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Abstract

A gluing of two rooted trees, also known as a tanglegram, is an identifica-
tion of their leaves and un-subdivision of the resulting 2-valent vertices.
A gluing of two rooted trees is subdivergence-free if it has no 2-edge cuts
with both roots on the same side of the cut. The problem and language
is motivated by quantum field theory. We enumerate subdivergence-free
gluings for certain families of trees, showing a connection with connected
permutations, and we give algorithms to compute subdivergence-free glu-
ings.

1 Introduction

1.1 Set up

We are interested in a purely combinatorial question about rooted trees that arose
from a question in quantum field theory.

Let t1 and t2 be two rooted trees with the same number of leaves. Let n be the
number of leaves. There are n! ways to identify the leaves of t1 with the leaves of
t2. We view each such identification as a graph in almost the obvious way, but with
one important modification: the identified leaves are identified as graph vertices,
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(A) (B) (C)

Figure 1: A gluing of two rooted trees. (A) shows rooted trees t1 and t2. (B)
shows the leaves of t1 and t2 identified with each other. (C) shows the gluing: the
result of contracting an edge incident to each leaf pairing.

Figure 2: A gluing with a subdivergence from cutting the edges indicated with
dashed lines.

resulting in a 2-valent vertex for each identified pair of leaves, as in 1B, and then
one of the incident edges of each of these 2-valent vertices is contracted, resulting in
each identified pair of leaves along with their two incident edges becoming one edge
in the graph, as in 1C. The graph has two distinguished vertices corresponding to
the roots of t1 and t2. These n! graphs are the gluings of t1 and t2.

Another way to set up the definition of the gluings of t1 and t2 is to define the
rooted trees so that their leaves are unpaired half edges. Then the identification of
leaves of t1 with leaves of t2 simply pairs the corresponding half edges into edges,
directly building the graph described above.

Such gluings of trees have been studied in the context of phylogenetics and then
in combinatorics under the name of tanglegrams [2, 10, 16, 17, 18].

We say a gluing of t1 and t2 has a subdivergence if it has a 2-edge cut with the
property that t1 and t2 each contain one edge of the cut as a non-leaf edge and one
of the components of the cut does not contain a root vertex. In the tanglegram
literature, this notion is called irreducibility [3, 16]. For example, Figure 2 is an
example of a gluing with a subdivergence, while Figure 1C is a subdivergence-free
gluing.

We are interested in how many subdivergence-free gluings a pair of trees has.

Definition 1.1 Given a pair t1 and t2 of rooted trees with the same number of leaves
define

n(t1, t2)

to be the number of subdivergence-free gluings of t1 and t2.

How many subdivergence-free gluings a pair of trees might have is an interesting
question from the perspective of pure enumeration, linking to interesting integer se-
quences and objects such as connected permutations (see Section 2). We were not
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aware, during the development and writing of this project, of the previous appearance
of these objects as irreducible tanglegrams. However, the differing motivations lead
to different questions on the objects: from the phylogenetic perspective, planarity
and number of crossings in the non-planar case is of primary importance [3, 8, 18],
and enumeration questions have generally been studied by running over all trees,
while from the quantum field theory perspective, subdivergence-free is of primary
importance, and we are interested in enumeration with the input trees fixed. Con-
sequently, our results are broadly complementary to the existing literature, and also
lay out a very different application of these objects.

1.2 Physics motivation

In perturbative quantum field theory one is interested in calculating and under-
standing the probability amplitudes of particle interactions and other related phys-
ical quantities via series expansions. The most interesting series expansion for us
is the Feynman diagram expansion. In Feynman diagram expansions, amplitudes
and other quantities are expanded as a series of integrals, called Feynman integrals,
and each integral corresponds to a graph called the Feynman graph; see Figure 3.
The Feynman graph can be viewed as an illustration of one possible way the overall
interaction could have occurred: the edges correspond to particles and the vertices to
interactions between them; external edges correspond to the incoming and outgoing
particles of the process we are interested in, while the internal edges correspond to
unobservable virtual particles, and the sum is over all possibilities for these.

Figure 3: An example of a Feynman graph; in this case the directed edges represent
a fermion propagating, while the dashed edges represent mesons. There are two
external edges, one at the left and one at the right.

There are many complexities in this picture that we will not go into at all, but
one complexity that is important for the present purposes is that in the interesting
cases the Feynman integrals are divergent and so a process known as renormalization
was developed in order to correct this problem and give a way of obtaining finite,
physically correct calculations from these integrals. Small edge cuts in the graphs
(exactly what counts as small depends on the physical theory in question, but typi-
cally small is at most three or at most four) result in subgraphs which are themselves
divergent, and dealing with these subdivergences is an important part of renormal-
ization. Propagator subdivergences are subgraphs which do not contain any external
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edges but which can be disconnected from the full graph by cutting two edges.1 The
subdivergence structure of Feynman graphs gives a Hopf algebra of Feynman graphs,
and Feynman graphs with no subdivergences are known as primitive since they are
primitive in the Hopf algebraic sense; see [7].

A Cutkosky cut in a Feynman graph is a set of internal edges C of a Feynman
graph Γ so that removing these edges disconnects Γ into Γ1,Γ2, . . . ,Γk and such that
each edge of C has its two ends in different components Γi (that is, the cut is minimal
given the Γi). Additionally we want at least one external edge of the graph in each
Γi. Then Cutkosky’s theorem gives a formula for calculating the monodromy around
certain singularities of the Feynman integral in terms of the Γi and Γ/

∏
Γi. See [4]

for a mathematical take on the Cutkosky framework.

In [14], the third author along with Dirk Kreimer considered series of graphs
with Cutkosky cuts and recursive equations building these series. These equations
are similar in form to diagrammatic Dyson-Schwinger equations in quantum field
theory (see [19]) which are equations that describe how to build sums of Feynman
graphs recursively by inserting, or in parallel how to build the analagous sums of
Feynman integrals recursively by an integral equation. Sticking to the diagrammatic
side, we only need to insert into primitive graphs as the subdivergences come from the
insertions. If we want to better understand the monodromy, we need to incorporate
Cutkosky cuts into this framework, but the graphs we insert into remain primitive.
In [14], we work in the core Hopf algebra setting, so any bridgless subgraph is diver-
gent, but one could also work in a renormalization Hopf algebra where only small
edge cuts lead to divergences, which is what leads to the problem considered in this
paper.

