 0
0 1 0 0 0













.

So P ∈ P
(≥2)
5 and Q ∈ D5. Then

R = R(P,Q) =













1
3

0 2
3

0 0
0 0 0 0 1
0 0 1

3
2
3

0
2
3

0 0 1
3

0
0 1 0 0 0













∈ C∗
5 .
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R is an extreme point of Ω
(≤1)
5 because GR contains only one cycle. ⋄

The matrix R in the previous example has a special form where all the entries
equal to 1/k are on the main diagonal (where k is the trace of P ). This means that
the cycle in GR alternates between a vertex on the main diagonal (corresponding to
P ) and a vertex not on the main diagonal (corresponding to Q). More generally, a
subclass of C∗∗ are matrices such that there exists a permutation matrix U such that
R = UAU t where

A =

















1
k
Ik +

k−1
k
Sk Ok,n−k

On−k,n Xn−k

















,

where

Sk =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . . · · ·

...

0 0 0
. . . 1

1 0 0 · · · 0















(2 ≤ k ≤ n),

and Xn−k is a direct sum of matrices of this form. Here k ≤ n− 2.

4 The convex hull of P
(≤1)
n

Let Mn be the linear space of n×n matrices. In this section we initiate a study of the
polytope Q

(≤1)
n defined as the convex hull of the permutation matrices in P

(≤1)
n . Since

a permutation matrix cannot be expressed as a convex combination of permutation
matrices different from itself, the set of extreme points of Q

(≤1)
n equals P

(≤1)
n .

Lemma 4.1.

dimQ(≤1)
n = (n− 1)2, the same as the dimension of Ωn.

Proof. By Theorem 2.1 there is a basis of 〈Pn〉 consisting of permutation matrices

in P
(≤1)
n . Since the dimension of the linear span 〈Pn〉 is (n−1)2+1, such a basis con-

tains (n− 1)2 +1 permutation matrices in P
(≤1)
n . Since Q

(≤1)
n ⊆ 〈Pn〉, the dimension

of Q
(≤1)
n is also (n− 1)2.

We first consider the case when n is small. Each of Q
(≤1)
1 and Q

(≤1)
2 consists of a

single matrix, namely J1, and the 2× 2 backward identity matrix L2, respectively.
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Theorem 4.2. The polytope Q
(≤1)
3 is a 4-dimensional simplex in M3. A complete

linear description of A = [aij] ∈ Q
(≤1)
3 is

aii ≥ 0 (i ≤ 3),
∑3

j=1 aij = 1 (i ≤ 3),
∑3

i=1 aij = 1 (j ≤ 3),

a11 + a21 + a22 ≤ 1 and a11 + a12 + a22 ≤ 1.

(7)

Each inequality in (7) defines a facet of Q
(≤1)
3 .

Proof. Let A = [aij] ∈ Q
(≤1)
3 . By Lemma 4.1, dim(Q(≤1)) = 4. Moreover, all

entries in the last row and column of A are determined uniquely by the leading 2× 2
submatrix

A′ =

[

a11 a12
a21 a22

]

.

P
(≤1)
3 consists of the following five permutation matrices





1
1

1



 ,





1
1

1



 ,





1
1

1



 ,





1
1

1



 ,





1
1

1



 (8)

so that it is only the identity matrix I3 that is left out (see also (2)). By Lemma 4.1,

Q
(≤1)
3 has dimension 4, and therefore the five matrices in (8) are affinely independent.

Since, each of these matrices is an extreme point of Q
(≤1)
3 , it follows by definition of

a simplex that Q
(≤1)
3 is a 4-dimensional simplex in M3.

Consider the set of the five leading 2 × 2 submatrices of the matrices in (8),

and let K be the simplex equal to their convex hull. The simplex Q
(≤1)
3 is affinely

isomorphic to K. This follows from the fact that all the line sum constraints equal 1.
Each facet of a simplex is obtained as the convex hull of all except one of its vertices.
Based on this one can compute all facets of K and they correspond to the following
five linear inequalities in (the entry) variables aij (i, j ≤ 2):

a11 ≥ 0, a22 ≥ 0, a11 + a12 + a21 + a22 ≥ 1,

a11 + a12 + a22 ≤ 1, a11 + a21 + a22 ≤ 1.

Thus, by adding the linear equations
∑

j aij = 1 (i ≤ 3) and
∑

i aij = 1 (j ≤ 3) we

obtain a complete and nonredundant linear description of Q
(≤1)
3 . As the inequality

a11 + a12 + a21 + a22 ≥ 1 can be seen to be equivalent to a33 ≥ 0 (using the line sum
equations), the desired result follows.

