
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 91(2) (2025), Pages 301–325

Combinatorial aspects of the card game War

Tanya Khovanova

Mathematics Department
Massachusetts Institute of Technology

Cambridge, MA 02139, U.S.A.
tanya@math.mit.edu

Atharva Pathak

Princeton University
Princeton, NJ 08544, U.S.A.

atharva.pathak@princeton.edu

Abstract

This paper studies a single-suit version of the card game War on a fi-
nite deck of cards. There are varying methods of how players put the
cards that they win back into their hands, but we primarily consider
randomly putting the cards back and deterministically always putting
the winning card before the losing card. The concept of a passthrough
is defined, which refers to a player playing through all cards in their
hand from a particular point in the game. We mostly consider games
in which the second player wins during their first passthrough. We in-
troduce several combinatorial objects related to the game: game graphs,
win-loss sequences, win-loss binary trees, and game posets. We show how
these objects relate to each other. We enumerate states depending on the
number of rounds and the number of passthroughs.

1 Introduction

Card games are interesting to children and mathematicians alike. Games like poker
and blackjack are fascinating applications of game theory, probability, and statistics.
Bayer and Diaconis’s research into card shuffling [3] has had practical applications in
casinos, summarized in Diaconis’s discussion with Haran [8]. There is also ongoing
research in games where one player must sequentially guess cards in a deck given
varying shuffling methods and varying information feedback regarding the guesses
[2, 4, 5, 7].

This paper focuses on the card game War, for which some previous research exists.
Haqq-Misra [10] finds a linear regression on the chance of a player winning a game on

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 302

a standard 52-card deck given two initial statistics: the difference in the sum of card
values for the two players and the number of rounds a player wins during the first
26 rounds. Lakshtanov and Roshchina [6] show that, with random putback of cards,
the expected duration of the game is finite. Alexeev and Tsimerman [1] investigate a
game similar to War, where instead players randomly draw cards from their hands,
and the player with the higher card in a round wins the lower card but discards the
higher card. Ben-Naim and Krapivsky [9] consider a similar stochastic model of War
where cards are drawn randomly from the players’ hands, but the winner of a round
keeps both cards. They find the expected length of a game on N cards is O(N2) or
O(N2 logN) depending on the initial advantage of the eventual winner. Spivey [13]
investigates and classifies some types of cycles in games of War given deterministic
putback.

We note that previous analysis in War generally applies to variations where the
players randomly draw cards from their hands [1, 9] or are statistical analyses of
large decks [10]. We mostly focus our analysis on standard rules of War in situations
where one player has many more cards than the opponent. In contrast to Spivey
[13], we focus on situations where one player wins, rather than games that cycle.

Here we define the rules of War in the formulation we investigate. The game is
played between two players, whom we refer to as Alice and Bob. A deck of n cards,
labeled 1 through n, is divided between them, with their hands face down. In each
round, the players reveal the top cards from their hands, with the player whose card
was higher collecting both cards to the bottom of their hand. The player who loses
all their cards first loses the game.

Section 2 introduces the notation for how we represent games and some additional
definitions. A single-use game is a game where Bob wins while going through his
initial hand. Depending on how the players collect cards to the bottom of their
hands, our results do or do not depend on whether the game is single-use. We define
a passthrough as a player going through the cards in their hand from a certain point
in the game. In a single-use game, the game ends on Bob’s first passthrough. The
number of passthroughs for Alice is an important parameter in our calculations. We
describe two ways that players may put cards they win back into their hands: WL-
putback, where the winning card is put before the losing card, and random putback,
where the order is chosen at random.

Section 3 introduces the game graph. The game graph has cards as vertices, and
cards are connected if they play against each other. We prove that the game graph of
a single-use game is a forest. We introduce the notion of blocks, which are irreducible
components of the game.

In Section 4 we introduce win-loss sequences that describe the results of every
round and prove that the number of win-loss sequences corresponding to a single-
use game is an entry in the Catalan triangle. We also prove a recursion for the
number of win-loss sequences corresponding to games where Alice undergoes at most
k passthroughs. We describe a bijection between win-loss sequences corresponding
to k passthroughs and binary trees of height k. We show how to build the game

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 303

graph given the win-loss sequence.

In Section 5 we find the probability that a randomly chosen initial state leads
to a game with (1) exactly R rounds or (2) at most k passthroughs for Alice. The
results hold for random putback even if the game is not single-use as long as neither
player loses at any point during the game. We also show that these probabilities are
the same for WL-putback when single-use is assumed.

In Section 6 we count the number of initial states of single-use games that neces-
sarily follow a given win-loss sequence using WL-putback and random putback. To
do so, we construct posets that encode the relationships between cards that must be
satisfied and count the number of initial states that satisfy the relationships.

2 Preliminaries and Definitions

We consider two paradigms for how players put the cards they win in a round back
to the bottom of their hand, which we call the putback. Players may put the cards
back randomly, with Alice’s card and Bob’s card in either order, or deterministically.
There are a few plausible ways of deterministically putting cards back, but we only
consider WL-putback, where the winning card is put back first and the losing card is
put back second.

We represent a state of the game by a string of the form a1 . . . ai|ai+1 . . . an, where
a1 . . . ai represents Alice’s hand from top to bottom, ai+1 . . . an represents Bob’s hand
from top to bottom, and the vertical bar character | denotes the separation between
the two players’ hands. The values of these cards range from 1 to n, as stated earlier.
An example of this notation is given in Figure 1.

2

2

1

1

4

4

Alice’s hand

6

6

5

5

3

3

Bob’s hand

3

3

4

4

2

2

1

1

Alice’s hand

6

6

5

5

Bob’s hand

Figure 1: The first state is 412|356. After the round where Alice’s card 4 beats
Bob’s card 3, and after Alice uses WL-putback, the state becomes 1243|56.

Example 1. Consider the game with initial state 2|13 under random putback. Alice
wins the first round because her card 2 is greater than Bob’s 1. She randomly puts
the cards back into her hand, so the new state is either 12|3 or 21|3. In both these
cases, Bob wins the second round because he has the highest card of 3, and then
the possible states are 2|13, 2|31, 1|23, 1|32. The first of these four cases is the initial
state that we analyzed previously. In the latter three of the four cases, Bob wins the
next round and, therefore, the game.

The player with the highest card can never lose in a single-suit game of War.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 304

However, a loop is possible, as the game can alternate indefinitely between the states
12|3 and 2|13.

It is then immediate that there are (n+1)! states of the game: each permutation
of the bar and the numbers 1 through n represents a unique state of the game. This
number includes states where the bar is at the beginning, corresponding to Bob
winning, and states where the bar is at the end, corresponding to Alice winning.

We define an m-card state as a state where Alice has m cards. We refer to 1-card
states as unicard states. Note that for any n, there are n! m-card states for each
0 ≤ m ≤ n.

The concept of a passthrough is vital to our discussion throughout the paper.
Given a state where a player has m cards, we say that their hand undergoes a
passthrough after m rounds, and that these m rounds occur during the passthrough.
The concept of a passthrough encodes when a player’s hand has been “used up”. We
normally refer to passthroughs from the initial game state.

