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Abstract

A 3-uniform 5-cycle C(3, 5), sometimes called a tight 5-cycle, consists of
five vertices a, b, c, d, e and five 3-element sets abc, bcd, cde, dea, eab. A
hypercycle system C(3, 5, v) is a decomposition of the family of 3-element
subsets of a v-element set in such a way that each part is isomorphic to
C(3, 5) and each 3-set occurs in precisely one part. In this note we show
a principle of recursion which can be used to build systems C(3, 5, 4v + 1)
and C(3, 5, 9v + 1), and possibly more, when a certain kind of structural
property is satisfied.

1 Introduction

In this paper we continue the study of edge decompositions of complete 3-uniform
hypergraphs into 5-cycles.

An r-uniform hypercycle of length k (k > r ≥ 3) is called a tight cycle if it is
a cyclic sequence of k vertices of X in which any r consecutive vertices, and only
those, form an edge. If r is understood, we simply call it a k-cycle. An r-uniform
hypercycle of length k is denoted by C(r, k).

A hypercycle system C(3, 5, v) is a decomposition of the family of 3-element sub-
sets of a v-element set in such a way that each part is isomorphic to C(3, 5) and each
3-set occurs in precisely one part. One very natural question is to determine the set
of those v for which a C(3, 5, v) exists.
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This problem was initiated by Meszka and Rosa [9] who noted that a necessary
condition is v ≡ 1, 2, 5, 7, 10, 11 (mod 15). They also verified that there exists a 5-
cycle system for every admissible v ≤ 17 from these residue classes. This range was
extended to v ≤ 22 by Gionfriddo, Milazzo and Tuza [2], and to v < 60 by Keszler
and Tuza [6], with some earlier intermediate constructions in a sequence of papers
by Jirimutu et al.; see e.g. [8]. Beyond these cited works, which also contain infinite
sequences of systems obtained by recursive constructions, a comprehensive account
on the literature is given in [6]. For sufficiently large (huge) orders the existence of
systems C(3, 5, v) follows from the very strong general results of Keevash’s milestone
paper [5] on Steiner systems.

In this paper our goal is to present some methods that are suitable for the con-
struction of new infinite classes of 3-uniform 5-cycle systems. For this, in Sections 2,
3, and 4 we introduce three new types of systems.

For the first type—systems of order 4v+1 built upon four almost disjoint “semi-
parallel classes” of systems of order v + 1—we create systems of all feasible orders
under 60 (Section 2).

The second type is closely related to Steiner systems S(3, 5, v), they have the same
arithmetic necessary conditions. The existence of S(3, 5, 41) is a famous old open
problem in design theory, however here we are able to construct a “block-centered”
cycle system for the order of 41 (Section 3).

The third type, “transversal cycle systems” are the cycle analogues of 3-wise
transversal designs; the latter are widely used in Design Theory. Here we prove
that transversal cycle systems can be constructed for every value of the group size
parameter, demonstrating sharp contrast to transversal designs (Section 4).

Finally, in Section 5 we apply these structures to design a recursive construction
of cycle systems. Namely, from special types of systems of orders 4v + 1 and w + 1,
a system of order vw + 1 is created. As a corollary, C(3, 5, v) systems are obtained
for several new values of v.

1.1 Orbits of edges and triplet types

Symmetry is a useful tool in designing decompositions. In this paper we consider
three types of symmetry:

• cyclic systems, where the vertex set is Zv and the mapping defined for all i ∈ Zv

as i 7→ i+ 1 (mod v) is an automorphism;

• 1-rotational systems, which are hypergraphs whose vertex set is Zv−1∪{x} and
the mapping with fixed point x and i 7→ i+ 1 (mod v − 1) for all i ∈ Zv−1 is
an automorphism;

• hypergraphs whose vertex set is Zv−2 ∪ {x, y} and the mapping with the two
fixed points x and y, and taking i 7→ i+ 1 (mod v − 2) for all i ∈ Zv−2 is an
automorphism.

For these three kinds of symmetry we define triplet types over Zm, where m = v or
m = v − 1 or m = v − 2, respectively.
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First, we need to define the distance of two vertices i, j as their shortest distance
“along the cycle” in Zm, that is ||i− j|| = min{|i− j|,m− |i− j|} for any two i, j ∈
Zm.

Consider any vertex triple T = {p, q, r} ⊂ Zm. Adopting a term from [2], the
difference triplets associated with T are the triplets of nonnegative integers obtained
in the following way. Find the increasing order of elements in T , i.e., let 0 ≤ a < b <
c < m be such that {a, b, c} = {p, q, r}. Then, each of (||a − b||, ||b − c||, ||c − a||),
(||b−c||, ||c−a||, ||a−b||), (||c−a||, ||a−b||, ||b−c||) is considered as a difference triplet
of T . These three are equivalent representations of T ; usually (but not always), we
take the lexicographically smallest of them. Viewing them as cyclic triplets, the
three actually become identical.

A difference triplet of type (d, d, d′) is also called a “symmetric difference”; and
we use the term “reflected difference” for a pair {(d, d′, d′′), (d, d′′, d′)} of difference
triplets in which the three distances d, d′, d′′ are all distinct. In accordance with
this, a reflected cycle pair means two cycles whose 5 + 5 edges form five reflected
differences.

Definition 1.1 Let T = {p, q, r} ⊂ Zm be any edge in a 3-uniform hypergraph,
where it is assumed that i 7→ i+ 1 (mod m) is an automorphism. Consider the
lexicographically smallest difference triplet (d, d′, d′′) associated with T . (Here either
of d = d′ and d < d′ may hold.) Then the triplet type, or simply the type of T is
defined as the 3-tuple (1, d+ 1, d+ d′ + 1). ⋄

This notion, introduced in [6], is very useful in verifying constructions based
on a concept of circular symmetry. Triplet types are invariant under the mapping
i 7→ i+ 1 (mod m). Hence, the orbit of any T consists of all vertex triples having
the same type.

2 Cycle systems with semi-parallel classes

Definition 2.1 Let C(3, 5, v) be a hypercycle system of order v with vertex set X,
and let d and k be integers such that v = kd + 1. A semi-parallel d-class , SP(d),
for short, is a subsystem C ′ ⊆ C(3, 5, v) satisfying the following conditions:

• C ′ = C1 ∪ · · · ∪ Cd,

• each Ci is a C(3, 5, k + 1) system,

• there exists a vertex x ∈
⋂d

i=1 V (Ci),

• the sets V (Ci) \ {x} for i = 1, . . . , d are mutually disjoint.

We call the sets V (Ci) \ {x} the parts of C ′, and vertex x the center of C ′. ⋄

It follows, in particular, that the subsystems Ci of C
′ cover the entire vertex set,

but do not cover any vertex triple more than once. In the current context the relevant
substructure will be SP(4), i.e., the case of d = 4.
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Remark 2.2 If there exists a C(3, 5, v) containing an SP(d), then inside the vertex
set of every subsystem Ci one can take a system isomorphic to a fixed C(3, 5, k + 1).
Hence it can be assumed without loss of generality that the vertices in all V (Ci) are
labeled consistently and the label-preserving mapping V (Ci) ←→ V (Cj) (that maps
x to itself) establishes an isomorphism between any two subsystems, 1 ≤ i, j ≤ d. ⋄

Proposition 2.3 If a 5-cycle system C(3, 5, v) with an SP(4) subsystem exists, then

v ≡ 1, 5, 17, 25, 37, 41 (mod 60) .

Proof. We know that a C(3, 5, v) system exists only if v ≡ 1, 2, 5, 7, 10, 11 (mod 15),
which means

v ≡ 1, 2, 5, 7, 10, 11, 16, 17, 20, 22, 25, 26, 31,

32, 35, 37, 40, 41, 46, 47, 50, 52, 55, 56 (mod 60) .

