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Abstract

We study the spectrum of generalized Paley graphs Γ(k, q) = Cay(Fq, Rk),
undirected or not, with Rk = {xk : x ∈ F∗

q} where q = pm with p prime
and k | q − 1. We first show that the eigenvalues of Γ(k, q) are given

by the Gaussian periods η
(k,q)
i with 0 ≤ i ≤ k − 1. Then, we explicitly

compute the spectrum of Γ(k, q) with 1 ≤ k ≤ 4 and of Γ(5, q) for p ≡ 1
(mod 5) and 5 | m. Also, we characterize those GP-graphs having in-
tegral spectrum, showing that Γ(k, q) is integral if and only if p divides
(q−1)/(p−1). Next, we focus on the family of semiprimitive GP-graphs.
We show that they are integral strongly regular graphs (of pseudo-Latin
square type). Finally, we characterize all integral Ramanujan graphs
Γ(k, q) with 1 ≤ k ≤ 4 or where (k, q) is a semiprimitive pair.

1 Introduction

In this paper we study the spectrum of generalized Paley graphs (GP-graphs for
short), and some properties that can be deduced from the spectrum. The work has
three parts. We first study the spectrum of GP-graphs Γ(k, q) and put the spectrum
in terms of cyclotomic Gaussian periods. This allows us to give Spec(Γ(k, q)) explic-
itly for 1 ≤ k ≤ 4 and to characterize those GP-graphs having integral spectrum (first
main result). In the second part, we focus on the family of semiprimitive GP-graphs.
These graphs are, in particular, strongly regular graphs with integral spectrum. We
study the spectrum, parameters and invariants of these graphs as strongly regular
graphs. Finally, in the third part, we study GP-graphs which are Ramanujan. We
classify all integral Ramanujan graphs of the form Γ(k, q) with 1 ≤ k ≤ 4 and all
semiprimitive GP-graphs which are Ramanujan (second main result).

Some results on the spectrum of arbitrary GP-graphs and on the structure of
semiprimitive GP-graphs are known, and can be found scattered in the literature. For
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completeness, we have decided to include our proofs (with some additional references)
to give a unified treatment and notations to these topics. However, the explicit
computation of the spectra for Γ(3, q) and Γ(4, q), the characterization of GP-graphs
with integral spectrum and the classification of Ramanujan semiprimitive GP-graphs
are completely new.

Generalized Paley graphs. If G is an abelian group and S is a subset of G not con-
taining 0, the associated Cayley graph Γ = X(G,S) is the directed graph (digraph)
with vertex set G and where two vertices u, v form a directed edge from u to v in Γ
if and only if v − u ∈ S. Since 0 /∈ S then Γ has no loops. Analogously, the Cayley
sum graph X+(G,S) has the same vertex set G but now v, w ∈ G are connected in Γ
by an arrow from v to w if and only if v+w ∈ S. We will use the notation X∗(G,S)
when we want to consider both X(G,S) and X+(G,S) indistinctly. Notice that if
S is symmetric, that is −S = S, then X∗(G,S) is an |S|-regular simple (undirected
without multiple edges) graph. Actually, given any two vertices u, v there are two
directed edges, ~uv and ~vu. As usual, we consider these two directed edges as a non-
directed single one denoted uv. However, the graph X+(G,S) may contain loops. In
this case, there is a loop on vertex x provided that x+ x ∈ S.

The generalized Paley graph and generalized Paley sum graph are the Cayley
graphs respectively given by

Γ(k, q) = X(Fq, Rk) and Γ+(k, q) = X+(Fq, Rk)

with connection set
Rk = {xk : x ∈ F∗

q}.
That is, Γ(k, q) is the graph with vertex set Fq and two vertices u, v ∈ Fq are
neighbours (directed edge) if and only if v − u = xk for some x ∈ F∗

q. We will refer
to them simply as GP-graphs and GP+-graphs respectively (or GP∗-graphs for both
indistinctly).

Notice that if ω is a primitive element of Fq, then Rk = 〈ωk〉 = 〈ω(k,q−1)〉. This
implies that Γ(k, q) = Γ(k′, q), where

k′ = gcd(k, q − 1),

and that Γ(k, q) is a q−1
k′

-regular graph. Thus, one usually assumes that

k | q − 1

(hence k′ = k), for if not we have that Γ(k, q) = Γ(1, q) = Kq. Summing up, we have

Γ(k, q) =

{
Kq if k′ = 1,

Γ(k′, q) if k′ > 1.

Notice that for q even, we have that Γ+(k, q) = Γ(k, q). On the other hand, when q
is odd, one can show that Γ+(k, q) has loops, since in this case there are exactly |Rk|
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elements x ∈ Fq such that x + x = 2x ∈ Rk (multiplication by 2 is a bijection in Fq

for q odd).

The graph Γ(k, q) is undirected if and only if q is even or else q is odd and k | q−1
2
.

The graph is connected if and only if q−1
k

is a primitive divisor of q−1 (i.e. 1
k
(pm−1)

does not divide pa − 1 for any a < m, where q = pm). This was proved in [14] for
the undirected case, but it also holds in the directed case since Γ(k, q) is strongly
connected if and only if the Waring number g(k, q) exists, and this happens if and
only if q−1

k
is a primitive divisor of q−1. We recall that a strongly connected digraph

is a directed graph in which there is a directed path in each direction between any
pair of vertices of the graph.

For some values of k and q, the GP-graphs Γ(k, q) are known graphs. For instance,
for k = 1, 2 we get the complete graph Γ(1, q) = Kq, the classic (undirected) Paley

graph Γ(2, q) = P (q) for q ≡ 1 (mod 4), and the directed Paley graph ~P (q) for
q ≡ 3 (mod 4). The graphs Γ(3, q) and Γ(4, q) are of interest too (see [24], where
infinite pairs of equienergetic non-isospectral regular graphs Γ(k, q), Γ̄(k, q), k =
3, 4, are obtained). One can see that for p prime, we have that Γ(p−1

2
, p) = Cp

and Γ(p − 1, p) = ~Cp, where Cp and ~Cp are the undirected and directed p-cycles,
respectively. Generalized Paley graphs with k = qℓ + 1 are studied in [20]. The

connected GP-graphs of the form Γ( pbm−1
b(pm−1)

, pbm) are the Hamming graphs H(b, pm)

(see [14]).

Spectrum. The spectrum of a graph Γ, denoted Spec(Γ), is the spectrum of its
adjacency matrix A (i.e. the set of eigenvalues of A counted with multiplicities). If Γ
has different eigenvalues λ0, . . . , λt with multiplicities m0, . . . ,mt, we write as usual

Spec(Γ) = {[λ0]m0 , . . . , [λt]
mt}.

It is well-known that an n-regular graph Γ has n as one of its eigenvalues, with
multiplicity equal to the number of connected components of Γ. That is, Γ is con-
nected if and only if n has multiplicity 1. The same happens for n-regular digraphs,
i.e. those directed graphs such that any vertex has the same in-degree and out-degree
equal to n. In this case, Γ is strongly connected if and only if n has multiplicity 1.

The spectrum of few families of GP-graphs are known. The graphs Γ(1, q) and
Γ(2, q) with q ≡ 1 (mod 4) are classic being the complete graphs Kq and the classic
Paley graphs P (q), and hence with known spectra. The spectrum of Γ(k, q), for
k = 3, 4, was computed in [24] in the special case k | q−1

p−1
, i.e. in the case with integral

spectrum (see Section 4), where q = pm for some m. Also, in [20] we computed the
spectrum of a subfamily of semiprimitive GP-graphs, those of the form Γ(qℓ +1, qm)
with m

(m,ℓ)
even.

If Γ is an n-regular graph, then n is the greatest eigenvalue of Γ. A connected
n-regular undirected graph is called Ramanujan if

|λ| = n or |λ| ≤ 2
√
n− 1

for any eigenvalue λ of Γ. Ramanujan graphs are optimal expanders. For background
on Ramanujan graphs and expanders see for instance the excellent surveys of Ram
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Murty [17], Hoory, Linial and Wigderson [11] and Lubotzky [15]. There are notions of
Ramanujanicity for directed graphs (digraphs). It is both of theoretical and practical
interest to obtain families of Ramanujan (di)graphs.

Outline and results

The paper is organized as follows. In Section 2 we study the spectrum of GP-graphs
in terms of Gaussian periods. By using period polynomials, in Section 3 we give
explicit computations of Γ(k, q) for small values of k and in Section 4 we characterize
all integral GP-graphs. In Section 5 we focus on the particular case of semiprimitive
GP-graphs and in Section 6 we characterize integral Ramanujan graphs for Γ(k, q)
with 1 ≤ k ≤ 4 or (k, q) a semiprimitive pair. Sections 2 and 5 can be thought as
a kind of survey with some extra new material or with a different exposition, while
the other sections present completely new results.

Let q = pm with p prime, assume that k | q − 1 and put n = q−1
k
. We now

summarize the main results of the paper.

In Section 2 we study the spectrum of GP-graphs. In Theorem 2.1 we show that
the spectrum of Γ(k, q) can be put in terms of the cyclotomic Gaussian periods.
More precisely,

Spec(Γ(k, q)) = {[n]1+µn, [ηi1 ]
µi1

n, . . . , [ηis ]
µisn}

where η
(k,q)
i1

, . . . , η
(k,q)
is

are the different cyclotomic Gaussian periods and the µij ’s are
certain numbers (see (2.1) and (2.6)).

The next section is devoted to explicit computations (based on previous works of
Myerson [18], Gurak [8], [9], and Hoshi [12] on period polynomials). In Theorems 3.1
and 3.2 we give the whole spectrum of Γ(3, q) and Γ(4, q), respectively. This, together
with Examples 2.3 and 2.4 and Remark 3.6 shows that the spectrum of Γ(k, q) with
k | q− 1 can be computed for every proper divisor k of 24 (i.e. k = 1, 2, 3, 4, 6, 8, 12).
Moreover, we give the spectrum of Γ(5, q) in half of the cases: the case p ≡ 1
(mod 5) is given in Proposition 3.4 while the case p ≡ −1 (mod 5) corresponds to
the semiprimitive case and hence it is obtained by taking k = 5 in Theorem 5.4 (the
cases p ≡ ±2 (mod 5) remain open).

In Section 4 we study integrality of the spectrum by way of period polynomials.
In Theorem 4.1, one of the main results, we show that Spec(Γ(k, q)) ⊂ Z if and only
if k | q−1

p−1
.

In Section 5, we first recall the definition of semiprimitive GP-graphs and give
some infinite families of these graphs. Then, in Subsection 5.1 we explicitly give
the spectrum of semiprimitive GP-graphs by using Gauss periods (see Theorem 5.4).
Previously, in [3], Brouwer, Wilson and Xiang computed the spectra of a more general
family defined in terms of semiprimitive pairs by using Gauss sums. Semiprimitive
GP-graphs have three different eigenvalues; hence, in the connected case, they are
strongly regular graphs (and hence distance regular graphs). In Subsection 5.2 we
give the parameters of the semiprimitive GP-graphs as strongly regular graphs, as
distance regular graphs and as pseudo-Latin square graphs (see Theorem 5.8).
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In Section 6 we study some families of Ramanujan GP-graphs. First, we charac-
terize all semiprimitive GP-graphs which are Ramanujan. In Theorem 6.1, another
main result in the paper, we prove that if Γ(k, q) is semiprimitive, then it is Ramanu-
jan if and only if k = 2, 3, 4, 5 and q = pm satisfy certain easy arithmetic conditions.
In particular, we obtain eight infinite families of semiprimitive (hence integral) Ra-
manujan GP-graphs {Γ(k, p2t)}t∈N, out of which five are valid for infinite different
primes p. Finally, we show that all integral GP-graphs Γ(k, q) with 1 ≤ k ≤ 4 which
are non-semiprimitive are Ramanujan.

2 The spectrum of GP-graphs via cyclotomic Gaussian

periods

Here, we will express the spectra of an arbitrary GP-graph Γ(k, q), of its complement
Γ̄(k, q), and of the associated sum graph Γ+(k, q), in terms of cyclotomic Gaussian
periods. We remark that Γ̄(k, q) is not in general a GP-graph (unless k = 2), but a
union of Cayley graphs, since

Γ̄(k, q) = X(Fq, R
c
k r {0}) = X(Fq, C

(k,q)
1 ) ∪ · · · ∪X(Fq, C

(k,q)
k−1 ),

where
C

(k,q)
i = ωi 〈ωk〉

is the coset in F∗
q of the subgroup 〈ωk〉 with ω a generator of F∗

q. In particular,
the classic Paley graphs Γ(2, q) with q ≡ 1 (mod 4) is the only GP-graph which is
self-complementary.

We begin by recalling the definition and basic properties of Gaussian periods. Let
p be a prime, take q = pm with m ∈ N and let k | q − 1. For any i ∈ {0, 1, . . . , k−1},
the i-th cyclotomic Gaussian period is defined by

η
(k,q)
i =

∑

x∈C(k,q)
i

ζ
Trq/p(x)
p ∈ Q(ζp), for 0 ≤ i ≤ k − 1, (2.1)

where ζp = e
2πi
p and Trq/p : Fq → Fp is the trace map given by

Trq/p(x) = x+ xp + xp
2

+ · · ·+ xp
r−1

.

