Near-derangements and their polytopes

RICHARD A. BRUALDI

Department of Mathematics University of Wisconsin Madison, WI 53706, U.S.A. brualdi@math.wisc.edu

Geir Dahl*

Department of Mathematics University of Oslo Norway geird@math.uio.no

Abstract

A derangement is a permutation with no fixed point. We refer to permutations of $\{1, 2, ..., n\}$ with at most one fixed point as near-derangements, and study the corresponding set of permutation matrices $\mathcal{P}_n^{(\leq 1)}$. We determine a basis of the linear span of $\mathcal{P}_n^{(\leq 1)}$ consisting of matrices in $\mathcal{P}_n^{(\leq 1)}$. Also, we study the polytope determined by $\mathcal{P}_n^{(\leq 1)}$. In addition, we investigate the polytope of all $n \times n$ doubly stochastic matrices with trace at most 1 and determine its extreme points, not all of which are permutation matrices.

1 Introduction

Let S_n be the set of permutations of $\{1, 2, ..., n\}$ with corresponding set \mathcal{P}_n of $n \times n$ permutation matrices. We call a permutation with at most one fixed point a *near-derangement derangement* and call the corresponding permutation matrix a *near-derangement matrix*. Near-derangement matrices have at most one 1 on its main diagonal. We denote the set of near-derangements of $\{1, 2, ..., n\}$ by $S_n^{(\leq 1)}$ and the corresponding set of $n \times n$ near-derangement matrices by $\mathcal{P}_n^{(\leq 1)}$. The set $\mathcal{P}_n^{(\leq 1)}$ strictly contains the set \mathcal{D}_n of permutation matrices corresponding to the derangements of size n(permutations without fixed points).

^{*} Corresponding author.

Let $D_n = |\mathcal{D}_n|$ be the *n*th derangement number. It follows that

$$|\mathcal{P}_n^{(\le 1)}| = D_n + nD_{n-1}$$

where $D_n = \lfloor (n!+1)/e \rfloor$ with *e* as Euler's number. Derangements have been studied extensively in combinatorics, and we refer to [3] for a survey of the subject, including an historic account starting with a question by Montmort in 1708 on a certain card game.

Let M_n denote the (linear) space of real $n \times n$ matrices. A matrix $A = [a_{ij}] \in M_n$ is *doubly stochastic* provided that

$$a_{ij} \ge 0$$
 $(i, j \le n), \sum_{j=1}^{n} a_{ij} = 1$ $(i \le n)$ and $\sum_{i=1}^{n} a_{ij} = 1$ $(j \le n).$

We let Ω_n denote the *Birkhoff polytope* consisting of all $n \times n$ doubly stochastic matrices. A classical result in combinatorial matrix theory [11] is the Birkhoffvon Neumann theorem that the convex hull conv (\mathcal{P}_n) of the $n \times n$ permutation matrices equals the set of $n \times n$ doubly stochastic matrices. This result is also central in combinatorial optimization and matching theory, see [19, 20, 21]. A general discussion of many properties of Ω_n is found in [7]. In [6] it is shown that every *d*dimensional polytope whose vertices are (0,1)-vectors is affinely equivalent to a face of Ω_n , indeed a face of the subpolytope of Ω_n determined by the (n-1)! permutation matrices that are cycles of length *n*, the *asymmetric traveling salesman polytope*. The Chan-Robbins-Yuen polytope CRY_n defined as the convex hull of the $n \times n$ permutation matrices $P = [p_{ij}]$ such that $p_{ij} = 0$ for all i, j with $i - j \geq 2$ is a face of the Birkhoff polytope (see e.g. [16]).

In particular, there are several related studies on doubly stochastic matrices constrained in some way, such as [9, 14]. The goal of this paper is to investigate the class $\mathcal{P}_n^{(\leq 1)}$ and the related polytope

$$\Omega_n^{(\leq 1)} = \{ A \in \Omega_n : \operatorname{trace}(A) \le 1 \}.$$

We observe that the set $\mathcal{P}_n^{(\leq 1)}$ of near-derangement matrices consists of the integral matrices in $\Omega_n^{(\leq 1)}$.

The following inclusions hold

$$\mathcal{D}_n \subseteq \mathcal{P}_n^{(\leq 1)}$$
, and $\operatorname{conv}(\mathcal{D}_n) \subseteq \operatorname{conv}(\mathcal{P}_n^{(\leq 1)}) \subseteq \Omega_n^{(\leq 1)} \subseteq \Omega_n$. (1)

We call conv (\mathcal{D}_n) the derangement polytope, conv $(\mathcal{P}^{(\leq 1)})$ the near-derangement polytope, and $\Omega_n^{(\leq 1)}$ the extended near-derangement polytope. The polytope conv (\mathcal{D}_n) is a face of the Birkhoff polytope Ω_n ; it consists of all doubly stochastic matrices Athat satisfy $A \leq J_n - I_n$ where J_n is the $n \times n$ matrix of all 1's.

This paper is devoted to a study of these polytopes and the corresponding sets of permutation matrices.

We assume hereafter that $n \geq 2$. Then all of the inclusions in (1) are strict. The polytopes $\Omega_n^{(\leq 1)}$ and conv $(\mathcal{P}_n^{(\leq 1)})$ are both closed under taking the transpose of a matrix. Later we show that the dimension of $\Omega_n^{(\leq 1)}$ is $(n-1)^2$, the same as the dimension of Ω_n .

We remark that a related subpolytope of Ω_n , defined as the convex hull of all permutation matrices except the identity matrix, was investigated in detail in [7].

Example 1.1. Let n = 2. Then Ω_2 consists of all matrices

$$A(\alpha) = \left[\begin{array}{cc} \alpha & 1 - \alpha \\ 1 - \alpha & \alpha \end{array}\right]$$

where $0 \leq \alpha \leq 1$. The identity matrix $I_2 \in \Omega_2$, but it is not in $\Omega_2^{(\leq 1)}$ as its trace is 2. The following two matrices both lie in $\Omega_2^{(\leq 1)}$

$$\left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] \quad \text{and} \quad \left[\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array}\right].$$

It follows from a general result we establish later that $\Omega_2^{(\leq 1)}$ is the convex hull of these two matrices, and, in fact, both matrices are extreme points of $\Omega_2^{(\leq 1)}$.

Let

$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 and $L_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

An interchange in a permutation matrix $P = [p_{ij}]$ is to replace a 2 × 2 submatrix equal to I_2 with L_2 , or vice versa. Let $G(\mathcal{D}_n)$ denote the graph with vertex set \mathcal{D}_n and edges corresponding to interchanges. Then it can be shown that $G(\mathcal{D}_n)$ is connected for all n except n = 3; see Theorem 1 in [15]. A similar problem was discussed in connection with Gray codes in [4]. Concerning near-derangement matrices one can also show that the graph $G(\mathcal{P}_n^{(\leq 1)})$ is connected (this graph has vertex set $\mathcal{P}_n^{(\leq 1)}$ and edges corresponding to interchanges). We refer to [15] for closely related results.