Moreover, the presence of SP(4) certainly requires that v−1 is a multiple of 4. This
excludes all even numbers and all numbers of the form 4k + 3. Thus, the residue
classes listed in the assertion remain. �

More generally, one can obtain necessary conditions for the existence of SP(d)
subsystems in C(3, 5, kd+ 1) systems with other values of d, as well. However, we
postpone those discussions to a later work, because for the 5-cycle systems con-
structed in Section 5 we apply d = 4 only.

In the rest of this section we show that all the four relevant feasible orders under
60 admit 5-cycle systems with SP(4) subsystems. We begin with the following
observation concerning S(3, 5, 17).

Proposition 2.4 The Steiner system S(3, 5, 17) contains four blocks which all con-
tain a common point and are mutually disjoint otherwise.

Proof. Let the set of points be Z17, and consider the cyclic 5-uniform hypergraph
generated by the following four basic blocks:

{0, 1, 7, 10, 16}, {0, 2, 3, 14, 15}, {0, 4, 6, 11, 13}, {0, 5, 8, 9, 12},

by taking all possible rotations modulo 17. Those 17 × 4 = 68 subsets of Z17 cover
each 3-element set exactly once, and the four basic blocks above are mutually disjoint
in Z17 \ {0}. �

This proposition implies that the smallest possible case of an SP(4) exists indeed.

Corollary 2.5 The system C(3, 5, 17) derived from S(3, 5, 17) in [2] and [8] contains
an SP(4) subsystem.
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There are several further values of v for which a cycle system C(3, 5, v) with an
SP(4) subsystem can be constructed, despite that arithmetic conditions exclude the
existence of an S(3, 5, v).

Cyclic representation. If an SP(4) is present in a cycle system C, it is more
convenient to assume that the order is 4v + 1, rather than v. Then the system is
built upon four subsystems C1, . . . , C4; each Cℓ is a cycle system of order v+1 and has
vertex set Vℓ ∪ {x}, the sets V1, . . . , V4 being mutually disjoint. So V (C) = V1 ∪ V2 ∪
V3∪V4∪{x}. We represent V (C)\{x} as Z4v, where Vℓ = {i ∈ Z4v | i ≡ ℓ (mod 4v)}
for ℓ = 1, . . . , 4. Hence, the distances between elements other than x are computed
in Z4v. Then the 3-element sets not covered by any cycles of C1 ∪ · · · ∪ C4 are:

• {x, a, b} such that a, b ∈ Z4v and ||a− b|| is not divisible by 4;

• {a, b, c} such that a, b, c ∈ Z4v and at least one of ||a− b||, ||b− c||, ||c− a|| is
not divisible by 4.

The task is to decompose the family of these vertex triples into edge-disjoint 5-cycles.
We carry out this with decompositions for which the mapping i 7→ i + 1 over Z4v,
together with x 7→ x, is an automorphism.

Next we present three such cycle systems.

Proposition 2.6 There exist 5-cycle systems C(3, 5, 25), C(3, 5, 37), and C(3, 5, 41),
that contain SP(4) subsystems.

Proof. For all three cases we list the base cycles of the constructions. Following
Definition 2.1 and the cyclic representation described above, x denotes the center
of the SP(4) subsystem. In the three constructed systems SP(4) consists of four
subsystems of order 7 or 10 or 11, respectively. We do not list their cycles here
because they are well known systems from the cited references [2] and [9]. We only
note that these subsystems cover

• for v = 25 the orbits of vertex triples (x, 0, 4), (x, 0, 8), (x, 0, 12), (0, 4, 8),
(0, 4, 12), (0, 4, 16), (0, 8, 16);

• for v = 37 the orbits of vertex triples (x, 0, 4), (x, 0, 8), (x, 0, 12), (x, 0, 16),
(0, 4, 8), (0, 4, 12), (0, 4, 16), (0, 4, 20), (0, 4, 24), (0, 4, 28), (0, 8, 16), (0, 8, 20),
(0, 8, 24), (0, 12, 24);

• for v = 41 the orbits of vertex triples (x, 0, 4), (x, 0, 8), (x, 0, 12), (x, 0, 16),
(x, 0, 20), (0, 4, 8), (0, 4, 12), (0, 4, 16), (0, 4, 20), (0, 4, 24), (0, 4, 28), (0, 4, 32),
(0, 8, 16), (0, 8, 20), (0, 8, 24), (0, 8, 28), (0, 12, 24).

v = 25. Supplementing the four C(3, 5, 7) subsystems we take

(a) 3 base cycles containing x: (x, 0, 1, 13, 2), (x, 0, 3, 15, 6), (x, 0, 5, 17, 10);
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(b) 9 base cycles containing the symmetric triplets:
(0, 1, 22, 2, 23), (0, 2, 20, 4, 22), (0, 3, 19, 5, 21),
(0, 5, 14, 10, 19), (0, 6, 23, 1, 18), (0, 7, 10, 14, 17),
(0, 9, 10, 14, 15), (0, 10, 4, 20, 14), (0, 11, 2, 22, 13);

(c) 3 reflected pairs of base cycles:
(0, 11, 8, 17, 1), (0, 2, 12, 23, 5), (0, 16, 1, 18, 5) and
(0, 8, 17, 14, 1), (0, 6, 17, 3, 5), (0, 11, 4, 13, 5).

v = 37. Supplementing the four C(3, 5, 10) subsystems we take

(a) 5 base cycles containing x: (x, 0, 1, 19, 2), (x, 0, 3, 21, 6), (x, 0, 5, 23, 10),
(x, 0, 7, 25, 14), (x, 0, 9, 27, 18);

(b) 12 base cycles containing the symmetric triplets:
(0, 1, 34, 2, 35), (0, 2, 32, 4, 34), (0, 3, 30, 6, 33), (0, 5, 26, 10, 31),
(0, 6, 25, 11, 30), (0, 7, 22, 14, 29), (0, 10, 16, 20, 26), (0, 11, 14, 22, 25),
(0, 13, 10, 26, 23), (0, 14, 8, 28, 22), (0, 15, 6, 30, 21), (0, 17, 2, 34, 19);

(c) 12 reflected pairs of base cycles:
(0, 1, 5, 8, 10), (0, 1, 6, 8, 17), (0, 1, 7, 12, 15), (0, 1, 8, 10, 21),
(0, 1, 9, 14, 23), (0, 1, 11, 35, 24), (0, 2, 14, 19, 23), (0, 3, 20, 32, 10),
(0, 4, 11, 16, 27), (0, 4, 22, 28, 15), (0, 8, 25, 2, 18), (0, 9, 19, 2, 16) and
(0, 2, 5, 9, 10), (0, 9, 11, 16, 17), (0, 3, 8, 14, 15), (0, 11, 13, 20, 21),
(0, 9, 14, 22, 23), (0, 25, 13, 23, 24), (0, 4, 9, 21, 23), (0, 14, 26, 7, 10),
(0, 11, 16, 23, 27), (0, 23, 29, 11, 15), (0, 16, 29, 10, 18), (0, 14, 33, 7, 16).

v = 41. Supplementing the four C(3, 5, 11) subsystems we take

(a) 5 base cycles containing x: (x, 0, 1, 21, 2), (x, 0, 3, 23, 6), (x, 0, 5, 25, 10),
(x, 0, 7, 27, 14), (x, 0, 9, 29, 18);

(b) 15 base cycles containing the symmetric triplets:
(0, 1, 38, 2, 39), (0, 2, 36, 4, 38), (0, 3, 34, 6, 37), (0, 5, 32, 8, 35),
(0, 6, 28, 12, 34), (0, 7, 26, 14, 33), (0, 9, 22, 18, 31), (0, 10, 21, 19, 30),
(0, 11, 19, 21, 29), (0, 13, 14, 26, 27), (0, 14, 12, 28, 26), (0, 15, 8, 32, 25),
(0, 17, 6, 34, 23), (0, 18, 4, 36, 22), (0, 19, 2, 38, 21);

