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Abstract

Let Cn denote the set of words w = w1 · · ·wn on the alphabet of positive
integers satisfying wi+1 ≤ wi + 1 for 1 ≤ i ≤ n − 1 with w1 = 1. The
members of Cn are known as Catalan words and are enumerated by the
n-th Catalan number Cn. The problem of finding the cardinality of var-
ious avoidance classes of Cn has been an ongoing object of study, and
members of Cn avoiding one or two classical or a single consecutive pat-
tern have been enumerated. In this paper, we extend these results to
vincular patterns and seek to determine the cardinality of each avoid-
ance class corresponding to a pattern of type (1, 2) or (2, 1). In several
instances, a simple explicit formula for this cardinality may be given. In
the more difficult cases, we find only a formula for the (ordinary) generat-
ing function which enumerates the class in question. We make extensive
use of functional equations in establishing our generating function results.

1 Introduction

Let τ = τ1 · · · τm denote a sequence in [ℓ] = {1, . . . , ℓ} for some ℓ ≥ 1 that contains
each letter in [ℓ] at least once and let π = π1 · · · πn be a positive integral sequence,
where n ≥ m ≥ 1. Then π is said to contain τ if there exist indices 1 ≤ i1 <
· · · < im ≤ n such that πij x πik if and only if τj x τk for all j, k ∈ [m] and each
x ∈ {<,>,=}, That is, π contains τ if there exists a subsequence of π that is
order-isomorphic to τ and is said to avoid τ otherwise. In this context, τ is often
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referred to as a pattern. The pattern avoidance problem is one that has been studied
extensively in enumerative combinatorics on a variety of discrete structures, starting
with permutations.

The concept of pattern avoidance can be generalized as follows. Suppose one
decomposes the pattern τ into nonempty sections as τ = τ (1) · · · τ (k) for some k ≥ 1.
Then π contains an occurrence of τ = τ (1)- · · · -τ (k) as a vincular (or dashed) pattern
if there exists a subsequence α of π that is order-isomorphic to τ such that, for each
p ∈ [m− 1], if τp and τp+1 both belong to the same section τ (i) of τ for some i ∈ [k],
then the p-th and (p+1)-st entries of α correspond to adjacent letters of π. That is,
letters within the groups separated by dashes must be adjacent within an occurrence
of τ in π. If ai = |τ (i)| for 1 ≤ i ≤ k, then the vincular pattern τ = τ (1)- · · · -τ (k)
is said to be of type (a1, . . . , ak). We refer the reader to the authoritative text by
Kitaev [11, Chapter 7] for a full discussion of these and other kinds of patterns.

For example, the sequence π = 123411232 contains one occurrence of the pat-
tern τ = 12-3-21 of type (2, 1, 2), as witnessed by the subsequence 23432. On the
other hand, π avoids the pattern 13-2 of type (2, 1), though it is seen to contain
subsequences isomorphic to 132. Note that the cases in which each τ (i) contains a
single letter or in which k = 1 correspond to what are known as the classical and
consecutive patterns, respectively. Thus, any isomorphic subsequence of π gives rise
to an occurrence of a classical pattern, whereas for a consecutive pattern (sometimes
called a subword), the entries must correspond to a string of adjacent letters of π
and therefore it imposes the least restriction with regard to its avoidance.

A Catalan word π = π1 · · · πn is a sequence of positive integers satisfying πi+1 ≤
πi + 1 for 1 ≤ i ≤ n − 1, with π1 = 1. Let Cn denote the set of Catalan words of
length n. For example, if n = 4, then

C4 = {1111, 1121, 1211, 1221, 1231, 1112, 1122, 1212, 1222, 1232, 1123, 1223, 1233, 1234}.

It is well known that |Cn| = Cn for all n ≥ 0, where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan

number; see, e.g., [20, Exercise 80]. This fact may be realized quickly as follows. Let
Dn denote the set of Dyck paths of semi-length n, i.e., lattice paths that use u = (1, 1)
and d = (1,−1) steps going from (0, 0) to (2n, 0) and never dipping below the x-axis,
which is a fundamental structure enumerated by Cn. Given π = π1 · · · πn ∈ Cn, let
ı(π) denote the member of Dn whose j-th u from the left terminates at height πj for
each j ∈ [n]. For example, if π = 12342332 ∈ C8, then ı(π) = u4d3u2dud2ud2 ∈ D8.
It is apparent that ı provides a bijection between An and Dn such that the final
letter of π equals the number of d’s within the terminal run of d’s in ı(π) for all π.
Thus, the results below counting certain restricted subsets of Cn may also be viewed
equivalently as enumerative formulas for the corresponding subsets of Dn under ı.

The study of pattern avoidance in Catalan words was initiated by Baril et al. in [5],
where every case of a single three-letter classical pattern was treated and the descent
distribution on each corresponding avoidance class was found. These results were
later extended to two classical patterns (see [3] or [10, Chapter 3]), subwords [16] and
partial order patterns [6]. Moreover, the distributions of several parameters have also
been considered on Catalan words, represented geometrically as bargraphs, such as



T. MANSOUR AND M. SHATTUCK/AUSTRALAS. J. COMBIN. 91 (1) (2025), 177–216 179

semi-perimeter [7, 14], area [7, 14] and the number of interior lattice points [12].
Further, in [18], the joint distributions of one or more subwords on Cn were studied
and explicit formulas for the generating functions were found, and in [15], Catalan
words arose in connection with the exhaustive generation of Gray codes for growth-
restricted sequences.

In this paper, we consider the problem of enumerating the members of Cn avoiding
a single vincular pattern of length three, in response to a general question raised by
Baril et al. in [5] concerning the vincular pattern avoidance problem on Cn and,
in particular, the case of three-letter patterns. Let Cn(τ) denote the subset of Cn
for n ≥ 1 whose members avoid the pattern τ and let cn(τ) = |Cn(τ)|. Here, we
determine an explicit formula for cn(τ) or its generating function

∑
n≥1 cn(τ)t

n for
each vincular pattern of type (1, 2) or (2, 1), answering the question raised in [5].
We remark that the Catalan words treated in [13] correspond to a different class of
non-negative integral sequences, which are in fact enumerated by Cn−1, and that are
characterized by their satisfying the growth requirement πi+1 ≥ πi − 1 for 1 ≤ i < n
together with the condition that the leftmost occurrence of each positive letter k has
at least one k − 1 occurring somewhere both to its left and its right.

The organization of this paper is as follows. In the next section, we enumerate
the members of Cn(τ), where τ is a pattern of the type (1, 2). Our work is shortened
somewhat in this regard by noting that several cases of avoiding (1, 2) are logically
equivalent on Cn to the avoidance of the corresponding classical pattern of length
three obtained by ignoring the adjacency requirement, and hence the results in these
cases follow from those in [5]. Direct combinatorial proofs are given for the patterns 1-
22, 1-32 and 2-31 in Section 2.1, with cn(τ) in these cases corresponding to well-known
sequences from the OEIS [19]. The remaining patterns in (1, 2) are apparently more
difficult and we only determine a formula for the generating function

∑
n≥1 cn(τ)t

n in
each case. For the patterns 2-21 and 3-21 considered in Section 2.2, we make extensive
use of functional equations to obtain our results and employ various techniques such
as iteration and the kernel method (see, e.g., [9]). By contrast, for the cases 1-11 and
2-11 treated in Section 2.3, we utilize the symbolic method (see, e.g., [8]) and are able
to find expressions for the generating functions in terms of Chebyshev polynomials.

A similar treatment is afforded the patterns of type (2, 1) in the third section.
For the cases 22-1 and 32-1 in Section 3.1, a direct enumeration may be given. For
the others, we make use of functional equations to obtain the generating function
formulas. In the case of 21-1, an elegant formula in terms of an infinite continued
fraction arises somewhat unexpectedly. For several cases of either type (1, 2) or (2, 1),
we must refine the counting sequence cn(τ) by considering one or more parameters
(specific to the avoidance class at hand) on Cn(τ) so as to be able to write a recurrence
that enumerates the class. A variety of such parameters are utilized in this way,
including those tracking the largest letter, last letter, number of 1’s, smallest descent
bottom and position of the first level.

The results of this paper are summarized in Tables 1 and 2 below. Note that
every Catalan word avoids the patterns 2-13 and 13-2 by virtue of the condition
πi+1 ≤ πi + 1 for all i, and hence these cases are trivial.
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τ {cn(τ)}10n=1 Reference/OEIS #

1-12, 1-21, 1-23 1,2,4,8,16,32,64,128,256,512 Prop. 2.1/A011782
1-22 1,2,4,9,21,51,127,323,835,2188 Thm. 2.3/A001006
1-11 1,2,4,10,25,66,179,495,1390,3951 Thm. 2.12
1-32, 2-12 1,2,5,13,34,89,233,610,1597,4181 Thm. 2.2, Prop. 2.1/A001519
2-21 1,2,5,13,34,90,240,643,1728,4654 Thm. 2.5
2-31 1,2,5,13,35,96,267,750,2123,6046 Thm. 2.3/A005773
2-11 1,2,5,13,36,103,302,901,2724,8321 Thm. 2.13
3-12 1,2,5,14,41,122,365,1094,3281,9842 Prop. 2.1/A007051
3-21 1,2,5,14,41,122,366,1104,3344,10162 Thm. 2.7
2-13 1,2,5,14,42,132,429,1430,4862,16796 Trivial/A000108

Table 1: Number of Catalan words of length n = 1, 2, . . . , 10 avoiding a pattern of
type (1, 2)

τ {cn(τ)}10n=1 Reference/OEIS #

12-2 1,2,4,7,11,16,22,29,37,46 Prop. 3.1/A000124
12-1, 12-3 1,2,4,8,16,32,64,128,256,512 Prop. 3.1/A011782
11-2 1,2,4,9,22,56,148,400,1102,3079 Thm. 3.17
11-1 1,2,4,10,25,66,179,495,1390,3951 Prop. 3.2
23-1 1,2,5,13,34,89,233,610,1597,4181 Prop. 3.1/A001519
21-1 1,2,5,13,35,96,267,750,2122,6036 Thm. 3.21
22-1 1,2,5,13,35,96,267,750,2123,6046 Thm. 3.3/A005773
21-2 1,2,5,13,35,97,274,784,2265,6593 Thm. 3.6
32-1 1,2,5,14,41,122,365,1094,3281,9842 Thm. 3.3/A007051
31-2 1,2,5,14,41,123,375,1157,3602,11291 Thm. 3.12
21-3 1,2,5,14,41,123,375,1157,3603,11303 Thm. 3.9
13-2 1,2,5,14,42,132,429,1430,4862,16796 Trivial/A000108

Table 2: Number of Catalan words of length n = 1, 2, . . . , 10 avoiding a pattern of
type (2, 1)
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2 Patterns of the type (1, 2)

In this section, we seek to determine the sequences cn(τ), where τ is a vincular
pattern of the form (1, 2), either explicitly or in terms of generating functions. Our
work in this regard is shortened by observing that several of the (1, 2) patterns are
logically equivalent for Catalan words to the classical pattern of the same length
obtained by removing the adjacency requirement of the last two letters within an
occurrence.

For example, we have cn(3-12) = cn(3-1-2) for all n ≥ 1. To realize this, suppose
π = π1 · · · πn ∈ Cn contains an occurrence of 3-1-2 as witnessed by the subsequence
πi = a, πj = b, πk = c, where b < c < a. We show that π must contain an occurrence
of 3-12. To do so, let r0 be the smallest index r > j such that πr = c. Then πk = c
with k > j implies r0 exists with j < r0 ≤ k. We consider now cases on πr0−1

and first suppose πr0−1 > c. Note that π being a Catalan word implies it can have
only unit increases between adjacent elements, and thus πj = b < c implies there
must exist some index r ∈ [j + 1, r0 − 2] such that πr = c. But this contradicts the
minimality of r0, so we must have πr0−1 < c, i.e, πr0−1 = c− 1 (note πr0−1 6= c, again
by the minimality). But then π witnesses an occurrence of 3-12 with the subsequence
πi = a, πr0−1 = c − 1, πr0 = c, as desired. This implies that the patterns 3-12 and
3-1-2 are equivalent on Cn, as claimed.

By comparable reasoning, one has that the vincular patterns 1-12, 1-21, 1-23 and
2-12 are equivalent to the analogous classical patterns. Let Fn = Fn−1 + Fn−2 for
n ≥ 2 denote the n-th Fibonacci number, with F0 = 0 and F1 = 1; see, e.g., [19,
A000045] or [21]. By the results from [5], we then have the following.

Proposition 2.1. If n ≥ 1, then cn(1-12) = cn(1-21) = cn(1-23) = 2n−1, cn(2-12) =
F2n−1 and cn(3-12) =

3n−1+1
2

.

2.1 The cases 1-22, 1-32 and 2-31

We start with the following result for the pattern 1-32.

Theorem 2.2. If n ≥ 1, then cn(1-32) = F2n−1.