A single-use game is a game in which Bob wins during his first passthrough. A
game that ends within k passthroughs for Alice is a k-passthrough game. A game
that ends in exactly R rounds is an R-round game. Note the difference between
ending within k passthroughs and ending in exactly R rounds.

For simplicity, we sometimes implicitly refer to the game played from some initial
state as simply that state. For example, when we say a state is R-round, we mean
the game initialized from that state is R-round.

We will need some standard definitions in combinatorics. To recall, a full binary
tree is a tree in which every vertex other than the leaves has two children.

The entry C(n, k) of the Catalan triangle is defined as the number of strings of n
U ’s and k D’s such that each initial substring has at least as many U ’s as D’s [11].
It is known that

C(n, k) =

(

n+ k

k

)

−

(

n+ k

k − 1

)

=
n+ 1− k

n+ 1

(

n+ k

k

)

.

We use Cr to denote the rth Catalan number 1
r+1

(

2r
r

)

. The Catalan numbers corre-
spond to the diagonal of the Catalan triangle: Cr = C(r, r).

3 Game Graphs and Blocks

We construct a game graph as follows. We begin with vertices for each of the n cards.
As we watch the game progress, we add edges between cards that play each other.
Game graphs can have multiple edges between two cards if they are played against
each other multiple times.

Proposition 3.1. The game graph of a single-use game is a forest with m nontrivial
trees and x isolated vertices, where m is the number of Alice’s initial cards and x is
the number of Bob’s cards that never get played.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 305

Proof. We initialize the game graph with all cards as nodes, and then we add edges
corresponding to rounds. We color nodes for each of Alice’s m cards as amber and
Bob’s as blue. For every round, we add an edge between the two cards that are
played and make both cards amber. Because the game is single-use, Bob only ever
plays cards from his initial hand, so Bob only ever plays blue cards. And since Alice’s
initial cards are amber and any cards she wins from Bob are recolored to amber, Alice
only ever plays amber cards.

Therefore, amber connected components grow only by the addition of blue vertices
which are subsequently recolored amber, so the amber connected components stay
disconnected from each other and grow as trees. Moreover, each of Alice’s initial
cards plays at least once, so they are all in nontrivial trees. Cards that never get
played for Bob remain as isolated blue vertices.

We note that the diameter of the game graph when Alice has gone through k
passthroughs and Bob is still in his first passthrough is at most 2k − 1. This is
immediate by induction. After the 1st passthrough, the maximal distance between
two connected cards is 1. Each card in Alice’s hand at the end of the kth passthrough
plays one card in the (k + 1)st passthrough. So if some pair of cards with maximal
distance after the kth passthrough are in fact both still in Alice’s hand after the
kth passthrough, then the cards they play against in the (k+1)st passthrough have
distance 2 more than the the maximal distance after k passthroughs, so the maximal
distance after the (k + 1)st passthrough increases by 2.

For a single-use game, the game graph decomposes into connected components.
Treating cards outside a particular component as invisible, the component behaves
as its own independent subgame of War. We call these subgames blocks. The com-
ponents that are not isolated vertices contain exactly one card from Alice’s initial
deck. This is why the unicard states play an important role: they are the building
blocks of single-use games.

There are two ways we can turn our game graph into a digraph. We can give
direction to edges from the card that won the round to the card that lost the round,
or we can give direction to edges from the card Alice played in the round to the card
Bob played in the round.

The first method turns the game graph into a poset, where greater cards point
towards lesser cards. We call such posets winner-to-loser game digraphs. These
posets will be explored in greater depth in Section 6.

We call the digraph resulting from the second method an Alice-to-Bob game
digraph. In an Alice-to-Bob game digraph for a single-use game, the m directed trees
have unique roots. These unique roots are Alice’s m initial cards, because the trees
were built starting from her initial cards and adding edges pointing to cards Bob
played.

Consider what the game graph would have been if we started tracking rounds
from some later point in the game. If we built the game graph starting from round
i instead of round 1, the effect would be to delete the edges corresponding to rounds
1 to i− 1. In the Alice-to-Bob digraph starting from round i, connected components

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 306

are trees whose roots are the cards Alice had at that point in the game. We refer
to subgames involving cards and rounds in each of these trees as subblocks of the
original game. We say a subblock is induced by the card Alice plays in the first round
of the subblock, which is the root of the tree. A card induces a subblock each time
it plays, so we always specify the round from which the subblock we want to discuss
is begun.

We note that a block, and all the rounds and cards in it, only becomes well-
defined for a deterministic putback game after an initial state is selected and only
becomes well-defined for a random putback game after the game is played in its
entirety. Nevertheless, we will utilize the notion of the block that a card will go on
to induce to make claims regarding the probabilities that certain events take place.

Note that although a unicard game consists of only one block, it immediately
separates into two subblocks after a first round win for Alice. For example, from the
state a|bcd . . . , if Alice wins the first round and uses WL-putback, the state becomes
ab|cd . . . , and from this point on a and b induce subblocks.

4 Win-loss Sequences and Binary Trees

4.1 Win-loss sequences

A win-loss sequence is a string x1x2 . . . of W s and Ls describing the progress of the
game from the point of view of Alice. A W represents a round Alice wins, and an
L represents a round Alice loses. We use R to denote the total number of rounds,
wi and ℓi to denote the numbers of W s and Ls within the first i rounds, and we say
w = wR and ℓ = ℓR. As a reminder, we only consider games where Alice loses.

We can “stylize”a win-loss sequence with forward slashes to separate passthroughs
of Alice’s hand. For example, if Alice started with a single card, the win-loss sequence
WLL would be stylized as W/LL because the first round constitutes Alice’s first
passthrough.

The number of letters before the first slash is the number of Alice’s cards at the
start. This is the same as the number of rounds in the first passthrough. After that,
the number of letters between slashes is twice the number of W ’s in the previous
passthrough. As we only consider finite games, the rounds in the final passthrough
are all L’s. Since each W nets +1 cards for Alice and each L nets −1 cards for Alice,
the number of cards she has after i rounds is m+ wi − ℓi. She must have a positive
number of cards until the end of the game when she has none, so for 1 ≤ i < R we
have m+ wi − ℓi > 0 and m+ wR − ℓR = m+ w − ℓ = 0.

Note that wi+ ℓi = i, so w+ ℓ = R, and combining this with m+w− ℓ = 0 finds
that m and R have the same parity. We also trivially have R ≥ m.

We now enumerate the number of win-loss sequences that are exactly R rounds.

Theorem 4.1. The number of win-loss sequences corresponding to an m-card R-
round game is the entry C(m+R

2
− 1, R−m

2
) of the Catalan triangle.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 307

Proof. Every win-loss sequence ends with an L because Alice must go from having
one card to having no cards. Ignore this final L. Then the condition on the remaining
win-loss sequence is that no terminal segment of the string can have more W s than
Ls, because that would mean Alice had zero cards at some point before the end of the
game. This is equivalent to the condition on strings that Catalan triangle numbers
count, with the roles of terminal and initial segments reversed. Since we have ignored
the final L, the remaining number of L’s and W ’s is ℓ − 1 and w respectively, and
thus there are C(ℓ − 1, w) = C(m+R

2
− 1, R−m

2
) win-loss sequences corresponding to

an m-card R-round game.

