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Abstract

For each positive integer r ≡ 9 mod 10, we provide a strong vertex-magic
total labeling (SVMTL) for a graph with 2r vertices of degree 3 and 3r
vertices of degree 2. In addition, we show that no bipartite graph with
the same degree sequence can have an SVMTL. This provides the first
known infinite family of connected graphs with minimum degree d and
maximum degree d + 1 each possessing an SVMTL, such that there is
another family of graphs with the same respective degree sequences, but
without possessing SVMTLs. (There are no previously known discon-
nected such families, provided we add the assumption that K2 is not
isomorphic to any of the components).

A well-known technique of Ian Gray combined with our work gives as
corollary that a large range of graphs with 2r vertices of degree 2m + 1
and 3r vertices of degree 2m also possess SVMTLs.

There are well-known theorems and conjectures regarding the exis-
tence of SVMTLs for certain regular graphs of degree at least 2. Our
work suggests that the regularity assumption cannot be easily weakened.
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1 Introduction

Let G be a simple graph with vertex set V and edge set E. A labeling λ of G is a
map λ : V ∪E −→ {1, 2, . . . , |V |+ |E|}. The weight wtλ(v) of vertex v with incident
edges e1, . . . , et is given by wtλ(v) = λ(v) +λ(e1) + · · ·+λ(et). The labeling λ is said
to have the magic property if the weight of every vertex is the same. In this case we
refer to λ as a magic labeling. If in addition the magic labeling λ is a bijection, then
λ is called a vertex-magic total labeling or VMTL and the common weight (often
denoted by h) is called the magic constant for the VMTL. We say that a graph G is
vertex-magic if it has a VMTL. Otherwise, we say that it is non-magic.

For example, in Figure 1 there is a VMTL of C7 having a magic constant of
h = 22. The first paper specifically dedicated to VMTLs is [13], which appeared
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Figure 1: A VMTL for C7 with a magic constant of h = 22.

at approximately the same time as the first edition of [14]. However, for 2-regular
graphs, the question goes back much further, since a so-called edge-magic total label-
ing can be easily converted into a VMTL for any 2-regular graph. (See for example,
[15].) In that sense, VMTLs indirectly go back at least as far as 1970, as edge-magic
total labelings were called M-valuations in [10]. In this paper, we will only consider
vertex-magic total labelings.

The role of regularity, or near regularity, has played a central role in the develop-
ment of the literature. Most significantly, MacDougall observed that regular graphs
of degree at least 2 seem to all be vertex-magic, with the exception of the disjoint
union of two 3−cycles (2C3). He then conjectured [11, 12] that 2C3 is the only non-
magic regular graph of degree at least 2. Note that it follows immediately from the
bijective property of VMTLs that any regular graph of degree 1 is non-magic; in
fact, so is any graph with a component isomorphic to K2. Thus, we view K2 as a
forbidden component.

To see why irregularity might provide an obstruction, consider the star K1,3. In a
total labeling, the central vertex has weight at least 1 + 2 + 3 + 4 = 10; evidently not
all of the other vertices could have such a large weight, with the largest available label
being 7. (More impressively, it is shown in [13] that Km,n is never magic whenever
|m− n| ≥ 2.) MacDougall’s Conjecture then suggests that the removal of this type
of obstruction should be sufficient to ensure VMTLs for the graph, with 2C3 being
seen as mostly a consequence of the law of small numbers. In this paper we focus on
infinite families of graphs to ensure that small numbers are not the main issue.
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Another perspective for considering MacDougall’s conjecture is that it suggests,
(certainly for regular graphs) that the degree sequence, and not the finer structure
of the graph, determines whether it has a VMTL. Exploring this perspective, it was
shown in [3] that for each r ≥ 3 there is a vertex-magic graph with the same degree
sequence as K2r,2r+2. This provides an example of a separating family; that is an
infinite family of degree sequences such that, for each sequence, there are two graphs
sharing the degree sequence—one non-magic, and the other one vertex-magic.