(c) 15 reflected pairs of base cycles:
(0, 1, 5, 8, 18), (0, 1, 6, 3, 11), (0, 1, 7, 11, 16), (0, 1, 8, 3, 15),
(0, 1, 9, 15, 22), (0, 1, 10, 15, 29), (0, 2, 9, 12, 27), (0, 2, 17, 6, 20),
(0, 2, 18, 31, 12), (0, 3, 21, 10, 17), (0, 4, 14, 32, 19), (0, 5, 22, 32, 17),
(0, 6, 15, 38, 11), (0, 6, 16, 37, 21), (0, 9, 25, 39, 16) and
(0, 10, 13, 17, 18), (0, 8, 5, 10, 11), (0, 5, 9, 15, 16), (0, 12, 7, 14, 15),
(0, 7, 13, 21, 22), (0, 14, 19, 28, 29), (0, 15, 18, 25, 27), (0, 14, 3, 18, 20),
(0, 21, 34, 10, 12), (0, 7, 36, 14, 17), (0, 27, 5, 15, 19), (0, 25, 35, 12, 17),
(0, 13, 36, 5, 11), (0, 24, 5, 15, 21), (0, 17, 31, 7, 16).

To facilitate the verification of correctness that indeed the required cycle systems are
obtained, we provide more details on the base cycles in Section 6. �
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3 Block-centered cycle systems

The following type is an intermediate structure between cycle systems and Steiner
systems.

Definition 3.1 We say that a hypercycle system C = C(3, 5, v) with vertex set X
is block-centered if there is an x ∈ X such that the cycles incident with x are in
complementary pairs; i.e., if (x, p, q, r, s) is a 5-cycle in C, then also (x, q, s, p, r) is a
5-cycle in C. Every such unordered 5-tuple {x, p, q, r, s} will be called a block of C.
The collection of blocks will be denoted by B[C]. ⋄

Since every vertex triple occurs in precisely one 5-cycle, it follows by definition
that the derived system

{B \ {x} | B ∈ B[C]}

is a Steiner system S(2, 4, v − 1), whenever C is a block-centered 5-cycle system.

Proposition 3.2 If a block-centered C(3, 5, v) exists, then

v ≡ 2, 5, 17, 26, 41, 50 (mod 60) .

Proof. Recall that if C is a block-centered C(3, 5, v) system, then B[C] is an
S(2, 4, v − 1) system. A classical result of Hanani [3] states that the latter exists
if and only if v ≡ 2, 5 (mod 12). Modulo 60 this means v ≡ 2, 14, 26, 38, 50 (mod 60)
or v ≡ 5, 17, 29, 41, 53 (mod 60). On the other hand, the analogous necessary condi-
tion for C(3, 5, v) systems is v ≡ 1, 2, 5, 7, 10, 11 (mod 15), as stated in [9, 2]. Hence
from 2, 14, 26, 38, 50 there remain 2, 26, 50 and from 5, 17, 29, 41, 53 there remain
5, 17, 41. �

Observe that the above six residue classes are exactly the ones derived from the
divisibility conditions for S(3, 5, v) systems. Hence, as a particular case of Keevash’s
theorem [5], for all sufficiently large v a block-centered 5-cycle system exists if and
only if the divisibility conditions are satisfied. To put it in another way, for large
v the existence of block-centered 5-cycle systems is equivalent to the existence of
Steiner systems S(3, 5, v). On the other hand, however, for many small values of v
the existence of S(3, 5, v) systems is an unsolved problem, and it may happen that
either the spectrum of the two kinds of structures is not the same, or a block-centered
5-cycle system is easier to construct than a Steiner system S(3, 5, v). In this way,
based on a table of [1] for v < 200 the following problem arises naturally.

Problem 3.3 Does there exist a block-centered 5-cycle system of order v for

v = 41, 50, 62, 77, 86, 110, 122, 125, 137, 146, 161, 170, 182, 185, 197 ?

Solving this problem in full generality seems to be very hard. On the other hand
we next show that the first case, v = 41, admits an affirmative answer.

Proposition 3.4 There exists a block-centered C(3, 5, 41) system.
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Proof. We construct a C(3, 5, 41) that contains two central vertices x, y (rather than
just one), and whose other vertices are labeled with the elements of Z39. The mapping
that fixes x and y and acts as i 7→ i+1 for all i ∈ Z39 will be an automorphism. We
denote this special mapping as φ∗. The basis of the system consists of blocks of size
5 (i.e., 5-element subsets of {x, y} ∪ Z39) and 5-cycles, (copies of C(3, 5)) as follows:

(a) the block (x, y, 0, 13, 26);

(b) the 3 + 3 blocks (x, 0, 1, 6, 31), (x, 0, 2, 12, 23), (x, 0, 3, 7, 22) and
(y, 0, 1, 9, 34), (y, 0, 2, 18, 29), (y, 0, 3, 20, 35);

(c) the 9 blocks in Z39: (0, 1, 35, 4, 38), (0, 2, 31, 8, 37), (0, 3, 29, 10, 36),
(0, 5, 21, 18, 34), (0, 6, 20, 19, 33), (0, 7, 27, 12, 32),
(0, 9, 22, 17, 30), (0, 11, 24, 15, 28), (0, 14, 23, 16, 25);

(d) the cycles (12 reflected pairs) in Z39:
(0, 1, 3, 7, 15), (0, 1, 7, 10, 18),(0, 1, 8, 3, 12), (0, 1, 10, 17, 21),
(0, 1, 13, 31, 11), (0, 2, 14, 37, 13),(0, 3, 25, 32, 14),(0, 4, 18, 8, 23),
(0, 5, 17, 34, 11),(0, 6, 21, 3, 15),(0, 8, 22, 37, 20),(0, 9, 20, 3, 19) and
(0, 8, 12, 14, 15),(0, 8, 11, 17, 18),(0, 9, 4, 11, 12),(0, 4, 11, 20, 21),
(0, 19, 37, 10, 11),(0, 15, 38, 11, 13),(0, 21, 28, 11, 14),(0, 15, 5, 19, 23),
(0, 16, 33, 6, 11),(0, 12, 33, 9, 15),(0, 22, 37, 12, 20),(0, 16, 38, 10, 19).

The orbits of (a) under φ∗ cover all of the following vertex triples: those containing
x and y together; one of x and y together with each pair of elements i, i+ 13 ∈ Z39;
and each {i, i+ 13, i+ 26} ⊂ Z39.

Omitting x from the three blocks of (b) containing x we obtain 4-tuples that
cover each of the 18 distances {1, 2, . . . , 19} \ {13} exactly once, thus the orbits of
these blocks together with (a) cover all vertex triples (x, i, j) where i, j ∈ Z39. The
analogous property holds for y as well. In addition, the vertex triples covered inside
Z39 by the blocks of y are the reflected images of those covered by the blocks of x.

The nine blocks of (c) are symmetric and cover every vertex triple in which two
distances between the three elements are equal.

After (a), (b), (c) the remaining uncovered vertex triples are all inside Z39, and
form reflected pairs. They are covered with the orbits of the base cycles listed in (d).
In order to make checking easier, we provide a detailed table in Section 6. �

The following problem is also natural to raise, although currently its solution
seems to be far out of reach. In the light of Proposition 3.4, even the case of v = 41
remains a famous unsolved problem in the theory of Steiner systems.

Problem 3.5 Determine the set of those orders v that admit a block-centered 5-
cycle system C(3, 5, v), but for which a S(3, 5, v) system does not exist.
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4 Transversal cycle systems and 3-wise transversal designs

First, let us quote the definition of a well-known structure from the literature of
design theory. It is a special type of 5-partite hypergraph; according to standard
terminology, the partite classes are called groups.