Corollary 4.2. There are CR−1
2

win-loss sequences corresponding to unicard games

ending in R rounds.

Proof. Win-loss sequences corresponding to unicard games have ℓ − w = m = 1, so
substitution gives C(ℓ − 1, w) = C(w,w) = Cw. Unicard games have w = R−1

2
, so

Cw = CR−1
2
.

Here, we enumerate the number of win-loss sequences that end within k pass-
throughs of Alice’s hand.

Theorem 4.3. The number of win-loss sequences corresponding to an m-card k-
passthrough game is Am

k , where Ak is recursively defined by A1 = 1 and Ak+1 = 1+A2
k.

Proof. For enumerating win-loss sequences, Bob’s cards do not matter, so we can
assume he has enough so that the game is single-use for any k-passthrough game.
We show inductively that the number of k-passthrough win-loss sequences is Ak for
unicard blocks. Then, combining them blocks’ win-loss sequences gives Am

k combined
win-loss sequences. Combining the sequences occurs by concatenating each of the
sequences’ first passthroughs, then each of their second passthroughs, and so on.

There is only A1 = 1 unicard block 1-passthrough win-loss sequence, namely L
itself. Then, there are two cases for a (k+1)-passthrough win-loss sequence: either an
immediate L, or a W and a continuation to a subsequent passthrough. In the second
case, the win-loss sequences for the subblocks induced by the two cards yielded back
to Alice from the W must end within k passthroughs, so there are A2

k possibilities
here. Thus there are Ak+1 = 1 + A2

k k-passthrough win-loss sequences for unicard
blocks, as desired.

4.2 Win-loss binary trees

We describe a bijection between unicard games and full binary trees. Recall that
“full” means each node has either zero children, in which case it is a leaf, or two
children, in which case it is a non-leaf.

We note that the bijection to binary trees in the following theorem works for
any win-loss sequence, not just those corresponding to single-use games. However,
we do restrict ourselves to games that Alice loses because such games end with a

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 308

passthrough of Ls. Also, the concept of win-loss binary trees is easily extended to
m-card games and forests of m full binary trees. If the game is single-use, then each
of the trees corresponds to a block, but even if the game is not single-use, the concept
of win-loss binary trees still applies.

Theorem 4.4. Win-loss sequences corresponding to k-passthrough unicard games in
which Alice loses are in bijection with full binary trees of height k.

Proof. We describe a construction of the bijection by demonstrating the conversion
from win-loss sequences to binary trees and vice versa.

We begin with a root node for the tree at the top associated with the first letter
of the win-loss sequence. Each round corresponds to a node in the tree, which we
label with W and L for win or loss. Every L yields no cards back to Alice’s hand,
so we make L nodes terminal leaf nodes. Every W yields two cards back to Alice,
and these two cards are thereby associated with this particular W . We give every W
two children nodes, which we label W or L depending on whether the corresponding
card goes on to win or lose its next round. Importantly, the first card put back
corresponds to the left child node, and the second card put back corresponds to the
right child node. Once Alice undergoes a passthrough, the cards available for the
next passthrough are those won during the prior passthrough. Since we wrote in
the left-to-right direction and because the order of cards in Alice’s stack is preserved
after being put back, each passthrough in the win-loss sequence read left-to-right is
exactly a level of the tree read left-to-right.

To convert back from a binary tree to a win-loss sequence, we orient the tree with
the root at the top and then write W on all non-leaves and L on all leaves. Then
we read off the sequence left-to-right, top-to-bottom. Since the number of leaves
is always less than or equal to the number of non-leaves until the very end of the
tree, the associated win-loss sequence always has at least as many wins as losses
until the end, which means that Alice will have a positive number of cards until the
end. Therefore, the win-loss sequence is valid, and the bijection is established both
ways.

Since each round corresponds to a node in a win-loss binary tree, we interchange-
ably refer to rounds and nodes in the win-loss binary tree.

Example 2. The tree corresponding to the sequenceW/WW/LWWL/LLLL played
from initial state a|bcdefghijkl with WL-putback is in Figure 2. Because the game
is single-use, the cards Bob wins are regarded as discarded. In parentheses, we say
which card from Alice plays against which card from Bob. Passthrough is abbreviated
as PT.

Now, we note that for single-use games, each subtree encodes the win-loss se-
quence for a subblock. For example, take the subblock induced by card a in the
round a/c in the second passthrough. The subblock plays as a|cefij, which follows
the win-loss sequence W/LW/LL, as shown by the subtree starting from the round
a against c in the second level of the tree.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 309

W (a/b)

W (a/c) W (b/d)

L(a/e) W (c/f) W (b/g) L(d/h)

L(c/i) L(f/j) L(b/k) L(g/l)

Initial: a|bcdefghijkl

After PT1: ab|cdefghijkl

After PT2: acbd|efghijkl

After PT3: cfbg|ijkl

Figure 2: The tree for win-loss sequence W/WW/LWWL/LLLL. In the first
passthrough, Alice’s card a beats Bob’s card b, so we create a W for this round,
and Alice’s hand becomes ab. In the second passthrough, Alice’s a beats Bob’s
c and Alice’s b beats Bob’s d, so we create a W (a/c) and a W (b/d) as children
of W (a/b). Alice’s hand becomes acbd, of which a and d lose their next round
and c and b win their next round, so we create L(a/e) and W (c/f) as children
of W (a/c) and W (b/g) and L(d/h) as children of W (b/d). The two wins W (c/f)
and W (b/g) yield cfbg for Alice’s hand in the final passthrough, where all four
cards lose.

4.3 Building the game graph from the win-loss tree

We can create the game graph from a win-loss binary tree labeled with the two cards
played in each round: we create a vertex for each card and an edge for each round.
We want to show a formal algorithm to convert the win-loss binary tree into the
game graph, but we need some definitions first.

Recall an ancestor of a node x is a node on the path between the root and x,
inclusive. We say that the right parent of a node x is the parent of the closest
ancestor of x which happens to be a right child. Note, however, that a node whose
ancestors are all left children has no right parent.

Consider a game with WL-putback. At each node of a win-loss binary tree, write
the two cards that played in the corresponding round. We have the following lemma
that describes the card Bob plays against through the win-loss binary tree.

Lemma 4.5. Consider a single-use m-card game played with WL-putback. Consider
a round Q where card y plays for Bob against card x for Alice. If Q in a win-loss
binary tree has right parent node P , then x is the card Bob played in round P . If
Q does not have a right parent, then x is the card from Alice’s initial hand which
induced the block that Q is in.