The following relation is well-known (see for instance Proposition 1 in [18]):

k−1∑

i=0

η
(k,q)
i = −1. (2.2)

From Theorem 13 in [7] (see also [18]), if we consider

N = gcd( q−1
p−1

, k), (2.3)

we have the following integrality results:

η
(N,q)
i ∈ Z and Nη

(N,q)
i + 1 ≡ 0 (mod p) (2.4)

(actually, in [7] other notations are used: N and N1 for our k and N , respectively).
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The spectrum of GP∗-graphs

Let η0 = η
(k,q)
0 , . . . , ηk−1 = η

(k,q)
k−1 be the cyclotomic Gaussian periods as in (2.1) and

let
ηi1 , . . . , ηis (2.5)

denote the different cyclotomic Gaussian periods not equal to n = q−1
k
. We define

the following numbers

µ = #{0 ≤ ℓ ≤ k − 1 : ηℓ = n} ≥ 0,

µij = #{0 ≤ ℓ ≤ k − 1 : ηℓ = ηij} ≥ 1,
(2.6)

for 1 ≤ j ≤ s. For simplicity, sometimes we will need to use the notation µ = µi0 .

We now show that the spectra of both GP-graphs, their complements, and GP+-
graphs are determined by the Gaussian periods. We recall that Γ+(k, q) = Γ(k, q)
for q even.

Theorem 2.1. Let q = pm with p prime and k ∈ N such that k | q − 1. If we put
n = q−1

k
then, in the notations in (2.5) and (2.6), we have

Spec(Γ(k, q)) = {[n]1+µn, [ηi1 ]
µi1

n, . . . , [ηis ]
µisn} (2.7)

and Spec(Γ̄(k, q)) = {[(k− 1)n]1+µn, [−1− ηi1 ]
µi1

n, . . . , [−1− ηis ]
µisn}. Furthermore,

if q is odd and n is even then

Spec(Γ+(k, q)) = {[n]1+µn, [±ηi1 ]
1
2
µi1

n, . . . , [±ηis ]
1
2
µisn}. (2.8)

Moreover, in any case, Γ(k, q), Γ+(k, q) and Γ̄(k, q) are (strongly) connected if and
only if µ = 0 (with k > 1 for Γ̄(k, q)).

Proof. We first compute the eigenvalues of Γ(k, q). It is well-known that the spectrum
of a Cayley graph X(G,S) is determined by the irreducible characters of G. In fact,
if G is abelian, each irreducible character χ of G induces an eigenvalue λχ of X(G,S)
by the expression

λχ := χ(S) =
∑

g∈S
χ(g)

with eigenvector vχ =
(
χ(g)

)
g∈G.

For Γ(k, q) we have G = Fq and S = Rk = {xk : x ∈ F∗
q}. The irreducible

characters of Fq are {χγ}γ∈Fq where

χγ(y) = ζ
Trq/p(γy)
p

for y ∈ Fq. Thus, since Rk = 〈ωk〉 = C
(k,q)
0 , the eigenvalues λγ = λχγ of Γ(k, q) are

given by

λγ = χγ(Rk) =
∑

y∈Rk

χγ(y) =
∑

y∈C(k,q)
0

ζ
Trq/p(γy)
p . (2.9)
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We have the disjoint union

Fq = {0} ∪ C(k,q)
0 ∪ · · · ∪ C(k,q)

k−1

and #C
(k,q)
i = #〈ωk〉 = q−1

k
for every i = 0, . . . , k − 1. Now, for γ = 0 we have

λ0 = χ0(Rk) = |Rk| = n,

since χ0 is the trivial character. This is in accordance with the fact that since Γ(k, q)
is n-regular with n = q−1

k
, then n is an eigenvalue of Γ(k, q). On the other hand, if

γ ∈ C
(k,q)
i then γy runs over C

(k,q)
i when y runs over C

(k,q)
0 and thus, by (2.9), we

have
λγ =

∑

x∈C(k,q)
i

ζ
Trq/p(x)
p = η

(k,q)
i

which does not depend on γ.

Let ηi1 , . . . , ηis be the different cyclotomic Gaussian periods. Notice that each

γ ∈ C
(k,q)
iℓ

gives the same λγ and that |C(k,q)
iℓ

| = |C(k,q)
0 | = n for 1 ≤ ℓ ≤ s. Thus, it

is clear that the multiplicity of λγ is

m(λ0) = 1 +
∑

0≤j≤k−1
ηj=n

|C(k,q)
j |

and
m(λγ) =

∑

0≤j≤k−1
ηiℓ=ηj

|C(k,q)
j | (for γ 6= 0),

that is m(n) = 1 + µn and m(ηiℓ) = µiℓn for 1 ≤ ℓ ≤ s. This gives the spectrum for
Γ(k, q).

To see the spectrum of the complementary graph, if A is the adjacency matrix of
Γ(k, q) then J−A−I is the adjacency matrix of Γ̄(k, q), where J stands for the all 1’s
matrix. Since Γ(k, q) is n-regular with q vertices, then Γ̄(k, q) is (q − n− 1)-regular,
that is

λ̄0 = q − n− 1 = (k − 1)n.

The remaining eigenvalues of Γ̄(k, q) are −1 − λ where λ are the non-trivial eigen-
values, and hence the result follows by (2.7).

Now consider the spectrum of Γ+(k, q). Since q is odd we have Γ+(k, q) 6= Γ(k, q)
and, by Proposition 2.10 in [23], we get that the non-principal eigenvalues of Γ+(k, q)
and their corresponding multiplicities are given by

λΓ+ = ±λΓ and m(λΓ+) = 1
2
m(λΓ),

where λΓ and m(λΓ) (respectively λ
+
Γ and m(λ+Γ )) are the eigenvalues and multiplici-

ties of Γ(k, q) (respectively Γ+(k, q)). Thus, we get the expression for Spec(Γ+(k, q))
in (2.8) and we need n even for the multiplicities to be integers.
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Finally, being n-regular, Γ(k, q) is connected if and only if the multiplicity of n
is 1, i.e. if µ = 0. A similar argument applies for the graphs Γ+(k, q) and Γ̄(k, q). To
conclude, just notice that for k = 1 we have Γ(1, q) = Kq and hence Γ̄(1, q) is the
empty graph with q vertices which is disconnected. In this case, since Spec(Kq) =
{[q − 1]1, [−1]q−1} we have Spec(K̄q) = {[0]1, [−1 − (−1)]q−1} = {[0]q}, although
µ = 0 (also −1− η0 = 0 by (2.2)).

We now make some observations on the previous theorem and point out some
consequences of it for the spectrum of Γ(k, q).

Remark 2.2. (i) If the Gaussian periods are all different, i.e. ηi 6= ηj for 0 ≤ i <
j ≤ k − 1, then µ = 0 and µij = 1 for every j since q = kn+ 1, and hence we have

Spec(Γ(k, q)) = {[n]1, [η0]n, [η1]n, . . . , [ηk−1]
n}.

This holds, for instance, for Paley graphs Γ(2, q) –both directed and undirected– and
also for the graphs Γ(3, q) and Γ(4, q) in the non-semiprimitive case (i.e. p 6≡ −1
(mod k)), as one can see in Example 2.4 and Theorems 3.1 and 3.2, respectively.

(ii) Notice that, by the theorem, Γ(k, q) is integral if and only if Γ̄(k, q) and Γ+(k, q)
are integral. In Section 4 we will characterize all integral GP-graphs (and hence all
integral complements and all integral GP+-graphs).

(iii) Theorem 2.1 allows one to compute the spectrum of families of GP-graphs in
those cases where the (cyclotomic) Gaussian periods or Gaussian sums are known.

The Gaussian periods η
(k,q)
i for k = 2, 3, 4, 6, 8, 12 are well-known; the cases k = 2, 3, 4

date back to Gauss (see for instance [18]) while the cases k = 6, 8, 12 are due to
Gurak ([8], [9]). The case k = 5 is partially done by Hoshi [12]. A case which is well
understood is when (k, q) is a semiprimitive pair. Some of these cases will be treated
in more detail in Sections 3 and 5. Other general examples of known Gaussian sums
are the so-called index 2 and index 4 cases (see the literature). It would be interesting
to find the spectrum of Γ(k, q) in these cases.

To close the section we illustrate with two basic examples. We compute the
spectrum of Γ(k, q) for k = 1, 2. Using Theorem 2.1 one can also obtain the spectrum
of Γ̄(k, q) and Γ+(k, q) for k = 1, 2 (we leave the details). More involved computations
will be performed in the next section.

Example 2.3 (Complete graphs). We have Γ(1, q) = Kq and Spec(Kq) = {[q −
1]1, [−1]q−1}. Using Theorem 2.1, since n = q − 1 and µ = 0, µ1 = 1 by (2.6), we
obtain that

Spec(Γ(1, q)) = {[q − 1]1, [η0]
q−1},

and η0 = −1 by (2.2), hence recovering the known result. ♦
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Example 2.4 (Paley graphs). We recall that Γ(2, q) with q = pm is the classic
(undirected) Paley graph P (q) if q ≡ 1 (mod 4), hence p ≡ 1 (mod 4) or p ≡ 3

(mod 4) and m = 2t; and it is the directed Paley graph ~P (q) if q ≡ 3 (mod 4), hence
p ≡ 3 (mod 4) and m = 2t+ 1.

If we put n = q−1
2
, by Theorem 2.1 we have that

Spec(Γ(2, q)) = {[n]1+µ, [η0]
1+µ0n, [η1]

1+µ1n}

where ηi = η
(2,q)
i for i = 0, 1. The above Gaussian periods are known, see for instance

Lemma 11 in [7]. In our notations, (i.e. taking s = 1 in [7], r = pm is our q) we have

η0 =

{
1
2

(
− 1 + (−1)m−1√q

)
if p ≡ 1 (mod 4),

1
2

(
− 1 + (−1)m−1

√
−1

m√
q
)

if p ≡ 3 (mod 4),

and η1 = −1 − η0. First, notice that η0 and hence η1 are real if and only if Γ(2, q)
is undirected. Second, note that η0 6= η1 and that n 6= η0, η1. These last conditions
imply that µ = 0 and µ0 = µ1 = 1 (or conversely, since 2n + 1 = q we must have
that µ = 0 and µ0 = µ1 = 1). Hence, we have that

Spec(Γ(2, q)) = {[n]1, [η0]n, [η1]n},

where

η0 =

{ −1−pt

2
if p ≡ 1 (mod 4),

−1−(−1)tpt

2
if p ≡ 3 (mod 4),

for m = 2t,

η0 =





−1+pt
√
p

2
if p ≡ 1 (mod 4),

−1−(−1)tipt
√
p

2
if p ≡ 3 (mod 4),

for m = 2t+ 1,

and η1 = −1− η0. Notice that η0 ∈ Z for m = 2t and η0 ∈ Q(
√−p) for m = 2t+ 1.

This coincides with the known spectrum

Spec(P (q)) =
{
[ q−1

2
]1, [

−1+(−1)m
√
q

2
]n, [

−1−(−1)m
√
q

2
]n
}
.

We also obtain

Spec(~P (q)) =
{
[ q−1

2
]1, [

−1+(−1)mim
√
q

2
]n, [

−1−(−1)mim
√
q

2
]n
}
. (2.10)

Finally, the graph Γ(2, q) is connected since the multiplicity of the regularity
degree is 1. Therefore, since Γ(2, q) is regular and connected and has exactly 3
eigenvalues it is a strongly regular graph (in the undirected case). All these facts are
of course well-known. ♦
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3 Explicit computations through period polynomials

Since the spectrum of GP-graphs is given in terms of Gaussian periods, we now recall
the polynomial associated with them. The period polynomial is defined by

Ψk,q(x) =
k−1∏

i=0

(x− η
(k,q)
i ), (3.1)

where η
(k,q)
i is the Gaussian period given in (2.1).

In some cases, the expansions of these polynomials are known, and they factor into
product of polynomials of small degree, hence their roots (the Gaussian periods) can
be explicitly computed. We will use some of the known cases to give the spectrum of
the associated GP-graphs explicitly. In particular, the spectrum of the graphs Γ(k, q)
with k | 24 (k 6= 24) can be determined (although it is highly non-trivial in most of
the cases). For simplicity, we will give explicitly the spectrum of the graphs Γ(k, q)
with k = 3, 4 (the cases k = 1, 2 were presented in Examples 2.3 and 2.4). For the
remaining cases k = 6, 8, 12 we refer to the works of Gurak. Using results of Hoshi
we give the spectrum of Γ(5, p5t) in the case p ≡ 1 (mod 5). Another well-known
case is the semiprimitive one, which is delayed until Section 5.

In [24], we have computed the spectrum of Γ(k, q) for k | q−1
p−1

with k = 3, 4, where
q = pm. There, we used a relation that we found between the spectrum of GP-graphs
Γ(k, q) and the weight distribution of certain irreducible cyclic codes C(k, q), provided
that k | q−1

p−1
(a posteriori, those GP-graphs having integral spectrum, see Section 4).

Namely, we have used this relation and the fact that the weight distributions for the
codes C(3, q) and C(4, q) was already known (which was computed by using Gaussian
periods) in these cases.

Now, we will give the complete result, that is we give the spectrum of Γ(k, q) for
k | q − 1 with k = 3, 4, by way of explicit factorizations of the period polynomials
Ψ3,q(x) and Ψ4,q(x) obtained by Myerson ([18]). It turns out that there is one extra
case for k = 3 and two extra cases for k = 4 in this more general setting (i.e. k | q−1
instead of k | q−1

p−1
).