Because of this, we are interested in better understanding primitive Feynman
graphs with Cutkosky cuts. The first case to consider is when the Cutkosky cut cuts
the graph into exactly two pieces, each with a single external edge. These cuts tell us
about normal thresholds in the Feynman integral. To further simplify, we may addi-
tionally restrict to the case where the Cutkosky cut cuts every cycle of the graph so
that the components after cutting are trees. These cuts correspond to almost-leading
singularities (see Remark 4.1 and Section 5.6 of [14]). If we reverse the problem then
we are considering gluing two trees along the Cutkosky cut. The original external
edges become the roots of the two trees, while the cut edges become the leaves. Our
original graph was primitive so the gluing should not have subdivergences. Because
the original graph had only two external edges, it is actually most interesting to only
forbid propagator subdivergences. Additionally, the vertices in our Feynman graphs
will have degree at least 3 and so any propagator subdivergence from gluing two
trees will cross the Cutkosky cut. This brings us back to the combinatorial problem
we began with—we wish to understand (propagator) subdivergence-free gluings of
trees.

1Bridge edges which upon removal give a component with exactly one external edge also give
propagator subdivergences, but by a Legendre transform (see [5, 12] for a combinatorial presenta-
tion), we may restrict to the bridgeless case and so only consider the kind of propagator subdiver-
gences defined above.
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1.3 Initial observations

We note a few preliminary observations that help us understand the problem of
counting subdivergence-free gluings of trees. First, consider the most basic family
of trees, fans, that is trees consisting of a root and a positive number of leaves
all of which are children of the root. If either tree t1 or t2 is a fan with j leaves,
n(t1, t2) = j! since the fan has no non-leaf edges and so no cuts of the required type
to give subdivergences can exist and so any identification of the leaves of t1 with the
leaves of t2 gives a subdivergence-free gluing.

If t1 and t2 are rooted trees, and e is an edge of t1, then n(t1/e, t2) ≥ n(t1, t2).
This is because every subdivergence-free gluing of t1/e and t2 gives a subdivergnce-
free gluing of t1 and t2 by identifying the leaves in the same way and cutting the
same edges, but the converse does not hold as the cut may use edge e.

However, whenever we have a 2-valent vertex in one of the trees, contracting an
edge will not change the number of subdivergence-free gluings, since cuts using both
edges incident to the 2-valent vertex are forbidden as they do not use an edge from
each tree, and if a cut using one of the edges incident to the 2-valent vertex defines a
subdivergence then it remains so after swapping which edge incident to the 2-valent
vertex is used.

Given a pair of trees, one could count the number of subdivergence-free gluings
by brute force; simply check each permutation for subdivergences. We will present
better algorithms in Section 4.

1.4 Outline

The paper will approach counting subdivergence-free gluings in two ways. The
first, described in Sections 2 and 3, explores closed-form expressions to count
subdivergence-free gluings of specific infinite families of tree pairings. We present
useful lemmas and definitions in Section 2, and derive closed-form expressions for
three different families of trees in Section 3. The second approach focuses on algo-
rithms to count subdivergence-free gluings between arbitrary pairs of trees, and is
covered in Section 4. We present two recursive algorithms, one based on dealing re-
cursively with the children of the root and the other based on the techniques used to
count the specific families in Section 3. Section 5 discusses potential future directions
and relate our results back to questions in quantum field theory.

2 Connected permutations and generalizations

In this section we present a number of definitions that will be useful for our counting
in Section 3. These definitions also make explicit the connection between subdiver-
gence-free gluings of trees and established classes of permutations.

Permutations of {1, . . . , n} that do not map any prefix of {1, . . . , n} to itself have
been a standard example used in enumeration since at least Comtet [6]. See [13]
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for a list of many such appearances. These permutations are known as connected
permutations, irreducible permutations, or indecomposable permutations and appear
as A003319 in [15]. Specifically, we can define them as follows.

Definition 2.1 A permutation σ of {1, . . . , n} is said to fix a prefix of size j if

σ({1, . . . , j}) = {1, . . . , j}

.

Definition 2.2 A connected permutation of size n is a permutation σ of {1, . . . , n}
such that for all j ∈ {1, . . . , n − 1}, σ does not fix a prefix of length j. We denote
the number of connected permutations of size n by cn.

The following expression for cn is well-known, but we give a proof as a warm-up
to the arguments of Section 4.2 as their structure is similar.

Lemma 2.3 cn = n!−
∑n−1

i=1 i!cn−i

Proof: From both the definition of cn and the expression above, we have that c1 = 1.

For n > 1, we take the n! permutations of {1, . . . , n}, and subtract the number of
permutations that fix prefixes. We count permutations that fix a prefix by summing
the number of permutations that fix a prefix of length i and no longer, for each value
of i from 1 through n − 1. We count permutations that fix prefixes of length i and
no longer by multiplying the i! ways to fix {1, . . . , i} by the cn−i ways to map the
rest of the elements so that overall no prefix longer than i is fixed. �

We will find it useful to extend the notion of connected permutation to a more
general definition.

Definition 2.4 Let S ⊆ {1, . . . , n − 1}. An S-connected permutation of size n is a
permutation σ of {1, . . . , n} such that for all j ∈ S, σ does not fix a prefix of length
j. Let cSn denote the number of S-connected permutations of size n.

Lemma 2.5 cSn = n!−
∑

i∈S i!c
{1,...,n−i−1}∩{s1−i,...,sk−i}
n−i , where S = {s1, . . . , sk}.

Proof: We count these by first taking all n! permutations and then subtracting
permutations that fix prefixes in S. We count the latter by summing, for each i ∈ S,
the number of permutations that fix a prefix of length i but do not fix a prefix in S
of length greater than i. For a fixed i ∈ S, the number of such permutations is given

by multiplying the i! ways to fix a prefix of length i by the c
{1,...,n−i−1}∩{s1−i,...,sk−i}
n−i

ways to map the rest of the elements so that no prefix in S of length greater than
i is fixed. Each permutation which is not S-connected is subtracted exactly once,
namely in the term indexed by the maximal i ∈ S for which the prefix of length i is
fixed. �

Note that when S = {1, . . . , n − 1}, cSn = cn, and for each i ∈ S, we have

c
{1,...,n−i−1}∩{s1−i,...,sk−i}
n−i = cn−i. Hence Lemma 2.3 is the special case of Lemma 2.5

with S = {1, . . . , n− 1}.
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(A) `1
(B) `2

(C) `4

Figure 4: Examples of trees `k in the line family.