Proof. After Alice wins a card x from Bob in round P , it is put back second and
hence plays in the right child round the next time it plays. Each time x wins a
subsequent round, it gets put back first due to WL-putback and hence plays in
the left child round for the next time it plays. Eventually, x plays y in round Q.
Working backwards to get from node Q to node P in the win-loss binary tree, we
have to find the nearest ancestor of Q which is a right child, corresponding to x being

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 310

put back second after being won from Bob, and then this nearest ancestor’s parent,
corresponding to the round P where Bob played x.

A special case occurs if Alice never won card x from Bob; i.e., when Alice began
the game with x. In this case, x is card a from Alice’s initial hand, and as long as
x continues winning, it gets put back first and next plays in the left child round. In
this case, each round x plays in has no right parent. Note that x induces the block
in which round Q occurs.

Now we show the steps to obtain the game graph for a single-use WL-putback
game from the forest of win-loss binary trees labeled with the two cards played in
each round.

1. Add a node for each of Alice’s initial cards above and to the left of the root of
the tree they induced, so that the true root node is effectively a right child of
this new node.

2. Change the labels to the card played by Bob.

3. Replace all edges with edges connecting each node to its right parent.

We show the steps in Figure 3 for the unicard game starting from initial state
a|bcdef and following the win-loss sequence W/LW/LL.

W (a/b)

L(a/c) W (b/d)

L(b/e) L(d/f)

(a) The WL-tree

W (/a)

W (a/b)

L(a/c) W (b/d)

L(b/e) L(d/f)

(b) Step 1

a

b

c d

e f

(c) Step 2

a

b

c d

e f

(d) Step 3

Figure 3: Getting the game graph from a win-loss binary tree with WL-putback

Theorem 4.6. The algorithm described above converts a forest of labeled win-loss
binary trees into the game graph.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 311

Proof. All second cards in the labeling of a win-loss tree, i.e., cards Bob plays in the
game, are distinct due to the game being single-use. This is why step two gives us
nodes with all possible cards in the game graph. Edges created in Step 3 describe
pairs of cards that play against each other due to Lemma 4.5.

We now motivate Step 1 of the algorithm using a unicard game as an example.
Why does this trick of putting a above and to the left of b work? Let us say Bob
somehow started with all the cards in the state |abcd Suppose Alice has a “null”
card that beats a and wins it over from Bob. Due to WL-putback, she puts a second,
which means it will next play in the round corresponding to the right child of this null
versus a round. From here on, the game operates normally from the state a|bcd
So we can treat the true root of the win-loss binary tree as the right child of a null
round.

5 Counting R-round and k-passthrough Games

For a randomly initialized m-card game played with

(a) random putback, or

(b) WL-putback,

we can ask the probability the game ends up being

1. R-round, or

2. k-passthrough.

We will show that the probabilities are the same whether Alice and Bob each
play with WL-putback or random putback for each of the questions of R-round or
k-passthrough. If both players use random putback, the necessary condition is only
that Bob never loses at any point during the game, whereas either player using WL-
putback breaks a certain symmetry which requires the necessary condition that the
game is single-use. The game being single-use means that whichever putback Bob
chooses does not matter because the cards he puts back would only get played again
in a second passthrough.

For this section, we need the following key lemma. We consider m-card states,
where we assume that the total number of cards is n and 0 < m < n. Recall that
the number of m-card states is n!, and likewise for (m − 1)-card and (m + 1)-card
states.

Lemma 5.1. Consider the uniform probability distribution over the m-card states.
After one round is played from each of these states, half have Alice winning the first
round and half have Bob winning the first round. Taking the half of cases where
Alice wins, the probability distribution of the resulting states after Alice uses random
putback is the uniform distribution over all (m+1)-card states. Similarly, taking the
half of cases where Bob wins, the probability distribution of the resulting states after
Bob uses random putback is the uniform distribution over all (m− 1)-card states.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 312

Proof. Each (m+1)-card state is preceded by exactly one m-card state, which is the
state obtained by reversing the process of a round that Alice won. This is done by
removing the bottom two cards from Alice and putting the larger at the top of her
hand and the smaller at the top of Bob’s hand. Therefore, each (m+1)-card state is
attainable from the n!/2 m-card states with a uniform probability distribution over
the states. Likewise, we get the result for (m− 1)-card states.

5.1 Counting R-round single-use states

Lemma 5.1 allows us to prove the following theorem.

Theorem 5.2. The probability that a random putback game with randomly chosen
initial state follows any particular win-loss sequence so long as neither player loses
during the sequence, and even if the win-loss sequence does not end at the end of the
game, is 1

2R
where the win-loss sequence consists of R rounds.

Proof. By Lemma 5.1, we have that the probability distribution of the state after
any number of rounds is the uniform distribution over states with the appropriate
number of cards. Due to uniformity, the probability the card at the top of Alice’s
hand is greater than the card at the top of Bob’s hand is 1

2
at every point in the

game. Thus, the chance Alice wins each round is 1
2
independent of what happened

prior, so long as both players have a nonzero number of cards. So the probability of
following a win-loss sequence consisting of R rounds is 1

2R
.

Now, Theorem 5.2 allows us to prove the following corollary, where the condition
on the number of cards n is just so that Bob does not lose during any R-round game.
By our definition of an R-round game, Alice loses at the Rth round. Assuming she
starts with m cards, then at most the first R−m

2
rounds can be W s if Alice is to lose

after the Rth round. So Bob’s initial hand size n−m must be at least R−m
2

+1 if he
is to survive until the Rth round, i.e., n ≥ R+m

2
+ 1.

Corollary 5.3. The probability a random putback game with randomly chosen m-
card initial state is R-round, where n ≥ R+m

2
+ 1, is

C
(

R+m
2

− 1, R−m
2

)

2R
.

Proof. The condition that n ≥ R+m
2

+ 1 guarantees that Bob survives until the
Rth round for every R-round win-loss sequence that results in Alice losing. By
Theorem 4.1, there are C

(

R+m
2

− 1, R−m
2

)

such R-round win-loss sequences, and by
Theorem 5.2, each has a 1

2R
probability of occurring, so the desired result holds.

If Alice uses WL-putback, we do not have the same randomness after each round:
states where she puts the lesser card before the greater card do not occur. For
example, after Alice wins the first round of 3|124, WL-putback makes the next state
necessarily 31|24 instead of 31|24 or 13|24 with equal probability. In particular, in a

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 313

non-single-use game without random putback, complications arise in terms of actual
card values when computing the probabilities that a randomly initialized game is R-
round or k-passthrough. However, under the assumption that the game is single-use,
we still have the same probability of a game with a randomly chosen m-card initial
state being R-round.

First, we prove two lemmas. Note that for a unicard game, the system of equa-
tions on the number of wins and losses is ℓ + w = R and ℓ − w = 1. In particular,
for the following lemma, we use R = 2w + 1.

Lemma 5.4. The probability that a randomly chosen single-use unicard state
a1|a2a3 . . . an played with WL-putback is R-round, where n − 1 ≥ R so that the
game is single-use, is

CR−1
2

2R
.

Proof. We use strong induction on w.