The rest of the paper is organized as follows. In Section 2 we consider certain decompositions of J_n and use these to construct bases for the linear span of $\mathcal{P}_n^{(\leq 1)}$ and also for the linear span of \mathcal{D}_n . In Section 3, we study the polytope $\Omega_n^{(\leq 1)}$ and determine all the extreme points of this polytope. Then, in Section 4, we give some results on the convex hull of $\mathcal{P}_n^{(\leq 1)}$ while Section 5 deals with a relation between faces of $\Omega_n^{(\leq 1)}$ and faces of Ω_n . The faces of Ω_n are determined by $n \times n$ (0,1)-matrices A of total support, matrices in which every 1 is part of a permutation matrix $P \leq A$ (entrywise inequality). The matrix A is fully indecomposable provided that each $(n-1) \times (n-1)$ submatrix obtained by crossing out the row and column of an entry (0 or 1) contains an $(n-1) \times (n-1)$ permutation matrix. It follows that fully indecomposable matrices have total support.

Notation: We use the symbol \Box to denote as usual the end of a proof and the symbol \diamond as above to denote the end of an example, remark, and question. Vectors in \mathbb{R}^n are column vectors and we identify these with real *n*-tuples. The *i* th component of a vector $x \in \mathbb{R}^n$ is usually denoted by x_i $(i \leq n)$. A zero matrix, or vector, is

denoted by O, and an all ones vector is denoted by e. M_n denotes the space of square real matrices of order n. The diagonal of a matrix $A = [a_{ij}] \in M_n$ is diag(A), so diag $(A) = (a_{11}, a_{22}, \ldots, a_{nn})$. The transpose of a matrix A is denoted by A^t . Finally, L_n is the $n \times n$ backward identity matrix where $L_n \in \mathcal{P}_n^{(\leq 1)}$.

2 Decompositions and bases of subspaces

Let $\langle \mathcal{T}_n \rangle$ be the linear span of any subset \mathcal{T}_n of $n \times n$ permutation matrices. The dimension of $\langle \mathcal{P}_n \rangle$ is known to be equal to $(n-1)^2 + 1$. In fact, the subspace $\langle \mathcal{P}_n \rangle$ of M_n is determined by the 2(n-1) linear equations saying that row sums are equal and column sums are equal. Several bases have been constructed for $\langle \mathcal{P}_n \rangle$. The convex hull Ω_n of \mathcal{P}_n has dimension $(n-1)^2$.

We will make use of the cyclic-Toeplitz decomposition $J_n = T_1 + T_2 + \cdots + T_n$ and the cyclic-Hankel decomposition $J_n = H_1 + H_2 + \cdots + H_n$ of the $n \times n$ matrix J_n of all 1's into n permutation matrices as defined in [8]. The matrices T_i are obtained from the identity matrix I_n (=T₁) by successively rotating its rows. The matrices H_i are obtained from the matrix L_n (=H₁) by successively rotating its columns. These are illustrated below for n = 5 using letters a, b, c, d, e, respectively, to distinguish the permutation matrices $T_1 = I_5, T_2, T_3, T_4, T_5$, and the permutation matrices H_5, H_4, H_3, H_2, H_1 :

Γ	a	b	c	d	e		e	d	c	b	a	1
l	e	a	b	c	d		d	c	b	a	e	
	d	e	a	b	c	,	С	b	a	e	d	
	c	d	e	a	b		b	a	e	d	C	
	b	c	d	e	a		a	e	d	c	b	

For n odd the permutation matrices in the cyclic-Hankel decomposition have exactly one 1 on the main diagonal and thus correspond to permutations with exactly one fixed point. This is not the case for n even as illustrated for n = 4 below:

Γ	d	c	b	$a \rceil$
-	c	b	a	d
	b	a	d	c
	a	d	c	b

The cyclic-Toeplitz decomposition contains the identity matrix and thus the other permutation matrices correspond to permutations without any fixed point, that is, to derangements.

Theorem 2.1. Let $n \geq 3$. Every permutation matrix P in \mathcal{P}_n is a ± 1 linear combination of permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. In particular, there is a basis of $\langle \mathcal{P}_n \rangle$ consisting of $(n-1)^2 + 1$ permutation matrices in $\mathcal{P}_n^{(\leq 1)}$.

Proof. First assume that $P \in \mathcal{P}_n$ has an odd number $k \geq 3$ of fixed points.

Using the cyclic-Hankel decomposition and the cyclic-Toeplitz decomposition of J_k with the identity matrix $T_1 = I_k$ removed, we obtain for k odd that

$$I_k = (H_1 + H_2 + \dots + H_k) - (T_2 + T_3 + \dots + T_k),$$

a decomposition of I_k into matrices in $\mathcal{P}_k^{(\leq 1)}$. For example with k = 3,

ſ	1		-		Γ		1 -		Γ	1	-]	[1]		7		Γ	1	-				1]	
		1		=		1		+	1			+			1	—			1	_	1			
	-		1		1		_				1		L	1			1		_		_	1		
																							(2	2)

Without loss of generality, we assume that the k fixed points of $P \in \mathcal{P}_n$ are $\{1, 2, \ldots, k\}$. Thus $P = I_k \oplus R$ where $R \in \mathcal{D}_{n-k}$. Then the desired decomposition is

$$P = I_k \oplus R = \sum_{i=1}^k (H_i \oplus R) - \sum_{i=2}^k (T_i \oplus R).$$
(3)

We now consider $k \ge 4$ even. Let K_k^* be the complete digraph of n vertices obtained from K_k by replacing each edge with two directed edges in opposite directions. For instance, consider k = 4 and the decomposition of J_4 given by

$$J_4 = \begin{bmatrix} 1 & | & | \\ \hline & 1 & | \\ \hline & & 1 & | \\ \hline \end{bmatrix} + \begin{bmatrix} 1 & | & 1 & | \\ \hline 1 & | & 1 & | \\ \hline & & 1 & | \\ \hline \end{bmatrix} + \begin{bmatrix} | & 1 & | \\ \hline \end{bmatrix}$$

This corresponds to a decomposition of K_4^* into directed cycles of length 3, where an additional 1 on the main diagonal has been included in each matrix. By subtracting the permutation matrices in the cyclic-Toeplitz decomposition of J_4 with the identity matrix I_4 removed, that is,

we get I_4 expressed as a ± 1 linear combination of permutation matrices in $\mathcal{P}_4^{(\leq 1)}$.

In [2] it is shown that there is a decomposition of the complete digraph K_n^* into directed cycles of length m if and only if m|n(n-1) and $(n,m) \notin \{(4,4), (6,3), (6,6)\}$. Thus if m = n - 1, such a decomposition exists into n cycles of length n - 1. In fact, in [5] it is proved directly that K_n^* can always be decomposed into directed cycles of length n - 1. Generalizing the preceding construction for k = 4 in the obvious way, we see that for k even, I_k is a ± 1 linear combination of permutation matrices in $\mathcal{P}_k^{(\leq 1)}$. Then, as in the odd case (see (3)), we see that every permutation matrix in \mathcal{P}_n is a ± 1 linear combination of permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. Thus there is a basis of $\langle \mathcal{P}_n \rangle$ consisting of permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. Corollary 2.2.

$$\dim \langle \mathcal{P}_n^{(\leq 1)} \rangle = \dim \langle \mathcal{P}_n \rangle = (n-1)^2 + 1$$

Proof. This follows from the proof of Theorem 2.1. See also Theorem 2.5 for a different proof. \Box