3 Counting subdivergence-free gluings in special families

In this section, we count subdivergence-free gluings between trees in specific infinite
families. We examine three different families. For each family, we will be able to
use the definitions and results in Section 2 to derive closed-form expressions for the
number of subdivergence-free gluings. The first family illustrates this connection to
connected permutations explicitly. The second family introduces a root with multiple
children. In this case there are multiple subsets of edges that can be cut to generate
a subdivergence for a given gluing. The third family has an internal vertex with no
leaves attached. Here there are multiple subsets of edges along the same branch that
can generate a subdivergence for a given gluing.

A vertex of a rooted tree which is not a leaf is called an internal vertex and an
edge which is not incident to a leaf is called an internal edge.

3.1 Line Family

We first consider families of trees where each node in the tree has at most one non-
leaf child, or equivalently where the internal nodes form a path, beginning with the
following special case.

Definition 3.1 Let `k be the tree with k internal vertices where the internal vertices
form a path, the root is at one end, and there is one leaf attached to each internal
vertex. See Figure 4 for examples.

Theorem 3.2 The number of subdivergence-free gluings of `k with itself is
n(`k, `k) = ck.

Proof: Label the leaves of each `k from 1 to k by labelling the deepest leaf 1 and then
continuing up the tree, as in Figure 5. Then the subdivergence-free condition says
that the permutation giving the gluing cannot fix any prefix of the labels of length
1 through k − 1. �

Definition 3.3 Let S = {s1, . . . , sj} ⊆ {1, . . . , k − 1}, with s1 ≤ s2 ≤ . . . sj. Let
`k,S be the tree with j + 1 internal vertices, where the internal vertices form a path
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Figure 5: Labelling of `4. Any gluing that fixes a prefix of length 1,2 or 3 creates
a subdivergence.

(A) `8,{3,5,6}
(B) `4,{1,2,3}

Figure 6: More general examples of trees in the line family.

with the root at one end, and where the j − ith internal vertex from the root has
si+1 − si leaves, with the convention that s0 = 0 and sj+1 = k. See Figure 6 for
examples.

The tree `k,S can also be built by the following recursive process. Start with the
vertex with s1 leaves, and call this vertex 1. Recursively attach parent vertices with
enough leaves that vertex i has si leaves below it, up to vertex j. Finally, attach the
root vertex with enough leaves that the entire tree has k leaves.

Theorem 3.4 The number of subdivergence-free gluings of `k,S1 with `k,S2 is
n(`k,S1 , `k,S2) = cS1∩S2

k .

Proof: Say S1 = {s1, s2, . . . , sj} and S2 = {q1, q2, . . . , qi}. Label the leaves of t1 =
`k,S1 from 1 to k by labelling the fan of s1 leaves of the internal vertex farthest from
the root from 1 to s1, and then continuing along the tree so that the vertex with si
leaves below it also has labels 1 through si below it. Label t2 = `k,S2 similarly. Then
the subdivergence-free condition says that the permutation giving the gluing can not
fix any prefix of the labels whose length is in S1 ∩ S2. This is because the only way
to get a subdivergence is to have all of the leaves below a vertex in t1 joined to all
of the leaves below a vertex in t2, which is equivalent to fixing a prefix in S1 ∩ S2. �

3.2 Two-ended family

Definition 3.5 Let d(i,j) be the tree formed by a vertex whose two children are `i
and `j in the sense of Definition 3.1. See Figure 7 for examples.
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(A) d(2,2)
(B) d(3,2)

Figure 7: Examples of trees in the two-ended family.

Theorem 3.6 The number of subdivergence-free gluings of d(k,k) with itself is

n(d(k,k), d(k,k)) = (2k)!− 2

(
k!k! +

∑
1≤i≤k−1
1≤j≤k−1

i!j!c2k−i−j + 2(
k−1∑
i=1

i!c2k−i)

)
.

Proof: Order the leaves of the trees beginning at the end of one `k and ending at the
end of the other `k.

There are (2k)! gluings in total. We subtract gluings that result in subdivergences.
A simple way to get a subdivergence is to fix the first k leaves of each tree together
and the last k leaves of each tree together. There are k!k! ways to do this. Likewise,
there are k!k! ways of gluing the first k leaves of the first to the last k leaves of the
second tree and the last k leaves of the first tree to the first k leaves of the second
tree. This accounts for all gluings with subdivergences resulting from cutting either
pair of edges nearest the root.

Next we count ways to fix the first k−1 leaves of the two trees together and last k−1
leaves of the two trees together and fix no prefix of the middle two leaves. There
are (k − 1)!(k − 1)!c2 ways to do this. None of these have been already counted,
since cutting the edges nearest the root would not result in a subdivergence. Then
we count ways to fix the first k − 1 leaves of the two trees together and the last
k − 2 leaves of the two trees together, and fix no prefix of the middle three leaves
(If a prefix of length one is fixed, so is a suffix of length two and we are in the k!k!
case. If a prefix of length two is fixed, so is a suffix of length one and we are in
the (k-1)!(k-1)! case). There are (k − 1)!(k − 2)!c3 ways to do this. Similarly, there
are i!j!c2k−i−j ways to glue the first i leaves of the two trees together and the last j
leaves of the two trees together, but no larger prefix on either side, contributing∑

1≤i≤k−1
1≤j≤k−1

i!j!c2k−i−j

gluings with subdivergences. We get the same number of subdivergent gluings where
a prefix of the first tree is glued to a suffix of the second tree and a suffix of the second
tree is glued to a prefix of the first tree. We have now accounted for all gluings with
two possible places to generate subdivergences, one on each branch of the tree.