The base case w = 0 gives Cw

22w+1 = 1
2
, which is indeed the probability that the

game ends in exactly 2 · 0 + 1 = 1 round: this happens when a2 beats a1 in the first
round itself.

For the inductive hypothesis, assume that the probability a randomly chosen
single-use game lasts 2x+ 1 rounds is Cx

22x+1 for every x from 0 to r. In order for the
game to last exactly 2(w + 1) + 1 = (2w + 3) rounds, Alice must first win the first
round. So we must have a1 > a2, and then the state becomes a1a2|a3 . . . an after
putting the cards back in the WL order. The 1

2
chance that a1 > a2 is used again

later.

Temporarily assume that Alice had done random putback for this round before
proceeding with WL-putback for the remainder of the game. Then the state is
described as b1b2|a3 . . . an, where b1 and b2 are a1 and a2 in some order. One round
has taken place, so for the remainder of the game to last exactly 2w+2 total rounds,
the subblocks induced by the next rounds of b1 and b2 must end in 2x+1 and 2y+1
rounds exactly, where x and y are numbers such that (2x + 1) + (2y + 1) = 2w + 2
rounds.

The state a1a2|a3 . . . an does not follow the uniform distribution over all 2-card
states, because we know a1 > a2, but the state b1b2|a3 . . . an does follow the uniform
distribution over all 2-card states, because we can have either b1 > b2 or b1 < b2.
Since the game is single-use, Theorem 3.1 implies that the subblocks induced by b1
and b2 are totally independent. The uniformity of the state b1b2|a3 . . . an, together
with the inductive hypothesis, guarantees that the probabilities for the subblocks
induced by b1 and b2 to end in 2x + 1 and 2y + 1 rounds are independently Cx

22x+1

and Cy

22y+1 , so the combined probability that the subblocks end in 2x + 1 and 2y + 1
rounds is

Cx

22x+1

Cy

22y+1
=

CxCy

22w+2
.

Let Ax denote the probability that a1’s subblock ends in 2x + 1 rounds and a2’s
subblock ends in 2w+2−(2x+1) = 2(w−x)+1 rounds from the state a1a2|a3 . . . an.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 314

Then Ax+Aw−x

2
is the average of two cases of

1. a1’s subblock ending in 2x+1 rounds and a2’s subblock ending in 2(w−x)+1
rounds, and

2. a1’s subblock ending in 2(w−x)+1 rounds and a2’s subblock ending in 2x+1
rounds.

Importantly, this averaging of cases is exactly what we have done with using b1 and
b2 as a1 and a2 in either order. Therefore, we have

Ax + Aw−x

2
=

CxCw−x

22r+2
.

The total probability of the game ending in 2w + 3 rounds is then

1

2

x=w
∑

x=0

Ax,

where the first 1
2
comes from the probability that a1 beat a2 initially. We have

1

2

x=w
∑

x=0

Ax =
1

2

(

A0 + Aw

2
+

A1 + Aw−1

2
+ · · ·+

Aw + A0

2

)

=
1

2

x=w
∑

x=0

CxCw−x

22w+2
.

Finishing with the Catalan recursive formula, we get

1

2

x=w
∑

x=0

CxCw−x

22w+2
=

1

22w+3
Cw+1 =

1

2R+1
Cw+1,

and the induction is complete.

To generalize to m-card initial states, we need the following lemma about the
properties of the Catalan triangle.

Lemma 5.5. We have

C(m+ k − 1, k) =
∑

x1+x2+···+xm=k
x1,...,xm≥0

i=m
∏

i=1

Cxi
.

Proof. By definition C(p, q) is the number of paths from (0, 0) to (p, q) consisting of
up (U) and right (R) moves that never go above the line x− y = 0.

We describe a bijection between

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 315

• Type A: paths from (0, 0) to (m+ k, k) consisting of m+ k copies of R and k
copies of U that never go above the line x− y = 1 except before the first move
to the right.

• Type B: sequences of m subpaths that go from (0, 0) to (xi + 1, xi) consisting
of xi copies of U and xi + 1 copies of R that never go above the line x− y = 1
except before the first move to the right, such that x1 + · · · + xm = k and
x1, . . . , xm ≥ 0.

Let A and B denote the numbers of Type A paths and Type B sequences.

Type A paths are equivalent to paths from (0, 0) to (m + k − 1, k) but shifted
one unit to the right and with an extra R attached to the beginning. Therefore, we
have

A = C(m+ k − 1, k).

The regular Catalan numbers Ck count paths from (0, 0) to (k, k) that never go
above x − y = 0, and Type B are exactly sequences of such paths, again with an
extra R attached at the beginning of each path. Therefore, B is the sum over all
possible values of x1, . . . , xm of the product of the amounts of possibilities for the
first through mth path. Then

B =
∑

x1+x2+···+xm=k
x1,...,xm≥0

i=m
∏

i=1

Cxi
.

Once we establish the desired bijection, we will have shown A = B, as desired.

First, we describe how to convert from a Type A path to a Type B sequence.
The path must touch the lines x − y = i a last time for every i from 1 to m − 1,
because the path goes from an initial point (0, 0) for which x − y = 0 − 0 = 0 to
a final point (m + k, k) for which x − y = m + k − k = m. Say that these points
are (x1, y1), . . . , (xm−1, ym−1). Splitting the path at each of these points, we get a
sequence of m subpaths. Since (xi, yi) is on the line x − y = i, the point can be
expressed as (yi + i, yi). So the subpath from (yi + i, yi) to (yi+1 + i + 1, yi+1) has
(yi+1 − yi) copies of U and (yi+1 − yi + 1) copies of R. Moreover, the subpath does
not go above the line x− y = i+ 1 except before the first R of the subpath, so each
of the subpaths along this sequence of m subpaths fits the description of Type B.

Now, we describe how to convert from a Type B sequence to a Type A path. We
simply concatenate the m subpaths into a full path. Each subpath contributes xi

copies of U and xi + 1 copies of R, so in total there are x1 + · · · + xm = k copies of
U and (x1 + 1) + · · · + (xm + 1) = k +m copies of R. This is exactly how many U
and R moves are necessary for a Type A path from (0, 0) to (m+k, k). Further, this
concatenated path cannot go above the line x − y = 1 except at the starting point
because each of the m subpaths increases the value of x−y by 1 from an initial value
of 0− 0 = 0, and the first subpath only has x− y value of 0 before the very first R.

Thus the bijection is established both ways, and A = B as desired.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 316

We can now combine Lemma 5.4 and Lemma 5.5 into Theorem 5.6.

Theorem 5.6. The probability that an m-card game played with WL-putback is R-
round, assuming n ≥ m+R so that the game is single-use, is

1

2R
C

(

R +m

2
− 1,

R−m

2

)

.

Proof. In this proof, we use wi, ℓi, and Ri for the numbers of wins, losses, and rounds
in the ith block, instead of the numbers of such quantities within the first i rounds.
We have Ri = ℓi + wi, and since blocks are unicard, we have ℓi = wi + 1. Adding
the wins and losses of all blocks, we have w = w1 + · · ·+ wm, ℓ = ℓ1 + · · ·+ ℓm, and
R = R1 + · · ·+Rm.