Note that for n = 3 the set P
(≤1)
3 consists of all permutations except the identity.

Therefore the polytope Q
(≤1)
3 coincides with the polytope Ω∗

3 equal to the convex
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hull of all non-identity permutation matrices of order 3, and the previous theorem
characterizes this polytope for n = 3.

The final two facet defining inequalities in (7) can be generalized as follows, for
general n. Define first the graph Gn with vertices (i, j) (1 ≤ i, j ≤ n) corresponding
to the positions of an n×n matrix. Next, define edges between every pair of vertices
whose positions are in the same row or column, or both are on the main diagonal.
Then the support of a matrix P ∈ P

(≤1)
n , that is, the set of positions of its nonzeros,

corresponds to a stable set in Gn. Recall that a stable set (or independent set) is
a vertex subset where no two of these vertices are adjacent. Conversely, a stable
set in Gn corresponds to a subpermutation matrix with at most one 1 on the main
diagonal. The line sum inequalities (sum in a line is at most 1) and trace inequality
correspond to 2n + 1 clique inequalities for the stable set polytope of Gn. See [21]
for many results concerning stable set polytopes. Another general class consists of
the odd cycle inequalities: every A = [aij] ∈ Q≤1

n satisfies
∑

(i,j)∈C

aij ≤ (|C| − 1)/2 (9)

where C is an odd cycle in the graph Gn. A special case is when |C| = 3, so C is a
triangle, and we get the triangle inequality

∑

(i,j)∈C

aij ≤ 1.

This can also be seen as a clique inequality. In fact, these are the only remaining
maximum clique inequalities in Gn, apart from those for lines and the main diagonal.
The triangles in Gn are of the form C = {(i, i), (i, j), (j, j)} or C = {(i, i), (j, i), (j, j)}
for 1 ≤ i < j ≤ n. The final two facet defining inequalities in (7) are triangle
inequalities.

5 A property of faces

A natural question concerning the polytopes considered here is to determine which
faces of Ωn are also faces of the subpolytope Ω

(≤1)
n . Every face F of Ωn is determined

by an n× n (0, 1)-matrix A with total support (meaning that every 1 of A is part of
a permutation matrix P ≤ A):

F = F(A) = {X ∈ Ωn : X ≤ A}.

Thus F is also a face of Ω
(≤1)
n if and only if every permutation matrix P with P ≤ A

is contained in P
(≤1)
n . The question is to characterize those (0, 1)-matrices A having

this property.

An example of a matrix with this property is

A =









1 1 1
1 1

1 1
1 1









,
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since it contains only the following permutation matrices in P
(≤1)
4 :









1
1

1
1









,









1
1

1
1









,









1
1

1
1









.

A general characterization of this property is given next.

Theorem 5.1. Let A = [aij ] be an n× n (0, 1)-matrix with total support. Then the

face F(A) of Ωn is also a face of Ω
(≤1)
n if and only if there are integers ui and vj

(i, j ≤ n) such that

ui + vi ≥ 1 for all i with aii = 1,

ui + vj ≥ 0 for all i 6= j with aij = 1,
∑

i ui +
∑

j vj ≤ 1.

(10)

Proof. Consider the optimization problem

γ := max{
n

∑

i=1

pii : P = [pij] ∈ Pn, P ≤ A} (11)

which asks for a permutation matrix P ≤ A with a maximum number of 1’s on the
main diagonal. Then, clearly, the face F(A) of Ωn is also a face of Ω

(≤1)
n if and only if

γ ≤ 1. Problem (11) can be viewed as a maximum weight perfect matching problem
in a bipartite graph with two sets of vertices of cardinality n (corresponding to rows
and columns) and edges corresponding to those (i, j) where aij = 1. Let E denote
the edge set of this graph. The weight wij is 1 for edges (i, i), i.e., when aii = 1, and
0 otherwise. By a well-known result from matching theory [20, 21] (due to linear
programming duality and total unimodularity) γ equals the optimal value of the dual
problem which is

γ := min

{

∑

i

ui +
∑

j

vj : ui + vj ≥ wij, for all ij ∈ E

}

(12)

and both problems have optimal solutions that are integral. This gives the desired
result.

In the example above, we have γ = 1 and an optimal dual solution is u3 = −1,
v1 = v2 = 1 while all other variables are 0.

The efficient matching algorithm mentioned in the proof of Theorem 5.1 decides
if the face F(A) of Ωn is also a face of Ω

(≤1)
n . Still, an interesting question is to find

classes of (0, 1)-matrices A where this property holds (so no algorithm is needed).
We give one such result next.