X. DAI ET AL. /AUSTRALAS. J. COMBIN. 91 (2) (2025), 219–241 228

We also count ways to have only one subdivergence cut. There are k − 1 places
to cut on each branch. If we cut after leaf i for 1 ≤ i ≤ k − 1, the first i leaves
can be fixed in any way, and the remaining leaves can be fixed so long as they do
not allow a subdivergence, which happens so long as they do not fix any prefixes.
Overall, this contributes

∑k−1
i=1 i!c2k−i gluings with subdivergences. We can do the

same with gluing the last leaves to themselves, generating the same number of trees
with subdivergences, and likewise gluing a prefix of the first tree to a suffix of the
second tree or vice versa. This gives the number in the theorem statement. �

Theorem 3.7 When k 6= l, the number of subdivergence-free gluings of d(k,l) with
itself is

n(d(k,l), d(k,l)) = (k + l)!− A−B
where

A = k!l! +
∑

1≤i≤k−1
1≤j≤l−1

i!j!ck+l−i−j +
k−1∑
i=1

i!ck+l−i +
l−1∑
j=1

j!ck+l−j,

B =
∑
1≤i≤a
1≤j≤a

i!j!cS1
k+l−i−j + 2

a∑
i=1

i!cS2
k+l−i,

a = min(k, l),

S1 = {1, . . . , a− i} ∪ {k + l − i− j − (a− j), . . . , k + l − i− j − 1}, and
S2 = {1, . . . , a− i} ∪ {k + l − i− a, . . . , k + l − i− 1}.

Proof: The expression A is derived in the same way as in the proof of Theorem 3.6,
looking at subdivergences arising from gluing the end of the k leaf branches of both
trees together or the l leaf branches of both trees together. The expression B is
derived by considering subdivergences arising from gluing the ends of the k leaf
branches to the ends of the l leaf branches, as illustrated in Figure 8B.

We first count gluings with two possible ways to generate subdivergences. The
simplest is to fix the first a := min(k, l) leaves together and last a leaves together,
with no smaller subdivergence within either of these parts of the gluing, and allowing
the middle leaves to be glued in any order. This amounts to a!a!(k + l − 2a)!, or
a!a!c∅k+l−2a gluings. Next we consider fixing the first a − 1 leaves together, and the
last a leaves together. The middle edges must be glued without fixing a prefix of
length 1, as this has already been counted in the a!a! case just considered. Thus
there are (a − 1)!a!c

{1}
k+l−2a+1 gluings. Fixing the first a leaves together and the last

a − 1 leaves is similar, but now we must avoid fixing a suffix of length 1, giving
a!(a− 1)!c

{k+l−2a}
k+l−2a+1 gluings. This continues down to having just the first leaf fixed to

itself and the last leaf fixed to itself. This generates
∑

1≤i≤a
1≤j≤a

i!j!cS1
k+l−i−j gluings, with

S1 as in the theorem statement.

We also count ways with a subdivergence on only one side. We first consider ways
when the top ends of the trees are glued together, and the other case is symmetric.
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(A) (B)

Figure 8: Two ways of gluing to get subdivergences.

Figure 9: Example of f4,3

There are a places to cut, which result from gluing the first i leaves together for
1 ≤ i ≤ a. So long as the trees have no suffix of length 1 through a fixed, there
will be no subdivergences on the other branches of the trees. As well, when we are
counting gluings that fix the first i leaves, if we count gluings that do not fix prefixes
of the remaining leaves of length 1 through a− i, we will only count each gluing once.
This generates 2

∑a
i=1 i!c

S2
k+l−i gluings, with S2 as in the theorem statement. �

3.3 Lines with an extra fan family

Definition 3.8 For 1 < i < k, let fk,i be the tree with k leaves formed in the same
way as `k in Definition 3.1, but where the leaf edge at the ith deepest vertex is
replaced by an edge connected to a vertex with a single leaf as a child. We will refer
to this added internal edge as the extra edge. See Figure 9 for an example.

Theorem 3.9 The number of subdivergence-free gluings of fk,i with itself is

n(fk,i, fk,i) = ck − 2c
{i−1,...,k−2}
k−1 + c

{i−2,...,k−3}
k−2 − ck−1.

Proof: We count n(fk,i, fk,i) with an inclusion-exclusion approach, contracting the
extra edge in each tree to simplify the counting. We will refer to the two copies of
fk,i as t1 and t2, the extra edges of t1 and t2 as e1 and e2, respectively, and the trees
formed from contracting the extra edges as t1/e1 and t2/e2. We will first consider
n(t1/e1, t2/e2). Since t1/e1 and t2/e2 are both just lk in the sense of Definition 3.1,
this amounts to ck by Theorem 3.2. n(t1/e1, t2/e2) over counts n(tk,i, tk,i) as it
does not consider subdivergences from cutting e1 or e2. Such subdivergences can
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(A) (B)

(C)

Figure 10: Inclusion and exclusion cases for counting third tree family.

occur either when the leaf after e1 is connected to the end of t2, the leaf after e2 is
connected to the end of t1, or the leaf after e2 is connected to the leaf after e1. Thus
we must subtract the number of gluings counted in n(t1/e1, t2/e2) that contain these
subdivergences.

We first count the number of gluings with subdivergences from either joining the leaf
after e1 to the end of t2, the leaf after e2 to the end of t1, or both. If the leaf after e1
is joined to the end of t2, as in Figure 10A, there are k−1 leaves left on each tree, and
any gluing of these that fixes a prefix of length i−1 or more would have already been
counted as a subdivergence in n(t1/e1, t2/e2). There are thus c

{i−1,...,k−2}
k−1 gluings with

subdivergences from joining the leaf after e1 to the end of t2 which have not already
been accounted for. Similarly, there are c

{i−1,...,k−2}
k−1 gluings with subdivergences from

joining the leaf after e2 to the end of t1. However, this double counts the gluings with
subdivergences from joining both the leaf after e1 to the end of t2 and the leaf after
e2 to the end of t1, as in Figure 10B, so we must subtract such gluings. Assuming
that these leaves are joined, there are k − 2 leaves left on each tree, and any gluing
of these that fixes a prefix of length i− 2 or more would have already been counted
as a subdivergence in n(t1/e1, t2/e2). Thus we must subtract c

{i−2,...,k−3}
k−2 gluings. In

summary, the total number of gluings to subtract from n(t1/e1, t2/e2) to account for
subdivergences from joining the leaf after e1 to the end of t2, the leaf after e2 to the
end of t1, or both, is 2c

{i−1,...,k−2}
k−1 − c{i−2,...,k−3}k−2 .