By Lemma 5.4, there is a
Cwi

2Ri
probability that a particular block consists of

exactly wi wins. Blocks are independent, so the probability of the m blocks having
w1, w2, . . . , wm wins is

i=m
∏

i=1

Cwi

2Ri
=

1

2R1+···+Rm

i=m
∏

i=1

Cwi
=

1

2R

i=m
∏

i=1

Cwi
.

This must be added over all possible assignments of numbers of wins to the blocks,
so we have a total probability of

∑

w1+···+wm=w

(

1

2R

i=m
∏

i=1

Cwi

)

=
1

2R

∑

w1+···+wm=w

i=m
∏

i=1

Cwi
.

Applying Lemma 5.5, this simplifies as

1

2R

∑

w1+···+wm=w

i=m
∏

i=1

Cwi
=

1

2R
C(m+ w − 1, w).

We have ℓ− w = m and ℓ+ w = R, so we have w = R−m
2

. Thus,

1

2R
C(m+ w − 1, w) =

1

2R
C

(

R +m

2
− 1,

R−m

2

)

,

as claimed.

5.2 Counting k-passthrough single-use games

Previously, our main parameter was the number of rounds. Now, we look at the
number of passthroughs.

As in Section 5.1, the formula in the main theorem here, Theorem 5.7, holds for
random putback so long as Bob never loses at any point in any k-passthrough win-
loss sequence, whereas for WL-putback the game must be single-use for the formula
to hold.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 317

Here we get the conditions for the number of cards n necessary for the random
putback and for the WL-putback cases, assuming that Alice begins with m cards.
A k-passthrough win-loss sequence can contain at most m · 2i−1 W ’s in the ith
passthrough, and at most the first k − 1 passthroughs can consist of W ’s, so for the
random putback result, Bob must start with at least 1+(m+m ·2+ · · ·+m ·2k−2) =
1+m · (2k−1 − 1) = 2k−1m−m+1 cards, so n ≥ 2k−1m+1. A k-passthrough game
can last at most m +m · 2 + · · · +m · 2k−1 = m(2k − 1) rounds, so for the game to
be single-use, Bob must have at least m(2k − 1) cards, so n ≥ 2km.

Theorem 5.7. The probability that a game initialized with m-card initial state is k-
passthrough single-use is Pm

k , where Pk is recursively defined by P1 =
1
2
and Pk+1 =

1
2
+ 1

2
P 2
k , both for when

(a) the game is played with random putback as long as n ≥ 2k−1m+ 1 so that Bob
never loses, and

(b) when the game is played with WL-putback as long as n ≥ 2km so that the game
is single-use.

Proof. (a) We show that for a random putback game with the necessary condition,
the probability that an m-card initial state leads to a k-passthrough game is
Pm
k . This immediately yields the desired recursion on Pk: the probability that

a unicard initial state is k-passthrough is the sum of (1) the 1
2
probability

that Alice immediately loses and (2) the 1
2
P 2
k probability that Alice wins the

first round and the resulting state, which is uniform over all 2-card states, is
subsequently k-passthrough.

Let Sm,k denote the set of win-loss sequences corresponding to k-passthrough
games with m-card initial state, and let Pm,k be the probability that an m-card
initial state ends up being k-passthrough, i.e., the probability that a sequence
from Sm,k is followed. Each sequence in Sm,k corresponds exactly to an element
of S1,k×· · ·×S1,k, where the association is made by turning the sequence from
Sm,k into a list of m binary trees of height at most k and turning each tree
into a sequence in S1,k. Also, by Theorem 5.2, every sequence s ∈ Sm,k has
probability 1

2length(S) of occurring, so we have

Pm,k =
∑

s∈Sm,k

1

2length(s)

=
∑

s1,...,sm∈S1,k

1

2length(s1)+···+length(sm)

=
m
∏

i=1

∑

si∈S1,k

1

2si
= Pm

k ,

as desired.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 318

(b) Again, we first prove that if the probability is Pk that a unicard initial state
ends up being k-passthrough, then the probability an m-card initial state ends
up being k-passthrough is Pm

k . By single-useness, them blocks induced by each
of Alice’s original cards stay independent, and by the uniformity of the original
state, each block has a probability Pk of ending up being k-passthrough, so the
total probability is just Pm

k .

Proving the recursive formula takes an extra step. We begin with the inductive
hypothesis that the probability a WL-putback game is k-passthrough is Pk.
Consider a unicard initial state a1|a2a3 If a1 < a2 then the state is (k+1)-
passthrough. Otherwise, Alice wins the first round, and suppose that for this
one round she uses random putback instead of WL-putback, so that the state
is b1b2|a3 . . . where b1 and b2 are a1 and a2 in some order. From here, the
probability that the rest of the game is k-passthrough is P 2

k . By the symmetry
obtained from the uniformity of the initial state, this probability applies for
both possible ways Alice could have put back her cards, and in particular the
WL-putback case. Therefore, in the a1 > a2 case, we have a probability P 2

k

that the initial game is k+1 passthrough. Combining the a2 > a1 and a1 > a2
cases as before, we obtain the same recursion, as claimed.

The first few values in the sequence Pk are P2 =
5
8
and P3 =

89
128

.

Example 3. We show the possible permutations for a 2-passthrough unicard game
played with WL-putback. Such an initial state has form a|bcd. Alice may lose in the
first passthrough, in which case the only constraint is a < b. Otherwise, if Alice wins
the first round, then Bob must win from the state ab|cd. In this case, the constraints
are a > b, c > a, and d > b. Out of the 24 initial unicard states on 4 cards, 12 satisfy
a < b, and additionally 2|143, 2|134, and 3|142 satisfy a > b, c > a, and d > b.
Thus, there is a 15

24
= 5

8
chance that a game played with WL-putback initialized with

random unicard state a|bcd results in Bob winning within two passthroughs of Alice’s
hand.

Example 4. Now, we compute the probability that a game randomly initialized
from a state of the form a|bc and played with random putback is 2-passthrough. The
three initial states where a < b result in Alice losing immediately on the first round
with probability 1. The two initial states where Alice starts with her card a being 3
mean she never loses, so the game is never 2-passthrough. The last initial state to
consider is 2|13, which leads to 12|3 or 21|3 with equal probability. The 12|3 case only
ends up being 2-passthrough in the 1

2
chance that Bob puts his cards back as in 2|31.

Finally, from 21|3, Alice necessarily loses the next two rounds, which guarantees that
the game is 2-passthrough. So the combined probability is 3

6
+ 1

6
· (1

2
· 1
2
+ 1

2
) = 5

8
, as

claimed.