We now give the spectrum of the GP-graphs Γ(3, q) explicitly.

Theorem 3.1. Let q = pm ≥ 5 with p prime such that 3 | q − 1 and put n =
q−1
3
. Thus, the graph Γ(3, q) is connected and undirected with real spectrum given as

follows:

(a) If p ≡ 1 (mod 3) with 3 | m then

Spec(Γ(3, q)) =
{
[n]1,

[a 3
√
q−1

3

]n
,
[− 1

2
(a+9b) 3

√
q−1

3

]n
,
[− 1

2
(a−9b) 3

√
q−1

3

]n}

where a, b are integers uniquely determined by

4 3
√
q = a2 + 27b2, a ≡ 1 (mod 3) and (a, p) = 1. (3.2)
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(b) If p ≡ 1 (mod 3) with 3 ∤ m then Spec(Γ(3, q)) = {[n]1, [x0]n, [x1]n, [x2]n} where

xj = −1
3

(
1 + ωjW +

q

ωjW

)
, j ∈ {0, 1, 2},

ω = e
2πi
3 and W = 3

√
q 3

√
1
2
(−a+

√
−27b), where a and b are uniquely determined

integers (b up to sign) satisfying

4q = a2 + 27b2, a ≡ 1 (mod 3) and (a, p) = 1

Here,
√

and 3
√

denote any square and cubic root, respectively.

(c) If p ≡ 2 (mod 3) with m even then

Spec(Γ(3, q)) =





{
[n]1,

[√q−1

3

]2n
,
[−2

√
q−1

3

]n}
for m ≡ 0 (mod 4),

{
[n]1,

[2√q−1

3

]n
,
[−√

q−1

3

]2n}
for m ≡ 2 (mod 4).

Furthermore, the spectrum is integral in cases (a) and (c).

Proof. The graph Γ(3, q) is connected and undirected (see the Introduction) since
q−1
3

is a primitive divisor of q− 1 and for q odd we have that 3 | q−1
2

(in fact 2 | q− 1

and 3 | q−1, hence 6 | q−1, which is equivalent to 3 | q−1
2
). Thus, Spec(Γ(3, q)) ⊂ R

(the adjacency matrix of an undirected graph is symmetric and so its spectrum is
real).

In Theorems 13 and 16 in [18] (see also Lemmas 7 and 8 in [7]) Myerson gave the
polynomial Ψ3,q(x) and its factorizations over the rationals. Namely,

Ψ3,q(x) = x3 + x2 − nx− d with d = (a+3)q−1
27

, (3.3)

where a and b are integers uniquely determined (b only up to sign) by 4q = a2+27b2,
with a ≡ 1 (mod 3) and if p ≡ 1 (mod 3) then (a, p) = 1. We have the following
cases:

(a) If p ≡ 1 (mod 3) and 3 | m, then

Ψ3,q(x) =
1
27
(3x+ 1− a 3

√
q)(3x+ 1− a 3

√
q)(3x+ 1− a 3

√
q),

where a and b are as in (3.2).

(b) If p ≡ 1 (mod 3) and 3 ∤ m, then Ψ3,q(x) is irreducible over Q.

(c) If p ≡ 2 (mod 3) and m is even, then

Ψ3,q(x) =

{
1
27
(3x+ 1 + 2

√
q)(3x+ 1−√

q)2 if m
2
is even,

1
27
(3x+ 1− 2

√
q)(3x+ 1 +

√
q)2 if m

2
is odd.
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Thus, the eigenvalues and multiplicities of Γ(3, q) are directly obtained from these
expressions in cases (a) and (c).

Now, we study case (b). We have to find the roots of Ψ3,q(x) in (3.3). The roots
of a general cubic Ax3 + Bx2 + Cx+D are given by

xj = − 1
3A

(
B + ωjW + ∆0

ωjW

)

for j = 0, 1, 2, where ω = e
2πi
3 is the primitive cubic root of 1, and

W =
3

√
1
2

(
∆1 ±

√
∆2

1 − 4∆3
0

)

where ∆0 = B2 − 3AC and ∆1 = 2B3 − 9ABC + 27A2D. Thus, by (3.3), we have
that A = B = 1 and we obtain that ∆0 = q and ∆1 = −aq. In this way, we arrive at

W =
3

√
1
2

(
− aq ± q

√
a2 − 4q

)
= 3

√
q 3

√
1
2
(−a±

√
−27b),

where we have used that 4q = a2 + 27b2.

Here,
√

and 3
√

denote any square and any cubic root, respectively. In general,
the sign ± can be randomly chosen, and if W = 0 with one sign one has to chose the
other one. It can never happen that both signs give W = 0, since this is equivalent
to ∆1 = ∆0 = 0 and both ∆0 and ∆1 are non-zero in our case. Hence, we choose the
plus sign, and part (b) is proved.

Finally, the eigenvalues in cases (a) and (c) are integers by the conditions on p
and m. In case (a) we have that a ≡ a± 9b ≡ 1 (mod 3) where a± 9b is even since
4pm = a2 + 27b2 implies that a and b have the same parity. The remaining assertion
is clear from the statement.

Using the theorem one can compute, for instance, Spec(Γ(3, 73m)) with item (a),
Spec(Γ(3, 73m+j)), j = 1, 2, with item (b) and Spec(Γ(3, 52m)) with item (c) for any
m ∈ N.

Next we give the spectrum of the GP-graphs Γ(4, q) explicitly.

Theorem 3.2. Let q = pm with p prime such that 4 | q − 1 and put n = q−1
4
. Thus,

the graph Γ(4, q) is connected (except for q = 9) with spectrum given as follows:

(a) If p ≡ 1 (mod 4) with m ≡ 0 (mod 4) then

Spec(Γ(4, q))=
{
[n]1,

[√q+4d 4
√
q−1

4

]n
,
[√q−4d 4

√
q−1

4

]n
,
[−√

q+2c 4
√
q−1

4

]n
,
[−√

q−2c 4
√
q−1

4

]n}

where c, d are integers uniquely determined by

√
q = c2 + 4d2, c ≡ 1 (mod 4) and (c, p) = 1. (3.4)
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(b) If p ≡ 1 (mod 4) with m ≡ 2 (mod 4), then

Spec(Γ(4, q)) =
{
[n]1,

[−(1+
√
q)+

√
2(q+c

√
q)

4

]n
,
[−(1+

√
q)−

√
2(q+c

√
q)

4

]n
,

[−(1−√
q)+

√
2(q−c

√
q)

4

]n
,
[−(1−√

q)−
√

2(q−c
√
q)

4

]n}

where c, d are integers unique determined (d up to sign) by

q = c2 + 4d2, c ≡ 1 (mod 4) and (c, p) = 1. (3.5)

(c) If p ≡ 1 (mod 4) with m odd and n odd then

Spec(Γ(4, q)) = {[n]1, [x+1 ]n, [x−1 ]n, [x+2 ]n, [x−2 ]n}
with

x±1 = 1
2

(
−

√
2y − q

8
±
√

−(2y + q
8
) + (c−1)q+1

4
√

2y− q
8

)
− 1

4
,

x±2 = 1
2

(√
2y − q

8
±
√
−(2y + q

8
)− (c−1)q+1

4
√

2y− q
8

)
− 1

4
,

where y = q
48
+W − P

3W
and W =

3

√
−Q

2
±
√

Q2

4
+ P 3

27
with P = 36−(28q−12c2−12)q

3·256 ,

Q = − q2

27·256 +
qγ
24

− ((c−1)q+1)2

64γ
and γ = (9q−4c2−4)q−12

256
, where c, d are integers as

in (3.5).

(d) If p ≡ 1 (mod 4) with m odd and n even then

Spec(Γ(4, q)) = {[n]1, [x+1 ]n, [x−1 ]n, [x+2 ]n, [x−2 ]n}
with

x±1 = 1
2

(
−
√

2y + 3q
8
±

√
−(2y − 3q

8
) + (3−c)q−1

4

√

2y+
3q
8

)
− 1

4
,

x±2 = 1
2

(√
2y + 3q

8
±
√
−(2y − 3q

8
)− (3−c)q−1

4

√

2y+
3q
8

)
− 1

4
,

where y = − q
16

+ ω − P
3ω

and ω =
3

√
−Q

2
±

√
Q2

4
+ P 3

27
with P = (2q+12−4c2)q−12

256
,

Q = − q2

3·256 −
qγ
8
− ((3−c)q−1)2

64γ
and γ = (q+12−4c2)q−12

256
, where c, d are integers as in

(3.5).

(e) If p ≡ 3 (mod 4) with m even then Spec(Γ(4, 9)) = {[2]3, [−1]6} and for any
q 6= 9 we have

Spec(Γ(4, q)) =





{
[n]1,

[√q−1

4

]3n
,
[−3

√
q−1

4

]n}
for m ≡ 0 (mod 4),

{
[n]1,

[3√q−1

4

]n
,
[−√

q−1

4

]3n}
for m ≡ 2 (mod 4).
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Moreover, the graph Γ(4, q) is undirected with real spectrum in cases (a), (b), (d)
and (e). In particular, the spectrum is integral in cases (a) and (e).

Proof. The graph Γ(4, q) is connected (except for q = 9) since q−1
4

is a primitive
divisor of q − 1 (see the Introduction). For p odd and m = 2t even, i.e. in cases (a),
(b) and (e), one can show that 4 | q−1

2
, and hence the graph is undirected. In fact,

if p = 4t + a, with a = 1 or 3, then p2 ≡ a2 ≡ 1 (mod 8). Thus, p2s ≡ 1 (mod 8)
for every s ∈ N and q ≡ 1 (mod 8). In the remaining case (d), the graph Γ(4, q) is
undirected since n = q−1

4
is even. Indeed, if 2 | q−1

4
, then q−1

4
= 2t for some t ∈ Z

which implies that q−1
2

= 4t and therefore 4 | q−1
2
. Thus, Spec(Γ(4, q)) ⊂ R (the

adjacency matrix of an undirected graph is symmetric).

Also, the graph Γ(4, 9) is the disjoint union of three copies of K3, and since
Spec(K3) = {[2]1, [−1]2} we get that the spectrum of Γ(4, 9) is as stated (notice that
it is still given by the corresponding formula in (b), i.e. Spec(Γ(4, q)) = {[n]1, [1

4
(3
√
q−

1)]n, [1
4
(−√

q − 1)]3n} for q = 9) since, as multisets, {[2]1, [2]2, [−1]6} = {[2]3, [−1]6}.
In Theorems 14 and 17 in [18] (see also Lemmas 9 and 10 in [7]) Myerson gave

the polynomial Ψ4,q(x) and its factorizations over the rationals. Namely, we have

Ψ4,q(x) =




x4 + x3 − 3q−3

8
x2 + (2c−3)q+1

16
x+ q2−(4c2−8c+6)q+1

256
if n is even,

x4 + x3 + q+3
8
x2 + (2c+1)q+1

16
x+ 9q2−(4c2−8c−2)q+1

256
if n is odd,

(3.6)
where c, d are integers uniquely determined (d up to sign) such that q = c2 + 4d2,
d ≡ 1 (mod 4) and if p ≡ 1 (mod 4) then (c, p) = 1. We have the following cases:

(a) If p ≡ 1 (mod 4) and m ≡ 0 (mod 4) then Ψ4,q(x) equals

1

64

(

(4x + 1) +
√
q + 2c 4

√
q
)(

(4x + 1) +
√
q − 2c 4

√
q
)(

(4x + 1) −
√
q + 2c 4

√
q
)(

(4x + 1) −
√
q − 2c 4

√
q
)

,

where c, d are integers uniquely determined by (3.4).

(b) If p ≡ 1 (mod 4) and m ≡ 2 (mod 4) then Ψ4,q(x) equals

1
64

(
(4x+ 1)2 + 2

√
q(4x+ 1)− q − 2c

√
q
)(
(4x+ 1)2 − 2

√
q(4x+ 1)− q + 2c

√
q
)

where the quadratics are irreducible over Q and c, d are integers satisfying q =
c2 + 4d2, d ≡ 1 (mod 4) and (c, p) = 1.

(c) If p ≡ 1 (mod 4) and m odd then Ψ(4,q)(x) is irreducible over Q.

(d) If p ≡ 3 (mod 4) and m even then

Ψ4,q(x) =

{
1
64
(4x+ 1 + 3

√
q)(4x+ 1−√

q)3 if m
2
is even,

1
64
(4x+ 1− 3

√
q)(4x+ 1 +

√
q)3 if m

2
is odd.
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Thus, the eigenvalues and multiplicities of Γ(4, q) are directly obtained from these
expressions in cases (a) and (d). In case (b), a routine calculation shows that the
roots of these quadratics are respectively given by

−(1+
√
q)±

√
2(q+c

√
q)

4
and

−(1−√
q)±

√
2(q−c

√
q)

4
,

from which the spectrum in this case readily follows.

We now consider cases (c) and (d). The roots of a general quartic

Ax4 + Bx2 + Cx2 +Dx+ E

are given by

x±1 = 1
2

(
−
√
2y − α±

√
−(2y + α) + 2β√

2y−α

)
− 1

4
,

x±2 = 1
2

(√
2y − α±

√
−(2y + α)− 2β√

2y−α

)
− 1

4
,

(3.7)

where

y = α
6
+W − P

3W
and W =

3

√
−Q

2
±
√

Q2

4
+ P 3

27
(3.8)

with P = −α2

12
− γ and Q = − α2

108
+ αγ

3
− β2

γ
where

α = −3B2

8A2 + C
A
, β = B3

8A3 − BC
2A2 − D

A
, and γ = − 3B4

256A4 − B2C
16A3 − BD

4A2 +
E
A
.

