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Lattice polytopes with the minimal volume
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Abstract

Let P ⊂ Rd be a lattice polytope of dimension d. Let b(P) denote the
number of lattice points belonging to the boundary of P and c(P) that
to the interior of P . It follows from the lower bound theorem of Ehrhart
polynomials that, when c > 0,

vol(P) ≥ (d · c(P) + (d− 1) · b(P)− d2 + 2)/d!,

where vol(P) is the (Lebesgue) volume of P . Pick’s formula guarantees
that, when d = 2, the above inequality is an equality. In the present paper
several classes of lattice polytopes for which the equality here holds will
be presented.

1 Introduction

Recall that a lattice point of Rd is a point belonging to Zd. Let P ⊂ Rd be a lattice
polytope of dimension d. In other words, P is a convex polytope of dimension d each
of whose vertices is a lattice point. Let b(P) denote the number of lattice points
belonging to the boundary of P and c(P) the number of lattice points belonging to
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the interior of P . The lower bound theorem of Ehrhart polynomials [2] guarantees
that, when c > 0,

vol(P) ≥ (d · c(P) + (d− 1) · b(P)− d2 + 2)/d!, (1)

where vol(P) is the (Lebesgue) volume of P . Even though the argument done in [2] is
rather complicated with deep techniques on polytopes, a short and elementary proof
of (1) is presented in [5]. Pick’s formula says that the inequality (1) is an equality
when d = 2.

A lattice polytope P ⊂ Rd of dimension d is called Castelnuovo [4] if the equality
holds in (1). Only a few classes of Castelnuovo polytopes are known. A triplet of
integers (b, c, d) with b ≥ c+d+1, c ≥ 1 and d ≥ 3 is called Castelnuovo if there exists
a Castelnuovo polytope P ⊂ Rd of dimension d with b = b(P) and c = c(P). One of
the reasonable problems on Castelnuovo polytopes is to find all of the Castelnuovo
triplets. In fact, to find the complete list of the Castelnuovo triplets establishes the
foundation to classify the Castelnuovo polytopes.

When d = 2, Scott [6] finds all of the Castelnuovo triplets. In fact, the Casteln-
uovo triplets with d = 2 are (i) (b, 1, 2) with 3 ≤ b ≤ 9 and (ii) (b, c, 2) with c ≥ 2
and 3 ≤ b ≤ 2c+ 6.

On the other hand, it is known [3] that the triplet of integers (d+ 1, c, d), where
c ≥ 1 and d ≥ 3, are Castelnuovo pairs. In the present paper, several classes of
Castelnuovo polytopes and a partial list of the Castelnuovo triplets will be presented.

2 Castelnuovo polytopes of bipyramid type

Let e1, . . . , ed denote the canonical unit coordinate vectors of Rd. Fix integers c ≥
1, d ≥ 3 and 0 ≤ n < cd. We introduce the lattice polytope

Pc,d(n) ⊂ Rd,

called of bipyramid type, of dimension d whose vertices are

0, e1, . . . , ed−1, ed + n

d∑

i=1

ei, ed + cd

d∑

i=1

ei,

where 0 is the origin of Rd.

Example 2.1. The vertices of P3,4(5) ⊂ R4 are

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (5, 5, 5, 6), (12, 12, 12, 13).

One has b(P3,4(5)) = 12, c(P3,4(5)) = 3 and vol(P3,4(5)) = 34/4!. Hence P3,4(5) is
Castelnuovo.

Lemma 2.2. Each of the lattice points

d∑

i=1

ei, 2
d∑

i=1

ei, . . . , c

d∑

i=1

ei

belongs to the interior of Pc,d(n).
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Proof. Let 1 ≤ j ≤ c. Then

j
d∑

i=1

ei =
(c− j)d+ 1

cd+ 1
0+

d−1∑

i=1

j

cd+ 1
ei +

j

cd+ 1
(ed + cd

d∑

i=1

ei)

belongs to the interior of a simplex of dimension d which is contained in Pc,d(n).