Corollary 5.8. The probability a unicard state is k-passthrough tends to 1 as k tends
to infinity.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 319

Proof. Multiplying both sides of the recurrence relation Pk+1 = 1
2
+ 1

2
P 2
k by 2 and

subtracting 2Pk from both sides yields 2Pk+1−2Pk = 1+P 2
k −2Pk, or 2(Pk+1−Pk) =

(1 − Pk)
2. The only steady-state of this recurrence is P = 1, and the sequence

starting at P1 =
1
2
is monotone increasing and bounded by 1. Therefore, the sequence

converges to the steady-state P∞ = 1.

This is a nontrivial result. It was plausible that the chance Alice does not lose
within Bob’s first passthrough would approach some positive value if high-value
initial cards for Alice “survived” long enough, but this is not the case.

6 Counting games that necessarily follow a win-loss sequence

In this section, we count the number of initial states which are guaranteed to follow
a certain win-loss sequence when the game is played with WL-putback and when
the game is played with random putback. We do so by constructing a poset on card
values which encodes the greater-than/less-than relationships between them.

Any tree inherits a natural poset structure, where the root is the largest element.
We call this poset a tree poset. A linear extension of a finite poset of n elements is an
assignment of the integers 1 through n such that poset relations are satisfied. The
number of linear extensions is the number of initial states that satisfy the constraints
of a poset on the cards, which is our aim in this section. An element of a poset is
said to cover a lesser element if there is no element between them.

For both the WL-putback and random putback cases, the poset contains a tree
structure, so we need the following lemma.

Lemma 6.1 (Ruskey [12]). The number of linear extensions of a tree poset with n
elements is

n!
∏n

i=1 h(vi)
,

where h(v) denotes the number of elements less than or equal to v.

Note that this lemma is similar to the hook-length formula. A quick understand-
ing of this formula arises from the fact that for each v, the probability it is the
greatest in the subtree where v is the root is 1

h(v)
. Multiplying these probabilities for

every vertex, we get the expression in the lemma.

Also, we only consider single-use games for both WL-putback and random put-
back in this section. Otherwise, cards could play against each other in more than
one round. This would result in situations where both cards must be greater than
the other, interfering with our goal of constructing a poset and counting the initial
states which satisfy its relations.

6.1 Poset for WL-putback

We can take any game graph and make it a directed graph where each edge points
from the card that won to the card that lost a round. In fact, since this is a directed

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 320

acyclic graph, it constitutes a poset on the cards. Posets can be graphically repre-
sented by Hasse diagrams, where greater elements are drawn above lesser elements.
The conversion from a win-loss binary tree or forest to the game graph as described
in Section 4 naturally yields the poset by placing leaves above their right parents
and non-leaves below their right parent.

Example 5. Consider the game with WL-putback and the win-loss sequence
W/LW/LL with initial state a|bcdef . The game progresses as

a|bcdef

=⇒ ab|cdef

=⇒ b|defca

=⇒ bd|efca

=⇒ d|fcaeb

=⇒ |caebfd.

The directed game graph, i.e., the poset, is shown in Figure 4.

a

b

c

d

e

f

Figure 4: Game poset for WL-putback on W/LW/LL

Example 6. Considering the win-loss sequence W/WW/LWWW/LLLLLL with
the initial state a|bcdefghijklmn, we build the winner-to-loser game digraph. The
result is shown in Figure 5.

a

bc

d

e

f g

h

i

j

k

l m

n

Figure 5: Game poset for WL-putback on W/WW/LWWW/LLLLLL

In this Hasse diagram, we have drawn thin dashed edges to connect a card from
Bob that beats a card from Alice. Taken alone, the solid edges and the cards they

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 321

connect form a tree poset structure rooted at a. Nodes of this tree poset are the
cards that have been in Alice’s hand at any point in the game. In the Hasse diagram,
each such node has one node above it corresponding to the card from Bob’s hand
that beat it. These cards from Bob’s hand sit outside the tree.

For non-unicard games, the game digraph consists of m connected components,
and for each connected component, the non-leaves form a tree poset.

We use the variable k with n = 2k, so that there are k rounds of L and k − 1
rounds of W . Note that each card that ever appears in Alice’s hand loses exactly
once.

We now finish with a theorem to count linear extensions of the poset, which
enumerates initial states that satisfy the win-loss sequence.

Theorem 6.2. The number of 2k-round single-use WL-putback unicard states
a1|a2 . . . a2k that satisfy a particular win-loss sequence is

(2k)!

2k
∏k

i=1 h(vi)
,

where vi’s are vertices in the tree component of the associated poset and h(vi) is the
number of vertices less than or equal to vi in the tree component of the poset.

Proof. There are (2k)!
k!·2k

partitionings of 2k cards into k pairs, where the lesser element
is in the tree component and the greater element sticks outside the tree. As described
earlier, the number of linear extensions of just the tree component of the poset is

k!
∏k

i=1 h(vi)
.

Multiplying these terms, we get

(2k)!

k! · 2k
·

k!
∏k

i=1 h(vi)
=

(2k)!

2k
∏k

i=1 h(vi)
,

as claimed.

We illustrate the theorem with an example.

a

b

c

d

Figure 6: Game poset for WL-putback on W/LL

Example 7. Consider the game with initial state a|bcd with win-loss sequence
W/LL, played with WL-putback. We have four cards, so k = 2. The game poset is

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 322

shown in Figure 6. Within the tree component of the poset, consisting of a and b,
we have h(a) = 2 and h(b) = 1. Plugging these values into formula in Theorem 6.2,
we have

4!

22 · 2 · 1
=

24

8
= 3.

These three initial states are 2|134, 2|143, and 3|142.

We can now also enumerate m-card single-use games with a given win-loss se-
quence. Following the win-loss sequence breaks the game up into m unicard blocks.
We apply Theorem 6.2 to each of them blocks and multiply the possibilities together.

6.2 Poset for random putback

We want to count unicard single-use states of the form a1|a2 . . . an that necessarily
follow a certain win-loss sequence under random putback. We first describe how
to construct the poset associated with the win-loss sequence and then show how to
count its linear extensions. We restrict ourselves to consider single-use games, so
that when dealing with an m-card rather than unicard state, the claimed method
of constructing the poset applies to each unicard block, after which we can simply
multiply the possibilities for each block.

It is important to note the word “necessarily” in a state necessarily following
a win-loss sequence. A given initial state can follow multiple possible win-loss se-
quences given different possibilities in random putback. For example, consider the
initial state 3|14256. Alice wins the first round, and the state becomes either 31|4256
or 13|4256. In the first case, Alice loses the next two rounds, so the win-loss sequence
is W/LL. In the second case, Alice loses and then wins, so that she has the cards 3
and 2 in some order. Both of these cards are less than both of 5 and 6, so Alice loses
the next two rounds. This case follows the win-loss sequence W/LW/LL. Therefore,
this initial state 3|14256 does not necessarily follow any win-loss sequence.