Finally, the number of gluings to remove with subdivergences from joining the leaf
after e1 to the leaf after e2 is just those that join these leaves but do not have any
other subdivergences, as in Figure 10C. There are k − 1 leaves remaining, forming
a structure like lk−1 in the sense of Definition 3.1, so the number of gluings here is
ck−1 by Theorem 3.2. �

Definition 3.10 For 1 < i < k and j ≥ 1, let fk,i,j be the tree formed by starting
with fk,i and adding j − 1 more leaves to both the deepest internal vertex, and to
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Figure 11: Example of f5,3,3

the vertex below the extra edge. See Figure 11 for an example.

Theorem 3.11 The number of subdivergence-free gluings of fk,i,j with itself is

n(fk,i,j, fk,i,j) =c
{j,...,i+j−2,i+2(j−1),...,k+2(j−1)−1}
k+2(j−1) − 2j!c

{i+j−2,...,k+j−3}
k+j−2

+ j!j!c
{i−2,...,k−3}
k−2 − j!c{j,...,k+j−3}k+j−2 .

Proof: We use a similar inclusion-exclusion approach to the proof of Theorem 3.9.
Again, we will refer to the two copies of fk,i,j as t1 and t2, the extra edges of t1 and t2
as e1 and e2, respectively, and the trees formed from contracting the extra edges as
t1/e1 and t2/e2. Again, we first calculate n(t1/e1, t2/e2), and subtract gluings that
would result in subdivergences from cutting e1 or e2. Since t1/e1 and t2/e2 are both
just lk+2(j−1),{j,...,i+j−2 i+2(j−1),...,k+2(j−1)−1} in the sense of Definition 3.3, it follows by
Theorem 3.4 that

n(t1/e1, t2/e2) = c
{j,...,i−1+j−1,i+2(j−1),...,k+2(j−1)−1}
k+2(j−1) .

Now we count the number of gluings with subdivergences from joining the fan after
e1 to the fan at the end of t2. If we assume that these fans are joined, then there
are k − 1 + j − 1 leaves remaining, and any gluing of these that fixes a prefix of
length i + j − 2 or more would have already been counted as a subdivergence in
n(t1/e1, t2/e2). Thus there are j! ways to join the fans, and c

{i+j−2,...,k+j−3}
k+j−2 ways

to join the remaining leaves so that there is no subdivergence. There are the same
number of gluings with subdivergences from joining the fan after e2 to the end of t1.
This double counts gluings with subdivergences from joining both the fan after e1 to
the end of t2 and the fan after e2 to the end of t1, so we must subtract them. Assume
these fans are joined in any of the j!j! possible ways. There are then k−2 remaining
leaves on each tree, and any gluing of these that fixes a prefix of length i−2 or larger
would have already been counted as a subdivergence in n(t1/e1, t2/e2). Thus there

are j!j!c
{i−2,...,k−3}
k−2 gluings that we have double counted here. In summary, the total

number of gluings to subtract from n(t1/e1, t2/e2) to account for subdivergences from
joining the fan after e1 to the end of t2, the fan after e2 to the end of t1, or both, is
2j!c

{i+j−2,...,k+j−3}
k+j−2 − j!j!c{i−2,...,k−3}k−2 .
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Finally, the number of gluings to remove with subdivergences from joining the fan
after e1 to the fan after e2 is just those that join these fans but do not have any other
subdivergences. If these fans are joined in any of the j! possible ways, there are k +
j−2 leaves remaining on each tree, that form a structure like lk+j−2,{j,...,k+j−3} in the

sense of Definition 3.3, so the number of gluings here is c
{j,...,k+j−3}
k+j−2 by Theorem 3.4.

So once we remove these j!c
{j,...,k+j−3}
k+j−2 over counted gluings from what we had thus

far, we arrive at n(t1, t2). �

Note that Theorem 3.9 is a special case of Theorem 3.11, in the case where j = 1.

4 Algorithms

This section presents two algorithms for computing subdivergence-free gluings of
arbitrary pairs of trees.

4.1 Eating away children of the root

The first algorithm will be presented in the form of recursive formulas for n(t1, t2)
which inductively determine n(t1, t2) for any pair of rooted trees t1 and t2. These
formulas directly determine a recursive algorithm given by simply following the for-
mulas. A Sage implementation of this algorithm is included with the source of the
arXiv version of this paper [9], but the strength of this algorithm is the recursive re-
formulation of n(t1, t2), more than the algorithm itself on account of its performance.

For this algorithm we will need a variant on the notation of a subdivergence.
For this subsection only what we have previously called a subdivergence in a gluing
of two trees will be called a fully internal subdivergence, while the new notion will
be known as a one-sided subdivergence. The motivation for this language is that
for subdivergences as we have dealt with them so far, we cut two internal edges
in order to cut out a subdivergence that contains neither root. That is, speaking
physically, the subdivergence has none of the external edges of the glued graph,
rather the external edges of the subdivergence both result from the cut edges. These
subdivergences are in this sense fully internal. As discussed in Section 1.2, it is also
possible from a physical perspective to have a subdivergence where one external edge
is an external edge of the original graph and the other results from a cut edge, and
these we call one-sided. One-sided propagator subdivergences only occur when the
graph has a bridge, and by a Legendre transform we can ignore this situation in
general, but for the purposes of this algorithm, we will have partial gluings of trees,
and these partial gluings may result in bridges and hence in one-sided subdivergences.
Note that unglued leaves also count as external edges and so are not allowed in the
one-sided subdivergences. Formal definitions are given in what follows.

Let t1 and t2 be rooted trees as above, but not necessarily with the same number
of leaves. Let l(t) be the number of leaves in the rooted tree t and L(t) the set of
leaves of t. We will need to keep track of partial gluings of leaves of t1 and t2, so
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given a function τ which is a bijection between a subset of the leaves of t1 and a
subset of leaves of t2, we can form the graph gτ (t1, t2) by identifying leaves according
to τ in the same way as for the tree gluings we have been working with so far. Call
τ a partial gluing and let the size of τ be the size of the image of τ .