Example 2.3. We illustrate the construction in [5] in the case of even k = 8. Consider K_9^* with vertices $\mathbb{Z}_8 \cup \{\infty\} = \{\infty, 0, 1, \dots, 7\}$ and the cycle in K_9^* given by

$$\infty \to 0 \to 7 \to 1 \to 6 \to 2 \to 5 \to 3 \to 4 \to \infty$$

Using arithmetic in \mathbb{Z}_8 with $\infty + x = \infty$ for all $x \in \mathbb{Z}_8$, we get by adding 1, the eight cycles in K_9^* :

 $\begin{array}{l} \infty \rightarrow 0 \rightarrow 7 \rightarrow 1 \rightarrow 6 \rightarrow 2 \rightarrow 5 \rightarrow 3 \rightarrow \infty, \\ \infty \rightarrow 1 \rightarrow 0 \rightarrow 2 \rightarrow 7 \rightarrow 3 \rightarrow 6 \rightarrow 4 \rightarrow \infty, \\ \infty \rightarrow 2 \rightarrow 1 \rightarrow 3 \rightarrow 0 \rightarrow 4 \rightarrow 7 \rightarrow 5 \rightarrow \infty, \\ \infty \rightarrow 3 \rightarrow 2 \rightarrow 4 \rightarrow 1 \rightarrow 5 \rightarrow 0 \rightarrow 6 \rightarrow \infty, \\ \infty \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 2 \rightarrow 6 \rightarrow 1 \rightarrow 7 \rightarrow \infty, \\ \infty \rightarrow 5 \rightarrow 4 \rightarrow 6 \rightarrow 3 \rightarrow 7 \rightarrow 2 \rightarrow 0 \rightarrow \infty, \\ \infty \rightarrow 6 \rightarrow 5 \rightarrow 7 \rightarrow 4 \rightarrow 0 \rightarrow 3 \rightarrow 1 \rightarrow \infty, \\ \infty \rightarrow 7 \rightarrow 6 \rightarrow 0 \rightarrow 5 \rightarrow 1 \rightarrow 4 \rightarrow 2 \rightarrow \infty. \end{array}$

With the additional cycle

$$0 \to 1 \to 2 \to 3 \to 4 \to 5 \to 6 \to 7 \to 0,$$

we get a decomposition of K_9^* into 9 cycles of length 8. This corresponds to the decomposition of J_9 :

	0	1	2	3	4	5	6	7	$\mid \infty \mid$
0	(e)	i	b	g	С	h	d	a	f
1	b	(f)	i	С	h	d	a	e	g
2	f	С	(g)	i	d	a	e	b	h
3	<i>c</i>	g	d	(h)	i	e	b	f	a
4	g	d	h	e	(a)	i	f	c	b
5	d	h	e	a	f	(b)	i	g	c
6	h	e	a	f	b	g	(c)	i	d
7	i	a	f	b	g	c	h	(\overline{d})	e
∞	a	b	c	d	e	f	g	h	(i)

 \diamond

In the previous theorem we assumed $n \geq 3$. In fact, for n = 2, since $\mathcal{P}_2^{(\leq 1)}$ contains only the matrix

$$\left[\begin{array}{rrr} 0 & 1 \\ 1 & 0 \end{array}\right]$$

 I_2 is not a ± 1 linear combination of permutation matrices in $\mathcal{P}_2^{(\leq 1)}$. Thus $\langle \mathcal{P}_2^{(\leq 1)} \rangle \neq \langle \mathcal{P}_2 \rangle$.

We now consider the subspace $\langle \mathcal{D}_n \rangle$ spanned by the derangements of $\{1, 2, \ldots, n\}$ represented, as we do, by permutation matrices. First we consider an example.

Example 2.4. If n = 3, there are only two derangements

		1		Γ	1		
1			and			1	,
_	1	_		1		_	

and these are linearly independent. Thus $\dim \langle \mathcal{D}_3 \rangle = 2$.

Now let n = 4. We have $D_4 = 9$, and \mathcal{D}_4 consists of the matrices

The first three, the P_i 's, correspond to two cycles of length 2; the last six, the Q_i 's correspond to 4-cycles.

We have

$$Q_1 + Q_3 = P_2 + P_3 = \begin{bmatrix} | & | & | & | & | & | \\ \hline & | & | & 1 & | & | \\ \hline & 1 & | & | & | & | \\ \hline & 1 & 1 & | & | & | \\ \hline & 1 & 1 & | & 1 \\ \hline & 1 & 1 & | & 1 \\ \hline & 1 & 1 & | & 1 \\ \hline & 1 & 1 & | & | \\ \hline & 1 & 1 & | & | \\ \hline & 1 & 1 & | & | \\ \hline \end{pmatrix},$$

and

$$Q_5 + Q_6 = P_1 + P_2 = \begin{bmatrix} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix}$$

Thus, for example, Q_3, Q_4, Q_6 are redundant and a basis is contained in $\{P_1, P_2, P_3, Q_1, Q_2, Q_5\}$. P_1, P_2, P_3 are clearly linearly independent as each has a 1 where the

other two have 0's; similarly, Q_1, Q_2, Q_5 are linearly independent. Moreover, P_1, P_2 , P_3, Q_1, Q_2, Q_5 are linearly independent, since each of P_1, P_2, P_3 has a 1 where all of Q_1, Q_2, Q_5 have a 0. Hence we have: dim $\langle \mathcal{D}_4 \rangle = 6$ and $P_1, P_2, P_3, Q_1, Q_2, Q_5$ is a basis of $\langle \mathcal{D}_4 \rangle$.

Since $\dim \langle \mathcal{P}_4^{(\leq 1)} \rangle = 10$, including four permutation matrices each with exactly one 1 on the main diagonal in different positions, gives a basis of $\langle \mathcal{P}_4^{(\leq 1)} \rangle$.

We now give a different proof of the dimension formulas which is also constructive.

Theorem 2.5. There is a basis of $\langle \mathcal{P}_n^{(\leq 1)} \rangle$, so of $\langle \mathcal{P}_n \rangle$, containing exactly n permutation matrices with a 1 in different positions on the main diagonal and so

$$\dim \langle \mathcal{P}_n^{(\leq 1)} \rangle = \dim \langle \mathcal{P}_n \rangle = \dim \langle \mathcal{D}_n \rangle + n.$$

Proof. Consider the $n \times n$ (0, 1)-matrix $J_n^* = J_n - I_n$. Then J_n^* determines a face $\mathcal{F}(J_n^*)$ of Ω_n consisting of all the $n \times n$ doubly stochastic matrices with only 0's on the main diagonal. From the formula for faces of Ω_n corresponding to fully indecomposable matrices, given e.g. in Theorem 9.2.1 in [7], the dimension of this face is

$$(n^{2} - n) - 2n + 1 = n^{2} - 3n + 1 = (n - 1)^{2} - n$$

Thus this face determines an affine set (translation of a linear space) $\operatorname{aff}(\mathcal{F}(J_n^*))$ of dimension $n^2 - 3n + 1$, so containing $t := n^2 - 3n + 2$ affinely independent permutation matrices P_1, P_2, \ldots, P_t (all in the face $\mathcal{F}(J_n^*)$, so derangements). Now, the zero matrix O does not lie in $\operatorname{aff}(\mathcal{F}(J_n^*))$ and hence O, P_1, P_2, \ldots, P_t are affinely independent. This implies that $P_1 - O, P_2 - O, \ldots, P_t - O$, i.e., P_1, P_2, \ldots, P_t , are linearly independent. By choosing for $1 \leq i \leq n$ an $n \times n$ permutation matrix W_i with a 1 in the *i* th position of the main diagonal and 0's elsewhere we get an additional *n* linearly independent permutation matrices. Since

$$(n^{2} - 3n + 2) + n = n^{2} - 2n + 1 = (n - 1)^{2} = \dim \Omega_{n},$$

it follows that

$$\dim \langle \mathcal{D}_n \rangle = n^2 - 3n + 2 = (n-1)^2 - n + 1$$

and thus there is a basis of $\langle \mathcal{P}_n^1 \rangle = \langle \mathcal{P}_n \rangle$ containing exactly *n* permutation matrices (freely chosen) with a 1 on the main diagonal (in different positions).