Proof. Let Ωn denote the set of marked words w = w1 · · ·wn wherein w is a non-
decreasing Catalan word in which runs of letters are marked such that (i) the initial
run of 1’s is always marked and (ii) no two adjacent runs of letters may be marked.
Let an = |Ωn| and we first show an = F2n−1 for n ≥ 1. Then a1 = 1 and a2 = 2,
and we show an = 3an−1 − an−2 for n ≥ 3. Note first that there are an−1 members
of Ωn whose final run is of length at least two, upon appending a copy of the final
letter to a member of Ωn−1. Further, there are also an−1 members of Ωn ending in
a run of length one such that this run is of the opposite status concerning whether
or not it is marked than the run directly preceding it. To complete the proof of the
recurrence, it suffices to show that there are an−1 − an−2 members of Ωn for n ≥ 3
ending in two or more unmarked runs, with the last run of length one. Let Ω′

n and
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Ω′′
n denote the subsets of Ωn ending in an unmarked or a marked run, respectively.

Then there are an−1 members of Ω′′
n, which may be realized by appending a marked

m+ 1 to λ ∈ Ω′
n−1 or appending m to λ ∈ Ω′′

n−1, where m denotes the largest letter
of λ in either case. Hence, by subtraction, there are an−1 − an−2 members of Ω′

n−1,
and appending an unmarked m+ 1 as before yields the desired members of Ωn.

We now define a bijection between Ωn and Cn(1-32) for all n ≥ 1, which will
imply the desired result. Represent π ∈ Ωn by π = π(1) · · · π(s) for some s ≥ 1,
where each π(i) starts with a marked run and contains no other marked runs, with
min(π(i+1)) = max(π(i)) + 1 for 1 ≤ i ≤ s − 1. Let min(π(i)) = ji for each i ∈ [s] so
that π ∈ Ωn implies ji+1 > ji + 1 for all i. Let f(π) be the sequence obtained from
π by replacing the section π(i) for each i ∈ [s] with π(i) − (ji − 1), i.e, subtract ji − 1
from each letter in π(i). Then π a non-decreasing Catalan word marked as described
implies f(π) ∈ Cn(1-32) for all π as each descent bottom in f(π) is seen to be 1. For
example, if n = 10 and π = 1123345567 ∈ Ω10, where marked runs are underlined,
then f(π) = 1123312212 ∈ C10(1-32). One may verify that the mapping f yields the
desired bijection between Ωn and Cn(1-32).

Let Mn denote the n-th Motzkin number for n ≥ 0, see, e.g., [19, A001006].
Recall that Mn enumerates the set Mn of lattice paths from (0, 0) to (n, 0) using u,
d and h = (1, 0) steps that never go below the x-axis (termed Motzkin paths). Let
Ln for n ≥ 0 denote the n-th term of the sequence A005773 from [19]. Note that Ln

enumerates the set of lattice paths from (0, 0) to the line x = n − 1 using u, d and
h steps that never go below the x-axis (termed Motzkin left-factors, see [1, p. 111]).

The following result connects the sequences Mn and Ln to vincular pattern avoid-
ance by Catalan words.

Theorem 2.3. If n ≥ 1, then cn(1-22) = Mn and cn(2-31) = Ln.

Proof. Let C ′
n denote the subset of Cn whose members contain no two equal adjacent

entries. Let Dn(ρ) denote the subset of Dn whose members avoid the string of steps
ρ. Then we have that the subset C ′

n of Cn corresponds under ı to Dn(udu). We
first define a bijection αn between Dn(udu) and Mn−1 for each n ≥ 1, which will be
needed in what follows. If n = 1, let α1(ud) be the empty lattice path of length zero.
If n ≥ 2, let τ ∈ Dn(udu) be decomposed as τ = τ (1) · · · τ (r) for some r ≥ 1, where
τ (j) for each j ∈ [r] is of the form τ (j) = uρ(j)d with ρ(j) a possibly empty Dyck path
(the τ (j) are what are often referred to as the units of the Dyck path τ , with the
same terminology applied to members of Mn).

Let kj = |τ (j)| − 1 for 1 ≤ j ≤ r, where |ρ| denotes the semi-length (i.e., half the
total number of steps) of a Dyck path ρ. Note that τ avoiding udu implies kj ≥ 1
for j ∈ [r − 1], with kr ≥ 0. We then define αn for n ≥ 2 by letting

αn(τ) = uαk1(ρ
(1))d · · · uαkr−1(ρ

(r−1))dσ,

where σ is empty if kr = 0 and is given by hαkr(ρ
(r)) if kr > 0. For example, this

yields α2(u
2d2) = h and α3(u

2d2ud) = ud, α3(u
3d3) = h2 and α4(u

2d2u2d2) = udh,
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α4(u
3d3ud) = uhd, α4(u

3d2ud2) = hud, α4(u
4d4) = h3, which covers all cases for

2 ≤ n ≤ 4. One may verify that αn defines a bijection between Dn(udu) and Mn−1

for all n ≥ 1. Note that αn may be reversed by considering the leftmost h step
of height zero, if it exists, within a member λ of Mn−1 as well as any units of λ
occurring to the left of this h (which determine all units but the last of α−1

n (λ)).

Observe that Cn(1-22) corresponds under ı to the subset D∗
n of Dn consisting

of those members which avoid all occurrences of udu except for possibly those in
which both u steps end at height one. We define a bijection βn between D∗

n for each
n ≥ 1 and Mn and taking the composition βn ◦ ı will yield the desired bijection
between Cn(1-22) and Mn. To define βn, let τ ∈ D∗

n be decomposed into units as
τ = τ (1) · · · τ (r) like before and note that kj = 0 is now also possible for j ∈ [r − 1]
(as udu’s flush with the x-axis are permitted in members of D∗

n). If kj ≥ 1 for some
j ∈ [r], then we replace τ (j) with uαkj(ρ

(j))d, where kj and ρ(j) are as before. If

kj = 0, i.e., τ (j) = ud, then replace τ (j) with h. Let βn(τ) denote the lattice path
resulting when one makes all of the replacements as described above. One may verify
βn(τ) ∈ Mn for all τ . Further, one has that βn is reversible, and hence a bijection as
desired, upon considering the units and any h steps of height zero within a member
of Mn. This completes the proof of the first equality.

For the second, note that π = π1 · · · πn ∈ Cn(2-31) must satisfy πi+1 − πi ∈
{−1, 0, 1} for 1 ≤ i ≤ n − 1. To see this, note that if πjπj+1 = ab with a ≥ b + 2
for some j ∈ [n− 1], then there must be an occurrence of 2-31, as witnessed by the
subsequence πkπjπj+1, where k < j denotes the position of the leftmost occurrence
of the letter a − 1. Thus, members of Cn(2-31) correspond to the set Tn of smooth
Catalan sequences of length n. That |Tn| = Ln for n ≥ 1 was shown in [14, Theorem
2.1], where a more general result concerning the generating function was deduced,
which implies the second equality.

2.2 The cases 2-21 and 3-21

One can find recurrences enumerating the members of Cn(τ), where τ is 2-21 or 3-21,
by refining the number of avoiders according to the same pair of parameters in either
case. Let Un,m,a denote the subset of Cn(2-21) whose members have largest letter m
and last letter a, where n ≥ 1 and 1 ≤ a ≤ m ≤ n, with Un,m,a taken to be empty
otherwise, and let un(m, a) = |Un,m,a|. Define vn(m, a) analogously in conjunction
with the pattern 3-21.

We have the following recurrence for un(m, a).

Lemma 2.4. If n ≥ 3 and 2 ≤ m ≤ n, then

un(m, a) = un−1(m, a− 1) + un−1(m, a) + un−2(m− 1,m− 1), 1 ≤ a ≤ m− 1,
(1)

un(m,m) = un−1(m− 1,m− 1) + un−1(m,m− 1) + un−1(m,m), (2)

with un(1, 1) = 1 for all n ≥ 1 and u2(2, 1) = 0, u2(2, 2) = 1.
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Proof. First suppose π ∈ Un,m,a, where n ≥ 3 and 1 ≤ a ≤ m− 1. Let ℓ denote the
penultimate letter of π. If ℓ ≤ a, then only ℓ = a − 1 or ℓ = a are possible since
π ∈ Cn (where the former case only applies if a > 1). This yields un−1(m, a− 1) and
un−1(m, a) possibilities for π, respectively. Note that a < ℓ < m is not possible, for
otherwise there would be an occurrence of 2-21 in which the letters corresponding
to the ‘2’ correspond to the first and last occurrences of ℓ. Finally, if ℓ = m, then
there can be no other occurrences of m in π as a < m. That is, π = π′ma, where
π′ ∈ Un−2,m−1,m−1. Thus, there are un−2(m−1,m−1) possibilities for π if ℓ = m and
combining with the prior cases yields (1). On the other hand, if π ∈ Un,m,m, where
m ≥ 2, then there are un−1(m,m− 1)+un−1(m− 1,m− 1) possibilities if ℓ = m− 1,
the second term accounting for cases in which the largest letter occurs only in the
final position of π, and un−1(m,m) possibilities if ℓ = m, which implies (2). Clearly,
Un,1,1 contains only the sequence 1n for all n ≥ 1, with U2,2,1 = ∅ and U2,2,2 = {12},
which implies the initial conditions.

Define the distribution polynomial ũn(x, y) =
∑n

m=1

∑m
a=1 un(m, a)xm−aym for

n ≥ 1 and its generating function u(t; x, y) =
∑

n≥1 ũn(x, y)t
n. Define ṽn(x, y) and

v(t; x, y) analogously in conjunction with the pattern 3-21. There is the following
explicit formula for u(t; x, y) in the case x = y = 1.

Theorem 2.5. We have

∑

n≥1

cn(2-21)t
n =

t

1− 2t
−
∑

i≥1

(−1)it
i(i+5)

2 (1− 2t)
∑i

j=1
(1−t)j

(1−2t)(1−t)j−(1−t)2tj∏i
j=1 ((1− 2t)(1− t)j − (1− t)2tj)

. (3)

Proof. Define un(m; x) =
∑m

a=1 un(m, a)xm−a for n ≥ 1 and 1 ≤ m ≤ n. Then
recurrences (1) and (2) can be written for n ≥ 3 as

un(m; x) =
1

x
(un−1(m; x)− un−1(m; 0)) + un−1(m; x) +

x− xm

1− x
un−2(m− 1; 0)

+ un−1(m− 1; 0), 2 ≤ m ≤ n, (4)

with un(1; x) = 1 for all n ≥ 1 and u2(2; x) = 1. By (4), we have

ũn(x, y) =
1

x
(ũn−1(x, y)− ũn−1(0, y)) + ũn−1(x, y) +

xy

1− x
(ũn−2(0, y)− ũn−2(0, xy))

+ yũn−1(0, y), n ≥ 3, (5)

with ũ1(x, y) = y and ũ2(x, y) = y + y2. Note that (5) is seen also to hold for n = 2
if one defines ũ0(x, y) = 0. Multiplying both sides of (5) by tn, and summing over
all n ≥ 2, yields the functional equation

u(t; x, y) = yt+
t

x
(u(t; x, y)− u(t; 0, y)) + tu(t; x, y) +

xyt2

1− x
(u(t; 0, y)

− u(t; 0, xy)) + ytu(t; 0, y). (6)
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We now apply the kernel method to (6). Letting x = t/(1− t) in (6) cancels out
all terms involving u(t; x, y) and solving for u(t; 0, y) in terms of u

(
t; 0, yt

1−t

)
leads to

u(t; 0, y) =
yt(1− 2t)

(1− t)(1− 2t− yt+ yt2)
− yt3

(1− t)(1− 2t− yt+ yt2)
u

(
t; 0,

yt

1− t

)
.

(7)

Iteration of (7), where |t| < a for some a > 0 suitably small, then yields

u(t; 0, y) = t(1− 2t)
∑

i≥0

(−1)iyi+1t
i(i+7)

2

∏i
j=0((1− 2t)(1− t)j+1 − y(1− t)2tj+1)

. (8)

By (6), we have

u(t; x, y) =
xyt

x− t− xt
− t((1− x)(1− xy)− x2yt)

(1− x)(x− t− xt)
u(t; 0, y)

− x2yt2

(1− x)(x− t− xt)
u(t; 0, xy),

u(t;x, y) =
xyt

x− t− xt

− t2(1− 2t)((1− x)(1− xy)− x2yt)

(1− x)(x− t− xt)

∑

i≥0

(−1)iyi+1t
i(i+7)

2

∏i
j=0((1− 2t)(1− t)j+1 − y(1− t)2tj+1)

− x2yt3(1− 2t)

(1− x)(x− t− xt)

∑

i≥0

(−1)i(xy)i+1t
i(i+7)

2

∏i
j=0((1− 2t)(1− t)j+1 − xy(1− t)2tj+1)

. (9)

We wish to find u(t; 1, 1) =
∑

n≥1 cn(2-21)t
n, though it is not possible to sub-

stitute x = 1 directly into (9) as it leads to the indeterminate 0/0. Note, however,
for each t of sufficiently small absolute value, there is uniform convergence in the
x-derivatives of the partial sums of the series expansion in (9) for all x in some finite
open interval containing x = 1. By, for example, [22, p. 187, Theorem 12], we thus
may interchange the summation and differentiation in (9) in applying L’Hôpital’s
rule to obtain

u(t; 1, 1) = lim
x→1

u(t; x, 1)

=
t

1− 2t
− t3 lim

x→1

∂

∂x

(
x2
∑

i≥0

(−1)it
i(i+7)

2

∏i
j=0((1− 2t)(1− t)j+1 − (1− t)2tj+1)

− x2
∑

i≥0

(−1)ixi+1t
i(i+7)

2

∏i
j=0((1− 2t)(1− t)j+1 − x(1− t)2tj+1)

)

=
t

1− 2t
+ t3

∑

i≥0

(−1)it
i(i+7)

2

(
i+ 1 +

∑i
j=0

(1−t)2tj+1

(1−2t)(1−t)j+1−(1−t)2tj+1

)

∏i
j=0((1− 2t)(1− t)j+1 − (1− t)2tj+1)
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=
t

1− 2t
+ t3

∑

i≥0

(−1)it
i(i+7)

2 (1− 2t)
∑i

j=0
(1−t)j+1

(1−2t)(1−t)j+1−(1−t)2tj+1

∏i
j=0((1− 2t)(1− t)j+1 − (1− t)2tj+1)

.