Let r, s, k, and n be natural numbers with r, s, k < n and k ≥ 2. Define the
(0, 1)-matrix A = A(k,r,s,n) by the following properties: (i) its lower right corner is an
r × s zero submatrix, (ii) the main diagonal of A consists of k 1’s followed by zeros,
and (iii) all other entries of the matrix are equal to 1.
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Theorem 5.2. Let A = A(k,r,s,n) = [aij ] be as above with

2 ≤ k ≤ ⌊n/2⌋, r = n− k and s = k − 1.

Then (i) A has total support and (ii) the face F(A) of Ωn is also a face of Ω
(≤1)
n .

Moreover, A has the maximum number of 1’s among n × n (0, 1)-matrices with

trace k satisfying properties (i) and (ii).

Proof. First we observe that A has total support as it has no zero p× q submatrix
with p+ q = n.

Next, assume P is a permutation matrix with P ≤ A and trace s ≥ 2. So
2 ≤ s ≤ k, and P contains the identity matrix Is as a principal submatrix. The
complementary submatrix P ′ of Is (in P ) has size (n− s)× (n− s) and contains an
r × s zero submatrix, due to the fact that P ≤ A and by construction of A. But

r + s = (n− k) + (k − 1) = n− 1.

Note that n− 1 ≥ n− s+ 1 as s ≥ 2. Therefore, by the Frobenius-König Theorem,
this zero submatrix implies that P ′ cannot contain a permutation matrix. This is
a contradiction, and it follows that every permutation matrix P with P ≤ A must
have trace at most 1, i.e., it lies in P (≤1). This proves property (ii) in the theorem.

To prove the final statement consider an n× n (0, 1)-matrix A′ with trace k ≥ 2
and satisfying properties (i) and (ii). Choose two 1’s on the main diagonal of A′; they
define a 2× 2 submatrix. By property (ii) the complementary submatrix A∗ cannot
contain a permutation matrix, so by the Frobenius-König Theorem, A∗ contains a
p×q zero submatrix with p+q = n−1. This implies that the number of zeros in A∗ is
at least the number of zeros in the matrix A in the theorem. (This is because pq is a
strictly decreasing function of p under the constraints p+ q = n− 1, 1 ≤ p, q ≤ n−k
and p ≥ q.) Therefore A has the maximum number of 1’s under the mentioned
constraints.

Example 5.3. Let n = 9 and k = 4. Then r = 5, s = 3 and the constructed matrix
in Theorem 5.2 is

A =





























1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 0 0 0
1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0





























.

⋄
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6 Concluding remarks

In this final section we suggest some possible further questions to study in this area.

(i) A natural, and interesting topic, is to investigate the stable set polytope of
Gn, defined above as the convex hull of all incidence vectors of stable sets in Gn.
This polytope contains the polytope Q

(≤1)
n as a face. A lot is known about stable

set polytopes (see e.g. [18, 21]), but this graph is special, so we believe there may be
interesting questions concerning this polytope.

(ii) In Theorem 3.3 we determined all the extreme points of Ω
(≤1)
n . An extension

is to determine all the faces of Ω
(≤1)
n , and some of their properties. Each such face

F of Ω
(≤1)
n which is not a face of Ωn is obtained as an intersection of a face of Ωn

by the hyperplane {A = [aij] :
∑

i aii = 1}. In particular, the edges of the polytope
may be determined based on Theorem 3.3.

(iii) Let n ≥ 2 be a positive integer. What is the maximum trace kn of a n × n
(0,1)-matrix A with total support such that every permutation matrix P ≤ A is in

P
(≤1)
n ?

(iv) What is the maximum number mn(k) of 1’s in an n×n (0, 1)-matrix A with
total support having k 1’s and (n− k) 0’s on the main diagonal such that all P ≤ A

are in P
(1)
n ?

For k = 1, the n× n matrix A with one 1 and (n− 1) 0’s on the main diagonal,

and 1’s everywhere else clearly has the property that all P ≤ A are in P
(1)
n ; hence

mn(1) = n2 − (n− 1). Now consider k = 2.

If n = 3, then




1 1 1
1 1 1
1 1 0





is fully indecomposable so that (in question (iii)) k3 = 2, and m3(2) = 8.

If n = 4, then

A =









1 1 1 1
1 1 1 1
1 1 0 1
1 1 0 0









is fully indecomposable and has the property that all P ≤ A are in P
(1)
4 implying

that m4(2) = 13. In general, for k = 2, we have mn(2) = n2 − 2n + 5. This follows
easily from the classical Frobenius-König theorem.

An example with k = 3 and n = 5 is












1 0 0 1 1

0 1 0 0 1

0 0 1 1 1

1 0 1 0 0

0 1 1 0 0













.

To what extent is it sufficient to check only pairs of 1’s on the main diagonal?
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