Definition 4.1 A 3-wise transversal design of block size 5 and group size w is a
3-tuple (X,G,B) where X is the vertex set of cardinality 5w, G is a partition of X
into five groups (classes) of size w each, and B is a family of w3 blocks, which are
5-element subsets of X intersecting each group of G, with the property that every
3-tuple with elements from three distinct groups is contained in exactly one block.
The common notation is 3-TD(5, w); we simply write 3-TD when block size 5 and
group size w are understood. ⋄

Denoting the groups as Xi = {xi,0, xi,1, . . . , xi,w−1} for 1 ≤ i ≤ 5, in the paper [2]
the 3-TD with blocks

(x1,p, x2,q, x3,r, x4,p+q+r, x5,p+2q+3r)

is applied, where p, q, r are any three elements of Zw and subscript addition is taken
modulo w. This system exists whenever w ≡ 1, 5 (mod 6). Concerning the method
presented below, the applicable residue classes are

w ≡ 1, 19, 25, 31, 49, 55 (mod 60)

because they may admit cycle systems C(3, 5, w + 1).
Further sufficient conditions for the existence of 3-TD(5, w) systems are given by

Hanani [4]. It follows, in particular, that a 3-TD(5, w) exists also for w = 4 and
w = 9. More generally, any product w of prime powers qi ≡ 0, 1, 4, 6, 9, 10 (mod
15) may be of interest in this context. Note that the set {0, 1, 4, 6, 9, 10} of residue
classes is closed under multiplication modulo 15.

On the other hand, from the negative answer to Euler’s 36 Officers Problem it
follows that a 3-TD(5, 6) does not exist (see, e.g., page 12 of [1]). Nevertheless, we
can offer a method that is applicable for C(3, 5, v) systems also in those cases where
3-wise transversal designs cannot be constructed. For this purpose we introduce the
following definition, that we formulate with general parameters, although here we
will apply it only for C(3, 5).

Definition 4.2 An r-uniform transversal k-cycle system with group size w, denoted
as r-TC(k, w), is a 3-tuple (X,G, C) where X is the vertex set of cardinality kw, G is
a partition of X into k groups (classes) of size w each, and C is a family of r-uniform
k-cycles, such that each cycle C ∈ C meets each group (in exactly one vertex) and
each r-element subset of X meeting exactly r groups is contained in precisely one
cycle.

More generally, an r-uniform group-divisible k-cycle system with g groups and
group size w, denoted as r-GDC(k, g, w), is a 3-tuple (X,G, C) where X is the vertex
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set of cardinality gw, G is a partition of X into g groups (classes) of size w each,
and C is a family of r-uniform k-cycles, such that each cycle C ∈ C meets each group
in at most one vertex, and each r-element subset of X meeting exactly r groups is
contained in precisely one cycle. ⋄

It follows that the number of cycles is
(

k

r

)

wr/k in r-TC(k, w) and
(

g

r

)

wr/k in
r-GDC(k, g, w). One should emphasize that the vertices in a cycle appear in a
prescribed order, whereas the blocks of transversal designs are unordered sets.

The existence of r-TC and r-GDC systems with general parameters will be studied
in the forthcoming paper [7]. Here we prove a construction for the case that is relevant
in the present discussion; i.e., g = k = 5 and r = 3. It demonstrates that transversal
cycle designs offer substantially more flexibility than 3-wise transversal designs do.

Theorem 4.3 (Transversal 5-Cycles Lemma.) A 3-TC(5, w) system with 2w3

cycles of length 5 exists for every w ≥ 1.

Proof. Let X1 ∪ · · · ∪ X5 = X be the partition of the vertex set into five groups.
We are going to construct two collections of 5-cycles. The generic form of cycles of
the first type is C = x1x2x3x4x5, where xi ∈ Xi holds for all 1 ≤ i ≤ 5. The generic
form for the second type is C = x1x3x5x2x4. Clearly, if the types of two cycles are
not the same, then they are edge-disjoint. Hence it suffices to construct a system of
the first type and apply an isomorphism to derive the system of the second type.

Let W be a quasigroup of order w. We label the vertices of each Xi with the
elements of W . Now, for each (a, b, c) ∈ W 3, construct the 5-cycle

(x1, x2, x3, x4, x5) = (a, b, c, a+ b, b+ c) .

It has to be verified that cyclically any three consecutive elements xi, xi+1.xi+2 (where
x6 := x1 and x7 := x2) uniquely determine the triplet (a, b, c). Indeed,

• i = 1 −→ all the three of a, b, c are specified;

• i = 2 −→ b and c are specified, and a = x4 − b;

• i = 3 −→ c is specified, b = x5 − c, and a = x4 − b;

• i = 4 −→ a is specified, b = x4 − a, and c = x5 − b;

• i = 5 −→ a and b are specified, and c = x5 − b.

Thus, every 3-element set meeting three consecutive groups (vertex classes) is an
edge in a cycle of the above collection. No vertex triple can be covered more than
once, because the w3 cycles contain exactly 5w3 edges.

The cycles of the other type are obtained in the same way, by the analogous rule
(x1, x3, x5, x2, x4) = (a, b, c, a+ b, b+ c). �
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5 Recursive construction

The papers cited in the Introduction present some ways of building cycle systems
from smaller ones. The following construction provides a further useful tool.

Theorem 5.1 (Recursion v + 1, w + 1 −→ vw + 1.) Suppose that there exists
each of the following structures:

• a cycle system C(3, 5, 4v + 1) containing a SP(4) subsystem;

• a block-centered cycle system C(3, 5, w + 1).

Then there also exists a C(3, 5, vw + 1).

Proof. We combine a recursive construction of Hanani [4] for Steiner systems with
ideas from the proof of Theorem 4.3 in [2]. Let C4v+1 be a C(3, 5, 4v + 1) system in
which a SP(4) subsystem C ′ with center x and parts X1, X2, X3, X4 is fixed. Hence
each Xi ∪ {x} induces a C(3, 5, v + 1).

Consider now a block-centered C(3, 5, w + 1) system Cw+1 whose vertex set is
{0, 1, . . . , w}. Assume that the blocks of B[Cw+1] are incident with 0. We construct
a system C∗ = C(3, 5, vw + 1) on the vertex set

Vvw+1 := {∞} ∪ {(i, j) | 1 ≤ i ≤ w, 1 ≤ j ≤ v}

in the following way. Let C be any 5-cycle of Cw+1.

• If 0 /∈ V (C), say C = (i1, i2, i3, i4, i5) with all of its vertices being nonzero, we
take a transversal cycle system 3-TC(5, v), denoted by TC , with group size v
and block size 5, whose five partition classes are

Yik := {(ik, j) | 1 ≤ j ≤ v}, 1 ≤ k ≤ 5.

Lemma 4.3 guarantees that this 3-TC(5, v) exists. Then, for each cycle C ′ ∈ TC
we specify the 3-uniform 5-cycle

(C ′ ∩ Yi1 , C
′ ∩ Yi2 , C

′ ∩ Yi3 , C
′ ∩ Yi4 , C

′ ∩ Yi5) ,

i.e., its edges are the vertex triples (C ′∩Yik , C
′∩Yik+1

, C ′∩Yik+2
) for k = 1, . . . , 5;

addition in the sub-subscript is taken modulo 5.

Note that this step does not need the cyclic sequence (i1, i3, i5, i2, i4) to be a
cycle of Cw+1, only the properties of a transversal cycle design were needed.