Replacing i with i− 1 (and then j with j − 1) in the last expression yields (3).

We now consider avoidance of 3-21. Applying similar reasoning to that used in
the proof of Lemma 2.4, we obtain the following recurrences for vn(m, a).

Lemma 2.6. If n ≥ 3 and 2 ≤ m ≤ n, then

vn(m, a) = vn−1(m, a− 1) + vn−1(m, a) + vn−1(m,m), 1 ≤ a ≤ m− 1, (10)

vn(m,m) = vn−1(m− 1,m− 1) + vn−1(m,m− 1) + vn−1(m,m), (11)

with vn(1, 1) = 1 for all n ≥ 1 and v2(2, 1) = 0, v2(2, 2) = 1.

There is the following formula for the generating function of cn(3-21).

Theorem 2.7. We have

∑

n≥1

cn(3-21)t
n =

t

1− 2t
−
∑

i≥1

(−1)it2i(1− t)(
i

2)(1− 2t)
∑i

j=1
tj

(1−3t+t2)(1−t)j−1−(1−2t)tj∏i
j=1 ((1− 3t+ t2)(1− t)j−1 − (1− 2t)tj)

.

(12)

Proof. Let vn(m; x) =
∑m

a=1 vn(m, a)xm−a for n ≥ m ≥ 1. Then (10) and (11)
together imply for n ≥ 3 the recurrence

vn(m; x) =
1

x
(vn−1(m; x)− vn−1(m; 0)) + vn−1(m; x)− vn−1(m; 0)

+
1− xm

1− x
vn−1(m; 0) + vn−1(m− 1; 0), 2 ≤ m ≤ n,

with vn(1; x) = 1 for all n ≥ 1 and v2(2; x) = 1. This implies

ṽn(x, y) =
1

x
(ṽn−1(x, y)− ṽn−1(0, y)) + ṽn−1(x, y)− ṽn−1(0, y) +

1

1− x
(ṽn−1(0, y)

− ṽn−1(0, xy)) + yṽn−1(0, y), n ≥ 2,

with ṽ1(x, y) = y. Multiplying both sides of the last equality by xn, and summing
over n ≥ 2, gives

v(t; x, y) = yt+
t

x
(v(t; x, y)− v(t; 0, y)) + tv(t; x, y)− tv(t; 0, y)

+
t

1− x
(v(t; 0, y)− v(t; 0, xy)) + ytv(t; 0, y). (13)

Applying the kernel method to (13), and taking x = t/(1− t), we obtain

v(t; 0, y) =
yt(1− 2t)

1− 3t+ t2 − yt(1− 2t)
− t(1− t)

1− 3t+ t2 − yt(1− 2t)
v

(
t; 0,

yt

1− t

)
. (14)



T. MANSOUR AND M. SHATTUCK/AUSTRALAS. J. COMBIN. 91 (1) (2025), 177–216 187

Iteration of (14) implies for t sufficiently close to zero the explicit formula

v(t; 0, y) = yt(1− 2t)
∑

i≥0

(−1)it2i
∏i

j=0(1− 3t+ t2 − ytj+1(1−2t)
(1−t)j

)
. (15)

Solving for v(t; x, y) in (13) gives

v(t; x, y) =
xyt

x−t−xt
− t((1−x)(1−xy)−x2)

(1−x)(x−t−xt)
v(t; 0, y)− xt

(1−x)(x−t−xt)
v(t; 0, xy),

and applying (15) yields

v(t; x, y) =

xyt

x− t− tx
− yt2(1− 2t)((1− x)(1− xy)− x2)

(1− x)(x− t− xt)

∑

i≥0

(−1)it2i
∏i

j=0(1− 3t+ t2 − ytj+1(1−2t)
(1−t)j

)

− x2yt2(1− 2t)

(1− x)(x− t− xt)

∑

i≥0

(−1)it2i
∏i

j=0(1− 3t+ t2 − xytj+1(1−2t)
(1−t)j

)
. (16)

As in the proof of (3) above, we take the limit as x → 1 in v(t; x, 1) to obtain a
formula for v(t; 1, 1) =

∑
n≥1 cn(3-21)t

n using (16). This gives

v(t; 1, 1) = lim
x→1

v(t; x, 1)

=
t

1− 2t
− t2 lim

x→1

∂

∂x

(
x2
∑

i≥0

(−1)it2i

∏i
j=0

(
1− 3t+ t2 − (1−2t)tj+1

(1−t)j

)

− x2
∑

i≥0

(−1)it2i

∏i
j=0

(
1− 3t+ t2 − x(1−2t)tj+1

(1−t)j

)
)

=
t

1− 2t
+
∑

i≥0

(−1)it2i+2(1− t)(
i+1
2 )(1− 2t)

∑i
j=0

tj+1

(1−3t+t2)(1−t)j−(1−2t)tj+1

∏i
j=0 ((1− 3t+ t2)(1− t)j − (1− 2t)tj+1)

,

and replacing i with i− 1 in the last expression yields (12).

2.3 The cases 1-11 and 2-11

To prove the result in the case 1-11, we introduce and derive formulas for three aux-
iliary generating functions before proceeding. Recall that a level within a sequence
v1 · · · vr refers to an index i ∈ [r − 1] such that vi = vi+1. For the first generating
function, we let Hm = Hm(t) for m ≥ 1 enumerate the (nonempty) m-ary words
w1 · · ·wn for all n ≥ 1 that contain no levels and end in m such that wi+1 ≤ wi + 1
for each i ∈ [n− 1], with H0 = 0.

Let Un = Un(t) denote the n-th Chebyshev polynomial of the second kind defined
recursively by Un = 2tUn−1 − Un−2 for n ≥ 2, with initial values U0 = 1 and U1 = 2t
(see, e.g., [17]). We have the following explicit formula for Hm in terms of Chebyshev
polynomials.
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Lemma 2.8. If m ≥ 1, then

Hm(t) =
Um−1(s)

Um+1(s)
, (17)

where s =
√
1+t

2
√
t
.

Proof. Let H∗
m = H∗

m(t) denote the restriction of Hm to those words starting with
m. Note first that H∗

m = t + t(Hm −H∗
m) for m ≥ 1, which follows from observing

that a word ρ enumerated by H∗
m is of the form ρ = mρ′, where either ρ′ is empty or

is nonempty and starts with a letter in [m− 1]. Further, we also have

Hm = tHm−1 +H∗
m + tHm−1(Hm −H∗

m), m ≥ 2, (18)

with H1 = 1. To see (18), consider the following cases on the form of w = w1 · · ·wn

enumerated by Hm where m ≥ 2: (i) w = w′m, where w′ is (m − 1)-ary, (ii) w
starts with m or (iii) w = w′mw′′m, where w′ and w′′ are nonempty and w′ does not
contain m. It is seen that cases (i)–(iii) account for the three respective terms in

(18), by subtraction as w′′ cannot start with m in (iii). Substituting H∗
m = t(1+Hm)

1+t

into (18), and solving for Hm, yields the recurrence

Hm =
t(1 +Hm−1)

1− tHm−1

, m ≥ 2. (19)

Note that (17) is seen also to hold form = 1, as U0(s) = 1 and U2(s) =
1
t
. Proceeding

inductively using (19), we then have for m ≥ 2,

Hm(t) =
t(Um(s) + Um−2(s))

Um(s)− tUm−2(s)
=

√
t(1 + t)Um−1(s)

Um(s)− tUm−2(s)
=

Um−1(s)

Um+1(s)
,

as desired, where we have used the respective facts
√

(1 + t)/tUm−1(s) = Um(s) +

Um−2(s) and
√
t(1 + t)Um+1(s) = Um(s)− tUm−2(s) in the last two equalities.

Let Jm = Jm(t) for m ≥ 1 denote the generating function for the number of
m-ary words w1 · · ·wn (possibly empty) containing no levels such that wi+1 ≤ wi+1
for each i ∈ [n− 1], with J0 = 1.

Lemma 2.9. If m ≥ 1, then

Jm(t) =
1

Um+1(s)

(
1 + t

t

)(m+1)/2

. (20)

Proof. Let J∗
m = J∗

m(t) denote the restriction of Jm to those (nonempty) words
starting with m. Then we have J∗

m = t(Jm − J∗
m) for m ≥ 1. To realize this, note

that a word ρ enumerated by J∗
m is of the form ρ = mρ′, where ρ′ is either empty

or is nonempty and starts with a letter in [m − 1], with ρ′ in the latter case being
enumerated by Jm − J∗

m − 1. We also have the recurrence

Jm = Jm−1 + J∗
m + tHm−1(Jm − J∗

m), m ≥ 2, (21)
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with J1 = 1+ t. To show (21), note first that a word w enumerated by Jm for m ≥ 2
either is (m−1)-ary, starts with m or has the form w = w′mw′′, where w′ and w′′ are
(m−1)- and m-ary, respectively. The section w′ of w must be nonempty, whereas w′′

could be empty, and thus w′ and w′′ are precisely of the form enumerated by Hm−1

and Jm − J∗
m, respectively. This accounts for the third term in (21), and implies

the formula, where the extra t factor accounts for the intermediate letter m in the
decomposition of w.

Substituting J∗
m = t

1+t
Jm into (21), and solving for Jm, yields

Jm =
Jm−1

1− t
1+t

(1 +Hm−1)
, m ≥ 1, (22)

where the m = 1 case follows from the initial values of Hm and Jm. By (17) and
(22), and the fact Um(s) + Um−2(s) =

√
(1 + t)/tUm−1(s), we have

Jm(t) =
Jm−1(t)

1− t
1+t

(
1 + Um−2(s)

Um(s)

) =
Um(s)Jm−1(t)

Um(s)−
√
t√

1+t
Um−1(s)

=
Um(s)Jm−1(t)√

t√
1+t

Um+1(s)
, m ≥ 1,

(23)
with J0(t) = 1. Upon applying (23) repeatedly, and observing a telescoping product,
we obtain (20).

Let C ′
n denote the subset of Cn whose members contain no levels and let C ′

n,m be
the subset of C ′

n whose members have largest letter m (i.e., that contain m distinct
letters). Given m ≥ 2 and n ≥ m−1, let C ′′

n,m be the subset of C ′
n,m−1 whose members

end in m−1. Let Gm = Gm(t) for m ≥ 2 denote the generating function enumerating
the members of C ′′

n,m for all n ≥ m− 1, with G1 = 1. We have the following explicit
formula for Gm.

Lemma 2.10. If m ≥ 1, then

Gm(t) =
1

Um(s)

(
t

1 + t

)(m−2)/2

. (24)

Proof. The equality is clear for m = 1, so assume m ≥ 2. Let w ∈ C ′′
n,m be decom-

posed as w = w(1)(m − 1) · · ·w(k)(m − 1) for some k ≥ 1, where each subword w(j)

does not contain m− 1. Note that w ∈ C ′′
n,m where m ≥ 3 if and only if w(1) ∈ C ′′

ℓ,m−1

for some ℓ ≥ m− 2 and each w(j) for 2 ≤ j ≤ k is of the form enumerated by Hm−2.
Thus, by definitions of the generating functions and (17), we have

Gm(t) =
∑

k≥1

tkGm−1(t)(Hm−2(t))
k−1 =

tGm−1(t)

1− tHm−2(t)
=

tUm−1(s)Gm−1(t)

Um−1(s)− tUm−3(s)

=

√
tUm−1(s)Gm−1(t)√

1 + tUm(s)
, m ≥ 2, (25)

with G1(t) = 1, where in the last equality, we used the fact
√
t(1 + t)Um(s) =

Um−1(s) − tUm−3(s). Iterating (25), and observing a telescoping product, yields
(24).
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Now let qn(m) = |C ′
n,m| for n ≥ m ≥ 1. Define Qm = Qm(t) =

∑
n≥m qn(m)tn for

m ≥ 1. Using the prior results, we may obtain a simple explicit formula for Qm in
terms of Chebyshev polynomials.