Lemma 2.3. Each of the lattice points

0, e1, . . . , ed−1, ed + n

d∑

i=1

ei, ed + (n+ 1)
d∑

i=1

ei, . . . , ed + cd

d∑

i=1

ei.

belongs to the boundary of Pc,d(n).

Proof. Let n < j < c. Then

ed + j

d∑

i=1

ei =
cd− j

cd− n
(ed + n

d∑

i=1

ei) +
j − n

cd− n
(ed + cd

d∑

i=1

ei)

belongs to an edge of Pc,d(n).

Now, in order to compute the volume of Pc,d(n), a triangulation of Pc,d(n) is
studied. Let σ ⊂ Rd denote the lattice simplex of dimension d with the vertices

0, e1, . . . , ed−1, ed + cd

d∑

i=1

ei.

Furthermore, for each 1 ≤ i ≤ d − 1, we introduce the lattice simplex σ(i) ⊂ Rd of
dimension d whose vertices are

0, e1, . . . , ei−1, ei+1, . . . , ed−1, ed + n

d∑

i=1

ei, ed + cd

d∑

i=1

ei.

A standard technique [1, Chapter 4] for triangulations guarantees the following.

Lemma 2.4. Let Σ denote the set of simplices consisting of σ, σ(1), . . . , σ(d − 1)
together with their faces. Then Σ is a triangulation of Pc,d(n).

It is known that the volume of a simplex is computed by using the determinant.
In particular, the volume of σ ⊂ Rd is (cd+ 1)/d! and the volume of each σ(i) ⊂ Rd

is (cd− n)/d!. Corollary 2.5 follows from Lemma 2.4.

Corollary 2.5. The volume of Pc,d(n) is

vol(Pc,d(n)) = ((d− 1)(cd− n) + (cd+ 1))/d!.

Now, we come to the highlight of the present section.
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Theorem 2.6. The lattice polytope Pc,d(n) is Castelnuovo with

b(Pc,d(n)) = cd− n+ (d+ 1), c(Pc,d(n)) = c.

Proof. Lemmas 2.2 and 2.3 say that c(Pc,d(n)) ≥ c and b(Pc,d(n)) ≥ cd−n+(d+1).
By virtue of (1) together with Corollary 2.5, it follows that

vol(Pc,d(n)) ≥ (d · c(Pc,d(n)) + (d− 1) · b(Pc,d(n))− d2 + 2)/d!

≥ (cd+ (d− 1)(cd− n+ (d+ 1))− d2 + 2)/d!

= ((d− 1)(cd− n) + cd+ (d− 1)(d+ 1)− d2 + 2)/d!

= ((d− 1)(cd− n) + (cd+ 1))/d!

= vol(Pc,d(n)).

Hence c(Pc,d(n)) = c and b(Pc,d(n)) = cd − n + (d + 1). Furthermore, the equality
holds in (1). Thus Pc,d(n) is Castelnuovo, as desired.

3 Castelnuovo polytopes of prism type

Let d ≥ 3 be an integer. Let, as before, e1, . . . , ed denote the canonical unit coordi-
nate vectors of Rd and w = −e1 − · · · − ed−1. Let Q(c) ⊂ Rd denote the prism of
dimension d, where c ≥ 0 is an integer, whose vertices are

e1, . . . , ed−1, w, e1 + (c+ 1)ed, . . . , ed−1 + (c+ 1)ed, w + (c+ 1)ed.

One has

b(Q(c)) = cd+ (2d+ 2), c(Q(c)) = c, vol(Q(c)) = (c+ 1)d2/d!. (2)

It is observed in [4, Example 3.1] that Q(c) is Castelnuovo if c ≥ 1.
Now, imitating the prism Q(c) ⊂ Rd, one can introduce the lattice polytope

Qj(c) ⊂ Rd,

called of prism type, of dimension d, where c ≥ 0 and 0 ≤ j ≤ d − 1 are integers,
whose vertices are

e1, . . . , ed−1, w, (c+ 1)ed, e1 + (c+ 1)ed, . . . , ej + (c+ 1)ed,

ej+1 + ced, . . . , ed−1 + ced, w + ced.