To ensure that not all separating families have a bipartite graph as the non-magic
partner, [3] also provides two graphs with n vertices of degree 3 and n vertices of
degree 1, the vertex-magic graph being a sun graph and the non-magic graph being
neither bipartite nor containing the forbidden component K2.

It remains unknown whether there is a separating example where the difference
between the maximum degree and the minimum degree is at most 1. For example,
Km,m+1 does have a VMTL for each m, so it cannot help provide the non-magic
example. However, we can get results of a similar flavor if we expand our reach to
include the so-called spectrum of magic constants.

If a graph is vertex-magic, there is a corresponding range of possible magic con-
stants, called the spectrum of magic constants for the graph. For example, Figures 1
and 2 both show VMTLs of C7, but with different magic constants. For most fami-
lies of graphs, the question of determining the spectrum is a difficult one, with few
general results. An exception is given in [17], where the spectrum for all odd order
complete graphs is completely determined.

A special case that has generated enormous interest concerns the so-called strong
VMTL, or SVMTL, defined to be a VMTL where every vertex label is bigger than
every edge label. The labeling in Figure 2 is an SVMTL for C7.

As a warning to the reader, the adjective strong is used inconsistently in the
context of vertex-magic total labelings. We have adopted the meaning chosen by
Gray (e.g. [5, 6, 7]) with some authors (e.g. [1]) using it to mean that the smallest
labels are on the vertices.

SVMTLs of 2-regular graphs have enhanced importance due to the following:

Theorem 1.1 (Gray [5]): If G is a graph of order n with a spanning subgraph H
which possesses a strong VMTL and G−E(H) is even regular, then G also possesses
a strong VMTL.

If when applying Gray’s Theorem, H has many vertices, all of low degree, then
one can imagine applying the theorem several times; adding 2-factors repeatedly
and each time getting a new graph with an SVMTL. The SVMTLs we provide in
Section 3 are for graphs whose vertices have either degree 2 or degree 3. The option
for repeated use of Gray’s Theorem suggests that SVMTLs for these low degree
graphs are particularly useful. A striking application of Gray’s Theorem uses a well-
known SVMTL for odd order cycles. With this, Gray concludes [5, 6] that every odd
order regular graph with a Hamilton cycle has an SVMTL, providing substantial
evidence for MacDougall’s Conjecture.



J. CALZADILLAS AND D. MCQUILLAN/AUSTRALAS. J. COMBIN. 90 (3) (2024), 378–392 381

This important SVMTL for odd cycles first appears in [4] (although it is slightly
disguised, as it is a paper on edge-magic total labeling). It plays a key role in our
strategy in Section 3 and we refer to it as the standard SVMTL for Cn, for odd n.
The labeling itself can be described as follows. Start by labeling an edge with 1,
and then, walking around the cycle, skip an edge and label the edge after that with
2; continue in this manner until all edges are labeled. Observe that, before labeling
vertices, the (partial) weights are consecutive numbers, meaning that the vertex
labels n + 1, n + 2, . . . 2n can easily be assigned to vertices to achieve the magic
property. It is well-known that even cycles cannot have SVMTLs. (It follows from
equation (3) in Section 2.) Figure 2 has the standard SVMTL for n = 7. 
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Figure 2: A Strong VMTL (SVMTL) for C7 with a magic constant of h = 19.

For other (i.e. disconnected) odd-order 2-regular graphs, the story is more subtle.
There are three known (vertex-magic!) examples that do not have an SVMTL:
namely, the disjoint unions C3 ∪ C4, 2C3 ∪ C5 and 3C3 ∪ C4. In order to ensure
that there was nothing structurally prohibitive about disjoint unions of the form
(2s − 1)C3 ∪ C4 or 2sC3 ∪ C5, it was shown in [8] that all graphs of those forms
actually do possess SVMTLs except for the three small exceptions mentioned above.
Other SVMTLs for similar families of 2-regular graphs were provided in [16]. Other
general constructions are given in [2] and [18].