Lemma 2.11. If m ≥ 1, then

Qm(t) =

√
1 + t√

tUm(s)Um+1(s)
. (26)

Proof. We may assume m ≥ 2, the formula being clear for m = 1 as Q1 = t. We
decompose w ∈ C ′

n,m as w = w(1)mw(2)m · · ·w(k)mw(k+1) for some k ≥ 1, where no

w(j) contains m or any levels and w(j) for each j ∈ [k] is nonempty and ends in m−1.
By the definitions of the various generating functions, we obtain

Qm =
tGmJm−1

1− tHm−1

, m ≥ 2,

where the extra factor of t in the numerator accounts for the m directly following
w(1). Thus, by (17), (20) and (24), we get

Qm(t) =

t
Um(s)

(
t

1+t

)(m−2)/2 · 1
Um(s)

(
1+t
t

)m/2

1− tUm−2(s)
Um(s)

=
1 + t

Um(s)(Um(s)− tUm−2(s))
=

√
1 + t√

tUm(s)Um+1(s)
,

as desired.

It is now possible to ascertain a formula for the generating function of cn(1-11).

Theorem 2.12. We have
∑

n≥1

cn(1-11)t
n =

∑

m≥1

(1 + t)m+1

√
t(1 + t)Um

(√
1+t

2
√
t

)
Um+1

(√
1+t

2
√
t

) . (27)

Proof. First, note that members of Cn(1-11) can be obtained from those in C ′
i,j for

various i and j by choosing some subset of the distinct letters to have an initial run
of length two. That is, given σ ∈ C ′

i,j , we select n − i of the j distinct letters of σ
and for each chosen letter x, we insert a second x just following the first occurrence
of x within σ. It is seen that all members of Cn(1-11) arise uniquely in this manner
as i and j vary and thus

cn(1-11) =
n∑

i=1

n∑

j=1

(
j

n− i

)
qi(j).

Note that the inner sum in this expression can only be nonzero if i ≤ n ≤ 2i, as
j ≤ i is required, and hence the formula may be rewritten as

cn(1-11) =
n∑

i=⌊n+1
2

⌋

i∑

j=n−i

(
j

n− i

)
qi(j).
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Thus, we have

∑

n≥1

cn(1-11)t
n =

∑

n≥1

tn
n∑

i=⌊n+1
2

⌋

i∑

j=n−i

(
j

n− i

)
qi(j) =

∑

i≥1

2i∑

n=i

tn
i∑

j=n−i

(
j

n− i

)
qi(j)

=
∑

i≥1

i∑

j=1

qi(j)

i+j∑

n=i

(
j

n− i

)
tn =

∑

i≥1

i∑

j=1

ti(1 + t)jqi(j)

=
∑

j≥1

∑

i≥j

ti(1 + t)jqi(j) =
∑

j≥1

Qj(t)(1 + t)j,

from which (27) follows from the last equality and (26).

Using some of the prior results, one can obtain with a bit more work a formula
comparable to (27) for the pattern 2-11.

Theorem 2.13. We have

∑

n≥1

cn(2-11)t
n =

∑

m≥1

(
1+t
t

)(m+1)/2

tUm

(√
1+t

2
√
t

)
Um+1

(√
1+t

2
√
t

)
Um+2

(√
1+t

2
√
t

) . (28)

Proof. Let Pm = Pm(t) denote the generating function for the number of members
w ∈ Cn(2-11) with max(w) = m. Clearly, P1 =

t
1−t

, so assume m ≥ 2. To determine
an explicit formula for Pm where m ≥ 2, first decompose w enumerated by Pm as
w = w(1)m · · ·w(ℓ)mw(ℓ+1) for some ℓ ≥ 1, where each w(j) is (m− 1)-ary. Then w(j)

for j ∈ [ℓ] ends in m− 1, with w(1) a Catalan word that avoids 2-11 and wj for each
j ∈ [2, ℓ+ 1] satisfying the Catalan adjacency requirement and containing no levels.
Further, we have that w(1) is nonempty as m ≥ 2, with all other w(j) possibly empty.
By the definitions of Hm and Jm, we get

Pm =
tKmJm−1

1− t− tHm−1

, m ≥ 1, (29)

where Km = Km(t) for m ≥ 2 is the generating function for the number of members
of Cn(2-11) in which m− 1 is both the largest and last letter, with K1 = 1.

To find a formula for Km, suppose ρ enumerated by Km where m ≥ 2 is decom-
posed as ρ = ρ(1)(m−1) · · · ρ(ℓ)(m−1) for some ℓ ≥ 1, where each ρ(j) is (m−2)-ary.
Then it is seen that ρ(1)(m− 1) contributes tKm−1 towards Km, with the remaining
part ρ(2)(m− 1) · · · ρ(ℓ)(m− 1) contributing 1

1−t−tHm−2
. This implies

Km =
tKm−1

1− t− tHm−2

, m ≥ 2,

with K1 = 1, and hence

Km =
tm−1

∏m−2
i=0 (1− t− tHi)

, m ≥ 1.
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So, by (29), we get

Pm =
tmJm−1∏m−1

i=0 (1− t− tHi)
, m ≥ 1. (30)

Note that by (17) and the recurrence for Uj, we have

1− t(1 +Hi(t)) = 1− t

(
1 +

Ui−1(s)

Ui+1(s)

)
=

Ui+1(s)−
√

t(1 + t)Ui(s)

Ui+1(s)
=

tUi+3(s)

Ui+1(s)
,

where s =
√
1+t

2
√
t
. Hence, by (30) and (20), we get

Pm(t) =
tmJm−1(t)

∏m−1
i=0 t

(
tUi+3(s)
Ui+1(s)

) =
U1(s)U2(s)Jm−1(t)

Um+1(s)Um+2(s)
=

U1(s)U2(s) · 1
Um(s)

(
1+t
t

)m/2

Um+1(s)Um+2(s)

=

(
1+t
t

)(m+1)/2

tUm(s)Um+1(s)Um+2(s)
.

Summing the last formula over all m ≥ 1 now yields (28).

3 Patterns of the type (2, 1)

In this section, we seek to determine cn(τ) for τ of the form (2, 1). Our work is
shortened by observing that the patterns 12-1, 12-2, 12-3 and 23-1 are equivalent
on Catalan words to the analogous classical patterns of length three. An argument
similar to that given above showing the equivalence of 31-2 and 3-1-2 may be given
in each case. From the results in [5], we obtain the following simple formulas for the
number of avoiders of each pattern.

Proposition 3.1. If n ≥ 1, then cn(12-1) = cn(12-3) = 2n−1, cn(12-2) =
(
n
2

)
+ 1

and cn(23-1) = F2n−1.

Remark: The formulas from Propositions 2.1 and 3.1 were obtained in [5] as special
cases of generating functions enumerating the various avoidance classes Cn(τ), with
τ a classical pattern of length three, according to the descents statistic. We remark
that it is possible to provide direct combinatorial proofs of these formulas for cn(τ),
where τ is taken to be the corresponding equivalent vincular pattern of length three
in each case, without recourse to generating functions. This can either be achieved
bijectively by defining certain correspondences between discrete structures or by
arguing combinatorially that the sequence un = cn(τ) satisfies the appropriate two-
term recurrence (for example, un = 3un−1 − un−2 for n ≥ 3 in the cases when
τ = 2-12, 23-1 or un = 4un−1 − 3un−2 when τ = 3-12). We leave these problems as
exercises to explore for the interested reader.

The pattern 11-1 is equivalent to 1-11 considered above.
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Proposition 3.2. If n ≥ 1, then cn(11-1) = cn(1-11). Moreover, the refinements
of cn(11-1) according to the largest or last letter parameters coincide with those of
cn(1-11).

Proof. First note that π ∈ Cn belongs to Cn(11-1) if and only if for each i ≥ 1, all
runs of i within π are of length one, except for possibly the last, which may be of
length two. Likewise, membership of π in Cn(1-11) implies each run of i is of length
one, except for possibly the first, which may be of length two. Let π′ be obtained
from π ∈ Cn(11-1) by moving the second letter, if it occurs, in the last run of i to
the first run, leaving all other runs of i unchanged, for each of the distinct letters
i occurring in π. The mapping π 7→ π′ is seen to be a bijection from Cn(11-1) to
Cn(1-11). Furthermore, since π and π′ have the same largest and last letters for all
π, the second statement follows.

3.1 The cases 22-1 and 32-1

We have the following simple formulas for the number of avoiders of 22-1 or 32-1.

Theorem 3.3. If n ≥ 1, then cn(22-1) = Ln and cn(32-1) =
1
2
(3n−1 + 1).

Proof. Recall that the cardinality of the subset of Cn whose members have no equal
adjacent letters, i.e., contain no levels, is given by the Motzkin number Mn−1; see,
e.g., [4]. Consider whether or not π = π1 · · · πn ∈ Cn(22-1) contains a level, and if it
does, let i denote the index of the first letter of the leftmost level. In the latter case,
we have that π may be decomposed as π = αβ, where α ∈ Ci contains no levels (and
hence is enumerated by Mi−1) and β = πi+1 · · · πn is such that subtracting x−1 from
each of its entries results in an arbitrary member of Cn−i(22-1), where x denotes the
common value of πi and πi+1. Note that β cannot contain any letters in [x−1] and is
as described, for otherwise π would contain an occurrence of 22-1. Let an = cn(22-1).
Combining the cases above for π, we get the recurrence

an = Mn−1 +
n−1∑

i=1

Mi−1an−i, n ≥ 2, (31)

with a1 = 1. On the other hand, considering whether or not a Motzkin left-factor
with n − 1 steps ends at height zero, and if not, the position of the rightmost step
starting at height zero, implies that the sequence Ln also satisfies (31) for n ≥ 2,
with L1 = 1, which yields the first equality.

For the second equality, let bn = cn(32-1) and first observe that there are bn−1

members of Cn(32-1) containing a single 1 and the same number that start 1, 1. So
assume ρ = ρ1 · · · ρn ∈ Cn(32-1) is of the form ρ = 1ρ′1ρ′′, where ρ′ is nonempty
and contains no 1’s. If ρ′ has length m − 1, where 2 ≤ m ≤ n − 1, then there are
2m−2 possibilities for ρ′ as it is non-decreasing and starts with 2. Further, there are
bn−m possibilities for the section 1ρ′′, as no restrictions are placed upon it by 1ρ′.
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Considering all possible m then yields the recurrence

bn = 2bn−1 +
n−1∑

m=2

2m−2bn−m, n ≥ 2, (32)

with b1 = 1.

At this point, one may show bn = 1
2
(3n−1 + 1) for n ≥ 1 by computing its

generating function using (32). Alternatively, one can give a more combinatorial
proof as follows. First, recall that there are 1

2
(3n−1 + 1) partitions of [n] that have

at most three blocks; see, for example, [19, A124302]. Let us represent partitions
sequentially as restricted growth words (see, e.g., [23]) and let Rn denote the set
of such words corresponding to the partitions of [n] having at most three blocks.
Let rn = |Rn| for n ≥ 1 and we show that rn satisfies (32) for all n ≥ 2. Note
that members of Rn are 3-ary words of length n that start with 1, such that if 3
occurs, then 2 does as well and the leftmost 3 occurs somewhere to the right of
the leftmost 2. Then there are clearly rn−1 members of Rn that end in 1 and the
same number ending in 2. To enumerate the members ending in 3, let n − m + 1
be the position of the rightmost 2 within π = π · · · πn ∈ Rn, where 2 ≤ m ≤ n − 1.
Then there are rn−m possibilities for the section π1 · · · πn−m, and 2m−2 possibilities
for πn−m+2 · · · πn−1, each entry of which must be a 1 or 3 independent of the others.
Summing over 2 ≤ m ≤ n − 1 then gives

∑n−1
m=2 2

m−2rn−m members of Rn ending
in 3. Combining with the prior two cases implies rn satisfies recurrence (32), with
r1 = 1. Hence, we have bn = rn for all n ≥ 1, as desired.

3.2 The cases 21-2 and 21-3

Given n ≥ 1 and 1 ≤ a ≤ n, let Un,a denote the subset of Cn(21-2) whose members
have last letter a and let un(a) = |Un,a|. Put un(a) = 0 if it is not the case that
n ≥ 1 with a ∈ [n]. The un(a) are given recursively as follows.

Lemma 3.4. If n ≥ 2, then

un(a) =
n−1∑

j=a−1

un−1(j)−
a−1∑

j=1

n−a∑

m=j+1

(
m− 2

j − 1

)
un−m(a), 2 ≤ a ≤ n, (33)

with un(1) =
∑n−1

j=1 un−1(j) for n ≥ 2 and u1(1) = 1.

Proof. The initial condition when a = 1 is clear, upon appending 1 to an arbitrary
member of Cn(21-2), which is seen not to introduce an occurrence of 21-2. Note that
the set Un,n for n ≥ 1 consists of only the sequence 12 · · ·n, and thus (33) is seen to
hold for a = n. So assume π = π1 · · · πn ∈ Un,a, where n ≥ 3 and 2 ≤ a ≤ n − 1.
By a descent top within π, it is meant the larger letter in a descent, i.e., the letter
πi within an adjacency πiπi+1 for some 1 ≤ i ≤ n − 1 such that πi > πi+1. Let
π′ = πi1 · · · πir denote the subsequence of π for some r ≥ 1 wherein ir = n and πij

for 1 ≤ j ≤ r − 1 is the j-th descent top of π (from the left). One may verify that
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π ∈ Cn(21-2) implies π′ is strictly decreasing (with the converse holding as well).
This implies one may append an a to any member of ∪n−1

j=aUn−1,j without introducing
21-2, with all members of Un,a not ending in a− 1, a arising uniquely in this manner.
On the other hand, we may append a to ρ ∈ Un−1,a−1 if and only if a does not occur
as a descent top in ρ.