A routine computation based on the configuration of the lattice points of Qj(c)
yields that

b(Qj(c)) = cd+ (d+ 2 + j), c(Qj(c)) = c (3)

and

vol(Qj(c)) = vol(Q(c− 1)) + vol(Qj(0)). (4)



G. HAMANO ET AL. /AUSTRALAS. J. COMBIN. 90 (3) (2024), 357–362 361

Lemma 3.1. One has
vol(Qj(0)) = (jd+ d− j)/d!

Proof. Let

V = {e1, . . . , ed−1, w, e′0 = ed, e
′
1 = e1 + ed, . . . , e

′
j = ej + ed}

denote the set of vertices of Qj(0) and 0 = (0, . . . , 0) ∈ Rd. Let B denote the set of
those subsets W ⊂ V for which

(i) |W | = d;

(ii) {e′s, et} * W, 0 ≤ s < t ≤ j;

(iii) W 6= {e1, . . . , ed−1, w};

(iv) W 6= {e1, . . . , eξ−1, e
′
ξ, e

′
ξ+1, . . . , e

′
j , ej+1, . . . , ed−1, w}, 1 ≤ ξ ≤ j.

IfW ∈ B, then σW = conv(W ∪{0}) ⊂ Rd is a simplex of dimension d and vol(σW ) =
1/d!. Let Σ denote the set of simplices consisting of σW , W ∈ B, together with their
faces. A standard technique for triangulations [1, Chapter 4] guarantees that Σ is a
triangulation of Qj(0). Hence vol(Qj(0)) = |B|/d!.

Now, one claims |B| = jd + d− j. Let W ∈ B and ξW = min{ξ : e′ξ ∈ W}. The
number of W ∈ B with ξW = 0 is d. The number of W ∈ B with ξW = i is d− 1 for
1 ≤ i ≤ j. Thus |B| = d+ j(d− 1), as desired.

Corollary 3.2 follows from Lemma 3.1 together with (4).

Corollary 3.2. One has

vol(Qj(c)) = (cd2 + jd+ d− j)/d!.

Hence Qj(c) is Castelnuovo if c ≥ 1.

4 A partial list of the Castelnuovo triplets

A partial list of the Castelnuovo triplets will be presented.

Example 4.1. Let c ≥ 1 and d ≥ 3 be integers. It is shown [3] that the lattice
polytope Pc,d ⊂ Rd of dimension d whose vertices are

0, e1, . . . , ed−1, ed + cd

d∑

i=1

ei

is Castelnuovo whose Castelnuovo triplet is (d+ 1, c, d).

Now, Theorem 4.2 below follows from Theorem 2.6 together with (2), (3) and
Example 4.1.
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Theorem 4.2. Let c ≥ 1, d ≥ 3 and d+1 ≤ b ≤ cd+(2d+2) be integers. Then the
triplet (b, c, d) is Castelnuovo.

Conjecture 4.3. Let c ≥ 2, d ≥ 3 and b ≥ d+1 be integers. Then the triplet (b, c, d)
is Castelnuovo if and only if d+ 1 ≤ b ≤ cd+ (2d+ 2).

The Conjecture 4.3 is true for d = 2 (Scott [6]) and is open for d ≥ 3.

Example 4.4. Let d ≥ 3 and Cd ⊂ Rd the standard unit cube which is the convex
hull of the 2d points ±e1 ± e2 ± · · · ± ed of Rd. It follows from a simple computation
that Cd is Castelnuovo if and only if d = 3. When d = 3, one has

b(C3) = 26, c(C3) = 1, vol(C3) = 8.

Example 4.5. Let d = 3 and Q ⊂ R3 the lattice polytope with the vertices

(−1,−1, 1), (2,−1, 1), (−1, 2, 1), (−1,−1,−1), (2,−1,−1), (−1, 2,−1)

Then Q is Castelnuovo with

b(P) = 29, c(P) = 1, vol(P) = 9.
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