There is a fully internal subdivergence of gτ (t1, t2) if there are two edges e1 and
e2, where ei ∈ ti and neither ei is incident to a leaf of ti, and where e1, e2 is a 2-edge
cut of gτ (t1, t2) such that one of the parts of the cut contains neither of the roots nor
any of the unpaired leaves. There is a one-sided subdivergence of gτ (t1, t2) if there is
an edge e which is a bridge of gτ (t1, t2) with the property that one of the parts has
none of the unpaired leaves but has the root from the tree that did not contain e.
This subdivergence is left-sided if the part with no unpaired leaves has the root of t1
in it and right-sided otherwise.

For Si ⊆ L(ti), define
pk,S1,S2(t1, t2)

to be the number of partial gluings of size k with domain a subset of S1 and image a
subset of S2 which have no subdivergences (either fully internal or one-sided). Define

pk,S1,S2
(t1, t2)

to be the number of partial gluings of size k with domain a subset of S1 and image
a subset of S2 which have no fully internal or right-sided subdivergences.

When l(t1) = l(t2) note that

n(t1, t2) = pl(t1),L(t1),L(t2)(t1, t2),

so if we can calculate all pk,S1,s2(t1, t2) then we can calculate all n(t1, t2).

We have the symmetry pk,S1,S2(t1, t2) = pk,S2,S1(t2, t1). Note however, that p is
not symmetric in 1, 2. An analogous object could be defined with no fully internal
or left-sided subdivergences, but we will not need this.

Let fk be the rooted tree consisting of a root with k leaves as children, so a rooted
k-corolla, or k-fan, or `k,∅ in the notation of Section 3.

The following observations follow from the definitions; the second point can be
taken as a definition of how the one vertex tree behaves.

• If k > l(t1) or k > l(t2) or |S1| < k or |S2| < k then

pk,S1,S2(t1, t2) = pk,S1,S2
(t1, t2) = 0.

• p1,{•},S2(•, t2) = p1,{•},S2
(•, t2) = |S2|, where • is the rooted tree with a single

vertex which is both root and leaf.

•
pk,S1,S2(fi, fj) = pk,S1,S2

(fi, fj) = k!

(
|S1|
k

)(
|S2|
k

)
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• If k 6= l(t1) then pk,S1,S2(t1, t2) = pk,S1,S2
(t1, t2).

The last point is true because the only way to have a left-sided subdivergence is when
S1 = L(t1) and so when that is impossble, there can be no distinction between p and
p. We also see from this that p and p are not very different, but their difference will
be key to making the recursion work in all cases.

Definition 4.1 Let t1, t2, . . . , tk be rooted trees. Define B+(t1, t2, · · · , tk) to be the
rooted tree formed from t1, t2, . . . , tk by adding a new root vertex whose children are
the roots of the ti.

We will first give a formula for p and p for trees where the root has one child.

Proposition 4.2 If t1 = B+(t11) then

pk,S1,S2
(t1, t2) = pk,S1,S2(t1, t2) =

{
pk,S1,S2(t11, t2) if k 6= l(t1) or k 6= l(t2)

0 if k = l(t1) = l(t2).

Proof: The first equality holds because any partial gluing giving a left-sided subdi-
vergence also gives a fully internal subdivergence by cutting the edge incident to the
root of t1 along with the cut edge from the left-sided subdivergence.

For the second equality, first note that if k = l(t1) = l(t2) then all leaves must be
glued, and so the edge incident to the root is a bridge giving a right-sided subdi-
vergence for any gluing, hence pk,S1,S2

(t1, t2) = pk,S1,S2(t1, t2) = 0 If k 6= l(t1) or
k 6= l(t2) then not all leaves are glued and so any subdivergence of such a partial
gluing of t1 and t2 includes at most one of the root of t2 and the root of t11 and hence
is a subdivergence (possibly one-sided) of the same partial gluing of t11 and t2 and
conversely any subdivergence in a partial gluing of t11 t2 remains a subdivergence in
the same partial gluing of t1 and t2. �

Proposition 4.3 Suppose t1 = B+(t11, t12, . . .) with at least two subtrees. Let t =
B+(t12, . . .) and let S11 = S1 ∩ L(t11). Then

pk,S1,S2
(t1, t2) =

∑
0≤j≤k
R⊆S2
|R|=j

pj,S11,R(B+(t11), t2)pk−j,S1−S11,S2−R(t1, t2)

and

pk,S1,S2(t1, t2) =


pk,S1,S2

(t1, t2) if l(t1) 6= k∑
R⊆S2
|R|=k

pk,L(fk),R(fk, t2)

k!
pk,S1,R(t1, t2) if l(t1) = k.
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Proof: Given a partial gluing of t1 and t2, let us separately consider the part of the
gluing with t11 partially glued to t2 and the part of the gluing with t partially glued
to t2. The partial gluing of t1 and t2 determines the partial gluings of t11 and t2 and
of t and t2 and the two partial gluings of t11 and t2 and t and t2 determine a partial
gluing of t1 and t2 as long as the target leaves of t2 are disjoint.

It only remains to consider subdivergences. Internal subdivergences or right-sided
subdivergences in partial gluings of t11 and t2 or t and t2 remain internal or right-
sided subdivergences in the partial gluing of t1 and t2. Likewise internal or right-sided
subdivergences in a partial gluing of t1 and t2 must involve a cut edge on the t1 side
and that edge is either in B+(t11) or t and hence give an internal or right-sided
subdivergence in one of the smaller partial gluings. By the previous proposition, we
may use p instead of p in the first factor on the right hand side of the first equation.
This proves the first equation.

For the second equation, if we have not glued all leaves of t1 then there is no distinc-
tion between p and p. If we have glued all leaves of t1, then note that for R ⊆ L(t2)
with |R| = k, pk,L(fk),R(fk, t2) is either 0 or k! depending on whether or not the k
leaves of R are exactly the leaves of a subtree of t2 or not. Using this as an indicator
function for when there is a left-sided subdivergence we get the second case of the
second equation. This proves the second equation. �

Theorem 4.4 Propositions 4.2 and 4.3 along with the bulleted observations preced-
ing them give a recursive definition and recursive algorithm to compute p and p and
hence to compute n.