All other 2-regular graphs of order at most 29 have been investigated in [9],
and all possess SVMTLs. They also provide the numbers of distinct SMVTLs and,
interestingly, this number seems to be growing tremendously quickly with the order
of the graphs. This suggests that regularity is the key, rather than the structure of
the graphs themselves.

Strong VMTLs play an important role in the area of vertex-magic total labelings,
as well as being interesting in their own right. In this paper, we provide an infinite
family of degree sequences such that, for each degree sequence, there are two graphs
sharing that degree sequence; one that has an SVMTL and the other which does not.
The graphs are close to being regular, as the maximum difference in degrees is 1.

In Section 2 we set up the preliminary equations and framework, similar to [13].
From there it is straightforward to show that any bipartite graph with 2r vertices of
degree 3 and 3r vertices of degree 2 cannot have an SVMTL. At the same time, we
will show that any (not necessarily bipartite) graph with that degree sequence can
only have an SVMTL if r ≡ 9 mod 10. As an aside we show that no graph can have
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an SVMTL if it has the same degree sequence as Km,m+1, with the exception of K1,2

which itself has an SVMTL. Thus, we could not have used Km,m+1 as the non-magic
partner for our infinite pairing.

The heart of the paper is Section 3, where an SVMTL is constructed for a (non-
bipartite!) graph having 2r vertices of degree 3 and 3r vertices of degree 2. This
construction works for any positive integer r ≡ 9 mod 10. Roughly speaking the
strategy of construction is to begin with the standard SVMTL for C5r and then,
using a few numerical shifts and a permutation of the vertex labels, we end up with
3r vertices of the same weight and 2r vertices with lesser weight. We add edges
with small labels to these 2r vertices of lesser weight, to restore the magic property.
Finally, we shift the vertex labels up to ensure the labeling is a bijective map.

In Section 4, we consider a few open and hopefully tractable problems that re-
main.

2 Graphs without a strong VMTL

Given a graph G with VMTL λ and magic constant h, we let Sv denote the sum of
vertex labels and we let Se denote the sum of all edge labels. If G has n vertices and
ε edges then,

Sv + Se = 1 + 2 + · · ·+ (n+ ε)

=
(n+ ε)(n+ ε+ 1)

2
.

Since each edge label appears in the calculation of two vertex weights, but vertex
labels only appear in one, we get,

Sv + 2Se = nh. (1)

Combining these gives us

Se = nh− (n+ ε)(n+ ε+ 1)

2
.

Rearranging slightly gives us

h =
2Se + (n+ ε)(n+ ε+ 1)

2n
. (2)

This makes precise the relationship between Se and h, and makes clear that if there
is an SVMTL, it would have the smallest possible magic constant. Note we have
bounds for Se

ε(ε+ 1)

2
= 1 + 2 + · · ·+ ε ≤ Se ≤ (n+ 1) + · · ·+ (n+ ε) =

ε(2n+ ε+ 1)

2
.

Combining with equation (2) we get bounds for h

ε(ε+ 1) + (n+ ε)(n+ ε+ 1)

2n
≤ h ≤ ε(2n+ ε+ 1) + (n+ ε)(n+ ε+ 1)

2n
.
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Any integral value of h within these bounds we will call a feasbile value for a magic
constant. Note that feasibility is a property of n and ε, and not the structure of the
graph. If G has an SVMTL, then Se = ε(ε+ 1)/2 and so

h =
ε(ε+ 1) + (n+ ε)(n+ ε+ 1)

2n
. (3)

We summarize the part we need as follows:

Theorem 2.1 Let λ be a strong vertex-magic total labeling of a graph consisting of
exactly 5r vertices and 6r edges. Then,

h =
157r + 17

10
.

Furthermore, r ≡ 9 (mod10).