• If 0 ∈ V (C), say C = (0, i1, i2, i3, i4), we create a 5-cycle system C[C] on the
vertex set

Z[C] := {∞} ∪ {(ik, j) | 1 ≤ k ≤ 4, 1 ≤ j ≤ v}

by taking a bijective mapping ϕC : V (C4v+1) → Z[C] such that ϕC(x) = ∞,
moreover ϕC(xi,j) = (ik, j) for all 1 ≤ i, k ≤ 4 and all 1 ≤ j ≤ v. Further, we
also require that if V (C ′) = V (C ′′) then ϕC′ = ϕC′′ .

Note that these mappings are consistent for all C, because the derived system
{B \ {0} | 0 ∈ B ∈ B[Cw+1]} is a Steiner system S(2, 4, w).
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We have to show that each vertex triple T in Vvw+1 occurs in precisely one of the
5-cycles defined above. For i = 1, . . . , w let us call the 5-element set {∞, (i, 1), (i, 2),
. . . , (i, v)} as fiber i. Note that all vertex triples originating from cycles C ∈ Cw+1

with 0 /∈ C meet exactly three fibers.

• If T is contained in a fiber, then it occurs in a 5-cycle originating from C ′,
the fixed SP(4) of C4v+1; there is precisely one 5-cycle for T . Indeed, due to
the condition ϕC(xi,j) = (ik, j), every C ∈ Cw+1 with {0, ik} ⊂ V (C) defines
exactly the same 5-cycle for T .

• If T meets exactly two fibers, say fibers i1 and i2, then consider the vertex
triple {0, i1, i2}. It occurs in precisely one C ∈ Cw+1, which defines a bijection
ϕC . The inverse mapping ϕ−1

C determines a vertex triple ϕ−1
C (T ) ⊂ V (C4v+1),

which is contained in precisely one 5-cycle CT ∈ C4v+1. Then ϕ(CT ) is a 5-cycle
containing T in C∗. These steps for T are unambiguous because the derived
system of B[Cw+1] is a S(2, 4, w)

• If T meets three fibers, say fibers i1, i2 and i3, then consider the vertex triple
{i1, i2, i3} in Cw+1. It occurs in precisely one C = (i1, i2, i3, i4, i5) ∈ Cw+1.
Now two situations are possible, depending on whether 0 ∈ V (C) or not. If
0 ∈ V (C), then by assumption the block B = V (C) ∈ B[Cw+1] is the unique
one containing {i1, i2, i3} as a subset, therefore the 5-cycles meeting the three
fibers i1, i2, i3 are determined by ϕC . Otherwise, if 0 /∈ V (C), then we have
taken TC as a 3-TC(5, v), whose vertex set entirely includes (and consists of)
fibers i1, i2, i3, i4, i5 minus ∞. Hence there is precisely one cycle in TC that
contains T , whose 5-cycle specified above has T as an edge.

Thus, C∗ is a C(3, 5, vw + 1). �

Combining this result with previously known constructions, we can confirm the
existence of 3-uniform 5-cycle systems for several new values of the numbers of ver-
tices.

Theorem 5.2 There exist C(3, 5, n) systems for each of the orders

n = 97, 145, 151, 161, 241, 251, 266, 361, 385, 401, 577, 601, 641, 901, 1001.

Proof. We apply Theorem 5.1 with 4v + 1 = 17, 25, 37, 41 by Corollary 2.5 and
Proposition 2.6, which means v = 4, 6, 9, 10, and w = 17, 26, 41, 65, 101 by the block-
centered system C(3, 5, 41) of Proposition 3.4 and the known Steiner systems of orders
17, 26, 65, 101. The details of computation are collected in Table 1. �
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4v + 1 | v + 1 w + 1 = 17 26 41 65 101
17 5 65 101 161 257 401
25 7 97 151 241 385 601
37 10 145 226 361 577 901
41 11 161 251 401 641 1001

Table 1: Constructions of C(3, 5, vw + 1) via Theorem 5.1.

6 Tables of small cycle systems

Here we list the triplet types (see Definition 1.1) generated by the base cycles of
systems containing SP(4) subsystems, on 25, 37, and 41 vertices, respectively. At
the end, the detailed description of the block-centered C(3, 5, 41) system is also given.

Let us recall from the “Cyclic representation” paragraph of Section 2 that the
center x of SP(4) is fixed and circular symmetry is established in Z4v for the base
cycles whose orbits cover the 3-element sets not contained in the parts of SP(4).
More explicitly, the mapping with x 7→ x and i 7→ i + 1 for all i ∈ Z4v will be an
automorphism of the subsystem C(3, 5, 4v + 1) \ SP4. Here it is irrelevant whether
or not this mapping is an automorphism of the SP(4) subsystem, too.

In the block-centered system of order 41 (Table 6) the central part consists of
two vertices x, y. In this case the other 39 vertices are represented over Z39, and the
mapping with x 7→ x, y 7→ y, i 7→ i + 1 (i ∈ Z39) will be an automorphism of the
entire system.

The first small table aims to help the interpretation of the data presented in the
rest of this section. We take the example base cycle (0, 1, 22, 2, 23) from the system
C(3, 5, 25) and go through the process of determining its triplet types. The first step
is to calculate the distances between the vertices of all 5 vertex triples. Recall that
the calculation is done in Z24. Within each vertex triple the smallest of the three
distances will be denoted by d. The vertex pair with this smallest distance will be
the first and second vertex in the ordered version of the triple. The remaining vertex
of the original triple will get the third place. The order of the first two vertices will
be chosen so that the pair is put in the smaller arc of the cyclic order 0, 1, . . . , v−1, 0.
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Table 2: Triplet type calculations explained on the example base cycle (0, 1, 22, 2, 23)
from the system C(3, 5, 25) with an SP(4) subsystem; computed modulo 24 after
removing the center of SP(4).

Vertices Distances
d Direction

Ordered
Type

(vi,vi+1,vi+2) vi-vi+1 vi+1-vi+2 vi+2-vi triple

(0,1,22) 1 3 2 1 right 0 1 22 1 2 23
(1,22,2) 3 4 1 1 left 1 2 22 1 2 22
(22,2,23) 4 3 1 1 left 22 23 2 1 2 5
(2,23,0) 3 1 2 1 right 23 0 2 1 2 4
(23,0,1) 2 1 1 1 right 23 0 1 1 2 3

Table 3: Base cycles of the system C(3, 5, 25), modulo 24, without the four C(3, 5, 7),
that form the SP(4) subsystem.

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
d triple type d triple type d triple type d triple type d triple type

Base cycles containing x.
(x,0,1,13,2) - - - 1 0 1 13 1 2 14 1 1 2 13 1 2 13 - - - - - -
(x,0,3,15,6) - - - 3 0 3 15 1 4 16 3 3 6 15 1 4 13 - - - - - -
(x,0,5,17,10) - - - 5 0 5 17 1 6 18 5 5 10 17 1 6 13 - - - - - -

Base cycles containing the symmetric triplets.
(0,1,22,2,23) 1 0 1 22 1 2 23 1 1 2 22 1 2 22 1 22 23 2 1 2 5 1 23 0 2 1 2 4 1 23 0 1 1 2 3
(0,2,20,4,22) 2 0 2 20 1 3 21 2 2 4 20 1 3 19 2 20 22 4 1 3 9 2 22 0 4 1 3 7 2 22 0 2 1 3 5
(0,3,19,5,21) 3 0 3 19 1 4 20 2 3 5 19 1 3 17 2 19 21 5 1 3 11 3 21 0 5 1 4 9 3 21 0 3 1 4 7
(0,5,14,10,19) 5 0 5 14 1 6 15 4 10 14 5 1 5 20 4 10 14 19 1 5 10 5 19 0 10 1 6 16 5 19 0 5 1 6 11
(0,6,23,1,18) 1 23 0 6 1 2 8 2 23 1 6 1 3 8 2 23 1 18 1 3 20 1 0 1 18 1 2 19 6 18 0 6 1 7 13
(0,7,10,14,17) 3 7 10 0 1 4 18 3 7 10 14 1 4 8 3 14 17 10 1 4 21 3 14 17 0 1 4 11 7 17 0 7 1 8 15
(0,9,10,14,15) 1 9 10 0 1 2 16 1 9 10 14 1 2 6 1 14 15 10 1 2 21 1 14 15 0 1 2 11 6 9 15 0 1 7 16
(0,10,4,20,14) 4 0 4 10 1 5 11 6 4 10 20 1 7 17 6 14 20 4 1 7 15 4 20 0 14 1 5 19 4 10 14 0 1 5 15
(0,11,2,22,13) 2 0 2 11 1 3 12 4 22 2 11 1 5 14 4 22 2 13 1 5 16 2 22 0 13 1 3 16 2 11 13 0 1 3 14