Proof: Given a t1 with more than one vertex, using Proposition 4.3, we can reduce
to the case that t1 has either one child of the root and the same depth or is some
fk. Using Proposition 4.2 we can reduce t1 with one child of the root to a tree of
depth one less. Returning to Proposition 4.3 we can reduce the number of children
of the root without increasing the depth. Continuing this process we can reduce t1
to a tree of depth 1, that is to some fk.

Swapping 1 and 2, we can do the same for t2, so it only remains to consider the case
when both trees are fans which is given in the bulleted observations preceding the
propositions. These bullets also cover the trivial cases.

Finally, as noted above when t1 and t2 both have k leaves then n(t1, t2) =
pk,L(t1),L(t2)(t1, t2). �

4.2 Cut Preprocessing Algorithm

The following discussion presents another algorithm for counting subdivergence-
free gluings between arbitrary trees. A summary of the discussion can be found
in Algorithms 1 and 2. An implementation of the algorithm is included with the
source in the arXiv version of this paper [9], and can also be found on GitHub at
github.com/jordanmzlong/Subdivergence-Free-Trees.

https://github.com/jordanmzlong/Subdivergence-Free-Trees
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Figure 12: Two coloured rooted trees, with colours 1,2,3,4. The only colour-
preserving gluing is drawn with dashed lines. Note that there are no colour-
preserving subdivergence-free gluings.

Let t1 and t2 be rooted trees whose leaves are each assigned a label in Z≥1, as in
Figure 12. We will say that these rooted trees are coloured, and refer to the labels as
colours. We will also let c(t1) denote the multiset of colours of t1. We will say that
a gluing is colour-preserving if each of the leaves of t1 are identified with a leaf of t2
with the same colour. This algorithm solves the more general problem of counting
subdivergence-free colour-preserving gluings between coloured rooted trees t1 and t2,
which we will still denote n(t1, t2). Our original problem of counting subdivergence-
free gluings between trees can then be solved as a special case where every leaf in t1
and t2 has the same colour.

We will assume in this section that our trees do not have non-root 2-valent ver-
tices that are not incident to leaves. This is still completely general, since if we
have two edges e1 and e2 with such a 2-valent vertex between them, a gluing has a
subdivergence containing e1 or e2 if and only if the same gluing has a subdivergence
containing the e1 after e2 is contracted. Thus, prior to running the algorithm, we
can preprocess the trees by contracting such edges.

Note that if c(t1) 6= c(t2) then there are no colour-preserving gluings, and thus
no subdivergence-free colour-preserving gluings. If c(t1) = c(t2), the approach of
the algorithm is to count the total number of colour-preserving gluings between the
trees, and subtract the number of colour-preserving gluings that result in a subdiver-
gence. To count colour-preserving gluings, we multiply together the factorials of the
multiplicities in c(t1). For example, if c(t1) = c(t2) = {1, 1, 1, 2, 2, 3}, then there are
3!2!1! = 12 colour-preserving gluings, due to the 3! ways to map the leaves coloured
1, 2! ways to map the leaves coloured 2, and single way to map the leaf coloured 3.
We denote the number of colour-preserving gluings between t1 and t2 by r(t1, t2).

Counting colour-preserving gluings that result in a subdivergence is more in-
volved. In order to do so, we first need to define some terms. An edge is internal if
it is not incident to a leaf. Given two edges e1 and e2 in a rooted tree t1, if the path
from e1 to the root of t1 contains e2, we say that e1 is a descendant of e2 and e2 is
an ancestor of e1. We will call a subset of edges E of a rooted tree t1 siblings if no
edge in E is a descendant of another edge in E. The edges which are cut in order to
give a subdivergence will be called the edges in the boundary of the subdivergence.
Our approach to counting colour-preserving gluings with subdivergences is to iterate
through all combinations of nonempty sets of internal siblings of t1, and nonempty
sets of internal siblings of t2, and for each combination S = S1 ∪ S2 with S1 ⊆ E(t1)
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and S2 ⊆ E(t2), count the number of gluings with the following two properties.

• Property 1: each member of S is in the boundary of a subdivergence in the
gluing.

• Property 2: if any other internal edge e that is in the boundary of a subdiver-
gence in the gluing is added to S, e is a descendant of an edge in S1 or S2.

We claim that this process will indeed count all of the gluings with subdivergences.

To see that every gluing with subdivergences is counted, suppose we have a gluing
of t1 and t2 that contains a subdivergence. Let E = E1 ∪E2 be the set of edges that
in the boundary of subdivergences in this gluing, with E1 ⊆ E(t1) and E2 ⊆ E(t2).
E can be identified with a combination of sets of siblings S = S1 ∪ S2 by removing
descendants in E1 and E2 to give S1 and S2 respectively. Then this gluing would
be counted when the algorithm considers S1 ∪ S2. Property 1 is satisfied as every
member of this set is in the boundary of a subdivergence in the gluing, and property
2 is satisfied since every other edge that is in the boundary of a subdivergence in the
gluing is a descendant of an edge in S1 or S2.

To see that no gluing would be counted twice, suppose a gluing is counted when
considering the combination of siblings S = S1 ∪ S2 and R = R1 ∪ R2, with R 6= S.
Without loss of generality there is an edge e in R1 not present in S1. By property
1 with R, e is in the boundary of a subdivergence in the gluing. However, if e is
added to S, by property 2 with S we have that e is a descendant of another edge f
in S1. Then f /∈ R1, which is a set of siblings containing e. Also, by property 1 with
S we have that f is in the boundary of a subdivergence in the gluing. But f is not
a descendant of anything in R1, contradicting property 2 with R. Thus R = S, so
each gluing is only counted when considering a single combination of siblings.

Now, for a given combination of siblings S1 and S2, we explain how to count
gluings satisfying properties 1 and 2. Note that for each edge e1 in S1 to be in the
boundary of a subdivergence, there must be a distinct edge e2 in S2 such that all of
the leaves below e1 can be joined with all of the leaves below e2. Thus, if |S1| 6= |S2|,
no gluing can satisfy property 1.