Proof. For the first part, use equation 3 to get

h =
6r(6r + 1) + 11r(11r + 1)

10r

=
157r + 17

10
.

Since h must be an integer, we need 157r + 17 ≡ 0 (mod 10). Reducing gives
7(r + 1) ≡ 0 or r ≡ 9 (mod 10). �

This suggests our choice of infinite family is a reasonable one. The next theorem
helps to solidify that view, as it shows that we could not have used Km,m+1 for the
non-magic partner of an infinite set of separating examples.

Theorem 2.2 Let G have m vertices of degree m + 1 and m + 1 vertices of degree
m. If G has a strong vertex-magic total labeling then m = 1.

Proof. We start with the following number theoretic fact.

Lemma 2.3 If m and m(m+1)(m2+m+1)
2m+1

are both positive integers then m = 1.

Proof of Lemma: Since gcd(m, 2m+ 1) = 1 and gcd(m+ 1, 2m+ 1) = 1 it follows
that m(m+ 1)(m2 +m+ 1) can only be a multiple of 2m+ 1 if m2 +m+ 1 is already
a multiple of 2m+ 1; in this case, 2(m2 +m+ 1) is also a multiple of 2m+ 1. Since

2(m2 +m+ 1)

2m+ 1
= m+

m+ 2

2m+ 1
,

we conclude that m+2
2m+1

is an integer. In particular, 2m + 1 ≤ m + 2. This implies
that m = 1. �
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To prove the theorem, assume that G has an SVMTL with magic constant h.
Since n = 2m+ 1 and ε = m2 +m, we see that

Sv = (m2 +m+ 1) + (m2 +m+ 2) + · · ·+ (m2 + 3m+ 1)

= (2m+ 1)(m+ 1)2.

Also,

2Se = 2(1 + 2 + · · ·+ (m2 +m))

= m(m+ 1)(m2 +m+ 1).

We use these, along with equation (1), to get:

(2m+ 1)h = Sv + 2Se

= (2m+ 1)(m+ 1)2 +m(m+ 1)(m2 +m+ 1).

Thus,

h = (m+ 1)2 +
m(m+ 1)(m2 +m+ 1)

2m+ 1
.

Since h must be an integer, it follows that (m2+m+1)m(m+1)
2m+1

must also be an integer.
By the lemma, this implies that m = 1. �

With preliminaries in place, the next result is straightforward. The key point
(where the bipartite assumption gets used) is at the start of the proof, where Se, the
sum of all edge labels, occurs as a summand in two different equations.

Theorem 2.4 Let G be a bipartite graph with vertex partite sets V1 and V0. Assume
|V1| = 3r and |V0| = 2r and that G has exactly 6r edges. Then G does not possess a
strong vertex-magic total labeling.

Proof. Assume by way of contradiction that λ is an SVMTL for G with magic
constant h. Let Si denote the sum of vertex labels in Vi, for i = 0, 1. Summing over
the weights of all vertices in V1 we get

3rh = S1 + Se.

Similarly, by summing over weights of all vertices in V0 we get

2rh = S0 + Se.

Combining the previous two equations gives us rh = S1 − S0. However, by Theo-
rem 2.1 the magic constant for λ is given by h = 15.7r + 1.7, whence

S1 − S0 = 15.7r2 + 1.7r. (4)
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Since λ is strong, the set of vertex labels is exactly {6r+1, 6r+2, · · · , 11r}. Summing
over the labels in this set gives us

S1 + S0 = (6r + 1) + (6r + 2) + · · ·+ 11r

=
5r(17r + 1)

2
= 42.5r2 + 2.5r. (5)

Combining equations (4) and (5) we get

S0 = 13.4r2 + 0.4r.

However, |V0| = 2r and so

S0 ≥ (6r + 1) + (6r + 2) + · · ·+ 8r

= 14r2 + r.