If n is odd, by using the second line in (3.6), one can check that

α = q
8
, β = (c−1)q+1

8
, γ = (9q−4c2−4)q−12

256
,

P = 36−(28q−12c2−12)q
256·3 , and Q = − q2

27·256 +
qγ
24

− ((c−1)q+1)2

64γ
;

while if n is even, by the first line in (3.6), one has that

α = −3q
8
, β = (3−c)q−1

8
, γ = (q+12−4c2)q−12

256
,

P = (2q+12−4c2)q−12
256

, and Q = − q2

3·256 −
qγ
8
− ((3−c)q−1)2

64γ
.

Putting this information in (3.7) and (3.8) we get the desired result.

Finally, the spectra in cases (a) and (e) are integral by the conditions on p and
m, where in case (a) we use that c ≡ 1 (mod 4)).

Using the theorem one can compute, for instance, the following spectra:
Spec(Γ(4, 54m)) with item (a), Spec(Γ(4, 54m+2)) with item (b), Spec(Γ(4, 52m+1))
with items (c) and (d) and Spec(Γ(4, 72m)) with item (e), for any m ∈ N.
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Remark 3.3. (i) Theorems 3.1 and 3.2 extend the results obtained in Theorems 2.2
and 2.4 in [24], valid for k | q−1

p−1
, to the general case k | q − 1. As we will see in the

next section, the cases considered in [24] correspond to those with integral spectrum,
and this explains why we were able to obtain them via weight distribution of codes.
The general case (i.e. with non-integral spectrum), however, cannot be related with
weight distribution of codes.

(ii) Note that the spectra of Γ(3, q) in Theorem 3.1 (b) and of Γ(4, q) in Theorem
3.2 (d) are real, although this may not look so from the expressions. For instance,
in the case (b) of Theorem 3.1, notice that |W |2 = q and hence q

ωjW
= ωjW . This

implies that
ωjW + q

ωjW
= 2Re(ωjW )

for any 0 ≤ j ≤ 2 and therefore Γ(3, q) is real. However, to check that Γ(4, q) in case
(d) has real spectrum directly may be quite difficult.

Now, using a result of Hoshi [12] we can give the spectrum of Γ(5, q) in the case
q = pm with p ≡ 1 (mod 5) and 5 | m. In Theorem 1 in [12], for p ≡ 1 (mod 5) and
m = 5s, Hoshi obtained the factorization of the period polynomial in the reduced
form

Ψ∗
5,pm(X) =

5∏

i=1

(X − η∗i ),

where η∗i = 5ηi + 1, in terms of solutions of the so-called Dickson’s system of Dio-
phantine equations:





16pm = x2 + 125w2 + 50v2 + 50u2,

xw = v2 − 4uv − u2,

x ≡ −1 (mod 5).

(3.9)

If we denote by S(p,m) the set of all integer solutions of this system, it is known
that #S(p,m) = (m+1)2. Moreover, the system have exactly four integer solutions
satisfying p ∤ x2 − 125w2 and the set of these solutions is denoted by S(p,m)U .

Proposition 3.4. Let q = p5s with s ∈ N, p prime of the form p ≡ 1 (mod 5), and
put n = q−1

5
. Then, we have

Spec(Γ(5, q)) =
{
[n]1, [

η∗0−1

5
]n, [

η∗1−1

5
]n, [

η∗2−1

5
]n, [

η∗3−1

5
]n, [

η∗4−1

5
]n
}

where

η∗0 = − 1
16
ps(x3 − 25L) and η∗i = 1

64
ps(x3 − 25M)σi (0 ≤ i ≤ 3),

with σ the non-singular linear transformation of order 4 given by σ(x, w, v, u) =
(x,−w,−u, v) and

L =2x(v2 + u2) + 5w(11v2 − 4vu− 11u2),

M =2x2u+ 7xv2 + 20xvu− 3xu2 + 125w3 + 200w2v

− 150w2u+ 5wv2 − 20wvu− 105wu2 − 40v3 − 60v2u+ 120vu2 + 20u3,

for (x, w, v, u) any solution of (3.9) such that p ∤ x2 − 125w2.
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Proof. It follows by a direct application of Theorem 2.1 and Theorem 1 in [12].

Relative to the spectrum of Γ(5, pm), the case p ≡ 4 (mod 5), i.e. p ≡ −1
(mod 5), corresponds to the semiprimitive one, and hence it is obtained by taking
k = 5 in Theorem 5.4 ahead, while the cases p ≡ 2, 3 (mod 5) remain open in general
since the Gaussian periods in these cases are unknown (except in the semiprimitive
case), to our best knowledge.

Example 3.5. Here we give the spectrum of Γ(5, 115). By the last Example in Sec-
tion 5 in [12] we have that S(11, 5)U = 〈(−396,−100, 150,−30)〉, where 〈(x, w, v, u)〉
denotes the orbit of the solution (x, w, v, u) of (3.9), and that

Ψ∗
5,115(X) = (X + 99)(X + 649)(X + 979)(X − 451)(X − 1276).

In this way, by Proposition 3.4 we have

Spec(Γ(5, 115)) = {[n]1, [255]n, [90]n, [−20]n, [−130]n, [−196]n}
where n = 115−1

5
= 32210. ♦

Remark 3.6 (The spectrum of Γ(6, q), Γ(8, q) and Γ(12, q)). The (reduced) period
polynomials

Ψ∗
k,q(x) =

k∏

i=1

(x− η∗i ) where η∗i = kηi + 1,

for k = 6, 8, 12 and its factorizations into irreducible polynomials over Z were ob-
tained by S. Gurak in two papers from 2001 and 2004. He first considered the case
q = p2 and gave the factorizations (see Propositions 3.1, 3.2 and 3.3 in [8]). The
general case is treated in [9]. The results, which are very technical, are given in
Propositions 3.2, 3.3 and 3.5 (their descriptions are out of the scope of this paper).
However, since the involved irreducible polynomials are of degree ≤ 4, it is possible
in principle to compute all their roots and, hence, to obtain the spectrum of Γ(k, q)
for k = 6, 8, 12.

Remark 3.7. Using Theorem 2.1 one can obtain the spectrum of Γ̄(k, q) and Γ+(k, q)
for k = 3, 4, 5 enhancing Theorems 3.1 and 3.2 and Proposition 3.4. Similarly for
the graphs Γ(k, q) with k = 6, 8, 12 in Remark 3.6.

We close the section with a comment on Waring numbers g(k, q) over a finite
field Fq. The Waring number g(k, q) is defined to be the minimal g ∈ N (if it exists)
such that every element of Fq is a sum of a number g of k-th powers in Fq. It is
well-known that g(k, q) ≤ k.

Remark 3.8. The Waring number g(k, q) is exactly the diameter of Γ(k, q) (see
[22]). For a general graph G one has that diam(G) ≤ t− 1, where t is the number of
distinct non-principal eigenvalues of G (see for instance Theorem 3.13 in [5]), with
equality if G is a distance regular graph (see §5.2). Hence, we have that

g(k, q) = diam(Γ(k, q)) ≤ s ≤ k,

where s is the number of distinct Gaussian periods (see (2.5)). Thus, if Γ(k, q) is a
distance regular graph then g(k, q) = s (this occurs for instance in the semiprimitive
case or in the Hamming case).
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4 All integral generalized Paley graphs

In this section, we classify those GP-graphs having integral spectrum, by way of
period polynomials. The study of integral graphs is an interesting topic of research
on its own, initiated by Harary and Schwenk back in the 70’s (see [10]).

In 1981, Myerson proved that the period polynomial Ψk,q(x) in (3.1) has integral
coefficients, that is, Ψk,q(x) ∈ Z[x] (see [18, Theorem 3]). Hence, since Ψk,q(x) is

monic we have that all of the Gaussian periods η
(k,q)
i are algebraic integers for all

i = 0, . . . , k−1. Also, he showed that in general the period polynomial Ψk,q(x) splits
over Q in N factors of degree k

N
(see [18, Theorem 4]). Moreover, he showed that

Ψk,q(x) =
N−1∏

i=0

ψ
(i)
(k,q)(x) with ψ

(i)
(k,q)(x) =

k
N
−1∏

ℓ=0

(x− η
(k,q)
i+ℓN) ∈ Z[x] (4.1)

where ψ
(i)
(k,q)(x) is irreducible or a power of an irreducible polynomial over Q. We will

use these facts in the section.

As we have already mentioned in Remark 2.2, Γ(k, q) is integral if and only if
Γ+(k, q) is integral (or if Γ̄(k, q) is integral). By studying the period polynomial of
GP-graphs we can now characterize all integral GP-graphs (and hence all integral
GP+-graphs).

Theorem 4.1. Let q = pm with p prime and m ∈ N and let k ∈ N such that k | q−1.
Then, the generalized Paley graph Γ(k, q) is integral if and only if k divides q−1

p−1
; i.e.

Spec(Γ(k, q)) ⊂ Z ⇔ k | q−1
p−1

⇔ η
(k,q)
i ∈ Z (0 ≤ i ≤ k−1). (4.2)

In particular, all directed GP-graphs are not integral.

Proof. Expression (2.7) gives the spectra of Γ(k, q) in terms of the Gaussian periods

η
(k,q)
i . By (2.3) and (2.4) we know that η

(N,q)
i ∈ Z where N = gcd( q−1

p−1
, k). Thus, if

k satisfies k | q−1
p−1

then k = N and hence all the Gaussian periods η
(k,q)
i are integers,

by (2.4). This implies that Spec(Γ(k, q)) is integral.

Now, assume that Γ(k, q) is integral, then η
(k,q)
i ∈ Z for all i = 0, . . . , k − 1.

Suppose by contradiction that N < k. By definition of N , there is an integer L such
that k = LN , i.e. L = k

N
> 1. Now, it is known that the Galois group Gal(Q(ζp)/Q)

of the cyclotomic field extension Q(ζp)/Q permutes all of the elements in the set

{η(k,q)i , η
(k,q)
i+N , η

(k,q)
i+2N , . . . , η

(k,q)
i+(L−1)N}

(see Lemmas 2 and 5 in [18]). Thus, since η
(k,q)
i ∈ Z, we have that η

(k,q)
i is fixed

by all the elements in Gal(Q(ζp)/Q) and hence we have that η
(k,q)
i+ℓN = η

(k,q)
i for all

ℓ = 0, . . . , L− 1 and so we get

ψ
(i)
(k,q)(x) = (x− η

(k,q)
i )L
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for i = 0, . . . , N − 1. Then, by (4.1), we obtain that

Ψk,q(x) = p(x)L where p(x) =
N−1∏

i=0

(x− η
(k,q)
i ) ∈ Z[x]. (4.3)

On the other hand, since −∑k−1
i=0 η

(k,q)
i = 1 by (2.2), we obtain that the term corre-

sponding to xk−1 in Ψk,q(x) is 1. Finally, if b denotes the term of p(x) corresponding
to xN−1, then the equation (4.3) implies that 1 = bL which is absurd since b, L ∈ Z
and L > 1. Therefore, we must have that k = N , and hence k | q−1

p−1
, as desired.

The remaining assertion is clear. Indeed, Γ(k, q) is directed if and only if q = pm

is odd with k ∤ q−1
2
. Thus, if Γ(k, q) were integral then k | q−1

p−1
and since q−1

p−1
| q−1

2
,

we have that k | q−1
2
, which is absurd. Hence, all directed GP-graphs are non-

integral.

In the next example we recap integral GP-graphs Γ(k, q) with k = 1, 2, 3, 4 and
check the arithmetic condition (4.2) in the theorem.

Example 4.2. (i) In Example 2.3 we saw that the graphs Γ(1, q) = Kq are integral
and the condition 1 | q−1

p−1
is trivial.

(ii) In Example 2.4 we saw that the graphs Γ(2, q) are integral if and only if q ≡ 1
(mod 4) (hence p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and m = 2t), that is when Γ(2, q)
is the classic Paley graph. It is easy to see that 2 | q−1

p−1
if and only if p ≡ 1 (mod 4)

or p ≡ 3 (mod 4) and m = 2t.

(iii) In Theorem 3.1 we showed that Γ(3, q) is integral for p ≡ 1 (mod 3) with 3 | m
and for p ≡ 2 (mod 3) and m even (and not for p ≡ 1 (mod 3) with 3 ∤ m). It is
easy to see that these conditions are equivalent to 3 | q−1

p−1
.

(iv) In Theorem 3.2 we showed that Γ(4, q) is integral for p ≡ 1 (mod 4) with m ≡ 0
(mod 4) or p ≡ 3 (mod 4) and not for p ≡ 1 (mod 4) with m ≡ 2 (mod 4). One
can check that 4 | q−1

p−1
if and only if p ≡ 1 (mod 4) with m ≡ 0 (mod 4) or p ≡ 3

(mod 4). ♦

Example 4.3. A Hamming graph H(b, q) is a graph with vertex set V = Kb where
K is any set of size q (typically Fq in applications), and where two b-tuples form an
edge if and only if they differ in exactly one coordinate. Notice that H(b, q) = �bKq

and hence, Hamming graphs are integral with spectrum given by

Spec(H(b, q)) =
{
[ℓq − b](

b
ℓ)(q−1)b−ℓ

: 0 ≤ ℓ ≤ b
}
.