If |S1| = |S2|, we process the trees further, noting that each edge in S1 and S2

is a bridge. Let the components that arise from removing each edge in S1 from t1
be t10 , t11 , . . . , t1|S1|

, where t10 is the component containing the root and t1i is the
component containing everything deeper than edge ei in t1. For each edge ei in S1,
attach a leaf whose colour is unique to c(t1i) to the vertex in t10 that was adjacent to
ei in t1, and call the resulting coloured rooted tree u1. An example of this process is
shown in Figure 13. In a similar way, form t20 , t21 , . . . , t2|S2|

and u2 from t2 and S2.

We claim that the number of gluings satisfying properties 1 and 2 with respect
to a given S = S1 ∪ S2 is given by n(u1, u2) ·

∏|S1|
i=1 r(t1i , t1i).

To see this, first note that u1 and u2 are representations of t1 and t2 with ev-
erything below edges in S contracted. Thus, by counting colour-preserving gluings
between u1 and u2 and multiplying this by the number of ways that the contracted
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Figure 13: Shown in (A) is a coloured rooted tree t1. The set of siblings to be cut
is in bold. (B) shows u1, t11 and t12 formed from cutting the bold edges.

parts can be glued together, we count colour-preserving gluings between t1 and t2
that satisfy property 1. Indeed, if we have a colour-preserving gluing between u1 and
u2, then by joining the components below each edge in S1 to the corresponding com-
ponent below an edge in S2 as specified by the gluing, we have a colour-preserving
gluing where each edge in S will be in the boundary of a subdivergence. If we restrict
this slightly by counting subdivergence-free colour-preserving gluings between u1 and
u2 and multiplying this by the number of ways that the contracted parts can be glued
together, we count colour-preserving gluings between t1 and t2 that satisfy properties
1 and 2. This makes use of the fact that there are no internal 2-valent vertices in our
tree, which guarantees that any edge with an element of S as a descendant will have
a different set of leaves below it than any of the components. By avoiding gluings
with subdivergences between u1 and u2, this ensures that no edge with a member of
S as a descendant will be in the boundary of a subdivergence.

The number of ways that a given component can be glued to another component
is the number of colour-preserving gluings between the two components, and thus
only depends on the set of colours in each component, rather than their structures.
Thus, the number of colour-preserving gluings between two components that can be
glued together is the same as the number of colour-preserving gluings between one
of the components and another copy of itself.

In practice, we can first consider each tree individually to form a list of all possible
preprocessed trees, one for each set of siblings. We can then comb through the lists for
t1 and t2 together counting gluings in the manner mentioned above. This approach
has the advantage that the list of preprocessed trees can be reused if we wish to
count subdivergence-free colour-preserving gluings between t1 or t2 and a different
tree.

Algorithm 1: SubdivergenceFree

input : Two coloured rooted trees t1 and t2
output: Number of subdivergence-free colour-preserving gluings between t1

and t2

return ColourPreserving(c(t1), c(t2)) - Subdivergence(t1,t2);
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Algorithm 2: Subdivergence

input : Two coloured rooted trees t1 and t2
output: Number of colour-preserving gluings with subdivergences between

t1 and t2

total := 0;
for each nonempty set of siblings S1 of t1 do

for each nonempty set of siblings S2 of t2 do
construct u1, t11 , . . . , t1|S1|

from t1 and S1;

construct u2, t21 , . . . , t2|S2|
from t2 and S2;

total +=
SubdivergenceFree(u1,u2)*

∏|S1|
i=1ColourPreserving(c(t1i), c(t1i));

end

end
return total

5 Discussion

As noted in the introduction gluings of trees are also studied under the name of
tanglegrams [2, 10, 16, 17, 18], which arose from phylogenetics. Subdivergence-free is
known as irreducible in this context. Because of the phylogenetic motivation, planar
tanglegrams are of particular interest.

In the planar case, gluings of trees are also studied under the name of matings
of trees, often with an interest in limiting properties and applications to Liouville
quantum gravity. See [11] for a survey. The mating construction is also considered
for its pure combinatorial value; see for instance [1]. Basic to this literature is how
mated pairs of Dyck or Motzkin paths correspond to mated trees, and how the mated
pairs of paths themselves correspond to a quarter plane walk. Subdivergences do not
appear in this context. Subdivergences in the tree gluing would correspond to places
where, in the mating of the two Dyck or Motzkin paths, two subpaths which both
preserve the condition of remaining above and returning to the original level are
glued. In the quarter plane walk this would correspond to a subpath which would
remain in the quarter plane if translated to the origin and also end at the origin.
However, between restricting to planar gluings and having other questions in mind,
the entire study has a quite different flavour.

Our original motivation for studying the enumeration of subdivergence-free glu-
ings of trees was in order to better understand how many Feynman diagrams with
cuts can be formed. From this perspective, the next two questions to consider are
cuts which may leave some cycles intact, so rather than gluing two trees we would
be gluing two graphs with leaves, and to consider graphs with more subdivergences,
that is, multiple roots in the two halves. Additionally, because of anomalous thresh-
olds (see the introduction of [14] and references therein), it would also be interesting
to consider cuts into more than two pieces, or equivalently, to consider gluing more
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than two trees or graphs together.

From an enumerative perspective, subdivergence-free gluings of trees provide a
generalization of connected permutations that to our knowledge have not been ex-
plored until now. Further classes of trees with nice counting sequences could be
investigated.

Another interesting observation is that the second algorithm is based on sets of
siblings. Sets of siblings are precisely admissible cuts in the sense of the Connes-
Kreimer coproduct on rooted trees (see [7]) and so the second algorithm proceeds
essentially by considering the coproducts of t1 and t2 term by term. The Connes-
Kreimer Hopf algebra is not appearing as a renormalization Hopf algebra in this
context as we are not working with insertion trees showing the insertion structure of
subdivergences in a Feynman diagram, but rather with trees coming directly from a
cut Feynman diagram. None the less it is appearing in a way that has an interesting
interplay with the cuts while being different from the Hopf algebraic cointeraction
studied in [14].

The first algorithm, by contrast, is closely related to the operation B+ which adds
a new root to a collection of trees. Now B+ is also special in the Connes-Kreimer
Hopf algebra context as it is a Hochschild 1-cocycle and is the foundation of the Hopf
algebraic approach to Dyson-Schwinger equations and Ward identities; see [19] for
an overview.
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