We proceed by enumerating the subset S of Un−1,a−1 whose members contain a
as a descent top and subtracting the result from un−1,a−1. Note that S is empty if
a = n− 1, so we may assume 2 ≤ a ≤ n− 2. Thus, to complete the proof, it suffices
to show

|S| =
a−1∑

j=1

n−a∑

m=j+1

(
m− 2

j − 1

)
un−m(a), 2 ≤ a ≤ n− 2. (34)

To do so, let τ = τ1 · · · τn ∈ S and suppose τn−mτn−m+1 = a(a − j) for some 1 ≤
j ≤ a− 1 and m. We seek to enumerate such τ . Note first that since τ is a Catalan
word, we have that τn−m = a implies m ≤ n − a and τn−m+1 = a − j, τn−1 = a − 1
implies m ≥ j + 1, as each member of [a − j, a − 1] must occur at least once in the
non-decreasing subsequence β = τn−m+1 · · · τn−1. Thus, each such τ is of the form
τ = αβ, where α ∈ Un−m,a and β is as given. There are un−m(a) possibilities for α
and

(
m−j−1+j−1

j−1

)
=
(
m−2
j−1

)
for β, as the latter are synonymous with weak compositions

of m − j − 1 with j parts. Hence, there are
(
m−2
j−1

)
un−m(a) such τ of the specified

form and summing over all possible j and m yields (34), which completes the proof
of (33).

Define the generating function

u(t; x) =
∑

n≥1

(
n∑

a=1

un(a)x
a−1

)
tn.

Then u(t; x) satisfies the following functional equation.

Lemma 3.5. We have
(
1 +

x2t

1− x
+

t2

1− 2t

)
u(t; x) = t+

t

1− x
u(t; 1) +

t2

1− 2t
u

(
t;

xt

1− t

)
. (35)

Proof. First note

∑

n≥2

n∑

a=2

n−1∑

j=a−1

un−1(j)x
a−1tn =

∑

n≥2

n−1∑

j=1

j+1∑

a=2

un−1(j)x
a−1tn

=
∑

n≥2

n−1∑

j=1

un−1(j)t
n · x−xj+1

1−x

=
xt

1−x

∑

n≥1

n∑

j=1

un(j)(1− xj)tn
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=
xt

1−x
(u(t; 1)− xu(t; x)) ,

and hence

∑

n≥2

n−1∑

j=1

un−1(j)t
n +

∑

n≥2

n∑

a=2

n−1∑

j=a−1

un−1(j)x
a−1tn

= tu(t; 1) +
xt

1− x
(u(t; 1)− xu(t; x)) =

t

1− x

(
u(t; 1)− x2u(t; x)

)
.

Also, we have

∑

n≥4

n−2∑

a=2

a−1∑

j=1

n−a∑

m=j+1

(
m− 2

j − 1

)
un−m(a)xa−1tn =

∑

a≥2

a−1∑

j=1

∑

n≥a+2

n−a∑

m=j+1

(
m− 2

j − 1

)
un−m(a)xa−1tn

=
∑

a≥2

xa−1
a−1∑

j=1

∑

m≥j+1

(
m−2

j−1

) ∑

n≥a+m

un−m(a)tn =
∑

a≥2

xa−1
a−1∑

j=1

∑

n≥a

un(a)t
n
∑

m≥j+1

(
m−2

j−1

)
tm

=
∑

a≥2

xa−1
∑

n≥a

un(a)t
n
a−1∑

j=1

tj+1

(1− t)j
=

t(1− t)

1− 2t

∑

a≥2

xa−1
∑

n≥a

un(a)t
n

(
t

1− t
−
(

t

1− t

)a)

=
t2

1− 2t

∑

n≥1

n∑

a=1

un(a)

(
xa−1 −

(
xt

1− t

)a−1
)
tn =

t2

1− 2t

(
u(t;x)− u

(
t;

xt

1− x

))
.

Thus, multiplying both sides of (33) by xa−1tn, summing over all n ≥ 2 and 2 ≤ a ≤
n, and combining the result with

∑
n≥2 un(1)t

n yields

u(t; x)− t =
t

1− x

(
u(t; 1)− x2u(t; x)

)
− t2

1− 2t

(
u(t; x)− u

(
t;

xt

1− x

))
,

which rearranges to give (35).

There is the following explicit formula for the generating function of 21-2.

Theorem 3.6. We have

∑

n≥1

cn(21-2)t
n =

t+
∑

j≥1
t2j+1(1−t)(

j−1
2 )−1 ∏j

i=1((1−2t)(1−t)i−(1−t)ti)
∏j

i=1((1−2t)(1−t)2i−ti(1−t)i+1+t2i+1)

1− 2t−∑j≥1
t2j+1(1−2t)(1−t)(

j
2)−1 ∏j

i=1((1−2t)(1−t)i−(1−t)ti)

((1−2t)(1−t)j−1−tj)
∏j

i=1((1−2t)(1−t)2i−ti(1−t)i+1+t2i+1)

.

(36)

Proof. We seek an expression for u(t; 1), which equals
∑

n≥1 cn(21-2)t
n, by the defi-

nitions. First note that (35) can be written as

k(t; x)u(t; x) = a(t; x) + b(t)u

(
t;

xt

1− t

)
, (37)
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where k(t; x) = 1 + x2t
1−x

+ t2

1−2t
, a(t; x) = t + t

1−x
u(t; 1) and b(t) = t2

1−2t
. Taking

x = x(t) = 1−t
1−2t

in (37) cancels out the left-hand side and yields

u(t; 1) = x(t)− 1 +
t(x(t)− 1)

1− 2t
u

(
t;
tx(t)

1− t

)
. (38)

Iterating (37) for t sufficiently close to zero gives

u(t; x) =
∑

j≥0

a
(
t; xtj

(1−t)j

)

k
(
t; xtj

(1−t)j

)
j−1∏

i=0

b(t)

k
(
t; xti

(1−t)i

) . (39)

Replacing x with x(t)t
1−t

in (39), we get

u

(
t;
x(t)t

1− t

)
=
∑

j≥1

a
(
t; x(t)tj

(1−t)j

)

k
(
t; x(t)tj

(1−t)j

)
j−1∏

i=1

b(t)

k
(
t; x(t)ti

(1−t)i

) ,

which is equivalent to

u

(
t;
x(t)t

1− t

)
=
∑

j≥1

t2j−2a
(
t; x(t)tj

(1−t)j

)

(1− 2t)j−1
∏j

i=1 k
(
t; x(t)ti

(1−t)i

) . (40)

By (38), (40) and the definition of a(t; x), we have

u(t; 1) = x(t)− 1 + (x(t)− 1)u(t; 1)
∑

j≥1

t2j

(1− 2t)j
(
1− x(t)tj

(1−t)j

)∏j
i=1 k

(
t; x(t)ti

(1−t)i

)

+ (x(t)− 1)
∑

j≥1

t2j

(1− 2t)j
∏j

i=1 k
(
t; x(t)ti

(1−t)i

) ,

which, upon solving for u(t; 1), implies

u(t; 1) =

(x(t)− 1)

(
1 +

∑
j≥1

t2j

(1−2t)j
∏j

i=1 k
(

t;
x(t)ti

(1−t)i

)

)

1 + (1− x(t))
∑

j≥1
t2j

(1−2t)j
(

1− x(t)tj

(1−t)j

)

∏j
i=1 k

(

t;
x(t)ti

(1−t)i

)

.

Note that for each i ≥ 1,

k

(
t;

x(t)ti

(1− t)i

)
= 1 +

x2(t)t2i+1

(1− t)i((1− t)i − x(t)ti)
+

t2

1− 2t

=
(1− t)2

1− 2t
+

(1−t)2

1−2t
t2i(x(t)− 1)

(1− t)i((1− t)i − x(t)ti)
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=
(1− t)2

1− 2t

(
1 +

t2i(x(t)− 1)

(1− t)i((1− t)i − x(t)ti)

)

=
(1− t)2

1− 2t

(
1 +

t2i+1

(1− 2t)(1− t)2i − ti(1− t)i+1

)

=
(1− 2t)(1− t)2i − ti(1− t)i+1 + t2i+1

(1− t)i−2(1− 2t)((1− 2t)(1− t)i − (1− t)ti)
,

where we have made use of the fact x2(t) = (1−t)2(x(t)−1)
t(1−2t)

in the second equality.

Substituting this into the last formula above for u(t; 1), and simplifying, yields (36).

Let vn(a) and v(t; x) be defined analogously for the pattern 21-3 as un(a) and
u(t; x) were above for 21-2.

Lemma 3.7. If n ≥ 2, then

vn(a) =
n−1∑

j=a−1

vn−1(j)−
a−1∑

j=2

n−a+1∑

m=j+1

(
m− 2

j − 1

)
vn−m(a− 1), 2 ≤ a ≤ n, (41)

with vn(1) =
∑n−1

j=1 vn−1(j) for n ≥ 2 and v1(1) = 1.

Proof. A subtraction argument similar to that given above for (33) applies here
which we briefly describe. Given π = π1 · · · πn ∈ Cn, let π′ denote as before the
subsequence consisting of the descent tops of π together with the last letter. Then
we have that π avoids 21-3 if and only if π′ is non-increasing. Let Vn,a denote the
subset Cn(21-3) whose members end in a. Then one may append a to any member
of ∪n−1

j=a−1Vn−1,j except for those belonging to Vn−1,a−1 in which a−1 also occurs as a
descent top. Let ρ denote such a member of Vn−1,a−1, which may be decomposed as
ρ = ρ′(a− 1)ρ′′(a− 1), where the first a− 1 indicated corresponds to the rightmost
descent top and ρ′′ has first letter a − j with |ρ′′| = m − 2. The assumptions on ρ
imply the restrictions n ≥ a + 2, a ≥ 3, j ∈ [2, a − 1] and m ∈ [j + 1, n − a + 1],
with ρ′′ non-decreasing. Hence, we have that there are

(
m−2
j−1

)
vn−m(a−1) possibilities

for ρ for each j and m. Considering all j and m then gives the cardinality of the ρ
that must be excluded from ∪n−1

j=a−1Vn−1,j when appending a, which accounts for the
subtracted quantity in (41).

Proceeding as before, one can show that the recurrence (41) can be rewritten in
terms of generating functions as follows.

Lemma 3.8. We have
(
1+

x2t

1−x
+

xt3

(1−t)(1−2t)

)
v(t; x) = t+

t

1−x
v(t; 1) +

xt3

(1−t)(1−2t)
v

(
t;

xt

1−t

)
.

(42)
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Theorem 3.9. We have

∑

n≥1

cn(21-3)t
n =

(x(t)− 1)

(
1 +

∑
j≥1

t(
j
2)+3j

x(t)j

(1−t)(
j+1
2 )(1−2t)j

∏j
i=1 k

(

t;
x(t)ti

(1−t)i

)

)

1 + (1− x(t))
∑

j≥1
t(

j
2)+3j

x(t)j

(1−t)(
j
2)(1−2t)j((1−t)j−x(t)tj)

∏j
i=1 k

(

t;
x(t)ti

(1−t)i

)

, (43)

where x(t) = 1−3t+2t2−t3−
√
1−10t+37t2−62t3+46t4−12t5+t6

2t(1−3x+t2)
and k(t; x) = 1+ x2t

1−x
+ xt3

(1−t)(1−2t)
.

Proof. First note that (42) may be written as

k(t; x)v(t; x) = a(t; x) + b(t; x)v

(
t;

xt

1− t

)
, (44)

where a(t; x) = t + t
1−x

v(t; 1), b(t; x) = xt3

(1−t)(1−2t)
and k(t; x) is as stated. Taking

x = x(t) in (44), where x(t) is as given, is seen to cancel out the left-hand side and
implies

v(t; 1) = x(t)− 1 +
t2x(t)(x(t)− 1)

(1− t)(1− 2t)
v

(
t;
x(t)t

1− t

)
. (45)

Iterating (44) gives

v(t; x) =
∑

j≥0

a
(
t; xtj

(1−t)j

)

k
(
t; xtj

(1−t)j

)
j−1∏

i=0

b
(
t; xti

(1−t)i

)

k
(
t; xti

(1−t)i

) ,

and hence

v

(
t;
x(t)t

1− t

)
=

∑

j≥1

a
(
t; x(t)tj

(1−t)j

)

k
(
t; x(t)tj

(1−t)j

)
j−1∏

i=1

b
(
t; x(t)ti

(1−t)i

)

k
(
t; x(t)ti

(1−t)i

)

=
∑

j≥1

t3j−3a
(
t; x(t)tj

(1−t)j

)∏j−1
i=1

x(t)ti

(1−t)i

(1− 3t+ 2t2)j−1
∏j

i=1 k
(
t; x(t)ti

(1−t)i

)

=
∑

j≥1

t(
j

2)+3j−3x(t)j−1a
(
t; x(t)tj

(1−t)j

)

(1− t)(
j

2)(1− 3t+ 2t2)j−1
∏j

i=1 k
(
t; x(t)ti

(1−t)i

) .