Example 2.6. We construct a basis of $\langle \mathcal{D}_n \rangle$ as follows. Consider the $n \times n$ fully indecomposable matrix F_n illustrated in (4) for n = 6 (all $(n^2 - 3n)$ unspecified entries are assumed to equal 0). In general. $F_n = U_n + V_n$ where U_n is the permutation matrix in F_n containing a 1 in position (1, n) and V_n is the permutation matrix in F_n containing the 1 in positions (1, n-1). These are the only two permutation matrices contained in F_n .

$$F_{6} = \begin{bmatrix} 0 & | & 1 & 1 \\ 1 & 0 & | & 1 \\ \hline 1 & 1 & 0 & | \\ \hline 1 & 1 & 0 & | \\ \hline 1 & 1 & 1 & 0 \\ \hline & 1 & 1 & 1 & 0 \end{bmatrix}.$$
 (4)

Since F_n is easily seen to be fully indecomposable, each of the $n^2 - 3n$ positions of F_n with an unspecified 0 belongs to a permutation matrix with a 1 in that position where all of its other 1's are 1's in F_n . This gives a set \mathcal{R}_n of $n^2 - 3n$ linearly independent derangements. The permutation matrices U_n and V_n are clearly linearly independent of the permutation matrices in \mathcal{R}_n . This gives a total of $n^2 - 3n + 2$ linearly independent derangements. Since $\dim \langle \mathcal{D}_n \rangle = n^2 - 3n + 2$, we have a basis of $\langle \mathcal{D}_n \rangle$.

Remark 2.7. Let A be an $n \times n$ (0, 1)-matrix (or a nonnegative integral matrix). Then A is the sum of permutation matrices in \mathcal{D}_n if and only if A has constant row and column sums and all 0's on its main diagonal. On the other hand, characterizing those A that are sums of permutation matrices in $\mathcal{P}_n^{(\leq 1)}$ seems to be a difficult problem since there may be many nonzeros on the main diagonal of A. Let $\mathcal{T}_n^{(\leq 1)}$ be the class of (0, 1)-matrices that are a sum of matrices in $\mathcal{P}_n^{(\leq 1)}$. Then $A \in \mathcal{T}_n^{(\leq 1)}$ satisfies:

- (i) A has constant row and column sums k.
- (ii) If A has t 1's on the diagonal, then $k \ge t$. (This is because A must be a sum of at least t permutation matrices.)

Thus, for instance, if A is the identity matrix I_n , with n > 1, then condition (ii) is violated.

Example 2.8. Consider the (0, 1)-matrix

$$A = \begin{bmatrix} 1 & 1 \\ \hline 1 & 1 \end{bmatrix}$$

Then A satisfies the conditions (i) and (ii) with k = t = 2. However, $A \notin \mathcal{T}_4^1$. In fact, A has the following unique decomposition as a sum of two permutation matrices

and the first matrix is not in \mathcal{P}_4^1 .

This example shows that further conditions than (i) and (ii) are required to characterize the class \mathcal{T}_n^1 . In fact, at least the following additional condition is needed:

(iii) For each 1 on the main diagonal of A the submatrix obtained by deleting the row and column of that 1 must contain a derangement matrix.

This condition (iii) is violated by the matrix A above.

 \diamond

374

Example 2.9. Consider the $n \times n$ matrix J_n of all 1's. If n is odd, then the cyclic-Hankel decomposition shows that J_n is a sum of n permutation matrices of $\mathcal{P}_n^{(\leq 1)}$. Now assume that n is even so that the cyclic-Hankel decomposition fails. As already discussed, in [2] it is shown that there is a decomposition of the complete digraph K_n^* into directed cycles of length (n-1). Using a 1 on the main diagonal, it follows that J_n has a decomposition into permutation matrices in $\mathcal{P}_n^{(\leq 1)}$.

3 The extended near-derangement polytope $\Omega_n^{(\leq 1)}$

We study the polytope $\Omega_n^{(\leq 1)}$ and begin by computing its dimension. We refer to [20] for polyhedral theory. In general, for a polyhedron C, its dimension is the dimension of its affine hull $\operatorname{aff}(C)$, Moreover, $\operatorname{aff}(C)$ may be determined as the solutions of all the implicit equalities in the linear system that defines C where an *implicit equality* is an inequality that holds with equality for *all* points in C.

Lemma 3.1.

$$\dim \Omega_n^{(\le 1)} = (n-1)^2.$$

Proof. Consider the polyhedron $\Omega_n^{(\leq 1)}$. Clearly all the line sum equations are implicit equalities, and $a_{ij} \geq 0$ is not an implicit equality $(i, j \leq n)$. Consider the final defining inequality, $\sum_{i=1}^{n} a_{ii} \leq 1$ for $A = [a_{ij}] \in M_n$. This is not an implicit equality since every derangement satisfies the inequality strictly. It follows that the affine hull of $\Omega_n^{(\leq 1)}$ equals the affine hull of Ω_n , and therefore dim $\Omega_n^{(\leq 1)} = (n-1)^2$. The result may also be derived from Theorem 2.1.

The next result deals with the facets of the polytope $\Omega_n^{(\leq 1)}$.

Theorem 3.2. $\Omega_n^{(\leq 1)}$ has $n^2 + 1$ facets. These facets are induced by each of the inequalities $a_{ij} \geq 0$ (where $A = [a_{ij}] \in \Omega_n^{(\leq 1)}$) for $i, j \leq n$ and the trace inequality $\sum_i a_{ii} \leq 1$.

Proof. Of the linear inequalities defining a polyhedron Q, those that are not implicit equalities are called *plus-inequalities*. There is a one-to-one correspondence between the facets and the plus-inequalities, and the facet is obtained by setting that plus-inequality to equality [20]. The desired result follows from this as (i) for each i, j there is a near-derangement matrix with a 1 in position (i, j), and (ii) there is a derangement matrix (so satisfying the trace inequality strictly).

In particular, the facet of $\Omega_n^{(\leq 1)}$

$$\{A \in \Omega_n^{(\leq 1)} : \sum_i a_{ii} = 1\},\$$

induced by the trace inequality has dimension $(n-1)^2-1$. This facet clearly contains the permutation matrices with exactly one 1 on the main diagonal, and these are extreme points. But there are many other extreme points. The next goal is to determine the extreme points of $\Omega_n^{(\leq 1)}$. To this end we define a new class of sparse doubly stochastic matrices. Let

$$\mathcal{P}_n^{(\geq 2)} = \{ P \in \mathcal{P}_n : \operatorname{tr}(P) \ge 2 \}.$$

Thus, $\mathcal{P}_n^{(\leq 1)}$, $\mathcal{P}_n^{(\geq 2)}$ is a partition of the set \mathcal{P}_n of permutation matrices of order n. Let $P \in \mathcal{P}_n^{(\geq 2)}$ and $Q \in \mathcal{D}_n$, and consider the convex combination

$$R = R(P,Q) = (1/k)P + (1 - 1/k)Q$$
(5)

where $k = \operatorname{tr}(P) \ge 2$ is the number of 1's on the diagonal of P. Then $R \in \Omega_n$ and $\operatorname{tr}(R) = (1/k)\operatorname{tr}(P) + (1 - 1/k)\operatorname{tr}(Q) = 1$, so that $R \in \Omega_n^{(\leq 1)}$.