First half of the reflected cycle pairs.
(0,11,8,17,1) 3 8 11 0 1 4 17 3 8 11 17 1 4 10 7 1 8 17 1 8 17 1 0 1 17 1 2 18 1 0 1 11 1 2 12
(0,2,12,23,5) 2 0 2 12 1 3 13 3 23 2 12 1 4 14 6 23 5 12 1 7 14 1 23 0 5 1 2 7 2 0 2 5 1 3 6
(0,16,1,18,5) 1 0 1 16 1 2 17 2 16 18 1 1 3 10 4 1 5 18 1 5 18 5 0 5 18 1 6 19 5 0 5 16 1 6 17

Second half of the reflected cycle pairs.
(0,8,17,14,1) 7 17 0 8 1 8 16 3 14 17 8 1 4 19 3 14 17 1 1 4 12 1 0 1 14 1 2 15 1 0 1 8 1 2 9
(0,6,17,3,5) 6 0 6 17 1 7 18 3 3 6 17 1 4 15 2 3 5 17 1 3 15 2 3 5 0 1 3 22 1 5 6 0 1 2 20
(0,11,4,13,5) 4 0 4 11 1 5 12 2 11 13 4 1 3 18 1 4 5 13 1 2 10 5 0 5 13 1 6 14 5 0 5 11 1 6 12
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Table 4: Base cycles of the system C(3, 5, 37), modulo 36, without the four C(3, 5, 10),
that form the SP(4) subsystem.

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
d triple type d triple type d triple type d triple type d triple type

Base cycles containing x. The fourth cycle has only 18 positions.
(x,0,1,19,2) - - - 0 1 19 1 2 20 1 2 19 1 2 19 - - - - - -
(x,0,3,21,6) - - - 0 3 21 1 4 22 3 6 21 1 4 19 - - - - - -
(x,0,5,23,10) - - - 0 5 23 1 6 24 5 10 23 1 6 19 - - - - - -
(x,0,7,25,14) - - - 0 7 25 1 8 26 7 14 25 1 8 19 - - - - - -
(x,0,9,27,18) - - - 0 9 27 1 10 28 18 27 9 1 10 28 - - - - - -

Base cycles containing the symmetric triplets.
(0,1,34,2,35) 1 0 1 34 1 2 35 1 1 2 34 1 2 34 1 34 35 2 1 2 5 1 35 0 2 1 2 4 1 35 0 1 1 2 3
(0,2,32,4,34) 2 0 2 32 1 3 33 2 2 4 32 1 3 31 2 32 34 4 1 3 9 2 34 0 4 1 3 7 2 34 0 2 1 3 5
(0,3,30,6,33) 3 0 3 30 1 4 31 3 3 6 30 1 4 28 3 30 33 6 1 4 13 3 33 0 6 1 4 10 3 33 0 3 1 4 7
(0,5,26,10,31) 5 0 5 26 1 6 27 5 5 10 26 1 6 22 5 26 31 10 1 6 21 5 31 0 10 1 6 16 5 31 0 5 1 6 11
(0,6,25,11,30) 6 0 6 25 1 7 26 5 6 11 25 1 6 20 5 25 30 11 1 6 23 6 30 0 11 1 7 18 6 30 0 6 1 7 13
(0,7,22,14,29) 7 0 7 22 1 8 23 7 7 14 22 1 8 16 7 22 29 14 1 8 29 7 29 0 14 1 8 22 7 29 0 7 1 8 15
(0,10,16,20,26) 6 10 16 0 1 7 27 4 16 20 10 1 5 31 4 16 20 26 1 5 11 6 20 26 0 1 7 17 10 26 0 10 1 11 21
(0,11,14,22,25) 3 11 14 0 1 4 26 3 11 14 22 1 4 12 3 22 25 14 1 4 29 3 22 25 0 1 4 15 11 25 0 11 1 12 23
(0,13,10,26,23) 3 10 13 0 1 4 27 3 10 13 26 1 4 17 3 23 26 10 1 4 24 3 23 26 0 1 4 14 10 13 23 0 1 11 24
(0,14,8,28,22) 6 8 14 0 1 7 29 6 8 14 28 1 7 21 6 22 28 8 1 7 23 6 22 28 0 1 7 15 8 14 22 0 1 9 23
(0,15,6,30,21) 6 0 6 15 1 7 16 9 6 15 30 1 10 25 9 21 30 6 1 10 22 6 30 0 21 1 7 28 6 15 21 0 1 7 22
(0,17,2,34,19) 2 0 2 17 1 3 18 4 34 2 17 1 5 20 4 34 2 19 1 5 22 2 34 0 19 1 3 22 2 17 19 0 1 3 20

First half of the reflected cycle pairs.
(0,1,5,8,10) 1 0 1 5 1 2 6 3 5 8 1 1 4 33 2 8 10 5 1 3 34 2 8 10 0 1 3 29 1 0 1 10 1 2 11
(0,1,6,8,17) 1 0 1 6 1 2 7 2 6 8 1 1 3 32 2 6 8 17 1 3 12 8 0 8 17 1 9 18 1 0 1 17 1 2 18
(0,1,7,12,15) 1 0 1 7 1 2 8 5 7 12 1 1 6 31 3 12 15 7 1 4 32 3 12 15 0 1 4 25 1 0 1 15 1 2 16
(0,1,8,10,21) 1 0 1 8 1 2 9 2 8 10 1 1 3 30 2 8 10 21 1 3 14 10 0 10 21 1 11 22 1 0 1 21 1 2 22
(0,1,9,14,23) 1 0 1 9 1 2 10 5 9 14 1 1 6 29 5 9 14 23 1 6 15 9 14 23 0 1 10 23 1 0 1 23 1 2 24
(0,1,11,35,24) 1 0 1 11 1 2 12 2 35 1 11 1 3 13 11 24 35 11 1 12 24 1 35 0 24 1 2 26 1 0 1 24 1 2 25
(0,2,14,19,23) 2 0 2 14 1 3 15 5 14 19 2 1 6 25 4 19 23 14 1 5 32 4 19 23 0 1 5 18 2 0 2 23 1 3 24
(0,3,20,32,10) 3 0 3 20 1 4 21 7 32 3 20 1 8 25 10 10 20 32 1 11 23 4 32 0 10 1 5 15 3 0 3 10 1 4 11
(0,4,11,16,27) 4 0 4 11 1 5 12 5 11 16 4 1 6 30 5 11 16 27 1 6 17 9 27 0 16 1 10 26 4 0 4 27 1 5 28
(0,4,22,28,15) 4 0 4 22 1 5 23 6 22 28 4 1 7 19 6 22 28 15 1 7 30 8 28 0 15 1 9 24 4 0 4 15 1 5 16
(0,8,25,2,18) 8 0 8 25 1 9 26 6 2 8 25 1 7 24 7 18 25 2 1 8 21 2 0 2 18 1 3 19 8 0 8 18 1 9 19
(0,9,19,2,16) 9 0 9 19 1 10 20 7 2 9 19 1 8 18 3 16 19 2 1 4 23 2 0 2 16 1 3 17 7 9 16 0 1 8 28