Those connected GP-graphs Γ(k, q) which are Hamming were classified by Lim and

Praeger in [14]. In this case k = pbm−1
b(pm−1)

for integers b | pbm−1
pm−1

, q = pbm, and

Γ( pbm−1
b(pm−1)

, pbm) = H(b, pm).

It is clear that pbm−1
b(pm−1)

| pbm−1
p−1

and hence Theorem 4.1 implies that Γ( pbm−1
b(pm−1)

, pbm) is
an integral graph. ♦
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When Spec(Γ(k, q)) is not integral, the graph has at least one irrational Gaussian
period.

Corollary 4.4. Let q = pm with p prime and let k ∈ N such that k | q−1. If k ∤ q−1
p−1

,

then there exists at least one j ∈ {0, . . . , k − 1} such that η
(k,q)
j 6∈ Q.

Proof. Since k ∤ q−1
p−1

we know that there is some j ∈ {0, . . . , k− 1} such that η
(k,q)
j 6∈

Z, by (4.2). Since the Gaussian periods are algebraic integers, if η
(k,q)
j ∈ Q then

η
(k,q)
j ∈ Z. Thus, there exists some j ∈ {0, . . . , k − 1} such that η

(k,q)
j 6∈ Q, as we

wanted to see.

Let q = pm with p prime, let k ∈ N, and consider the following condition

p ≡ 1 (mod k) and k | m or p 6≡ 1 (mod k). (4.4)

The following corollary of Theorem 4.1 characterizes integral GP-graphs Γ(k, q) in
terms of condition (4.4).

Corollary 4.5. Let Γ(k, q) be a GP-graph with q = pm and p prime. If p ≡ 1
(mod k) then Spec(Γ(k, q)) ⊂ Z if and only if k | m. Furthermore, we have:

(a) If Spec(Γ(k, q)) ⊂ Z then condition (4.4) holds.

(b) If k is prime and condition (4.4) holds then Spec(Γ(k, q)) ⊂ Z.

In particular, if k is prime then Spec(Γ(k, q)) ⊂ Z if and only if condition (4.4)
holds.

Proof. By Theorem 4.1, Spec(Γ(k, q)) ⊂ Z if and only if k | q−1
p−1

. Notice that k | q−1
p−1

if and only k | Ψm(p), where Ψm(p) = pm−1+ · · ·+ p2+ p+1 Thus, if p ≡ 1 (mod k)
we have that Ψm(p) ≡ m (mod k). That is, k | Ψm(p) if and only if k | m.

(a) Suppose that Γ(k, q) is integral. There are two possibilities: k | p− 1 or not. In
the first case, we known that k | m, as we wanted to show.

(b) By the first part of the statement, it is enough to check the claim for p 6≡ 1
(mod k) since otherwise we know that Γ(k, q) is integral. Thus, assume that p 6≡ 1
(mod k). Since k is prime by hypothesis with k ∤ p − 1 and k | q − 1, then k | q−1

p−1
.

Therefore, Γ(k, q) is integral as desired. The remaining statement is straightforward.

Example 4.6. The graphs Γ(5, p5t) with t ∈ N and p prime of the form 5ℓ + 1
(studied in Proposition 3.4) have integral spectrum (notice that this is not clear at
all from the expressions of the Gaussian periods in Proposition 3.4). ♦

We close the section with a result on divisibility of the energy.

Corollary 4.7. If Γ(k, q) is an integral GP-graph then the degree of regularity n =
q−1
k

divides the energy of Γ(k, q) and of Γ+(k, q), that is n | E(Γ∗(k, q)).
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Proof. By (2.7) and (2.8), the energy of Γ∗(k, q) is given by

E(Γ∗(k, q)) = n(1 + µn+
s∑

i=1

µi|ηi|)

where µ, µi ∈ N0 and ηi ∈ Z for i = 1, . . . , s by hypothesis, and this implies the
result.

We point out that for regular graphs which are not GP-graphs, the result does
not hold in general. For instance, the cubic graph C∗

6 which is the 6-cycle with loops,
has spectrum {[3]1, [2]2, [0]2, [−1]1} and hence energy E(C∗

6) = 8 and 3 ∤ 8. For an
example without loops, consider the cubic graph of six vertices numbered Γ51 in [6].
This graph has spectrum {[3]1, [1]1, [0]2, [−2]2} and hence energy E(Γ51) = 8 and
3 ∤ 8 (see Table 1 in [25]).

5 Semiprimitive generalized Paley graphs

In this and the next section we focus on a particular family of GP-graphs, the
semiprimitive ones. Let Γ(k, q) with q = pm and k | q − 1.

In the study of 2-weight irreducible cyclic codes, the semiprimitive case corre-
sponds to −1 being a power of a prime p modulo k (see [27]). If t ∈ N is minimal
such that

pt ≡ −1 (mod k),

then ordk(p) = 2t when k > 2 and so, since q = pm ≡ 1 (mod k), we obtain that

m = 2ts

for some positive integer s when k > 2. Then, we have that semiprimitiveness is
equivalent to either k = 2 and q odd or else k > 2 and

k | pt + 1 for some t | m
2
. (5.1)

With respect to the GP-graphs in the semiprimitive case, notice that if k = 2
with q odd, Γ(2, q) is non-directed if q ≡ 3 (mod 4) and directed if q ≡ 1 (mod 4).
On the other hand, if k > 2 then the graph Γ(k, q) is always undirected, since by
assumptions, if m = 2s then k | q−1

2
since

1
2
(q − 1) = 1

2
(ps − 1)(ps + 1).

Furthermore, if k = p
m
2 +1 then Γ(k, q) is not connected (see Proposition 4.6 in [20]).

Indeed, one can prove that Γ(p
m
2
+1, pm) ∼= K

p
m
2
∪ · · · ∪K

p
m
2
(p

m
2 -times).

Definition 5.1. We say that (k, q) with k = 2 and q ≡ 1 (mod 4) or k > 2 satisfying
(5.1) and k 6= p

m
2 + 1 is a semiprimitive pair of integers. If (k, q) is a semiprimitive

pair of integers, we will refer to Γ(k, q) as a semiprimitive GP-graph. Hence, every
semiprimitive GP-graph Γ(k, q) is undirected and connected.
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For instance, if p = 3 and m = 4, to find the semiprimitive pairs of the form
(k, 81) we take k | 32+1 = 2 · 5 and k | 31+1 = 4. Hence k = 2, 4 or 5, while k = 10
is not allowed since 10 = 3

m
2 + 1.

Remark 5.2. (i) Three infinite families of semiprimitive pairs, for p prime and
m = 2t ≥ 2, with k = 2, 3, 4 respectively are given by:

(a) the pairs (2, p2t) with p odd;

(b) the pairs (3, p2t) with p ≡ 2 (mod 3) and t ≥ 1 (where t ≥ 2 if p = 2);

(c) the pairs (4, p2t) with p ≡ 3 (mod 4) and t ≥ 1 (where t ≥ 2 if p = 3).

The first of the three families of pairs give rise to the classical Paley graphs Γ(2, p2t).

(ii) Another infinite family of semiprimitive pairs is given by (pℓ + 1, pm) with p
prime, m ≥ 2, ℓ | m and m

ℓ
even. They give the GP-graphs Γ(qℓ+1, qm), with q = p,

considered in [20] for q a power of p. Notice that the graphs Γ(3, 22t) with t ≥ 2
and Γ(4, 32t) with t ≥ 1 belong to both families given in (i) and (ii). For instance,
Γ(3, 16), Γ(3, 64), and Γ(4, 81) are semiprimitive GP-graphs.

Using the previous definition and items (i) and (ii) in the remark, we give a list of
the smallest semiprimitive pairs (k, q) with q = pm for p = 2, 3, 5, 7 and m = 2, 4, 6, 8.

Table 1: Values of k for small semiprimitive pairs (k, pm).
m = 2 m = 4 m = 6 m = 8

p = 2 – 3 3 5
p = 3 – 2, 4, 5 2, 4, 7, 14 2, 4, 5, 10, 41
p = 5 2, 3 2, 3, 6, 13 2, 3, 6, 7, 9, 14,

18, 21, 42, 63
2, 3, 6, 13, 26,
313

p = 7 2, 4 2, 4, 5, 8, 10, 25 2, 4, 5, 8, 10, 25,
43, 50, 86, 172

2, 4, 5, 8, 10, 25,
50, 1201

Here we have marked in bold those k which are different from 2 and not of the type
pℓ + 1 for some p and ℓ, showing that in general there are much more semiprimitive
graphs Γ(k, q) than Paley graphs Γ(2, q) or GP-graphs of the form Γ(pℓ + 1, pm).

It is well-known that the Gaussian periods associated to a semiprimitive pair
(k, q) are integers (see for instance [7]) and hence Γ(k, q) is integral. We now use
Theorem 4.1 to obtain the same result in an indirect but elementary way (i.e. without
explicitly computing the spectrum of Γ(k, q)).

Proposition 5.3. Every semiprimitive GP-graph Γ(k, q) is integral.

Proof. By Theorem 4.1, Γ(k, q) is integral if and only if k | q−1
p−1

, where q = pm for

some m. Thus, we will show that if (k, q) is a semiprimitive pair then k | q−1
p−1

. If t is
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the minimal positive integer such that pt ≡ −1 (mod k), then 2t = ordk(p) and so,
since q = pm ≡ 1 (mod k), we obtain that m = 2ts for some positive integer s.

Notice that we have the factorization

q − 1 = p2ts − 1 = (pt − 1)Ψ2s(p
t)

where Ψ2s(x) = x2s−1 + · · · + x2 + x + 1. Since 2s is even and pt ≡ −1 (mod k) we
obtain that k | Ψ2s(p

t). On the other hand, p−1 | pt−1 trivially, and hence we have
that k | q−1

p−1
.

We have shown that k | q−1
p−1

for every semiprimitive pair (k, q) and therefore

Γ(k, q) is integral, as we wanted to see.

5.1 The spectrum of semiprimitive GP-graphs Γ(k, q)

In this subsection we recall the spectrum for arbitrary semiprimitive GP-graphs. In
1999, by using Gauss sums, Brouwer, Wilson and Xiang computed the spectra of
a more general family defined in terms of semiprimitive pairs (see Theorem 2 in
[3]). Now, for completeness, using Gaussian periods we give the spectrum of the
corresponding GP∗-graphs Γ(k, q) and Γ+(k, q) and of the complements Γ̄(k, q).

We will need the following notation. If q = pm, define the sign

σ = (−1)s+1 (5.2)

where s = m
2t

and t is the least integer j such that k | pj + 1 (hence s ≥ 1).

Theorem 5.4. Let (k, q) be a semiprimitive pair with q = pm, m even, and put
n = q−1

k
. Then, the spectra of Γ = Γ(k, q), Γ+ = Γ+(k, q) and Γ̄ = Γ̄(k, q) are

integral and respectively given by

Spec(Γ) = {[n]1, [λ1]n, [λ2](k−1)n},

Spec(Γ̄) = {[(k − 1)n]1, [(k − 1)λ2]
n, [−1− λ2]

(k−1)n},

where

λ1 =
σ(k − 1)p

m
2 − 1

k
and λ2 = −σp

m
2 + 1

k
(5.3)

with σ as given in (5.2). Furthermore, we have Spec(Γ+) = Spec(Γ) if q is even and

Spec(Γ+) = {[n]1, [±λ1]
n
2 , [±λ2]

(k−1)n
2 } if q is odd.

Proof. We first compute the spectrum of Γ = Γ(k, q), which by Theorem 2.1 is given

in terms of Gaussian periods. From Lemma 13 in [7] the Gaussian periods η
(k,q)
j , for

j = 0, . . . , k − 1, are given by:

(a) If p, α = pt+1
k

and s are all odd then

η
(k,q)
j =

{
(k−1)

√
q−1

k
if j = k

2
,

−
√
q+1

k
if j 6= k

2
.
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(b) In any other case we have σ = (−1)s+1 and

η
(k,q)
j =

{
σ(k−1)

√
q−1

k
if j = 0,

−σ
√
q+1

k
if j 6= 0.

Thus, by Theorem 2.1, the spectrum of Γ(k, q) is

Spec(Γ(k, q)) = {[n]1, [ηk/2]n, [η0](k−1)n}

if p, α, s are odd or Spec(Γ(k, q)) = {[n]1, [η0]n, [η1](k−1)n} otherwise.

Suppose we are in case (a), i.e. p, α and s are odd. Then we have

λ1 = ηk/2 =
(k−1)p

m
2 +1

k
and λ2 = ηj = η0 = −p

m
2 +1
k

(j 6= k
2
).

It is clear that λ2 6= n and λ2 6= λ1. Also, n 6= λ1 since k 6= p
m
2 + 1. Thus, all three

eigenvalues are different and their corresponding multiplicities are as given in the
statement.

In case (b), we have

η0 =
σ(k−1)p

m
2 +1

k
and ηj = −σp

m
2 −1
k

(j 6= 0).

Again, one checks that η0 6= ηj, η0 6= n and ηj 6= n for every j 6= k
2
. Thus, the

corresponding multiplicities are as stated in the proposition.

Combining cases (a) and (b) we get (5.3). Finally, the spectra of Γ̄(k, q) and
Γ+(k, q) follow by Theorem 2.1. Just recall that for q even we have that Γ+ = Γ.