This contradicts the fact that S0 = 13.4r2 + 0.4r, completing the proof. �

Since any bipartite graph of order 5r including 2r vertices of degree 3 and 3r
vertices of degree 2 has ε = 6r edges, we immediately have:

Corollary 2.5 Let G be a bipartite graph of order 5r with one partite set consisting
of 3r vertices of degree 2 and the other partite set consisting of 2r vertices of degree 3.
Then G does not possess a strong vertex-magic total labeling.

In the next section we provide, for each r = 9, 19, . . ., a graph with the same
degree sequence as in the corollary; we also construct a corresponding SVMTL.

3 The permutation and the SVMTL

The goal of this section is to provide an SVMTL for a graph with 3r vertices of
degree 2 and 2r vertices of degree 3 for each r ≡ 9 mod 10. The easiest way to
proceed is in steps. To improve clarity, we provide the worked example with r = 9,
although the reader will see that it works for every r ≡ 9 mod 10.

The first step is to begin with the standard SVMTL λ for the cycle C5r. Since r is
odd, 5r is also odd, and therefore this SVMTL exists. With 5r vertices and 5r edges
we set n = ε = 5r in equation (3) to see that the magic constant is h = 12.5r + 1.5.
Our goal is to (eventually) add another r edges to this graph and modify the labeling
to get λ∗ so that the corresponding new magic constant, also given by equation (3),
is h∗ = 15.7r + 1.7.

Using λ as a starting point, we perform a series of numerical shifts. If we subtract
5r from each vertex label, then we will no longer have a bijective map from V ∪E to
1, 2, · · · |V | + |E|; however, we still retain the magic property. Thus, for any vertex
v in C5r, we set

λ1(v) = λ(v)− 5r.
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Figure 3: For r = 9. Left: λ1 (magic) with h1 = 69. Right: λ2 (not magic) with
h2 = 71.

Furthermore, we leave the edge labels unchanged, that is λ1(e) = λ(e) for every edge
e of C5r. The new (common) weight is given by:

h1 = 7.5r + 1.5.

Next, we obtain λ2 by permuting the vertex labels 1, 2, · · · 5r, sending x 7→ f(x).
This means that if λ1(v) = x, then λ2(v) = f(x). Again, we leave the edge labels
unchanged. See Figure 3 for both λ1 and λ2 for the case r = 9.

The permutation f will be defined carefully at the end of this section; for now
note that the permutation will result in exactly 3r of the 5r vertices having a slight
gain (of g) in weight. That is, 3r of the vertices will have weight:

h2 = h1 + g, where g =
r + 1

5
. (6)

For the remaining 2r vertices, there will be two vertices with each of the following
weights: h2 − 1, h2 − 2, . . . , h2 − r.
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We will restore the magic property by adding, to each vertex with weight h2 − i,
a new edge with label i, for i ≥ 1. If λ1(v) = x and f(x) = x + g, then v will not
gain any new incident edge. This makes the quantity x+ g− f(x) an important one.
For the worked example r = 9, we give here the permutation, omitting those x for
which x + g − f(x) = 0 and noting that if λ1(v) = x and x + g − f(x) > 0, then v
will acquire an edge with label x+ g − f(x).
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Figure 4: For r = 9. Left: λ3 (magic) with h2 = 71. Right: λ∗ (SVMTL) with
h∗ = 143.

Thus, using the notation

 x
f(x)

x+ g − f(x)

 , the permutation f for the case r = 9 is

given by 7 9 16 17
1 2 9 11
8 9 9 8

 22 24 29 30
18 19 24 26
6 7 7 6

 33 35 38 39
31 32 35 37
4 5 5 4

 40 41 42 43 44 45
41 40 42 44 43 45
1 3 2 1 3 2


.
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(For the general permutation, we will also have these four blocks, and they will also
be denoted separately).