Second half of the reflected cycle pairs.
(0,2,5,9,10) 2 0 2 5 1 3 6 3 2 5 9 1 4 8 1 9 10 5 1 2 33 1 9 10 0 1 2 28 2 0 2 10 1 3 11
(0,9,11,16,17) 2 9 11 0 1 3 28 2 9 11 16 1 3 8 1 16 17 11 1 2 32 1 16 17 0 1 2 21 8 9 17 0 1 9 28
(0,3,8,14,15) 3 0 3 8 1 4 9 5 3 8 14 1 6 12 1 14 15 8 1 2 31 1 14 15 0 1 2 23 3 0 3 15 1 4 16
(0,11,13,20,21) 2 11 13 0 1 3 26 2 11 13 20 1 3 10 1 20 21 13 1 2 30 1 20 21 0 1 2 17 10 11 21 0 1 11 26
(0,9,14,22,23) 5 9 14 0 1 6 28 5 9 14 22 1 6 14 1 22 23 14 1 2 29 1 22 23 0 1 2 15 9 0 9 23 1 10 24
(0,25,13,23,24) 11 25 0 13 1 12 25 2 23 25 13 1 3 27 1 23 24 13 1 2 27 1 23 24 0 1 2 14 1 24 25 0 1 2 13
(0,4,9,21,23) 4 0 4 9 1 5 10 5 4 9 21 1 6 18 2 21 23 9 1 3 25 2 21 23 0 1 3 16 4 0 4 23 1 5 24
(0,14,26,7,10) 10 26 0 14 1 11 25 7 7 14 26 1 8 20 3 7 10 26 1 4 20 3 7 10 0 1 4 30 4 10 14 0 1 5 27
(0,11,16,23,27) 5 11 16 0 1 6 26 5 11 16 23 1 6 13 4 23 27 16 1 5 30 4 23 27 0 1 5 14 9 27 0 11 1 10 21
(0,23,29,11,15) 6 23 29 0 1 7 14 6 23 29 11 1 7 25 4 11 15 29 1 5 19 4 11 15 0 1 5 26 8 15 23 0 1 9 22
(0,16,29,10,18) 7 29 0 16 1 8 24 6 10 16 29 1 7 20 8 10 18 29 1 9 20 8 10 18 0 1 9 27 2 16 18 0 1 3 21
(0,14,33,7,16) 3 33 0 14 1 4 18 7 7 14 33 1 8 27 9 7 16 33 1 10 27 7 0 7 16 1 8 17 2 14 16 0 1 3 23
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Table 5: Base cycles of the system C(3, 5, 41), modulo 40, without the four C(3, 5, 16),
that form the SP(4) subsystem.

(v1,v2,v3,v4,v5) (v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
d triple type d triple type d triple type d triple type d triple type

Base cycles containing x.
(x,0,1,21,2) - - - 0 1 21 1 2 22 1 2 21 1 2 21 - - - - - -
(x,0,3,23,6) - - - 0 3 23 1 4 24 3 6 23 1 4 21 - - - - - -
(x,0,5,25,10) - - - 0 5 25 1 6 26 5 10 25 1 6 21 - - - - - -
(x,0,7,27,14) - - - 0 7 27 1 8 28 7 14 27 1 8 21 - - - - - -
(x,0,9,29,18) - - - 0 9 29 1 10 30 9 18 29 1 10 21 - - - - - -

Base cycles containing the symmetric triplets.
(0,1,38,2,39) 1 0 1 38 1 2 39 1 1 2 38 1 2 38 1 38 39 2 1 2 5 1 39 0 2 1 2 4 1 39 0 1 1 2 3
(0,2,36,4,38) 2 0 2 36 1 3 37 2 2 4 36 1 3 35 2 36 38 4 1 3 9 2 38 0 4 1 3 7 2 38 0 2 1 3 5
(0,3,34,6,37) 3 0 3 34 1 4 35 3 3 6 34 1 4 32 3 34 37 6 1 4 13 3 37 0 6 1 4 10 3 37 0 3 1 4 7
(0,5,32,8,35) 5 0 5 32 1 6 33 3 5 8 32 1 4 28 3 32 35 8 1 4 17 5 35 0 8 1 6 14 5 35 0 5 1 6 11
(0,6,28,12,34) 6 0 6 28 1 7 29 6 6 12 28 1 7 23 6 28 34 12 1 7 25 6 34 0 12 1 7 19 6 34 0 6 1 7 13
(0,7,26,14,33) 7 0 7 26 1 8 27 7 7 14 26 1 8 20 7 26 33 14 1 8 29 7 33 0 14 1 8 22 7 33 0 7 1 8 15
(0,9,22,18,31) 9 0 9 22 1 10 23 4 18 22 9 1 5 32 4 18 22 31 1 5 14 9 31 0 18 1 10 28 9 31 0 9 1 10 19
(0,10,21,19,30) 10 0 10 21 1 11 22 2 19 21 10 1 3 32 2 19 21 30 1 3 12 10 30 0 19 1 11 30 10 30 0 10 1 11 21
(0,11,19,21,29) 8 11 19 0 1 9 30 2 19 21 11 1 3 33 2 19 21 29 1 3 11 8 21 29 0 1 9 20 11 29 0 11 1 12 23
(0,13,14,26,27) 1 13 14 0 1 2 28 1 13 14 26 1 2 14 1 26 27 14 1 2 29 1 26 27 0 1 2 15 13 27 0 13 1 14 27
(0,14,12,28,26) 2 12 14 0 1 3 29 2 12 14 28 1 3 17 2 26 28 12 1 3 27 2 26 28 0 1 3 15 12 14 26 0 1 13 27
(0,15,8,32,25) 7 8 15 0 1 8 33 7 8 15 32 1 8 25 7 25 32 8 1 8 24 7 25 32 0 1 8 16 10 15 25 0 1 11 26
(0,17,6,34,23) 6 0 6 17 1 7 18 11 6 17 34 1 12 29 11 23 34 6 1 12 24 6 34 0 23 1 7 30 6 17 23 0 1 7 24
(0,18,4,36,22) 4 0 4 18 1 5 19 8 36 4 18 1 9 23 8 36 4 22 1 9 27 4 36 0 22 1 5 27 4 18 22 0 1 5 23
(0,19,2,38,21) 2 0 2 19 1 3 20 4 38 2 19 1 5 22 4 38 2 21 1 5 24 2 38 0 21 1 3 24 2 19 21 0 1 3 22