By (45) and the definition of a(t; x), we then get

v(t; 1) = x(t)− 1 +
t2x(t)(x(t)− 1)

(1− t)(1− 2t)

∑

j≥1

t(
j

2)+3j−3x(t)j−1

(
t+ tv(t;1)

1− x(t)tj

(1−t)j

)

(1− t)(
j

2)(1− 3t+ 2t2)j−1
∏j

i=1 k
(
t; x(t)ti

(1−t)i

)
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= x(t)− 1 + (x(t)− 1)
∑

j≥1

t(
j

2)+3jx(t)j

(1− t)(
j+1
2 )(1− 2t)j

∏j
i=1 k

(
t; x(t)ti

(1−t)i

)

+ (x(t)−1)v(t; 1)
∑

j≥1

t(
j

2)+3jx(t)j

(1−t)(
j

2)(1−2t)j((1−t)j − x(t)tj)
∏j

i=1 k
(
t; x(t)ti

(1−t)i

) .

Solving for v(t; 1) in the last equality yields (43).

3.3 The pattern 31-2

In order to determine a generating function formula for cn(31-2), we refine the number
of 31-2 avoiders according to a pair of parameters as follows. Given n ≥ 2 and
1 ≤ b ≤ a ≤ n− 1, let Wn,a,b denote the subset of Cn(31-2) whose members contain
a 1’s and b runs of 1’s and let wn(a, b) = |Wn,a,b|. Note that

cn(31-2) = 1 +
n−1∑

a=1

a∑

b=1

wn(a, b), n ≥ 1, (46)

by the definitions, where the added one accounts for the all 1’s Catalan sequence.
The wn(a, b) satisfy the following recursion.

Lemma 3.10. If n ≥ 3 and 1 ≤ b ≤ a ≤ n− 1, then

wn(a, b) =

(
a− 1

b− 1

)(
n− a

b− 1

)
+

n−a−1∑

c=1

c∑

d=1

wn−a(c, d)

(
a− 1

b− 1

)(
c− d+ 1

b− 1

)
, (47)

with w2(1, 1) = 1.

Proof. The initial condition when n = 2 is clear, so assume n ≥ 3. To show (47),
we first enumerate the members π ∈ Wn,a,b consisting of only 1’s and 2’s (i.e., the
binary members). Note that there are

(
a−1
b−1

)
ways of arranging a 1’s in b runs within

such π. Once this has been done, we then place n−a 2’s in either b or b−1 runs, the
arrangements of which are synonymous with the weak compositions of n− a− b+ 1
with b parts. Then there are

(
(n−a−b+1)+b−1

b−1

)
=
(
n−a
b−1

)
ways in which to arrange the

2’s and hence there are
(
a−1
b−1

)(
n−a
b−1

)
binary members of Wn,a,b.

To enumerate the non-binary π ∈ Wn,a,b, consider inserting exactly a 1’s (as b
runs) into ρ ∈ Wn−a,c,d for some c and d, where ρ is represented using the letters
in {2, 3, . . .}. Observe that we may insert one or more 1’s at the very end of ρ or
directly preceding any 2 of ρ except for the first 2 in any non-initial runs of 2’s. To
see this, note that inserting one or more 1’s directly prior to the first 2 in a non-initial
run always introduces an occurrence of 31-2 in which the role of ‘3’ is played by the
predecessor of the 2 in ρ. Thus, there are c−d+2 potential sites altogether within ρ
in which one may insert a run of 1’s. Since π must start with 1 and contain exactly
b runs of 1’s, there are

(
c−d+1
b−1

)
choices for the sites of the runs within π. Then the
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a 1’s are to be inserted into the b chosen sites such that each receives at least one
letter, which can be achieved in

(
a−1
b−1

)
ways. As there are wn−a(c, d) possibilities for

ρ, allowing c and d to vary yields

n−a−1∑

c=1

c∑

d=1

wn−a(c, d)

(
a− 1

b− 1

)(
c− d+ 1

b− 1

)

non-binary members of Wn,a,b altogether. Combining this with the prior binary case
yields (47).

Define the generating function

w(t; x, y) =
∑

n≥2

(
n−1∑

a=1

a∑

b=1

wn(a, b)x
a−1yb−1

)
tn.

Then w(t; x, y) satisfies the following functional equation.

Lemma 3.11. We have

w(t; x, y) =
(1 + x(y − 1)t)t2

(1− xt)(1− (x+ 1)t− x(y − 1)t2)

+
(1 + x(y − 1)t)t

(1− xt)2
w

(
t;
1 + x(y − 1)t

1− xt
,

1− xt

1 + x(y − 1)t

)
. (48)

Proof. First note

∑

n≥2

tn
n−1∑

a=1

xa−1

a∑

b=1

(
a−1

b−1

)(
n−a

b−1

)
yb−1=

∑

a≥1

xa−1ta
a∑

b=1

(
a−1

b−1

)
yb−1

∑

n≥1

(
n

b−1

)
tn

=
∑

a≥1

xa−1ta
a∑

b=1

(
a− 1

b− 1

)
yb−1

∑

n≥0

(
n

b− 1

)
tn −

∑

a≥1

xa−1ta

=
∑

a≥1

xa−1ta

1− t

a∑

b=1

(
a−1

b−1

)(
yt

1−t

)b−1

− t

1−xt
=
∑

a≥1

xa−1ta(1+(y−1)t)a−1

(1− t)a
− t

1−xt

=
t

1− (x+ 1)t− x(y − 1)t2
− t

1− xt
=

(1 + x(y − 1)t)t2

(1− xt)(1− (x+ 1)t− x(y − 1)t2)

and

∑

n≥3

tn
n−1∑

a=1

xa−1

a∑

b=1

yb−1

n−a−1∑

c=1

c∑

d=1

wn−a(c, d)

(
a− 1

b− 1

)(
c− d+ 1

b− 1

)

=
∑

a≥1

xa−1ta
a∑

b=1

yb−1
∑

c≥1

c∑

d=1

(
a− 1

b− 1

)(
c− d+ 1

b− 1

) ∑

n≥c+1

wn(c, d)t
n

=
∑

b≥1

yb−1
∑

c≥1

c∑

d=1

(
c− d+ 1

b− 1

) ∑

n≥c+1

wn(c, d)t
n
∑

a≥b

(
a− 1

b− 1

)
xa−1ta
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=
∑

b≥1

∑

c≥1

c∑

d=1

(
c− d+ 1

b− 1

) ∑

n≥c+1

wn(c, d)t
n+1 · (xyt)

b−1

(1− xt)b

=
t

1− xt

∑

c≥1

c∑

d=1

∑

n≥c+1

wn(c, d)t
n

c−d+2∑

b=1

(
c− d+ 1

b− 1

)(
xyt

1− xt

)b−1

=
t

1− xt

∑

c≥1

c∑

d=1

∑

n≥c+1

wn(c, d)t
n ·
(
1 + x(y − 1)t

1− xt

)c−d+1

=
(1 + x(y−1)t)t

(1− xt)2

∑

n≥2

(
n−1∑

c=1

c∑

d=1

wn(c, d)

(
1+x(y−1)t

1− xt

)c−1(
1− xt

1+x(y−1)t

)d−1
)
tn

=
(1 + x(y − 1)t)t

(1− xt)2
w

(
t;
1 + x(y − 1)t

1− xt
,

1− xt

1 + x(y − 1)t

)
.

Thus, multiplying both sides of (47) by xa−1yb−1tn, and summing over all n ≥ 3 and
1 ≤ b ≤ a ≤ n− 1, leads to (48).

The generating function for cn(31-2) may be expressed in terms of Chebyshev
polynomials as follows.

Theorem 3.12. We have

∑

n≥1

cn(31-2)t
n =

t

1− t
+
∑

i≥1

∏i
j=1

(
1 +

Uj−1(s)

Uj(s)

)

Ui+1(s)
, (49)

where s = 1−t
2t
.

Proof. By (46), we seek a formula for t
1−t

+w(t; 1, 1). Define the sequence of ordered
pairs (xn, yn) recursively by

(xn+1, yn+1) =

(
1 + txn(yn − 1)

1− txn

,
1− txn

1 + txn(yn − 1)

)
, n ≥ 0,

with (x0, y0) = (1, 1). Then by (48) and since xnyn = 1, we have

w(t; xn, yn) =
t2xn+1

1− t− t2 − t(1− t)xn

+
txn+1

1− txn

w(t; xn+1, yn+1), n ≥ 0,

and iteration gives

w(t; 1, 1) =
∑

i≥0

ti+2
∏i+1

j=1 xj

(1− t− t2 − t(1− t)xi)
∏i−1

j=0(1− txj)
. (50)

Let xn = αn

βn
for n ≥ 0, where αn = αn(t) and βn = βn(t) are sequences of

polynomials which we seek to determine. First note

xn+1 =
1 + txn(yn − 1)

1− txn

=
1− txn

1− txn

+
txnyn
1− txn

= 1 +
t

1− txn
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so that
αn+1

βn+1

= xn+1 = 1 +
t

1− tαn

βn

=
(1 + t)βn − tαn

βn − tαn

.

We thus obtain the system of recurrences

αn+1 = (1 + t)βn − tαn, βn+1 = βn − tαn, n ≥ 0, (51)

with α0 = β0 = 1. From (51), we have βn+1 =
αn+2+tαn+1

1+t
, and hence

αn+2 + tαn+1

1 + t
=

αn+1 + tαn

1 + t
− tαn,

which implies the recurrence

αn+2 = (1− t)αn+1 − t2αn, n ≥ 0, (52)

with α0 = α1 = 1. Similarly, we have that βn satisfies this same recurrence, but with
initial values β0 = 1 and β1 = 1− t.

Thus, by (50), we have

w(t; 1, 1) =
∑

i≥0

ti+2
∏i+1

j=1 αj

βi+1((1− t− t2)βi − t(1− t)αi)
∏i−1

j=0(βj − tαj)

=
∑

i≥0

ti+2
∏i+1

j=1 αj

βi+1βi+2

∏i−1
j=0 βj+1

=
∑

i≥1

ti+1
∏i

j=1 αj
∏i+1

j=1 βj

, (53)

where we have used the facts βj+1 = βj − tαj and βi+2 = (1− t− t2)βi− t(1− t)αi for
all i, j ≥ 0, which can be shown by induction. A comparison with the initial values
and recurrence of the quantity γn = αn

tn
, which can be obtained from (52), reveals

Un(s) + Un−1(s) = γn, and hence αn = tn(Un(s) + Un−1(s)) for all n ≥ 1, where
s = 1−t

2t
. Similarly, we obtain βn = tnUn(s) for all n. Substituting this into (53), we

get

w(t; 1, 1) =
∑

i≥1

ti+1
∏i

j=1 t
j(Uj(s) + Uj−1(s))

∏i+1
j=1 t

jUj(s)
=
∑

i≥1

∏i
j=1

(
1 +

Uj−1(s)

Uj(s)

)

Ui+1(s)
,

which yields (49).

Remark: It is possible to find a formula similar to (53) for w(t; x, y) for all x, y in
some interval containing 1 for all t sufficiently small, say, |t| ≤ 1

16
. Note that the

corresponding polynomials αn and βn will satisfy the same recurrences as before for
n ≥ 3, but with the initial values α1 = 1 + x(y − 1)t, α2 = 1 − xt − xyt2 and
β1 = 1− xt, β2 = 1− (x+ 1)t− x(y − 1)t2.
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3.4 The pattern 11-2

To deal with this case, we first consider two preliminary arrays. Given n ≥ 1 and
1 ≤ a ≤ n, let mn(a) denote the cardinality of the subset of Cn whose members
contain no levels and end in a. Put mn(a) = 0 if n ≤ 0 or a /∈ [n]. Let pn(a) for
a, n ≥ 1 denote the number of words w = w1 · · ·wn on the alphabet [a] that satisfy
wi+1 ≤ wi + 1 for 1 ≤ i ≤ n − 1 and avoid 11-2, with p0(a) := 1 for all a ≥ 1.
Given n ≥ 1 and 1 ≤ b ≤ a, let pn(a, b) enumerate the subset of those words counted
by pn(a) which start with b. The arrays mn(a) and pn(a, b) are given recursively as
follows.

Lemma 3.13. If n ≥ 2, then

mn(a) = mn−1(a− 1) +
n−1∑

i=a+1

mn−1(i), 1 ≤ a ≤ n− 1, (54)

with mn(n) = 1 for all n ≥ 1. If n ≥ 2, then

pn(a, b) = pn−1(a, b+ 1) + pn−2(b) +
b−1∑

i=1

pn−1(a, i), 1 ≤ b ≤ a− 1, (55)

with pn(a, a) = pn−1(a) for all a, n ≥ 1, where pn(a) =
∑a

b=1 pn(a, b) for n ≥ 1 and
p0(a) = 1.