Example 8. Suppose an initial state a|bcd is to necessarily follow win-loss sequence
W/LL. Then, necessarily a > b to get to the state ab|cd or ba|cd, after which both a
and b are less than c and d to necessarily have two Ls. The only initial states that
satisfy these constraints are 2|143 and 2|134. The relationships are summarized in
the poset in Figure 7.

a

b

c d

Figure 7: Poset for random putback on W/LL

Now, we describe the general method of obtaining the poset from a unicard state
where Alice begins with card a.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 323

1. Initialize the poset with a node for card a.

2. At each node of a win-loss binary tree, write down which of Bob’s cards plays
against Alice in the round.

3. Prune all leaves of the win-loss binary tree and put each corresponding card
from the leaves as a node above a in the Hasse diagram.

4. Take the remainder of the tree, consisting of Bob’s cards involved in W rounds,
and place the entire structure under a in the Hasse diagram.

The algorithm is illustrated in Figure 8 using the example of the win-loss sequence
W/WW/LWWW/LLLLLL on the initial state a|bcd . . .mn. Card a initializes the
poset. Then, cards e, i, j, k, l, m, and n, which participated in L rounds, are placed
above a. The remainder of the binary tree, consisting of b, c, d, f , g, and h, is placed
under a.

W (b)

W (c)

L(e) W (f)

L(i) L(j)

W (d)

W (g)

L(k) L(l)

W (h)

L(m) L(n)

a

e i j k l m n

b

c d

f g h

Figure 8: Win-loss binary tree and poset with random putback for necessarily
following W/WW/LWWW/LLLLLL

Now, we explain why the algorithm for writing the Hasse diagram works. Take
a W round where Alice’s card x beats Bob’s card y. Each such y then appears
only in the subblock induced by that round. This subblock is exactly the subtree
rooted at that round in the win-loss binary tree. And y can appear anywhere in the
subblock until the end of the subblock due to random putback: if put back first, y
begins a subblock corresponding to the left child subtree of the x/y round, and if
put back second, y begins a subblock corresponding to the right child subtree of the
x/y round. Therefore, every one of Bob’s cards involved in a subsequent W in the
subblock induced by x/y must be less than y for that subsequent W to necessarily
occur. This continues recursively through all W ’s: each one of Bob’s cards involved
in a W must be less than each of Bob’s cards involved in a W higher up in the
tree. Moreover, card a must be greater than every card played by Bob in a W round,
because a can be anywhere in Alice’s hand at every point in the game. This is exactly
what we do when taking the structure of W ’s in the binary tree and placing it under
a in the Hasse diagram.

Again, card a can be anywhere in Alice’s stack at every point in the game.
Therefore, for L’s to occur necessarily, cards Bob plays in L rounds must be greater

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 324

than a. This is what we do when pruning L’s and putting the card Bob plays in
those rounds above a in the Hasse diagram.

We now enumerate states that are guaranteed to follow a particular win-loss
sequence under random putback by counting linear extensions of the poset.

Theorem 6.3. The number of single-use random putback games with initial unicard
state a1|a2 . . . a2k that necessarily satisfy a particular win-loss sequence is

(k!)2
∏k

i=1 h(vi)
,

where vi’s are vertices in the bottom tree component of the associated poset and h(vi)
is the number of vertices less than or equal to vi.

Proof. The Hasse diagram consists of two components: a tree below and including a,
that happens to be a not-necessarily-full binary tree, and a tree above and including
a, which has height 2. The top layer of the poset has as many elements as L’s in
the win-loss sequence, namely k, where n = 2k. These must be the values k + 1
through n, because they are greater than every other element of the poset, so there
are k! assignments of values to cards in the top layer. For the tree consisting of the
remaining k cards from card a and down, we use Lemma 6.1 for a factor of

k!
∏k

i=1 h(vi)

again. Combining these two factors, we get

k! ·
k!

∏k

i=1 h(vi)
=

(k!)2
∏k

i=1 h(vi)
,

as claimed.

7 Conclusion

We defined the notions we needed, like passthroughs, WL-putback, and random
putback. We introduced the basic objects of the game graph and the win-loss binary
tree. For random putback we showed the basic lemma that the state of the game
is always uniformly drawn over all states with the appropriate number of cards for
each player.

From these, we computed the answers to the questions of: the chance that a game
ends in R rounds, the chance that a game ends in k passthroughs, and the chance
that a game follows a specific win-loss sequence. The uniformity property of random
putback allowed us to use for the first two questions the weaker necessary condition
that Bob must never lose. Otherwise, the necessary condition throughout is that the
game is single-use to avoid the complicated interactions between cards as they come
back up through Bob’s hand.

Even though the game, as investigated in this paper, has no strategy, it still has
interesting combinatorial structures.

T. KHOVANOVA AND A. PATHAK/AUSTRALAS. J. COMBIN. 91 (2) (2025), 301–325 325

Acknowledgements

We would like to thank the MIT PRIMES-USA program for the opportunity to
conduct this research. We are grateful to the anonymous reviewers for their useful
and thoughtful comments.

References

[1] B. Alexeev and J. Tsimerman, Note on a War-like Card Game, Amer. Math.
Monthly. 119 (2012), 793–795.

[2] M. Ciucu, No-feedback card guessing for dovetail shuffles, Ann. Appl. Probab. 8
(1998), 1251–1269.

[3] D. Bayer and P. Diaconis, Trailing the dovetail shuffle to its lair, Ann. Appl.
Probab. 2 (1992), 294–313.

[4] P. Diaconis, R. Graham, X. He and S. Spiro, Card guessing with partial feed-
back, Combin. Probab. Computing 31 (2022), 1–20.

[5] P. Diaconis, R. Graham and S. Spiro, Guessing about guessing: Practical strate-
gies for card guessing with feedback, arXiv preprint arXiv:2012.04019 (2020).

[6] E. Lakshtanov and V. Roshchina, On finiteness in the card game of war, Amer.
Math. Monthly 119 (2012), 318–323.

[7] P. Liu, On card guessing game with one time riffle shuffle and complete feedback,
Discrete Appl. Math. 288 (2021), 270–278.

[8] P. Diaconis, Shuffling extra footage (3/3), filmed by B. Haran, YouTube (2015).

[9] E. Ben-Naim and P. Krapivsky, Parity and ruin in a stochastic game, Eur. Phys.
J. B 25 (2002), 239–243.

[10] J. Haqq-Misra, Predictability in the game of war, The Science Creative Quar-
terly (2006).

[11] S. Reuveni, Catalan’s trapezoids, Probab. Engrg. Inform. Sci. 28 (2014), 353–
361.

[12] F. Ruskey, Generating linear extensions of posets by transpositions, J. Combin.
Theory Ser. B 54 (1992), 77–101.

[13] M. Z. Spivey, Cycles in war, Integers 10 (2010), 747–764.

(Received 23 June 2023; revised 29 Nov 2024)

	Introduction
	Preliminaries and Definitions
	Game Graphs and Blocks
	Win-loss Sequences and Binary Trees
	Win-loss sequences
	Win-loss binary trees
	Building the game graph from the win-loss tree

	Counting R-round and k-passthrough Games
	Counting R-round single-use states
	Counting k-passthrough single-use games

	Counting games that necessarily follow a win-loss sequence
	Poset for WL-putback
	Poset for random putback

	Conclusion