Notice that for (k, q) semiprimitive with q odd, Γ+(k, q) has almost symmetric
spectrum (see Definition 2.13 in [23]) with five different eigenvalues.

Note. Since λ1, λ2 ∈ Z, we have that σ = ±1 if and only if k | pm
2 ± 1, respectively.

Remark 5.5. The weight distribution of 2-weight irreducible cyclic codes C(k, q) in
the semiprimitive case is known (see for instance [27]). Using this and the relation
of the weight distribution of C(k, q) with the spectrum of GP-graphs obtained in
Theorem 5.4 in [26] one can also recover the spectrum of semiprimitive GP-graphs
Γ(k, q) as in (2.7) in Theorem 2.1.

Remark 5.6. We have computed the spectrum of the GP-graphs Γq,m(ℓ) = Γ(qℓ +
1, qm) and Γ̄q,m(ℓ), with ℓ | m and m

ℓ
even (see Theorem 3.5 and Proposition 4.3 in

[20], see also [21]), by using certain sums associated with the quadratic forms

Qγ,ℓ(x) = Trpm/p(γx
qℓ+1)

with γ ∈ F∗
pm . By (ii) in Example 5.2, the graph Γ(pℓ + 1, pm), i.e. with q = p

prime, is semiprimitive and hence its spectrum is given by Theorem 2.1. Indeed,
Spec(Γ(pℓ + 1, pm)) = {[n]1, [λ1]n, [λ2]pℓn} where

n = pm−1
pℓ+1

, λ1 =
σp

m
2 +ℓ−1
pℓ+1

, λ2 = −σp
m
2 +1

pℓ+1
,
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with σ = (−1)
m
2ℓ
+1. It is reassuring that both computations of the spectrum coincide

after using these two different methods. The same happens for the complementary
graphs.

We conclude the section showing that for each odd prime power p2m there is only
one semiprimitive GP-graph Γ(km, p

2m) which is Hamming (or equivalently, there is
only one Hamming GP-graph which is semiprimitive).

Proposition 5.7. Let Γ(k, q) be a semiprimitive GP-graph with q = pt and p an odd
prime. Then, Γ(k, q) is Hamming if and only if k = pm+1

2
and t = 2m. In this case

we have
Γ(p

m+1
2
, p2m) = H(2, pm) = Kpm�Kpm = Lq,q

where Lq,q is the q × q lattice (or rook’s) graph, with integral spectrum given by

Spec(Γ(p
m+1
2
, p2m)) = {[2(pm − 1)]1, [pm − 2]2(p

m−1), [−2](p
m−1)2}.

Proof. In Example 4.3 we recall that Hamming GP-graphs (classified in [14]) are of
the form

Γ( pbm−1
b(pm−1)

, pbm) = H(b, pm) = �bKpm

with spectrum

{[ℓpm − b](
b
ℓ)(pm−1)b−ℓ}bℓ=0. (5.4)

Since semiprimitive graphs have exactly three eigenvalues, we must necessarily have
that b = 2 and we check that in this case

Γ( p2m−1
2(pm−1)

, p2m) = Γ(p
m+1
2
, p2m)

is semiprimitive since pm+1
2

| pm+1. It is well-known that H(2, q) is the lattice graph
Lq,q. The spectrum follows by taking b = 2 in (or one can also use Theorem 5.4).

5.2 Semiprimitive GP-graphs are strongly regular

Let Γ be a regular graph that is neither complete nor empty. Then Γ is said to
be strongly regular with parameters srg(v, r, e, d) if it is r-regular with v vertices,
every pair of adjacent vertices has e common neighbours, and every pair of distinct
non-adjacent vertices has d common neighbours. These parameters are tied by the
relation

(v − r − 1)d = r(r − e− 1). (5.5)

For instance, for q ≡ 1 (mod 4), the classic Paley graph P (q) is a strongly regular
graph with parameters srg(q, q−1

2
, q−5

4
, q−1

4
). If Γ is strongly regular with parame-

ters srg(v, r, e, d), then its complement Γ̄ is also strongly regular with parameters
srg(v, r̄, ē, d̄), where

r̄ = v − r − 1, ē = v − 2− 2r + d and d̄ = v − 2r + e. (5.6)
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Let Γ = srg(v, r, e, d). If 2r− (v− 1)(e− d) 6= 0 the graph have integral different
eigenvalues. On the other hand, if

2r − (v − 1)(e− d) = 0

the graph is said to be a conference graph because of their connection with symmetric
conference matrices. A conference graph has parameters

srg(v, v−1
2
, v−5

4
, v−1

4
).

Hence, Paley graphs are conference graphs.

A strongly regular graph srg(v, n, e, d) with different eigenvalues n, f, g is a
pseudo-Latin square graph if n = −g(f − g − 1), where n > f > 0 > g. Equiv-
alently, it is denoted PLδ(w) and has parameters

PLδ(w) = srg(w2, δ(w − 1), δ2 − 3δ + w, δ(δ − 1)), (5.7)

where w = f−g and δ = −g. A graph with the parameters as above, changing δ and
w by −δ and −w is called a negative Latin square graph. It is denoted by NLδ(w)
and has the parameters

NLδ(w) = srg(w2, δ(w + 1), δ2 + 3δ − w, δ(δ + 1)). (5.8)

See for instance Chapter 8 in [4] for the definitions of pseudo-Latin and negative
Latin square graphs.

A regular graph is called distance regular if for any two vertices v and w, the
number of vertices at distance j from v and at distance k from w depends only upon
j, k, and the distance d(v, w) between v and w. A connected strongly regular graph
Γ, being a distance regular graph of diameter δ = 2, have intersection array of the
form

A(Γ) = {b0, b1, b2; c0, c1, c2}.
For every i = 0, 1, 2 and every pair of vertices x, y at distance i, the intersection
numbers are defined by

bi = #{z ∈ N(y) : d(x, z) = i+ 1} and ci = #{z ∈ N(y) : d(x, z) = i− 1},
where N(y) denotes the set of neighbours of y. Since we trivially have b2 = c0 = 0,
we will simply write A(Γ) = {b0, b1; c1, c2}, as usual. See [2] for an introduction and
general examples about strongly regular graphs.

We now give some structural properties of the graphs Γ(k, q) throughout the
spectrum.

Theorem 5.8. Let (k, q) be a semiprimitive pair with q = pm, m = 2ts where t is
the least integer satisfying k | pt + 1 and put n = q−1

k
. Then we have:

(a) Γ(k, q) and Γ̄(k, q) are primitive, non-bipartite, integral, strongly regular graphs
with corresponding parameters srg(q, n, e, d) and srg(q, (k − 1)n, e′, d′) given by

e = d+(σp
m
2 +2λ2), d = n+(p

m
2 +λ2)λ2), e′ = q−2−2n+d, d′ = q−2n+e.
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(b) Γ(k, q) and Γ̄(k, q) are distance regular graphs of diameter 2 with intersection
arrays

A = {n, n− e− 1; 1, d} and Ā = {(k − 1)q, n− d; 1, q − 2n+ e}.

(c) If s is odd then Γ(k, q) and Γ̄(k, q) are pseudo-Latin square graphs with parame-
ters

PLδ(w) = srg(w2, δ(w − 1), δ2 − 3δ + w, δ(δ − 1)),

where w = f−g, δ = −g and f > 0 > g are the non-trivial eigenvalues of Γ(k, q)
or Γ̄(k, q).

Proof. We will use the spectral information from Theorem 5.4. We prove first the
results for Γ(k, q).

(a) Since the multiplicity of the degree of regularity n is 1, the graph is connected.
Also, one can check that −n is not an eigenvalue of Γ(k, q) and hence the graph is
non-bipartite. Now, since k | pt + 1 then k | pts + 1 if s is odd and k | pts − 1 if s is

even, hence β = p
m
2 +σ
k

is an integer. Thus, since λ1 = σ(pts − β) and λ2 = −σβ, by
(5.3), the eigenvalues are all integers (we also know this from Theorem 2.1).

Finally, since the graph is connected, n-regular with q-vertices and has exactly
three eigenvalues, it is a strongly regular graph with parameters srg(q, n, e, d). We
now compute e and d. It is known that the non-trivial eigenvalues of an strongly
regular graph are of the form

λ± = 1
2
{(e− d)±∆} where ∆ =

√
(e− d)2 + 4(n− d).

Thus, d = n+ λ+λ− and e = d+ λ+ + λ−. From this and (5.3) the result follows.

(b) We know that Γ = srg(q, n, e, d) is primitive for (k, q) a semiprimitive pair. Since
Γ is connected with diameter δ = 2, its intersection array is {n, n − e − 1; 1, d}. In
fact, it is clear that b0 = n and c1 = 1. Let x, y be vertices of Γ. Thus, if d(x, y) = 1,
then

b1 = #(N(y)r {x})−#N(x) = n− 1− e.

If d(x, y) = 2, then c2 = #(N(x) ∩ N(y)). Since Γ̄ is also connected with diameter
2, its intersection array is {n̄, n̄− ē− 1; 1, d̄}. Now, since

q − 2n+ e = (q − n+ 1)− (n− e+ 1),

by using (5.5) and (5.6) we get the desired result.

(c) Note that the regularity degree of Γ = Γ(k, q) equals the multiplicity of a non-
trivial eigenvalue by Theorem 5.4. Thus, Proposition 8.14 in [4], we have that Γ is
of pseudo-Latin square type graph (PL), of negative Latin square type (NL) or is a
conference graph. By definition, a conference graph satisfy

2n+ (q − 1)(e− d) = 0.
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It is easy to check that this condition holds for Γ(k, q) if and only if Γ(1, 4) = K4, and
hence Γ is not a conference graph. Now, put w = f−g, where f, g are the non-trivial
eigenvalues with f > 0 > g and δ = −g. Then, Γ is a pseudo-Latin square graph
with parameters as in (5.7) or a negative Latin square graph with parameters as in
(5.8). It is clear that

n = δ(w − 1)

if and only if s is odd and that for s even n 6= δ(w+1). For Γ̄ one proceeds similarly.
Hence the only possibility for Γ and Γ̄ is to be pseudo-Latin square graphs.

Now, it is easy to see that Γ̄(k, q) is also a primitive non-bipartite integral strongly
regular graph with parameters and intersection array as stated. The proof that
Γ̄(k, q) is a pseudo-Latin square if s is odd is analogous to the previous one for
Γ(k, q) and we omit the details. Finally, since Γ(k, q) is a pseudo-Latin square graph
PLδ(w) then Γ̄(k, q) is a pseudo-Latin square graph PLδ′(w) with δ

′ = u+1− δ (see
[4]).

Remark 5.9. Notice that if we take h = min{|f |, |g|}, then for s even (in the
previous notations), Γ(k, q) satisfy the same parameters as in (5.8) with δ replaced
by h, that is Γ(k, q) is a strongly regular graph with parameters, in terms of the
eigenvalues, given by

ÑL = srg(w2, h(w + 1), h2 + 3h− w, h(h+ 1)).

Example 5.10. From Theorem 5.4 and Proposition 5.8 we obtain Table 2 below.
Here s = m

2t
where t is the least integer such that k | pt + 1.

We have marked in bold those graphs Γ(k, pm) with k 6= pℓ+1 for some ℓ | m
2
. We

point out that, for instance, the graphs with q = 74 do not appear in the Brouwer’s
lists ([1]) of strongly regular graphs. ♦

6 Ramanujan GP-graphs

If Γ is an n-regular graph, then n is the greatest eigenvalue of Γ. Recall that a
connected n-regular undirected graph is Ramanujan if

λ(Γ) ≤ 2
√
n− 1, (6.1)

where λ(Γ) is the maximum absolute value of the non-principal eigenvalues of Γ

λ(Γ) = max
λ∈Spec(Γ)

{|λ| : |λ| 6= n}. (6.2)

Here we are interested in Ramanujan generalized Paley graphs: we will first classify
all semiprimitive GP-graphs which are Ramanujan and then show that all GP-graphs
Γ(k, q) with 1 ≤ k ≤ 4 are indeed Ramanujan.
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Table 2: Smallest semiprimitive graphs: srg parameters and spectra
graph srg parameters spectrum t s pseudo-latin square

Γ(3, 24) (16, 5, 0, 2) {[5]1, [1]10, [−3]5} 1 2 no

Γ̄(3, 24) (16, 10, 6, 6) {[10]1, [2]5, [−2]10} 1 2 no

Γ(3, 26) (64, 21, 8, 6) {[21]1, [5]21, [−3]42} 1 3 PL3(8)

Γ̄(3, 26) (64, 42, 26, 30) {[42]1, [2]42, [−6]21} 1 3 PL6(8)

Γ(3,52) (25, 8, 3, 2) {[8]1, [3]8, [−2]16} 1 1 PL2(5)

Γ̄(3,52) (25, 16, 9, 12) {[16]1, [1]16, [−4]8} 1 1 PL4(5)

Γ(3,54) (625, 208, 63, 72) {[208]1, [8]416, [−17]208} 1 2 no

Γ̄(3,54) (625, 416, 279, 272) {[416]1, [16]208, [−9]416} 1 2 no

Γ(4, 34) (81, 20, 1, 6) {[20]1, [2]60, [−7]20, } 1 2 no

Γ̄(4, 34) (81, 60, 45, 42) {[60]1, [6]20, [−3]60, } 1 2 no

Γ(4, 36) (729, 182, 55, 42) {[182]1, [20]182, [−7]546} 1 3 PL7(27)

Γ̄(4, 36) (729, 546, 405, 420) {[546]1, [6]546, [−21]182} 1 3 PL21(27)

Γ(4,72) (49, 12, 5, 2) {[12]1, [5]12, [−2]36} 1 1 PL2(7)

Γ̄(4,72) (49, 36, 25, 30) {[36]1, [1]36, [−6]12} 1 1 PL6(7)

Γ(4,74) (2401, 600, 131, 156) {[600]1, [12]1800, [−37]600} 1 2 no

Γ̄(4,74) (2401, 1800, 1332, 1355) {[1800]1, [36]600, [−13]1800} 1 2 no

Γ(5,34) (81, 16, 7, 2) {[16]1, [7]16, [−2]64} 2 1 PL2(9)

Γ̄(5,34) (81, 64, 49, 56) {[64]1, [1]64, [−8]16} 2 1 PL8(9)

Γ(5,74) (2401, 480, 119, 90) {[480]1, [39]480, [−10]1920} 2 1 PL10(49)

Γ̄(5,74) (2401, 1920, 1560, 1529) {[1920]1, [9]1920, [−40]480} 2 1 PL40(49)

6.1 All Ramanujan semiprimitive GP-graphs

We recall that semiprimitive graphs are integral and undirected. We now give a
complete characterization of the semiprimitive generalized Paley graphs which are
Ramanujan. In particular, we will show that if a semiprimitive GP-graph Γ(k, q) is
Ramanujan then k ∈ {2, 3, 4, 5}.