Now we are ready to enlarge the graph from C5r by adding r new edges. For each
i ≥ 1 the two vertices of weight h2− i will be joined by an edge that will have label i.
Let λ3 be the name of the enlarged labeling, noting that λ3(w) = λ2(w) if w is any
vertex or edge from the original cycle C5r. We have added r new edges. Note that
unlike λ2 which has vertices of different weights, λ3 has the magic property, with
magic constant h2.

The last step is to restore the bijective property to get a proper SVMTL λ∗.
Thus, we add r to each original cycle edge label, thereby making room for the new
edge labels 1, 2, · · · r on the r new edges.

This numerical shift increases the weight of each vertex by 2r. Finally we add
6r to each vertex label, as there are now 6r edges. This final shift increases the
weight by an additional 6r, and it provides an SVMTL λ∗ for the required graph,
with magic constant:

h∗ = h2 + 2r + 6r

= h1 + g + 8r

= (7.5r + 1.5) + g + 8r

= 15.7r + 1.7.

See Figure 4 for both λ3 and λ∗ for the case r = 9.

For describing the permutation in the general case, we opt for a notation where it
is easy to see that it is, in fact a permutation. The first column has values of x and
the second column has the respective values of f(x), with the last column having
the new edge labels. (If there is a 0 in the third column, then there will be no edge
added to any of the vertices with labels from that row.)

The first block consists of a permutation of the labels 1, 2, . . . , 9g − 1.

x f(x) x+ g − f(x)
1 ≤ x ≤ 3g g + 1, g + 2, . . . , 4g 0

3g + 1, 3g + 3, . . . , 5g − 1 1, 2, . . . , g 4g, 4g + 1, . . . , 5g − 1
3g + 2, 3g + 4, . . . , 5g − 2 4g + 2, 4g + 4, . . . , 6g − 2 0

5g ≤ x ≤ 8g − 1 6g, 6g + 1, . . . , 9g − 1 0
8g ≤ x ≤ 9g − 1 4g + 1, 4g + 3, . . . , 6g − 1 5g − 1, 5g − 2, . . . , 4g

Secondly, we permute the labels 9g, 9g + 1, . . . , 16g − 2.

x f(x) x+ g − f(x)
9g ≤ x ≤ 11g − 1 10g, 10g + 1, . . . , 12g − 1 0

11g, 11g + 2, . . . , 13g − 2 9g, 9g + 1, . . . , 10g − 1 3g, 3g+1, . . . , 4g−1
11g + 1, 11g + 3, . . . , 13g − 3 12g + 1, 12g + 3, . . . , 14g − 3 0

13g − 1 ≤ x ≤ 15g − 2 14g − 1, 14g, . . . , 16g − 2 0
15g − 1 ≤ x ≤ 16g − 2 12g, 12g + 2, . . . , 14g − 2 4g−1, 4g−2, . . . , 3g
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Next, we permute the labels, 16g − 1, 16g, . . . , 21g − 3.

x f(x) x+ g − f(x)
16g − 1 ≤ x ≤ 17g − 2 17g − 1, 17g, . . . , 18g − 2 0

17g − 1, 17g + 1, . . . , 19g − 3 16g − 1, 16g, . . . , 17g − 2 2g, 2g+1, . . . , 3g−1
17g, 17g + 2, . . . , 19g − 4 18g, 18g + 2, . . . , 20g − 4 0
19g − 2 ≤ x ≤ 20g − 3 20g − 2, 20g − 1, . . . , 21g − 3 0
20g − 2 ≤ x ≤ 21g − 3 18g − 1, 18g + 1, . . . , 20g − 3 3g−1, 3g−2, . . . , 2g

Finally, we permute 21g − 2, 21g − 1, . . . , 25g − 5.