Let C_n^* be the class of $n \times n$ doubly stochastic matrices of the form (5). Note that each matrix $R \in C_n^*$ has one or two nonzeros in every line; if there are two nonzeros, these are 1/k and 1-1/k and they are in positions corresponding to a 1 in P and a 1 in Q, respectively. Consider the bipartite graph G_R with vertices (i, j) $(i, j \leq n)$ and an edge between (two distinct) vertices in the same row or column whenever both entries in R are positive. Then G_R contains vertex-disjoint even cycles C_1, C_2, \ldots, C_s for some $s \geq 1$. The vertices of these cycles alternate between the positions of 1's in P and Q.

Let \mathcal{C}_n^{**} be the subset of \mathcal{C}_n^* consisting of matrices $R \in \mathcal{C}_n^*$ such that G_R has exactly one cycle; such a cycle must contain all the k positions on the main diagonal of P containing a 1 of P. This is because Q is a derangement and thus does not contain any 1's on its main diagonal.

We now determine the set of extreme points of the extended near-derangement polytope $\Omega_n^{(\leq 1)}$.

Theorem 3.3. The extreme points of $\Omega_n^{(\leq 1)}$ are the permutation matrices in $\mathcal{P}_n^{(\leq 1)}$ and the doubly stochastic matrices in \mathcal{C}_n^{**} . Therefore

$$\Omega_n^{(\leq 1)} = \operatorname{conv}\left(\mathcal{P}_n^{(\leq 1)} \cup \mathcal{C}_n^{**}\right).$$

Proof. Our main tool will be the so-called double description method, developed by Motzkin et al. [17]; the method is described for polyhedral cones in [19]. The starting point is the Birkhoff polytope Ω_n where we know all extreme points (the $n \times n$ permutation matrices) and a complete linear inequality description. We have

$$\Omega_n^{(\le 1)} = \Omega_n \cap \{ A = [a_{ij}] \in M_n : \sum_{i=1}^n a_{ii} \le 1 \}.$$

Clearly every permutation matrix in $\mathcal{P}_n^{(\leq 1)}$ is an extreme point of $\Omega_n^{(\leq 1)}$; this follows by convexity as Ω_n^1 is contained in the unit cube.

First we show that any matrix $A \in \Omega_n^{(\leq 1)}$ can be written as a convex combination of matrices in $\mathcal{P}_n^1 \cup \mathcal{C}_n^*$. As $A \in \Omega_n$ we may write

$$A = \sum_{k=1}^{m} \lambda_k P_k \tag{6}$$

for permutation matrices P_k and positive scalars λ_k $(k \leq m)$ where $\sum_k \lambda_k = 1$. If none of these P_k 's are in $\mathcal{P}_n^{(\geq 2)}$, we are done, so assume that $P_{k^*} \in \mathcal{P}_n^{(\geq 2)}$ for some k^* . Then there exists an s where $P_s \in \mathcal{D}_n$; otherwise $\operatorname{tr}(A) > 1$ which is impossible. We can therefore rewrite A as a convex combination of the P_j 's with $j \neq k^*$ and the matrix $R = R(P_{k^*}, P_s)$ with a positive weight λ_R associated with R. We here choose λ_R largest possible, and this means that one of the updated weights λ_{k^*} or λ_s will be zero. Thus, the number of positive weights λ_k is reduced by at least 1. We continue this process a finite number of times and gradually change the convex combination by introducing further matrices $R(P_i, P_j) \in \mathcal{C}_n^*$. Eventually we end up with A written as a convex combination of matrices in $\mathcal{P}_n^1 \cup \mathcal{C}_n^*$. The fact that a finite number of such transformations suffices is due to the strict reduction of the number of positive weights λ_k associated with permutation matrices. This proves that $\Omega_n^1 = \operatorname{conv}(\mathcal{P}_n^{(\leq 1)} \cup \mathcal{C}_n^*)$. Thus all extreme points of Ω_n^1 are in $\mathcal{P}_n^{(\leq 1)} \cup \mathcal{C}_n^*$. It remains to show that this set of "fractional" extreme points in \mathcal{C}_n^* is precisely \mathcal{C}_n^* .

Let $R = R(P,Q) \in \mathcal{C}_n^*$ be an extreme point of $\Omega_n^{(\leq 1)}$ where $P \in \mathcal{P}_n^{(\geq 2)}$ and $Q \in \mathcal{D}_n$. Assume G_R contains a cycle C with no position on the main diagonal. Let R_1 be obtained from R by adding a small number $\epsilon > 0$ to each entry in the P-positions (as defined above) and subtracting ϵ from each entry in the Q-positions. Similarly, we construct R_2 , but we interchange the role of adding/subtracting. For suitably small ϵ the matrices R_1 and R_2 are doubly stochastic. Moreover, as C has no entry on the main diagonal, $\operatorname{tr}(R_i) = \operatorname{tr}(R) = 1$, so $R_i \in \Omega_n^1$ (i = 1, 2). Finally, $R = (1/2)R_1 + (1/2)R_2$, and this contradicts that R is an extreme point. This proves that each cycle in G_R contains a position on the main diagonal.

Assume G_R has (at least) two cycles C_1 and C_2 . Then C_i contains some number $\gamma_i \geq 1$ of positions on the main diagonal (i = 1, 2). Let $\epsilon_1, \epsilon_2 > 0$ be "small" numbers to be determined. Let R_1 be obtained from R by (i) adding ϵ_1 to each entry in the P-positions of C_1 and subtracting ϵ_1 from each entry in the Q-positions of C_1 , and (ii) subtracting ϵ_2 from each entry in the P-positions of C_2 and adding ϵ_2 to each entry in the Q-positions of C_1 . Then, for suitably small ϵ_i (i = 1, 2) the matrix R_1 is doubly stochastic and

$$\operatorname{tr}(R_1) = \operatorname{tr}(R) + \gamma_1 \epsilon_1 - \gamma_2 \epsilon_2 = \operatorname{tr}(R) = 1$$

by choosing $\epsilon_2 = (\gamma_1/\gamma_2)\epsilon_1$. Thus, with suitably small $\epsilon_1, R_1 \in \Omega_n^{(\leq 1)}$. Now let R_2 be obtained from R_1 by changing the signs of ϵ_1 and ϵ_2 . Then $R_2 \in \Omega_n^{(\leq 1)}$, and clearly $R = (1/2)R_1 + (1/2)R_2$, and this contradicts that R is an extreme point. This proves that G_R has exactly one cycle, and this cycle contains a position on the main diagonal. Conversely, if G_R has exactly one such cycle, then it is easy to use the variational technique above to show that R cannot be written as a convex combination of two distinct matrices in $\Omega_n^{(\leq 1)}$, and therefore R is an extreme point.

We illustrate the construction of extreme points as given in the proof of Theorem 3.3.