Theorem 6.1. Let q = pm with p prime and let (k, q) be a semiprimitive pair. Then,
the graph Γ = Γ(k, pm) is Ramanujan if and only if Γ+ = Γ+(k, pm) is Ramanujan
and this happens if and only if

(a) Γ is the classic Paley graph Γ(2, q), with q ≡ 1 (mod 4),

or m is even and k, p,m are as in one of the following cases:

(b) k = 3, p = 2 and m ≥ 4.

(c) k = 3, p 6= 2 with p ≡ 2 (mod 3) and m ≥ 2.

(d) k = 4, p = 3 and m ≥ 4.

(e) k = 4, p 6= 3 with p ≡ 3 (mod 4) and m ≥ 2.

(f) k = 5, p = 2 and m ≥ 8 with 4 | m.
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(g) k = 5, p 6= 2 with p ≡ 2, 3 (mod 5) and m ≥ 4 with 4 | m.

(h) k = 5, p ≡ 4 (mod 5) and m ≥ 2 even.

Moreover, Γ̄(k, q) is Ramanujan for every semiprimitive pair (k, q).

Proof. We begin by noticing that, by Theorem 5.4, the graphs Γ(k, q), Γ̄(k, q) and
Γ+(k, q) are connected for any semiprimitive pair (k, q), since the multiplicity of the
principal eigenvalue is one. Also, that Γ is Ramanujan if and only if Γ+ is Ramanujan
follows directly from the fact that

λ(Γ+(k, q)) = λ(Γ(k, q))

by Theorem 2.1, and hence (6.1) holds for both or for none of the graphs.

Now, note that k = 1 is excluded since (1, q) is not a semiprimitive pair and that
k = 2 corresponds to the classic Paley graph Γ(2, q), with q ≡ 1 (mod 4), which is
well-known to be Ramanujan (hence (a)). So it is enough to consider semiprimitive
pairs (k, pm) with k > 2.

We divide the proof of the characterization of semiprimitive Ramanujan GP-
graphs into three steps: in steps 1 and 2 we prove the statement for the graphs
Γ(k, q), and in step 3 we prove it for the complements Γ̄(k, q).

Step 1. Here we prove that if Γ is Ramanujan with (k, pm) a semiprimitive pair with
k 6= 2, then 3 ≤ k ≤ 5.

Note that for k ≥ 3 we have λ(Γ) = |λ1| (see (5.3) in Theorem 5.4). Since Γ is
Ramanujan and undirected, (6.1) reads

1
k
|σ(k − 1)p

m
2 − 1| ≤ 2

√
pm−(k+1)

k
.

This inequality is equivalent to (k − 1)2pm − 2σ(k − 1)p
m
2 + 1 ≤ 4k(pm − (k + 1))

which holds if and only if

4k(k + 1) + 1 ≤ pm(4k − (k − 1)2) + 2(k − 1)σp
m
2 . (6.3)

Assume first that σ = −1. Then, (6.3) takes the form

2(k − 1)p
m
2 + 4k(k + 1) + 1 ≤ pm(4k − (k − 1)2).

Since the left hand side of this inequality is positive, we have that 4k− (k− 1)2 > 0,
and this can only happen if k ≤ 5.

Now, let σ = 1. In this case, inequality (6.3) is equivalent to

0 ≤ (4k − (k − 1)2)pm + 2(k − 1)p
m
2 − (2k + 1)2. (6.4)

Suppose k > 5 and consider the quadratic polynomial

Pk(x) = (4k − (k − 1)2)x2 + 2(k − 1)x− (2k + 1)2.
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Hence, Pk(x) has negative leading coefficient and its discriminant is given by

∆(k) = 4
(
(k − 1)2 − ((k − 3)2 − 8)(2k + 1)2

)
.

Since (2k + 1)2 > (k − 1)2, the sign of ∆(k) depends on (k − 3)2 − 8. Since k > 5,
we have that (k − 3)2 − 8 > 0 and thus ∆(k) < 0. So, the quadratic polynomial Pk

has no real roots and since Pk(0) = −(2k+1)2 < 0, we obtain that Pk(x) < 0 for all
x ∈ R, in particular Pk(p

m
2 ) < 0 for all p and m, contradicting (6.4). Therefore, if Γ

is Ramanujan then k ≤ 5, as we wanted to show.

Step 2. We now show that the pair (k, q) semiprimitive with k ≤ 5 can only happen
as stated in the theorem; and, in these cases, Γ(k, q) is Ramanujan.

As mentioned at the beginning, the case k = 1 is excluded and k = 2 corresponds
to the classic Paley graph, which is Ramanujan. If k = 3, then necessarily p ≡ 2
(mod 3) and m is even, for if not the pair (k, pm) is not semiprimitive. In this case,
(6.3) is given by 49 ≤ 8pm + 4σp

m
2 . The worst possibility is when σ = −1, and in

this case the previous inequality reads

12 + 1
4
≤ p

m
2 (2p

m
2 − 1).

This clearly holds if and only if p is odd and m ≥ 2 or p = 2 and m ≥ 4, and thus
Γ(3, pm) is Ramanujan in these cases. This proves (b) and (c).

If k = 4, then we must have p ≡ 3 (mod 4) and m is even, for if not the pair
(k, pm) is not semiprimitive. In this case, (6.3) is given by 81 ≤ 7pm + 6σp

m
2 . As

before, the worst case is when σ = −1, and thus the inequality is equivalent to

11 + 4
7
≤ p

m
2 (p

m
2 − 6

7
).

This holds if and only if p > 3 and m ≥ 2 or p = 3 and m ≥ 4 and hence Γ(4, pm) is
Ramanujan in these cases, thus showing (d) and (e).

In the last case, if k = 5, then (5, pm) is semiprimitive if and only if p ≡ 2, 3
(mod 5) and 4 | m or else p ≡ 4 (mod 5) and m ≥ 2 even. On the other hand, in
this case (6.3) is given by 121 ≤ 4pm + 8σp

m
2 , which is equivalent to

30 + 1
4
≤ p

m
2 (p

m
2 + 2σ).

If p = 2, then necessarily m ≥ 8 since 4 | m and m = 4 does not satisfy the above
inequality. Clearly, the inequality holds for p ≡ 2, 3 (mod 5) with p 6= 2 and 4 | m.
Finally, notice that the right hand side of the inequality increases when p increases.
The first prime p with p ≡ 4 (mod 5) is p = 19 that clearly satisfies the inequality for
m ≥ 2 even, so we obtain that the inequality holds for all of primes p ≡ 4 (mod 5)
with m ≥ 2 even. In this way we have shown that Γ(5, pm) is Ramanujan in all the
cases in the statement, proving items (f)–(h).

Step 3. Now, we consider the complementary graphs Γ̄ = Γ̄(k, q). We have that

λ(Γ̄) = |λ̄1| = (k − 1)p
m
2 +σ
k
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and the regularity degree of Γ̄ is n(k−1). Notice that we can assume that k > 2, since
k = 2 correspond to the classic Paley graph which is self-complementary, and hence
Ramanujan. Also, without loss of generality we can assume that σ = 1. Inequality
(6.1) becomes

(k − 1)p
m
2 +1
k

≤ 2

√
(pm−1)(k−1)−k

k
(6.5)

which is equivalent to (k−1)2pm+2(k−1)2p
m
2 +(k−1)2 ≤ 4k(pm(k−1)− (2k−1))

and therefore we have

2(k − 1)2p
m
2 + (k − 1)2 + 4k(2k − 1) ≤ pm(4k(k − 1)− (k − 1)2).

Notice that (k−1)2+4k(2k−1) = (3k−1)2 and 4k(k−1)−(k−1)2 = (k−1)(3k+1).
Let us consider the quadratic polynomial

Qk(x) = x2 − bkx− ck where bk =
2(k−1)
(3k+1)

and ck =
(3k−1)2

(k−1)(3k+1)
.

Hence, Γ̄(k, q) is Ramanujan if and only (6.5) holds, that is if and only if Qk(p
m
2 ) > 0.

Clearly bk < 1 and 4ck < 15, this implies that the greatest real root r of Qk

satisfies

r = bk
2
+ 1

2

√
b2k + 4ck <

1
2
+ 2 < 3.

Since (k, pm) is a semiprimitive pair and k > 2, we have that p
m
2 ≥ 3. This implies

that Qk(p
m
2 ) > 0 since Qk has a positive leading coefficient. Therefore Γ̄(k, pm) is

Ramanujan for all semiprimitive pair (k, pm) with σ = 1. The case σ = −1 can be
proved analogously.

The previous result gives the following eight infinite families of Ramanujan semi-
primitive GP-graphs:

(a) {Γ(2, q)} with q ≡ 1 (mod 4), i.e. the classic Paley graphs,

(b) {Γ(3, 4t)}t≥2,

(c) {Γ(3, p2t)}t≥1 with p ≡ 2 (mod 3) and p 6= 2,

(d) {Γ(4, 9t)}t≥2,

(e) {Γ(4, p2t)}t≥1 with p ≡ 3 (mod 4) and p 6= 3,

(f) {Γ(5, 16t)}t≥2,

(g) {Γ(5, p4t)}t≥1, with p ≡ 2, 3 (mod 5) and p 6= 2,

(h) {Γ(5, p2t)}t≥1 with p ≡ 4 (mod 5).
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Note that five of them are valid for an infinite number of primes. The smallest graphs
in each family are:

Γ(2, 5), Γ(3, 16), Γ(3, 49), Γ(4, 81), Γ(4, 49), Γ(5, 256), Γ(5, 81), and Γ(5, 361),

respectively. Also, notice that all the graphs in Table 2 are Ramanujan, correspond-
ing to the families (c), (e) and (g).

Remark 6.2. (i) The Ramanujan GP-graphs Γ(k, q) with k = pℓ + 1 are character-
ized in Theorem 8.1 in [20]. There, we proved that

Γq,m(ℓ) = Γ(pℓ + 1, pm),

with ℓ | m such that mℓ even and ℓ 6= m
2
, is Ramanujan if and only if q = 2, 3, 4 with

ℓ = 1 and m ≥ 4 even. This says that Γ(pℓ + 1, pm) is Ramanujan only in the cases
(b), (d) and (f), giving the infinite families

{Γ(3, 4t)}t≥2, {Γ(4, 9t)}t≥2 and {Γ(5, 16t)}t≥2

of Ramanujan graphs. The first two families coincide with those in (b) and (d), while
the third one gives just half the graphs in (f), precisely those with t even in (f).
Thus, the last proposition extends this characterization of Ramanujan GP-graphs
Γ(qℓ + 1, qm) to all semiprimitive pairs (k, pm), that is in the case q = p.

(ii) When p = 2, the last proposition gives nothing new, since the possible values
of k ∈ {2, 3, 4, 5} such that (k, 2m) is a semiprimitive pair reduces to k = 3, 5, which
corresponds to the cases p = 2 with ℓ = 1, 2 in (i) above.

Example 6.3. From Theorem 6.1, the following GP-graphs are Ramanujan:

p = 2 Γ(3, 16), Γ(3, 64), Γ(3, 256), Γ(5, 256),
p = 3 Γ(2, 81), Γ(4, 81), Γ(5,81), Γ(2, 729), Γ(4, 729),

Γ(2, 6.561), Γ(4, 6.561), Γ(5,6.561)
p = 5 Γ(2, 25), Γ(3,25), Γ(2, 625), Γ(3,625), Γ(2, 15.625),

Γ(3,15.625), Γ(2, 390.625), Γ(3,390.625)
p = 7 Γ(4,49), Γ(4,2.401), Γ(5,2.401), Γ(4,117.649),

Γ(4,5.764.801), Γ(5,5.764.801)

where 6.561 = 38, 15.625 = 56, 390.625 = 58, 74 = 2.401, 76 = 117.649 and 78 =
5.764.801. We have marked in bold those graphs Γ(k, pm) with k > 2 and k 6= pℓ +1
for some ℓ | m

2
. ♦

6.2 Ramanujan graphs Γ(k, q) with 1 ≤ k ≤ 4

It is well-known that the complete graphs Kn and the classic Paley graphs P (q) with
q ≡ 1 (mod 4) are Ramanujan (it is immediate to check it from (6.1) and Examples
2.3 and 2.4).
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In general, Γ(k, q) can be directed. There are (to the authors knowledge) two
notions of Ramanujan n-regular digraphs. We recall that a directed graph is n-
regular if its in-degree and out-degree are both equal to n. A connected n-regular
undirected graph is Ramanujan if it satisfies (6.1), that is

λ(Γ) ≤ 2
√
n− 1,

where λ(Γ) is the maximum absolute value of the non-principal eigenvalues of Γ. An
n-regular connected directed graph Γ is Ramanujan if it satisfies (6.1) and also its
adjacency matrix can be diagonalized by a unitary matrix, see for instance [13]. A
more recent definition due to Lubotzky and Parzanchevski (see [16], [19]) is that an
n-regular connected digraph Γ is Ramanujan if

λ(Γ) ≤
√
n.