Proof. Considering the penultimate letter within a member of Cn enumerated by
mn(a) implies (54). Let Pn,a,b denote the class of words enumerated by pn(a, b) and
Pn,a = ∪a

b=1Pn,a,b. To show (55), consider the second letter i within w = w1 · · ·wn ∈
Pn,a,b, where n ≥ 2 and b < a. If i = b + 1 or i ∈ [b − 1], then there are clearly

pn−1(a, b + 1) and
∑b−1

i=1 pn−1(a, i) possibilities, respectively. On the other hand, if
i = b, then no letters in [b+1, a] can occur in w and deleting the initial two b’s from
w results in an arbitrary member of Pn−2,b. Hence, there are pn−2(b) possibilities
when i = b, and combining with the previous cases yields (55). Finally, the values
of mn(n) and pn(a, a) for n ≥ 1 follow from the definitions.

The sequence cn(11-2) can be given in terms of the prior two arrays as follows.

Lemma 3.14. If n ≥ 1, then

cn(11-2) = Mn−1 +
n−1∑

i=1

i∑

j=1

mi(j)pn−i−1(j), (56)

where mk(j) and pk(j) are as in Lemma 3.13.

Proof. Let π = π1 · · · πn ∈ Cn(11-2). If π contains no levels, then there are Mn−1

possibilities for π, see [4]. So assume π contains at least one level, with i the smallest
index corresponding to one and πi = πi+1 = j. Then π can be decomposed as
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π = π′jπ′′, where π′ of length i contains no levels and ends in j and π′′ is possibly
empty. Note π′′ avoids 11-2 and is j-ary, due to the level involving the letter j directly
preceding it. Thus, for each i and j, there are mi(j) and pn−i−1(j) possibilities for
π′ and π′′, respectively, and allowing i and j to vary yields all members of Cn(11-2)
containing at least one level, which implies (56).

Let Mn(v) =
∑n

a=1 mn(a)v
a−1 for n ≥ 1 and M(t; v) =

∑
n≥1 Mn(v)t

n. Define

P (t; v, u) =
∑

n≥1

∑

a≥1

a∑

b=1

pn(a, b)v
a−1ub−1tn.

Then M(t; v) and P (t; v, u) satisfy the following functional equations.

Lemma 3.15. We have
(
1− tv +

t

1− v

)
M(t; v) = t+

t

1− v
M(t; 1) (57)

and
(
1− t

u
− tu

1− u

)
P (t; v, u) =

t(1 + t)

(1− v)(1− uv)
+

(
t2

1− v
− tu

1− u

)
P (t; uv, 1)− t

u
P (t; v, 0).

(58)

Proof. Multiplying both sides of (54) by tnva−1, and summing over all n ≥ 2 and
1 ≤ a ≤ n− 1, yields

M(t; v) = t+ tvM(t; v) +
t

1− v
(M(t; 1)−M(t; v)),

which implies (57). Similarly, from (55), we get

P (t; v, u) = t
∑

a≥1

a∑

b=1

p1(a, b)v
a−1ub−1 +

∑

n≥2

∑

a≥1

a∑

b=1

pn(a, b)v
a−1ub−1tn

= t(1 + t)
∑

a≥1

va−1
a∑

b=1

ub−1 +
∑

n≥2

∑

a≥2

a−1∑

b=1

pn−1(a, b+ 1)va−1ub−1tn

+
∑

n≥3

∑

a≥1

a∑

b=1

b∑

i=1

pn−2(b, i)v
a−1ub−1tn +

∑

n≥2

∑

a≥2

a∑

b=2

b−1∑

i=1

pn−1(a, i)v
a−1ub−1tn

=
t(1 + t)

(1− v)(1− uv)
+

t

u
(P (t; v, u)− P (t; v, 0)) +

t2

1− v
P (t;uv, 1)

+
tu

1− u
(P (t; v, u)− P (t;uv, 1)),

which rearranges to give (58).
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The functional equations from the prior lemma may be solved explicitly.

Lemma 3.16. We have

M(t; v) =
1 + (1− 2v)t−

√
1− 2t− 3t2

2(1− v + (1− v)t+ v2t)
(59)

and

P (t; v, 1) =
∑

j≥0

b

(
tjT 2j(t)v

(1 + t)j

) j−1∏

i=0

a

(
tiT 2i(t)v

(1 + t)i

)
, (60)

where

a(v) =
(t− v)t3T 8(t)

(1 + t)3(1 + t− vT 2(t))
, b(v) =

tT 3(t)(2− T (t))

(1− v)(1 + v − vT (t))(1 + t− vT 2(t))

and

T (t) =
1 + t−

√
1− 2t− 3t2

2t
.

Proof. Letting v = v0 =
1+t−

√
1−2t−3t2

2t
in (57) gives M(t; 1) = v0−1, and substituting

this back into (57) implies (59). Letting u = 1
T
in (58) and solving for P (t; v, 0), where

T = T (t) is as defined, yields

P (t; v, 0) =
1

T

(
t

1− v
− 1

T − 1

)
P (t; v/T, 1) +

1 + t

(1− v)(T − v)
. (61)

Substituting (61) into (58), we find

(
1− t

u
− tu

1− u

)
P (t; v, u) =

t(t+ 1)

(1− v)(1− uv)
+

(
t2

1− v
− tu

1− u

)
P (t; uv, 1)

− t

u

(
1

T

(
t

1− v
− 1

T − 1

)
P (t; v/T, 1) +

1 + t

(1− v)(T − v)

)
.

(62)

To solve (62), we let u be the other root of the kernel equation 1− t
u
− tu

1−u
= 0,

namely, u = tT
1+t

, to obtain

1 + t

T

(
1

T

(
t

1− v
− 1

T − 1

)
P (t; v/T, 1) +

1 + t

(1− v)(T − v)

)

=

(
t2

1− v
− t2T

1 + t− tT

)
P

(
t;

vtT

1 + t
, 1

)
+

t(1 + t)2

(1− v)(1 + t− vtT )
.

Replacing v by vT , we have

1 + t

T 2

(
t

1− vT
− 1

T − 1

)
P (t; v, 1) =

(
t2

1− vT
− t2T

1 + t− tT

)
P

(
t;
vtT 2

1 + t
, 1

)
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+
(1 + t)2

1− vT

(
t

1 + t− vtT 2
− 1

(1− v)T 2

)
.

After several algebraic steps and frequent use of the fact tT 2 = (t + 1)(T − 1), the
last equation can be written as

P (t; v, 1) = a(v)P

(
t;
vtT 2

1 + t
, 1

)
+ b(v), (63)

where a(v) and b(v) are as defined. Iteration of (63) for t sufficiently close to zero
then yields (60).

One can now obtain an explicit formula for the generating function of cn(11-2).

Theorem 3.17. We have
∑

n≥1

cn(11-2)t
n =

(1 + t)(1− t−
√
1− 2t− 3t2)

2t
+

t2T (t)

1 + t

∑

j≥1

b

(
tjT 2j−1(t)

(1 + t)j

) j−1∏

i=1

a

(
tiT 2i−1(t)

(1 + t)i

)
,

(64)

where a(v), b(v) and T (t) are as in Lemma 3.16.

Proof. Note first that (59) may be written as

M(t; v) =
2t

(1 + t+
√
1− 2t− 3t2)

(
1− 2tv

1+t+
√
1−2t−3t2

) ,

and hence

∑

n≥j

mn(j)t
n = [vj−1]M(t; v) =

(2t)j

(1 + t+
√
1− 2t− 3t2)j

, j ≥ 1.

Thus, by (56), we have

∑

n≥1

cn(11-2)t
n −

∑

n≥1

Mn−1t
n =

∑

n≥2

n−1∑

i=1

i∑

j=1

mi(j)pn−i−1(j)t
n

= t
∑

j≥1

∑

n≥0

(
∑

i≥j

mi(j)t
i

)
pn(j)t

n

= t
∑

j≥1

∑

n≥0

(2t)j

(1 + t+
√
1− 2t− 3t2)j

pn(j)t
n

=
2t2

1 + t+
√
1− 2t− 3t2

∑

n≥0

∑

j≥1

pn(j)
(2t)j−1tn

(1 + t+
√
1− 2t− 3t2)j−1
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=
2t2

1 + t+
√
1− 2t− 3t2

(∑

j≥1

(
2t

1 + t+
√
1− 2t− 3t2

)j−1

+ P

(
t;

2t

1 + t+
√
1− 2t− 3t2

, 1

))
.

Hence, we get

∑

n≥1

cn(11-2)t
n =

(1 + t)(1− t−
√
1− 2t− 3t2)

2t

+
2t2

1 + t+
√
1− 2t− 3t2

P

(
t;

2t

1 + t+
√
1− 2t− 3t2

, 1

)

=
(1 + t)(1− t−

√
1− 2t− 3t2)

2t
+

t2T

1 + t
P

(
t;

tT

1 + t
, 1

)
,

where we have made use of the fact
∑

n≥0 Mnt
n = 1−t−

√
1−2t−3t2

2t2
. Thus, by (60), we

obtain
∑

n≥1

cn(11-2)t
n =

(1 + t)(1− t−
√
1− 2t− 3t2)

2t
+

t2T

1 + t

∑

j≥0

b

(
tj+1T 2j+1

(1 + t)j+1

) j−1∏

i=0

a

(
ti+1T 2i+1

(1 + t)i+1

)
,

which implies (64).

3.5 The pattern 21-1

To determine a formula for the generating function of the sequence cn(21-1) for n ≥ 1,
we refine it as follows by considering a certain pair of parameters on Cn(21-1). Recall
that if π = π1 · · · πn is a sequence with πi = x and πi+1 = y for some i ∈ [n−1] where
x > y, then π has a descent at index i and the values x and y are referred to as the
top and bottom of the descent, respectively. Given n ≥ 3 and 1 ≤ a < m ≤ n− 1, let
rn(m, a) denote the number of members of Cn(21-1) that contain at least one descent
and have greatest letter m and smallest descent bottom a, with rn(m, a) taken to
be zero otherwise. For example, we have r6(4, 2) = 7, the enumerated sequences
belonging to {112342, 122342, 123234, 123342, 123423, 123432, 123442}.

Given n ≥ 1 and 1 ≤ m ≤ n, let rn(m) be the number of members of Cn(21-1)
having largest letter m. By the definitions, we have cn(21-1) =

∑n
m=1 rm(n) and

rn(m) =

(
n− 1

m− 1

)
+

m−1∑

a=1

rn(m, a), 1 ≤ m ≤ n− 1, (65)

with rn(n) = 1 for all n ≥ 1. Note that the
(
n−1
m−1

)
term in (65) accounts for the

non-decreasing members of Cn(21-1) whose largest letter is m.

The array rn(m, a) is given recursively as follows.



T. MANSOUR AND M. SHATTUCK/AUSTRALAS. J. COMBIN. 91 (1) (2025), 177–216 209

Lemma 3.18. If n ≥ 4, then

rn(m, a) =
n−m∑

i=1

rn−i(m− 1, a− 1), 2 ≤ a < m ≤ n− 1, (66)

and

rn(m, 1) = rn−1(m, 1) + rn−2(m− 1) +
m−2∑

i=1

n−m−1∑

j=i

(
j − 1

i− 1

)
rn−j−2(m− 1)

+
m−1∑

i=1

n−i−2∑

j=m−1

(
j − 1

m− 2

)
rn−j−2(i)

+
m−2∑

i=2

n−3∑

j=m

ℓ∑

k=1

rj(m− 1, i)rn−j−2(k), 2 ≤ m ≤ n− 1, (67)

with initial values r1(1) = r2(1) = r2(2) = r3(2, 1) = 1, where ℓ = min{i−1, n−j−2}
and rn(m) is given by (65).

Proof. The initial values for 1 ≤ n ≤ 3 are easily seen to hold, so we may assume
n ≥ 4. Let Rn,m,a and Rn,m denote the subsets of Cn(21-1) enumerated by rn(m, a)
and rn(m), respectively. To realize (66), first note that a member of Rn,m,a where
a > 1 cannot contain any 1’s outside of the initial run, for otherwise its smallest
descent bottom would be 1 and not a. Thus, members of Rn,m,a where a > 1 must be
of the form π = 1iπ′, where i ≥ 1 and π′ is such that π′−1 (the sequence obtained by
subtracting 1 from each entry of π′) belongs to Rn−i,m−1,a−1. Considering all possible
i then gives (66).

Now suppose π ∈ Rn,m,1, where n ≥ 4 and 2 ≤ m ≤ n−1. If π starts with two or
more 1’s, then there are clearly rn−1(m, 1) possibilities, upon deleting the second 1,
so assume π starts with a single 1. Then π avoiding 21-1 and having 1 as a descent
bottom implies π must contain exactly two (non-consecutive) 1’s in this case. If π is
of the form π = 1α1, where α contains no 1’s, then there are rn−2(m− 1) such π. So
assume π = 1α1β, where α and β are nonempty. First suppose α is non-decreasing.
If α has greatest letter i+1 for some 1 ≤ i ≤ m−2 with |α| = j, then there are

(
j−1
i−1

)

possibilities for α. Then β is such that β−1 ∈ Rn−j−2,m−1 , where i ≤ j ≤ n−m−1,
and hence there are rn−j−2(m − 1) possible β. Summing over all i and j then gives∑m−2

i=1

∑n−m−1
j=i

(
j−1
i−1

)
rn−j−2(m − 1) such π wherein α does not contain m. On the

other hand, if α contains m, then there are
(
j−1
m−2

)
possibilities for α where |α| = j.