377

Example 3.4. Let n = 5,

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Then tr(P) = 3, tr(Q) = 0 and

$$R = R(P,Q) = \begin{bmatrix} 1/3 & 0 & 2/3 & 0 & 0 \\ 0 & 0 & 1/3 & 2/3 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1/3 & 2/3 \\ 2/3 & 0 & 0 & 0 & 1/3 \end{bmatrix} \in \mathcal{C}_5^*.$$

 G_R contains exactly one cycle (with three vertices on the main diagonal), so $R \in \mathcal{C}_5^{**}$ and R is an extreme point of $\Omega_5^{(\leq 1)}$.

Example 3.5. Consider the following two permutation matrices in \mathcal{P}_5

$$I_5 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}.$$

So $I_5 \in \mathcal{P}_5^{(\geq 2)}$ and $Q \in \mathcal{D}_5$. Then

$$R = R(I_5, Q) = \begin{bmatrix} \frac{1}{5} & \frac{4}{5} & 0 & 0 & 0\\ 0 & \frac{1}{5} & \frac{4}{5} & 0 & 0\\ \frac{4}{5} & 0 & \frac{1}{5} & 0 & 0\\ 0 & 0 & 0 & \frac{1}{5} & \frac{4}{5}\\ 0 & 0 & 0 & \frac{4}{5} & \frac{1}{5} \end{bmatrix} \in \mathcal{C}_5^*.$$

However, R is not an extreme point of $\Omega_5^{(\leq 1)}$ because G_R contains two cycles. \diamond **Example 3.6.** Consider the following two permutation matrices in \mathcal{P}_5

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \text{ and } Q = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

So $P \in \mathcal{P}_5^{(\geq 2)}$ and $Q \in \mathcal{D}_5$. Then

$$R = R(P,Q) = \begin{bmatrix} \frac{1}{3} & 0 & \frac{2}{3} & 0 & 0\\ 0 & 0 & 0 & 0 & 1\\ 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0\\ \frac{2}{3} & 0 & 0 & \frac{1}{3} & 0\\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \in \mathcal{C}_5^*.$$

R is an extreme point of $\Omega_5^{(\leq 1)}$ because G_R contains only one cycle.

The matrix R in the previous example has a special form where all the entries equal to 1/k are on the main diagonal (where k is the trace of P). This means that the cycle in G_R alternates between a vertex on the main diagonal (corresponding to P) and a vertex not on the main diagonal (corresponding to Q). More generally, a subclass of \mathcal{C}^{**} are matrices such that there exists a permutation matrix U such that $R = UAU^t$ where

$$A = \left[\begin{array}{c|c} \frac{\frac{1}{k}I_{k} + \frac{k-1}{k}S_{k}}{O_{k,n-k}} \\ 0_{n-k,n} & X_{n-k} \end{array} \right],$$

where

$$S_k = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \cdots & \vdots \\ 0 & 0 & 0 & \ddots & 1 \\ 1 & 0 & 0 & \cdots & 0 \end{bmatrix} \quad (2 \le k \le n),$$

and X_{n-k} is a direct sum of matrices of this form. Here $k \leq n-2$.

4 The convex hull of $\mathcal{P}_n^{(\leq 1)}$

Let M_n be the linear space of $n \times n$ matrices. In this section we initiate a study of the polytope $\mathcal{Q}_n^{(\leq 1)}$ defined as the convex hull of the permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. Since a permutation matrix cannot be expressed as a convex combination of permutation matrices different from itself, the set of extreme points of $\mathcal{Q}_n^{(\leq 1)}$ equals $\mathcal{P}_n^{(\leq 1)}$.

Lemma 4.1.

dim $\mathcal{Q}_n^{(\leq 1)} = (n-1)^2$, the same as the dimension of Ω_n .

Proof. By Theorem 2.1 there is a basis of $\langle \mathcal{P}_n \rangle$ consisting of permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. Since the dimension of the linear span $\langle \mathcal{P}_n \rangle$ is $(n-1)^2 + 1$, such a basis contains $(n-1)^2 + 1$ permutation matrices in $\mathcal{P}_n^{(\leq 1)}$. Since $\mathcal{Q}_n^{(\leq 1)} \subseteq \langle \mathcal{P}_n \rangle$, the dimension of $\mathcal{Q}_n^{(\leq 1)}$ is also $(n-1)^2$.

We first consider the case when n is small. Each of $\mathcal{Q}_1^{(\leq 1)}$ and $\mathcal{Q}_2^{(\leq 1)}$ consists of a single matrix, namely J_1 , and the 2 × 2 backward identity matrix L_2 , respectively.

 \diamond

Theorem 4.2. The polytope $\mathcal{Q}_3^{(\leq 1)}$ is a 4-dimensional simplex in M_3 . A complete linear description of $A = [a_{ij}] \in \mathcal{Q}_3^{(\leq 1)}$ is

$$a_{ii} \ge 0 \quad (i \le 3),$$

$$\sum_{j=1}^{3} a_{ij} = 1 \quad (i \le 3),$$

$$\sum_{i=1}^{3} a_{ij} = 1 \quad (j \le 3),$$

$$a_{11} + a_{21} + a_{22} \le 1 \text{ and } a_{11} + a_{12} + a_{22} \le 1.$$
(7)

Each inequality in (7) defines a facet of $\mathcal{Q}_3^{(\leq 1)}$.

Proof. Let $A = [a_{ij}] \in \mathcal{Q}_3^{(\leq 1)}$. By Lemma 4.1, $\dim(\mathcal{Q}^{(\leq 1)}) = 4$. Moreover, all entries in the last row and column of A are determined uniquely by the leading 2×2 submatrix

$$A' = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right].$$

 $\mathcal{P}_3^{(\leq 1)}$ consists of the following five permutation matrices

$$\begin{bmatrix} 1 \\ \hline \\ \hline \\ \hline \\ \hline \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \hline \\ 1 \\ \hline \\ \hline \\ \hline \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ \hline \\ \hline \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \end{bmatrix}, \begin{bmatrix} 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \end{bmatrix}, \begin{bmatrix} 1 \\ \hline \\ 1 \\ \hline \\ 1 \\ \hline \end{bmatrix} \right)$$
(8)

so that it is only the identity matrix I_3 that is left out (see also (2)). By Lemma 4.1, $\mathcal{Q}_3^{(\leq 1)}$ has dimension 4, and therefore the five matrices in (8) are affinely independent. Since, each of these matrices is an extreme point of $\mathcal{Q}_3^{(\leq 1)}$, it follows by definition of a simplex that $\mathcal{Q}_3^{(\leq 1)}$ is a 4-dimensional simplex in M_3 .

Consider the set of the five leading 2×2 submatrices of the matrices in (8), and let K be the simplex equal to their convex hull. The simplex $\mathcal{Q}_3^{(\leq 1)}$ is affinely isomorphic to K. This follows from the fact that all the line sum constraints equal 1. Each facet of a simplex is obtained as the convex hull of all except one of its vertices. Based on this one can compute all facets of K and they correspond to the following five linear inequalities in (the entry) variables a_{ij} $(i, j \leq 2)$:

$$a_{11} \ge 0, \ a_{22} \ge 0, \ a_{11} + a_{12} + a_{21} + a_{22} \ge 1,$$

 $a_{11} + a_{12} + a_{22} \le 1, \ a_{11} + a_{21} + a_{22} \le 1.$

Thus, by adding the linear equations $\sum_{j} a_{ij} = 1$ $(i \leq 3)$ and $\sum_{i} a_{ij} = 1$ $(j \leq 3)$ we obtain a complete and nonredundant linear description of $\mathcal{Q}_{3}^{(\leq 1)}$. As the inequality $a_{11} + a_{12} + a_{21} + a_{22} \geq 1$ can be seen to be equivalent to $a_{33} \geq 0$ (using the line sum equations), the desired result follows.