x f(x) x+ g − f(x)
21g − 2 ≤ x ≤ 22g − 3 22g − 3, 22g − 4, · · · 21g − 2 1, 3, · · · , 2g − 1
22g − 2 ≤ x ≤ 23g − 4 23g − 4, 23g − 5, · · · , 22g − 2 2, 4, · · · , 2g − 2
23g − 3 ≤ x ≤ 24g − 4 24g − 4, 24g − 5, · · · , 23g − 3 1, 3, · · · , 2g − 1
24g − 3 ≤ x ≤ 25g − 5 25g − 5, 25g − 6, · · · , 24g − 3 2, 4, · · · , 2g − 2

This description not only allows for easy verification that each block is permuted,
but we also see from the third column that new edges added were not previously
adjacent, and therefore we are certain that the graph we construct is a simple graph.
It is also evident that there are, for each i = 1, 2, . . . , 5g − 1 exactly two values of x
such that x+ g− f(x) = i and therefore there is an edge with label i to join between
the two corresponding vertices. From equation (6) we see that 5g− 1 = r, and so we
are indeed adding exactly r edges to C5r as claimed. Thus, we have now proved the
following:

Theorem 3.1 For each positive integer r ≡ 9 mod 10 there is a simple graph G of
order 5r consisting of 2r vertices of degree 3 and 3r vertices of degree 2 such that G
has a strong vertex-magic total labeling.

Let Hr be the graph with 5r vertices constructed in the preceding theorem (r ≡ 9
mod 10), and let E(Hr) be its edge set. If G is any graph containing Hr as a spanning
subgraph and G − E(Hr) is even regular, then it immediately follows that G also
possesses an SVMTL, by Theorem 1.1.

4 Concluding Remarks

Despite the fact MacDougall’s Conjecture remains open, most believe it to be true.
It is reasonable to attempt to make the conjecture stronger, even if just to show that
it cannot be made much stronger.

Let δ(G) denote the difference between the maximum degree and minimum degree
(over all vertices of G). MacDougall’s Conjecture could be thought of as saying that
as long as G does not have the forbidden component of K2, and G has order at
least 7, then the condition δ(G) = 0 guarantees that G is vertex-magic.

This perspective suggests finding variations on MacDougall’s Conjecture based
on small values of δ, and, more generally, on degree sequences. We cannot guarantee
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that G is vertex-magic based on δ(G) ≤ 2, since it was shown in [13] that complete
bipartite graphs with δ = 2 are not. By contrast, in [3], vertex-magic graphs were
found having the same degree sequence as the (non-magic) K2r,2r+2. This prevents
our ability to make overly ambitious conclusions based on the degree sequence when
δ = 2. This paper arose in part with an attempt to start to seriously consider the
case δ = 1. We ask:

Question: Is there an infinite list of degree sequences, each with δ ≤ 1, such
that for each degree sequence there is a corresponding vertex-magic graph and a
corresponding non-magic graph avoiding K2 as a component?

We propose the following strengthening of MacDougall’s Conjecture:

Conjecture 4.1 Any simple graph with minimum degree at least d ≥ 2 and max-
imum degree at most d + 1 has a vertex-magic total labeling, with at most finitely
many exceptions.

The non-magic regular graph 2C3 is the only exception we know of, so we are
encouraging the reader to find examples of non-magic graphs where the difference
between maximum degree and minimum degree is at most 1. If these graphs exist,
can they be of arbitrarily large order?

Our paper shows that, even in the case where δ = 1, the degree sequence does
not determine all of the magic constants for the graph. However, we focused entirely
on strong VMTLs.
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Figure 5: A VMTL with magic constant of h = 49.

We end by pointing out that this type of question can be extended to consider all
feasible magic constants. For example, the VMTL in Figure 5 has a magic constant
of h = 49. While this is not a strong VMTL, one can show (using methods similar
to those used in the proof of Theorem 2.4), that any bipartite graph with 18 edges,
and with vertex set consisting of 9 vertices in one partite set and 6 vertices in the
other, cannot have a VMTL with magic constant 49. Therefore, we can also ask for
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the correct generalization of this fact, from the perspective of graphs with the same
degree sequence having different spectra.
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