One can check from the spectrum given in (2.10) that the directed Paley graphs
~P (q), i.e. those Γ(2, q) with q ≡ 3 (mod 4), are Ramanujan under the two notions
(in the second sense, it is mentioned in §13.3.3 in [19] for q = p prime). In this way
we have that the graphs Γ(1, q) and Γ(2, q) are Ramanujan for any q.

We will now study which GP-graphs Γ(3, q) and Γ(4, q) are Ramanujan. In
Theorem 6.1 we have found those semiprimitive GP-graphs Γ(3, q) and Γ(4, q) which
are Ramanujan (they are the graphs given in (b)–(e) in the previous list). For this
reason, we now assume that Γ(k, q) is non-semiprimitive for k = 3, 4, where q = pm,
that is to say p ≡ 1 (mod k).

To study the Ramanujanicity of the graphs Γ(3, q) we will need a lemma. So, we
first fix some notations. Denote by λ0, λ1, λ2 the non-principal eigenvalues of Γ(3, q),
that is (see (a) in Theorem 3.1)

λ0 =
a 3
√
q−1

3
, λ1 =

− 1
2
(a+9b) 3

√
q−1

3
and λ2 =

− 1
2
(a−9b) 3

√
q−1

3
, (6.6)

where a, b are integers uniquely determined by the conditions (3.2). Notice that
λ(Γ(3, q)) can be realized by any of the three non-principal eigenvalues of Γ(3, q).

Lemma 6.4. Let q = p3t for some p prime such that p ≡ 1 (mod 3) and let λ1 and
λ2 be as in (6.6). Then, we have:

(a) If |λ1| > |λ2|, then a and b have the same sign.

(b) If |λ2| > |λ1|, then a and b have different signs.

Proof. (a) In this case, |λ1| > |λ2| is equivalent to 1
2
(a+ 9b)pt + 1 > 1

2
(a− 9b)pt + 1.

This implies that (
(a+ 9b)pt + 2

)2
>

(
(a− 9b)pt + 2

)2
,

from which after some computations we obtain that

b(2 + apt) > 0.
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Hence, b and 2 + apt have the same sign. Taking into account that 2 + apt has the
same sign as apt, since p ≥ 7, and so the same sign of a, we see that a and b have
the same sign.

(b) This case can be proved in the same way as (a), by noticing that |λ1| < |λ2|
implies that b(2 + apt) < 0.

We now show that any non-semiprimitive GP-graph Γ(3, q) and any non-semi-
primitive GP-graph Γ(4, q) with q a square are Ramanujan.

Theorem 6.5. Let k ∈ {3, 4} and q = pm for some prime p and m ∈ N. If p ≡ 1
(mod k), with m even if k = 4, then Γ(k, q) is Ramanujan.

Proof. Notice that the hypothesis p ≡ 1 (mod k) implies that Γ(k, q) is well defined
and it is non-semiprimitive. We divide the proof in two parts, one for Γ(3, q) and
one for Γ(4, q). By Theorems 3.1 and 3.2 we know that Γ(3, q) and Γ(4, q) are both
undirected graphs in all the cases. Thus, by (6.1), Γ is Ramanujan if and only if
λ(Γ) ≤ 2

√
n− 1.

• The graphs Γ(3, q). We begin by showing that Γ(3, q) in the non-semiprimitive
case is Ramanujan. Let p ≡ 1 (mod 3), k = 3, and n = q−1

3
where q = pm.

(i) Suppose that m = 3t for some t ∈ N (so we are in case (a) of Theorem 3.1).
Assume first that

λ(Γ(3, q)) = |λ0| = |apt−1
3

|.
Notice that λ(Γ(3, q)) ≤ 2( q−1

3
− 1)

1
2 is equivalent to

|apt − 1| ≤ 2
√
3
√
p3t − 4.

Since |apt−1| = |a|pt±1, after some computations, we have that the above inequality
is equivalent to

(|a|pt ± 1)2 ≤ 12(p3t − 4).

By taking into account that a2 ≤ 4pt, we have that

(|a|pt ± 1)2 ≤ 4p3t + 2|a|pt + 1.

Finally, since p ≡ 1 (mod 3) then p ≥ 7 and so we have that 4p3t + 2|a|pt + 1 ≤
12(p3t − 4) is always true which implies that Γ(3, q) is Ramanujan in this case.

Now assume that
λ(Γ(3, q)) = |λ1| = |−

1
2
(a+9b)pt−1

3
|.

In this case, λ(Γ(3, q)) ≤ 2( q−1
3

− 1)
1
2 is equivalent to

|−(a+9b)pt−2
6

| ≤ 2
√
3

3

√
p3t − 4.

Since a+ 9b 6= 0 and p ≥ 7, we have that | − (a+ 9b)pt − 2| = |a+ 9b|pt ± 2, and so
the above inequality is equivalent to

(|a+ 9b|pt ± 2)2 ≤ 48(p3t − 4).
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By Lemma 6.4, the integers a and b have the same sign and so (a + 9b)2 = a2 +
18|a||b|+ 81b2, which implies that

(|a+ 9b|pt ± 2)2 ≤ (a2 + 18|a||b|+ 81b2)p2t + 4|a+ 9b|pt + 4.

By taking into account that 4pt = a2 + 27b2 we have that

|a| ≤ 2p
t
2 and |b| ≤ 2

√
3

9
p

t
2

which implies that

a2 + 18|a||b|+ 81b2 ≤ 12p
t
2 + 8

√
3p

t
2 = 4(3 + 2

√
3)p

t
2 ≤ 28p

t
2 .

Now, since a and b have the same sign and 4pt = a2 + 27b2, we have that

|a+ 9b| = |a|+ 9|b| ≤ 2(1 +
√
3)p

t
2 ≤ 6p

t
2 .

In this way we obtain that

(a2 + 18|a||b|+ 81b2)p2t + 4|a+ 9b|pt + 4 ≤ 28p3t + 24p
3t
2 + 4.

Finally, since p ≥ 7, we have that 28p3t +24p
3t
2 +4 ≤ 48(p3t − 4), which implies that

Γ(3, q) is Ramanujan.

The remaining case, λ(Γ(3, q)) = |λ2|, can be proved in a similar way, using item
(b) instead of (a) of the above Lemma.

(ii) Now assume that 3 ∤ m (so we are in case (b) of Theorem 3.1). In this case,
the eigenvalues of Γ(3, q) are given by

xj = −1
3

(
1 + ωjC + q

ωjC

)
with C = 3

√
q

3

√
1
2
(−a0 + i3

√
3b0)

for j = 0, 1, 2 where ω = e
2πi
3 and a0, b0 are integers satisfying 4q = a20 + 27b20, a ≡ 1

(mod 3) and (a0, p) = 1. Notice that |C| = √
q. In fact,

|C| = 3
√
q |a0+i

√
27b0

2
| 13 = 3

√
q
(√a20+27b20

4

) 1
3 = 3

√
q 3

√√
q =

√
q.

Thus, for any j ∈ {0, 1, 2} we have that |xj| ≤ 1+2
√
q

3
. It is straightforward to see

that
1+2

√
q

3
≤ 2

√
n− 1

holds for any q ≥ 7, since it is equivalent to 8q − 4
√
q − 49 ≥ 0. Therefore, (6.1)

holds, and Γ(3, q) is Ramanujan in this case.

Thus, we have seen that any non-semiprimitive GP-graph Γ(3, pm) with m ∈ N
(i.e. with p ≡ 1 (mod 3)) is Ramanujan.

• The graphs Γ(4, q). We now look at the non-semiprimitive GP-graphs Γ(4, q). So,
let k = 4, n = q−1

4
and q = pm for some m ∈ N even.
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(i) Suppose first that 4 | m. By (a) in Theorem 3.2, the spectrum of Γ(4, p4t) is
given by

{
[n]1,

[
p2t+4dpt−1

4

]n
,
[
p2t−4dpt−1

4

]n
,
[−p2t+2cpt−1

4

]n
,
[−p2t−2cpt−1

4

]n}

where n = p4t−1
4

and c, d are integers uniquely determined by p2t = c2 + 4d2, c ≡ 1
(mod 4) and (c, p) = 1. In particular we have that

|c| ≤ pt and |d| ≤ 1
2
pt. (6.7)

By a simple comparison of the eigenvalues, we have that

λ(Γ(4, p4t)) = max
{p2t + 4|d|pt − 1

4
,
p2t − 2|c|pt + 1

4

}
.

In this case the inequality λ(Γ(4, p4t)) ≤ 2
√
n− 1 is equivalent to

λ(Γ(4, p4t))2 ≤ p4t − 5. (6.8)

It is enough to see what happens in any possible case.

Suppose first that λ(Γ(4, p4t)) = 1
4
(p2t+4|d|pt−1), in this case the equation (6.8)

turns into
(p2t + 4|d|pt − 1)2 ≤ 16p4t − 80.

Clearly,

(p2t + 4|d|pt − 1)2 ≤ (p2t + 4|d|pt)2 + 1 = p4t + 8|d|p3t + 16d2p2t + 1.

By (6.7) we have that 8|d|p3t + 16d2p2t ≤ 4p4t + 4p4t = 8p4t and hence

(p2t + 4|d|pt − 1)2 ≤ 9p4t + 1,

since p ≥ 5, we have that 9p4t +1 ≤ 16p4t − 80 is true and so Γ(4, p4t) is Ramanujan
as desired.

On the other hand, when λ(Γ(4, p4t)) = 1
4
(p2t − 2|c|pt +1), by (6.7) we have that

(p2t − 2|c|pt − 1)2 ≤ (p2t + 1)2 + 4c2p2t ≤ 4p4t + 4p4t = 8p4t ≤ 16p4t − 80.

A similar argument as above allows us to conclude that Γ(4, p4t) is Ramanujan as
asserted.

(ii) Now, if m ≡ 2 (mod 4), proceeding similarly as in the previous case, by (b)
in Theorem 3.2 we have that

λ(Γ(4, p4t+2)) = max
{

p2t+1+1+
√

2(p4t+2+cp2t+1)

4
,
p2t+1−1+

√
2(p4t+2−cp2t+1)

4

}

where n = p4t+2−1
4

and c, d ∈ Z are uniquely determined by p2t+1 = c2 + 4d2, c ≡ 1
(mod 4) and (c, p) = 1.

A similar computation as in the case m ≡ 0 (mod 4) shows that Γ(4, p4t+2) is
Ramanujan (we leave the details to the reader), and the result is thus proved.
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To conclude, we now summarize the results of this section on the Ramanujanicity
of the GP-graphs Γ(k, q) with 1 ≤ k ≤ 5.

Remark 6.6. Consider Γ(k, q) where 1 ≤ k ≤ 5 and k | q − 1 with q = pm with p
prime. Then we have the following:

(a) The graphs Γ(1, q) and Γ(2, q) are all Ramanujan.

(b) In the semiprimitive case, the graphs Γ(k, q) with k ∈ {3, 4} are Ramanujan if
and only if Γ(k, pm) with p ≡ −1 (mod k) and m ≥ 2, where m ≥ 4 if p = k− 1
(see Theorem 6.1).

(c) In the non-semiprimitive case, the graphs Γ(3, q) with q arbitrary and Γ(4, q)
with q a square are all Ramanujan (see Theorem 6.5).

(d) The graph Γ(5, q) in the semiprimitive case is Ramanujan if and only if m is
even and either p ≡ 2, 3 (mod 5), where m = 4t (t ≥ 2 if p = 2), or else p ≡ 4
(mod 5), by items (f)–(h) in Theorem 6.1.

(e) In all the previous cases (a)–(d), if Γ(k, q) is Ramanujan with 1 ≤ k ≤ 5, then
Γ+(k, q) is also Ramanujan, since λ(Γ+) = λ(Γ), see (6.2), by Theorem 2.1 and
hence (6.1) holds.

Relative to the GP-graphs with k = 5, the Ramanujanicity of the non-semiprim-
itive case is open. On the one hand, the spectrum of Γ(5, q) for p ≡ 2, 3 (mod 5)
is still unknown (when the graph is not semiprimitive). For p ≡ 1 (mod 5) with
q = p5t, the spectrum Spec(Γ(5, q)) is given in Proposition 3.4. For instance, it
is immediate to check that the graph Γ(5, 115) in Example 3.5 is Ramanujan. In
general, we leave the following question: which graphs Γ(5, p5t) with p ≡ 1 (mod 5)
are Ramanujan?
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