Note that for n = 3 the set $\mathcal{P}_3^{(\leq 1)}$ consists of all permutations except the identity. Therefore the polytope $\mathcal{Q}_3^{(\leq 1)}$ coincides with the polytope Ω_3^* equal to the convex

380

hull of all non-identity permutation matrices of order 3, and the previous theorem characterizes this polytope for n = 3.

The final two facet defining inequalities in (7) can be generalized as follows, for general n. Define first the graph G_n with vertices (i, j) $(1 \le i, j \le n)$ corresponding to the positions of an $n \times n$ matrix. Next, define edges between every pair of vertices whose positions are in the same row or column, or both are on the main diagonal. Then the support of a matrix $P \in \mathcal{P}_n^{(\le 1)}$, that is, the set of positions of its nonzeros, corresponds to a stable set in G_n . Recall that a stable set (or independent set) is a vertex subset where no two of these vertices are adjacent. Conversely, a stable set in G_n corresponds to a subpermutation matrix with at most one 1 on the main diagonal. The line sum inequalities (sum in a line is at most 1) and trace inequality correspond to 2n + 1 clique inequalities for the stable set polytope of G_n . See [21] for many results concerning stable set polytopes. Another general class consists of the odd cycle inequalities: every $A = [a_{ij}] \in \mathcal{Q}_n^{\le 1}$ satisfies

$$\sum_{(i,j)\in C} a_{ij} \le (|C|-1)/2 \tag{9}$$

where C is an odd cycle in the graph G_n . A special case is when |C| = 3, so C is a triangle, and we get the *triangle inequality*

$$\sum_{(i,j)\in C} a_{ij} \le 1.$$

This can also be seen as a clique inequality. In fact, these are the only remaining maximum clique inequalities in G_n , apart from those for lines and the main diagonal. The triangles in G_n are of the form $C = \{(i, i), (i, j), (j, j)\}$ or $C = \{(i, i), (j, i), (j, j)\}$ for $1 \leq i < j \leq n$. The final two facet defining inequalities in (7) are triangle inequalities.

5 A property of faces

A natural question concerning the polytopes considered here is to determine which faces of Ω_n are also faces of the subpolytope $\Omega_n^{(\leq 1)}$. Every face \mathcal{F} of Ω_n is determined by an $n \times n$ (0, 1)-matrix A with *total support* (meaning that every 1 of A is part of a permutation matrix $P \leq A$):

$$\mathcal{F} = \mathcal{F}(A) = \{ X \in \Omega_n : X \le A \}.$$

Thus \mathcal{F} is also a face of $\Omega_n^{(\leq 1)}$ if and only if every permutation matrix P with $P \leq A$ is contained in $\mathcal{P}_n^{(\leq 1)}$. The question is to characterize those (0, 1)-matrices A having this property.

An example of a matrix with this property is

$$A = \begin{bmatrix} 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{bmatrix},$$

since it contains only the following permutation matrices in $\mathcal{P}_4^{(\leq 1)}$:

1			-]	「		1			「			1	1
			1					1			1			
	1			,	1				,	1				
_		1	_			1		_				1		

A general characterization of this property is given next.

Theorem 5.1. Let $A = [a_{ij}]$ be an $n \times n$ (0, 1)-matrix with total support. Then the face $\mathcal{F}(A)$ of Ω_n is also a face of $\Omega_n^{(\leq 1)}$ if and only if there are integers u_i and v_j $(i, j \leq n)$ such that

$$u_{i} + v_{i} \geq 1 \qquad \text{for all } i \text{ with } a_{ii} = 1,$$

$$u_{i} + v_{j} \geq 0 \qquad \text{for all } i \neq j \text{ with } a_{ij} = 1,$$

$$\sum_{i} u_{i} + \sum_{j} v_{j} \leq 1.$$
(10)

Proof. Consider the optimization problem

$$\gamma := \max\{\sum_{i=1}^{n} p_{ii} : P = [p_{ij}] \in \mathcal{P}_n, \ P \le A\}$$
(11)

which asks for a permutation matrix $P \leq A$ with a maximum number of 1's on the main diagonal. Then, clearly, the face $\mathcal{F}(A)$ of Ω_n is also a face of $\Omega_n^{(\leq 1)}$ if and only if $\gamma \leq 1$. Problem (11) can be viewed as a maximum weight perfect matching problem in a bipartite graph with two sets of vertices of cardinality n (corresponding to rows and columns) and edges corresponding to those (i, j) where $a_{ij} = 1$. Let E denote the edge set of this graph. The weight w_{ij} is 1 for edges (i, i), i.e., when $a_{ii} = 1$, and 0 otherwise. By a well-known result from matching theory [20, 21] (due to linear programming duality and total unimodularity) γ equals the optimal value of the dual problem which is

$$\gamma := \min\left\{\sum_{i} u_i + \sum_{j} v_j : u_i + v_j \ge w_{ij}, \text{ for all } ij \in E\right\}$$
(12)

and both problems have optimal solutions that are integral. This gives the desired result. $\hfill \Box$

In the example above, we have $\gamma = 1$ and an optimal dual solution is $u_3 = -1$, $v_1 = v_2 = 1$ while all other variables are 0.

The efficient matching algorithm mentioned in the proof of Theorem 5.1 decides if the face $\mathcal{F}(A)$ of Ω_n is also a face of $\Omega_n^{(\leq 1)}$. Still, an interesting question is to find classes of (0, 1)-matrices A where this property holds (so no algorithm is needed). We give one such result next.

Let r, s, k, and n be natural numbers with r, s, k < n and $k \ge 2$. Define the (0, 1)-matrix $A = A^{(k,r,s,n)}$ by the following properties: (i) its lower right corner is an $r \times s$ zero submatrix, (ii) the main diagonal of A consists of k 1's followed by zeros, and (iii) all other entries of the matrix are equal to 1.

Theorem 5.2. Let $A = A^{(k,r,s,n)} = [a_{ij}]$ be as above with

$$2 \le k \le \lfloor n/2 \rfloor, \ r = n - k \ and \ s = k - 1.$$

Then (i) A has total support and (ii) the face $\mathcal{F}(A)$ of Ω_n is also a face of $\Omega_n^{(\leq 1)}$.

Moreover, A has the maximum number of 1's among $n \times n$ (0,1)-matrices with trace k satisfying properties (i) and (ii).

Proof. First we observe that A has total support as it has no zero $p \times q$ submatrix with p + q = n.

Next, assume P is a permutation matrix with $P \leq A$ and trace $s \geq 2$. So $2 \leq s \leq k$, and P contains the identity matrix I_s as a principal submatrix. The complementary submatrix P' of I_s (in P) has size $(n-s) \times (n-s)$ and contains an $r \times s$ zero submatrix, due to the fact that $P \leq A$ and by construction of A. But

$$r + s = (n - k) + (k - 1) = n - 1.$$

Note that $n-1 \ge n-s+1$ as $s \ge 2$. Therefore, by the Frobenius-König Theorem, this zero submatrix implies that P' cannot contain a permutation matrix. This is a contradiction, and it follows that every permutation matrix P with $P \le A$ must have trace at most 1, i.e., it lies in $\mathcal{P}^{(\le 1)}$. This proves property (ii) in the theorem.