This implies β − 1 ∈ Rn−j−2,i for some i ∈ [m − 1]. Summing over all i and j then
gives

∑m−1
i=1

∑n−i−2
j=m−1

(
j−1
m−2

)
rn−j−2(i) possible π = 1α1β wherein α is non-decreasing

and contains m.

Finally, assume α within π = 1α1β contains at least one descent. Suppose that
i+ 1 is the smallest descent bottom of π lying within α. Note that i ≥ 2, and hence
m ≥ 4 in this case with i ∈ [2,m−2], for otherwise, if i = 1 (i.e., α contains a descent
bottom of size 2), then β would have to be empty, contrary to assumption. Then β
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must have largest letter k + 1 for some 1 ≤ k ≤ i− 1, and hence β − 1 ∈ Rn−j−2,k,
where j = |α|, for if not, then π would contain an occurrence of 21-1 in which the
role of ‘1’ is played by i + 1 and the role of ‘2’ is played by the descent top of i + 1
within α. In particular, it is seen that if α contains a descent, then β cannot contain
m. Thus, α must contain m, i.e., α − 1 ∈ Rj,m−1,i. Conversely, π = 1α1β with the
stated restrictions on α and β is seen to avoid 21-1. Note that j ≥ m in order for α to
contain both m and a descent and j ≤ n−3 in order for β to be nonempty. Summing
over all i, j and k then gives

∑m−2
i=2

∑n−3
j=m

∑ℓ
k=1 rj(m−1, i)rn−j−2(k) possible π in this

case. Combining with the prior cases then yields (67) and completes the proof.

Define the generating functions R(t; v) =
∑

n≥1

∑n
m=1 rn(m)tnvm−1 and

R(t; v, u) =
∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn(m, a)tnvm−1ua−1.

In order to find an explicit formula for R(t; v), we will need the following relation.

Lemma 3.19. For all k ≥ 1,

∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn+k(m+ k, a+ k)tnvm−1 =
R(t; v, 1)

(1− t)k
. (68)

Proof. Equating coefficients of tnvm−1 in

∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn(m, a)tnvm−1 = (1− t)k
∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn+k(m+ k, a+ k)tnvm−1,

we must show, for each n ≥ 3 and 2 ≤ m ≤ n− 1, the identity

m−1∑

a=1

rn(m, a) =
m−1∑

a=1

k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
rn+ℓ(m+ k, a+ k), k ≥ 1. (69)

To establish (69), it suffices to show

rn(m, a) =
k∑

ℓ=0

(−1)k−ℓ

(
k

ℓ

)
rn+ℓ(m+ k, a+ k), k ≥ 1. (70)

To do so, first note that the k = 1 case of (70) is given by

rn(m, a) = rn+1(m+ 1, a+ 1)− rn(m+ 1, a+ 1), 1 ≤ a ≤ m− 1. (71)

For (71), a combinatorial explanation can be given by considering whether a
member of the setRn+1,m+1,a+1, where n ≥ m+1, starts with a single 1 or two or more
1’s. Note that there are rn(m, a) possibilities in the former case and rn(m+1, a+1) in
the latter, as a member of Rn+1,m+1,a+1 cannot contain any 1’s outside of its initial
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run of 1’s. Further, we have that (71) holds trivially for 1 ≤ n ≤ m, and hence
(71) holds for all n ≥ 1 for each fixed m and a. This establishes the k = 1 case of
(70) for all n ≥ 1. An induction on k may now be given for (70) by replacing each
rn+ℓ(m+ k, a+ k) term in the sum on the right side with

rn+ℓ+1(m+ k + 1, a+ k + 1)− rn+ℓ(m+ k + 1, a+ k + 1)

and gathering like terms. Making use of the binomial recurrence
(
k+1
ℓ

)
=
(
k
ℓ

)
+
(

k
ℓ−1

)
,

the result of this substitution is

k+1∑

ℓ=0

(−1)k+1−ℓ

(
k + 1

ℓ

)
rn+ℓ(m+ k + 1, a+ k + 1).

Thus, formula (70) follows by induction, as desired, which completes the proof.

Rewriting relation (65) in terms of generating functions, we have

R(t; v) =
∑

n≥1

rn(n)t
nvn−1 +

∑

n≥2

n−1∑

m=1

rn(m)tnvm−1

=
t

1− vt
+
∑

n≥2

n−1∑

m=1

(
n− 1

m− 1

)
tnvm−1 +

∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn(m, a)tnvm−1

=
t

1− vt
+

t2

(1− vt)(1− (1 + v)t)
+R(t; v, 1),

which implies

R(t; v) =
t

1− (1 + v)t
+R(t; v, 1). (72)

We now obtain the following functional equation for R(t; v, u).

Lemma 3.20. We have
(
1− vut

1− t

)
R(t; v, u) =

vt3(1− t)

(1− (1 + v)t)((1− t)2 − vt2)
+

v2t3

1− t
R(t; v, 1)R

(
t;

vt

1− t
, 1

)

− vt2(vt3 − (1− t)3)

(1− 2t)((1− t)2 − vt2)
R(t; v, 1)

− v(1− v)t4

(1− 2t)(1− (1 + v)t)
R

(
t;

vt

1− t
, 1

)
+ tR(t; v, 0). (73)

Proof. Define ℓn,i,j = min{i− 1, n− j − 2}. By (66) and (67), we have

R(t; v, u)

=
∑

n≥4

n−1∑

m=3

m−1∑

a=2

rn(m, a)tnvm−1ua−1 +
∑

n≥3

n−1∑

m=2

rn(m, 1)tnvm−1
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= vu
∑

m≥2

∑

i≥1

∑

n≥m+i+1

m−1∑

a=1

rn−i(m, a)tnvm−1ua−1 +
∑

n≥3

n−1∑

m=2

rn(m, 1)tnvm−1

= vu
∑

m≥2

∑

i≥1

∑

n≥m+1

m−1∑

a=1

rn(m, a)tn+ivm−1ua−1 +
∑

n≥4

n−2∑

m=2

rn−1(m, 1)tnvm−1

+
∑

n≥3

n−1∑

m=2

rn−2(m− 1)tnvm−1 +
∑

n≥5

n−2∑

m=3

m−2∑

i=1

n−m−1∑

j=i

(
j−1

i−1

)
rn−j−2(m− 1)tnvm−1

+
∑

n≥4

n−2∑

m=2

m−1∑

i=1

n−i−2∑

j=m−1

(
j − 1

m− 2

)
rn−j−2(i)t

nvm−1

+
∑

n≥7

n−3∑

m=4

m−2∑

i=2

n−3∑

j=m

ℓn,i,j∑

k=1

rj(m− 1, i)rn−j−2(k)t
nvm−1

=
vut

1− t

∑

m≥2

∑

n≥m+1

m−1∑

a=1

rn(m, a)tnvm−1ua−1 + tR(t; v, 0) + vt2R(t; v)

+ v
∑

i≥1

∑

m≥i+1

∑

j≥i

∑

n≥m

(
j − 1

i− 1

)
rn(m)tn+j+2vm−1

+
∑

i≥1

∑

m≥i+1

∑

j≥m−1

∑

n≥i+j+2

(
j − 1

m− 2

)
rn−j−2(i)t

nvm−1

+
∑

n≥1

∑

i≥2

∑

m≥i+2

∑

j≥m

min{i−1,n}∑

k=1

rj(m− 1, i)rn(k)t
n+j+2vm−1

=
vut

1− t

∑

n≥3

n−1∑

m=2

m−1∑

a=1

rn(m, a)tnvm−1ua−1 + tR(t; v, 0) + vt2R(t; v)

+ v
∑

i≥1

∑

m≥i+1

∑

n≥m

rn(m)
tn+i+2vm−1

(1− t)i
+
∑

i≥1

∑

m≥i+1

∑

j≥m−1

∑

n≥i

(
j−1

m−2

)
rn(i)t

n+j+2vm−1

+ v
∑

n≥1

n∑

k=1

∑

i≥k+1

∑

m≥i+1

∑

j≥m+1

rj(m, i)rn(k)t
n+j+2vm−1

=
vut

1− t
R(t; v, u) + tR(t; v, 0) + vt2R(t; v)

+
v

1− 2t

∑

n≥1

n∑

m=1

rn(m)

(
tn+3 − tn+m+2

(1− t)m−1

)
vm−1

+
∑

n≥1

n∑

i=1

∑

m≥i+1

∑

j≥m−1

(
j−1

m−2

)
rn(i)t

n+j+2vm−1

+ v
∑

n≥1

n∑

k=1

∑

j≥3

j−1∑

m=2

m−1∑

i=1

rj+k(m+ k, i+ k)rn(k)t
n+j+k+2vm+k−1
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=
vut

1− t
R(t; v, u) + tR(t; v, 0) + vt2R(t; v) +

vt3

1− 2t

(
R(t; v)−R

(
t;

vt

1− t

))

+
∑

n≥1

n∑

i=1

∑

m≥i+1

rn(i)
tn+m+1vm−1

(1− t)m−1

+ vt2
∑

n≥1

n∑

k=1

rn(k)t
n+kvk

(
∑

j≥3

j−1∑

m=2

m−1∑

i=1

rj+k(m+ k, i+ k)tjvm−1

)

=
vut

1− t
R(t; v, u) + tR(t; v, 0) + vt2R(t; v) +

vt3

1− 2t

(
R(t; v)−R

(
t;

vt

1− t

))

+
1

1− (1 + v)t

∑

n≥1

n∑

i=1

rn(i)
tn+i+2vi

(1− t)i−1

+ vt2
∑

n≥1

n∑

k=1

rn(k)t
n+kvk

(
∑

j≥3

j−1∑

m=2

m−1∑

i=1

rj+k(m+ k, i+ k)tjvm−1

)

=
vut

1−t
R(t; v, u) + tR(t; v, 0) + vt2R(t; v)

+
vt3

1−2t

(
R(t; v)−R

(
t;

vt

1− t

))

+
vt3

1− (1 + v)t
R

(
t;

vt

1− t

)

+ vt2
∑

n≥1

n∑

k=1

rn(k)t
n+kvk

(
∑

j≥3

j−1∑

m=2

m−1∑

i=1

rj+k(m+ k, i+ k)tjvm−1

)
.

Thus, by (68), we get

R(t; v, u) =

vut

1− t
R(t; v, u) + tR(t; v, 0) + vt2R(t; v) +

vt3

1− 2t

(
R(t; v)−R

(
t;

vt

1− t

))

+
vt3

1− (1 + v)t
R

(
t;

vt

1− t

)
+

v2t3

1− t
R(t; v, 1)R

(
t;

vt

1− t

)
. (74)

Applying now (72) to (74) yields (73), after some algebra.

We have that R(t; v) may be expressed in terms of an infinite continued fraction
as follows.

Theorem 3.21. The generating function R(t; v) for the number of members of
Cn(21-1) having largest letter m for all n ≥ m ≥ 1 (marked by tnvm−1) satisfies

R(t; v) =
t

v(1− 2t)− (1− t)2(vt2 − (1− v)(1− 2t)

(1− t)(1− 2t)− vt3R(t; vt
1−t

)

. (75)
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In particular, we have
∑

n≥1 cn(21-1)t
n = R(t; 1) = t+2t2+5t3+13t4+35t5+96t6+

267t7 + 750t8 + 2122t9 + 6036t10 + 17239t11 + 49389t12 + 141842t13 + 408142t14 +
1176194t15+3393726t16+9801731t17+28331971t18+81947397t19+237152119t20+· · · .

Proof. Taking u = 0 into (73), one finds an expression of R(t; v, 0), which when
substituted back into (73), gives

(
1− vut

1− t

)
R(t; v, u) =

vt3

(1− (1 + v)t)((1− t)2 − vt2)

+
v2t3

(1− t)2
R(t; v, 1)R

(
t;

vt

1− t
, 1

)

− vt2(vt3 − (1− t)3)

(1− t)(1− 2t)((1− t)2 − vt2)
R(t; v, 1)

− v(1− v)t4

(1− t)(1− 2t)(1− (1 + v)t)
R

(
t;

vt

1− t
, 1

)
. (76)

Taking u = 1 in (76), one gets

(
1− vt

1− t
+

vt2(vt3 − (1− t)3)

(1− t)(1− 2t)((1− t)2 − vt2)
− v2t3

(1− t)2
R

(
t;

vt

1− t
, 1

))
R(t; v, 1)

=
vt3

(1− (1 + v)t)((1− t)2 − vt2)
− v(1− v)t4

(1− t)(1− 2t)(1− (1 + v)t)
R

(
t;

vt

1− t
, 1

)
.

(77)

Using R(t; v, 1) = R(t; v)− 1
1−(1+v)t

in (77) then yields, after several algebraic steps,

R(t; v) =
vt4R(t; vt

1−t
)− t(1− t)(1− 2t)

v
t
(1−2t)(vt4R(t; vt

1−t
)− t(1−t)(1−2t)) + (1− t)2(vt2 − (1−v)(1−2t))

,

which implies (75).
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