To prove the final statement consider an $n \times n$ (0, 1)-matrix A' with trace $k \ge 2$ and satisfying properties (i) and (ii). Choose two 1's on the main diagonal of A'; they define a 2×2 submatrix. By property (ii) the complementary submatrix A^* cannot contain a permutation matrix, so by the Frobenius-König Theorem, A^* contains a $p \times q$ zero submatrix with p+q = n-1. This implies that the number of zeros in A^* is at least the number of zeros in the matrix A in the theorem. (This is because pq is a strictly decreasing function of p under the constraints p+q = n-1, $1 \le p, q \le n-k$ and $p \ge q$.) Therefore A has the maximum number of 1's under the mentioned constraints.

Example 5.3. Let n = 9 and k = 4. Then r = 5, s = 3 and the constructed matrix in Theorem 5.2 is

	1		1	1		1	1	T		
	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	
	1	1	1	1	1	1	1	1	1	
A =	1	1	1	1	0	1	0	0	0	
	1	1	1	1	1	0	0	0	0	
	1	1	1	1	1	1	0	0	0	
	1	1	1	1	1	1	0	0	0	
	1	1	1	1	1	1	0	0	0	

 \diamond

6 Concluding remarks

In this final section we suggest some possible further questions to study in this area.

(i) A natural, and interesting topic, is to investigate the stable set polytope of G_n , defined above as the convex hull of all incidence vectors of stable sets in G_n . This polytope contains the polytope $Q_n^{(\leq 1)}$ as a face. A lot is known about stable set polytopes (see e.g. [18, 21]), but this graph is special, so we believe there may be interesting questions concerning this polytope.

(ii) In Theorem 3.3 we determined all the extreme points of $\Omega_n^{(\leq 1)}$. An extension is to determine all the faces of $\Omega_n^{(\leq 1)}$, and some of their properties. Each such face F of $\Omega_n^{(\leq 1)}$ which is not a face of Ω_n is obtained as an intersection of a face of Ω_n by the hyperplane $\{A = [a_{ij}] : \sum_i a_{ii} = 1\}$. In particular, the edges of the polytope may be determined based on Theorem 3.3.

(iii) Let $n \ge 2$ be a positive integer. What is the maximum trace k_n of a $n \times n$ (0,1)-matrix A with total support such that every permutation matrix $P \le A$ is in $\mathcal{P}_n^{(\le 1)}$?

(iv) What is the maximum number $m_n(k)$ of 1's in an $n \times n$ (0, 1)-matrix A with total support having k 1's and (n-k) 0's on the main diagonal such that all $P \leq A$ are in $\mathcal{P}_n^{(1)}$?

For k = 1, the $n \times n$ matrix A with one 1 and (n - 1) 0's on the main diagonal, and 1's everywhere else clearly has the property that all $P \leq A$ are in $\mathcal{P}_n^{(1)}$; hence $m_n(1) = n^2 - (n - 1)$. Now consider k = 2.

If n = 3, then

1	1	1 -
1	1	1
1	1	0

is fully indecomposable so that (in question (iii)) $k_3 = 2$, and $m_3(2) = 8$.

If n = 4, then

	1	1	1	1]
<u> </u>	1	1	1	1
A —	1	1	0	1
	1	1	0	0

is fully indecomposable and has the property that all $P \leq A$ are in $\mathcal{P}_4^{(1)}$ implying that $m_4(2) = 13$. In general, for k = 2, we have $m_n(2) = n^2 - 2n + 5$. This follows easily from the classical Frobenius-König theorem.

An example with k = 3 and n = 5 is

[1	0	0	1	1
0	1	0	0	1
0	0	1	1	1
1	0	1	0	0
0	1	1	0	0

To what extent is it sufficient to check only pairs of 1's on the main diagonal?

References

- [1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, *Network Flows: Theory, Algorithms, and Applications*, Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
- [2] B. Alspach, H. Gavlas, M. Sajna and H. Verrall, Cycle decompositions IV: complete directed graphs and fixed length directed cycles, J. Combin. Theory Ser. A 103 (2003), 165–208.
- [3] M. Arezoomand, A. Abdollahi and P. Spiga, On problems concerning fixedpoint-free permutations and on the polycirculant conjecture — A survey, *Trans. Comb.* 8 (1) (2019), 15–40.
- [4] J.-L. Baril and V. Vajnovszki, Gray code for derangements, Discrete Appl. Math. 140 (1-3) (2004), 207–221.
- [5] J. C. Bermond and V. Faber, Decomposition of the complete directed graph into k-circuits, J. Combin. Theory Ser. B 21 (1976), 146–155.
- [6] L. J. Billera and A. Sarangarajan, All 0-1 polytopes are travelling salesman polytopes, *Combinatorica* 16 (2) (1996), 175–178.
- [7] R. A. Brualdi, *Combinatorial Matrix Classes*, Cambridge University Press, Cambridge, 2006.
- [8] R. A. Brualdi and L. Cao, 123-forcing matrices, Australas. J. Combin. 85 (2023), 169–186.
- [9] R. A. Brualdi and G. Dahl, Majorization-constrained doubly stochastic matrices, *Linear Algebra Appl.* 361 (2003), 75–97.
- [10] R. A. Brualdi and S. A. Meyer, Combinatorial properties of integer matrices and integer matrices mod k, Linear Multilin. Algebra 66 (7) (2018), 1380–1402.
- [11] R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, 1991.
- [12] A. C. Burgess, P. Danziger and M. T. Javed, Cycle decompositions of complete digraphs, *Electron. J. Combin.* 28(1), 2021, #P1.35.
- [13] A. B. Cruse, On removing a vertex from the assignment polytope, *Linear Algebra Appl.* 26 (1979), 45–57.
- [14] G. Dahl, Tridiagonal doubly stochastic matrices, *Linear Algebra Appl.* 390 (2004), 197–208.
- [15] P. Jain, Transpositions in Derangements, DOI:10.13140/RG.2.2.35817.42088 (Preprint), 2021.

- [16] K. Mészáros, A. H. Morales and J. Striker, On flow polytopes, order polytopes, and certain faces of the alternating sign matrix polytope, *Discrete Comput. Geom.* 62 (2019), 128–163.
- [17] T. S. Motzkin, H. Raiffa, G. L. Thompson and R. M. Thrall, The double description method, In: *Contributions to the Theory of Games* (AM-28), Vol. II, (Eds.: H.W. Kuhn, A.W. Tucker), Princeton: Princeton University Press, 1953, 51–74.
- [18] M. Padberg, On the facial structure of set packing polyhedra, Math. Program. 5 (1973), 199–215.
- [19] W. R. Pulleyblank, Polyhedral Combinatorics, In: Handbooks in OR & MS Vol. 1 (Eds.: G.L. Nemhauser et al.), Elsevier Science Publishers B.V. (North-Holland), 1989.
- [20] A. Schrijver, Theory of Linear and Integer Programming, Wiley-Interscience, Chichester, 1986.
- [21] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency, Springer, Berlin, 2003.

(Received 20 May 2024; revised 6 Jan 2025)