First half of the reflected cycle pairs.
(0,1,5,8,18) 1 0 1 5 1 2 6 3 5 8 1 1 4 37 3 5 8 18 1 4 14 8 0 8 18 1 9 19 1 0 1 18 1 2 19
(0,1,6,3,11) 1 0 1 6 1 2 7 2 1 3 6 1 3 6 3 3 6 11 1 4 9 3 0 3 11 1 4 12 1 0 1 11 1 2 12
(0,1,7,11,16) 1 0 1 7 1 2 8 4 7 11 1 1 5 35 4 7 11 16 1 5 10 5 11 16 0 1 6 30 1 0 1 16 1 2 17
(0,1,8,3,15) 1 0 1 8 1 2 9 2 1 3 8 1 3 8 5 3 8 15 1 6 13 3 0 3 15 1 4 16 1 0 1 15 1 2 16
(0,1,9,15,22) 1 0 1 9 1 2 10 6 9 15 1 1 7 33 6 9 15 22 1 7 14 7 15 22 0 1 8 26 1 0 1 22 1 2 23
(0,1,10,15,29) 1 0 1 10 1 2 11 5 10 15 1 1 6 32 5 10 15 29 1 6 20 11 29 0 15 1 12 27 1 0 1 29 1 2 30
(0,2,9,12,27) 2 0 2 9 1 3 10 3 9 12 2 1 4 34 3 9 12 27 1 4 19 12 0 12 27 1 13 28 2 0 2 27 1 3 28
(0,2,17,6,20) 2 0 2 17 1 3 18 4 2 6 17 1 5 16 3 17 20 6 1 4 30 6 0 6 20 1 7 21 2 0 2 20 1 3 21
(0,2,18,31,12) 2 0 2 18 1 3 19 11 31 2 18 1 12 28 6 12 18 31 1 7 20 9 31 0 12 1 10 22 2 0 2 12 1 3 13
(0,3,21,10,17) 3 0 3 21 1 4 22 7 3 10 21 1 8 19 4 17 21 10 1 5 34 7 10 17 0 1 8 31 3 0 3 17 1 4 18
(0,4,14,32,19) 4 0 4 14 1 5 15 10 4 14 32 1 11 29 5 14 19 32 1 6 19 8 32 0 19 1 9 28 4 0 4 19 1 5 20
(0,5,22,32,17) 5 0 5 22 1 6 23 10 22 32 5 1 11 24 5 17 22 32 1 6 16 8 32 0 17 1 9 26 5 0 5 17 1 6 18
(0,6,15,38,11) 6 0 6 15 1 7 16 8 38 6 15 1 9 18 4 11 15 38 1 5 28 2 38 0 11 1 3 14 5 6 11 0 1 6 35
(0,6,16,37,21) 6 0 6 16 1 7 17 9 37 6 16 1 10 20 5 16 21 37 1 6 22 3 37 0 21 1 4 25 6 0 6 21 1 7 22
(0,9,25,39,16) 9 0 9 25 1 10 26 10 39 9 25 1 11 27 9 16 25 39 1 10 24 1 39 16 1 2 18 7 9 16 1 8 32

Second half of the reflected cycle pairs.
(0,10,13,17,18) 3 10 13 0 1 4 31 3 10 13 17 1 4 8 1 17 18 13 1 2 37 1 17 18 0 1 2 24 8 10 18 0 1 9 31
(0,8,5,10,11) 3 5 8 0 1 4 36 2 8 10 5 1 3 38 1 10 11 5 1 2 36 1 10 11 0 1 2 31 3 8 11 0 1 4 33
(0,5,9,15,16) 4 5 9 0 1 5 36 4 5 9 15 1 5 11 1 15 16 9 1 2 35 1 15 16 0 1 2 26 5 0 5 16 1 6 17
(0,12,7,14,15) 5 7 12 0 1 6 34 2 12 14 7 1 3 36 1 14 15 7 1 2 34 1 14 15 0 1 2 27 3 12 15 0 1 4 29
(0,7,13,21,22) 6 7 13 0 1 7 34 6 7 13 21 1 7 15 1 21 22 13 1 2 33 1 21 22 0 1 2 20 7 0 7 22 1 8 23
(0,14,19,28,29) 5 14 19 0 1 6 27 5 14 19 28 1 6 15 1 28 29 19 1 2 32 1 28 29 0 1 2 13 11 29 0 14 1 12 26
(0,15,18,25,27) 3 15 18 0 1 4 26 3 15 18 25 1 4 11 2 25 27 18 1 3 34 2 25 27 0 1 3 16 12 15 27 0 1 13 26
(0,14,3,18,20) 3 0 3 14 1 4 15 4 14 18 3 1 5 30 2 18 20 3 1 3 26 2 18 20 0 1 3 23 6 14 20 0 1 7 27
(0,21,34,10,12) 6 34 0 21 1 7 28 11 10 21 34 1 12 25 2 10 12 34 1 3 25 2 10 12 0 1 3 31 9 12 21 0 1 10 29
(0,7,36,14,17) 4 36 0 7 1 5 12 7 7 14 36 1 8 30 3 14 17 36 1 4 23 3 14 17 0 1 4 27 7 0 7 17 1 8 18
(0,27,5,15,19) 5 0 5 27 1 6 28 10 5 15 27 1 11 23 4 15 19 5 1 5 31 4 15 19 0 1 5 26 8 19 27 0 1 9 22
(0,25,35,12,17) 5 35 0 25 1 6 31 10 25 35 12 1 11 28 5 12 17 35 1 6 24 5 12 17 0 1 6 29 8 17 25 0 1 9 24
(0,13,36,5,11) 4 36 0 13 1 5 18 8 5 13 36 1 9 32 6 5 11 36 1 7 32 5 0 5 11 1 6 12 2 11 13 0 1 3 30
(0,24,5,15,21) 5 0 5 24 1 6 25 9 15 24 5 1 10 31 6 15 21 5 1 7 31 6 15 21 0 1 7 26 3 21 24 0 1 4 20
(0,17,31,7,16) 9 31 0 17 1 10 27 10 7 17 31 1 11 25 9 7 16 31 1 10 25 7 0 7 16 1 8 17 1 16 17 0 1 2 25
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Table 6: Block-centered C(3, 5, 41) system; types computed modulo 39.

(a) A block containing both x and y. This block has 13 positions.

(v1,v2,v3,v4,v5)
(v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
(v1,v3,v5) (v3,v5,v2) (v5,v2,v4) (v2,v4,v1) (v4,v1,v3)

d triple type d triple type d triple type d triple type d triple type

(x,y,0,13,26)
- x y 0 - 13 y 0 13 - 13 0 13 26 1 14 27 13 x 13 26 - - x y 26 -
13 x 0 26 - 13 y 0 26 - 13 y 13 26 - - x y 13 - 13 x 0 13 -

(b) Blocks containing either x or y.

(v1,v2,v3,v4,v5)
(v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
(v1,v3,v5) (v3,v5,v2) (v5,v2,v4) (v2,v4,v1) (v4,v1,v3)

d triple type d triple type d triple type d triple type d triple type
Blocks containing x only.

(x,0,1,6,31)
1 x 0 1 - 1 0 1 6 1 2 7 5 1 6 31 1 6 31 14 x 6 31 - 8 x 0 31 -
9 x 1 31 - 1 0 1 31 1 2 32 6 0 6 31 1 7 32 6 x 0 6 - 5 x 1 6 -

(x,0,2,12,23)
2 x 0 2 - 2 0 2 12 1 3 13 10 2 12 23 1 11 22 11 x 12 23 - 16 x 0 23 -
18 x 2 23 - 2 0 2 23 1 3 24 11 12 23 0 1 12 28 12 x 0 12 - 10 x 2 12 -

(x,0,3,7,22)
3 x 0 3 - 3 0 3 7 1 4 8 4 3 7 22 1 5 20 15 x 7 22 - 17 x 0 22 -
19 x 3 22 - 3 0 3 22 1 4 23 7 0 7 22 1 8 23 7 x 0 7 - 4 x 3 7 -

Blocks containing y only.

(y,0,1,9,34)
1 y 0 1 - 1 0 1 9 1 2 10 6 34 1 9 1 7 15 14 y 9 34 - 5 y 0 34 -
6 y 1 34 - 1 0 1 34 1 2 35 5 34 0 9 1 6 15 9 y 0 9 - 8 y 1 9 -

(y,0,2,18,29)
2 y 0 2 - 2 0 2 18 1 3 19 11 18 29 2 1 12 24 11 y 18 29 - 10 y 0 29 -
12 y 2 29 - 2 0 2 29 1 3 30 10 29 0 18 1 11 29 18 y 0 18 - 16 y 2 18 -

(y,0,3,20,35)
3 y 0 3 - 3 0 3 20 1 4 21 7 35 3 20 1 8 25 15 y 20 35 - 4 y 0 35 -
7 y 3 35 - 3 0 3 35 1 4 36 4 35 0 20 1 5 25 19 y 0 20 - 17 y 3 20 -

(c) Blocks containing symmetric triplets. The symmetric triplets are highlighted.

(v1,v2,v3,v4,v5)
(v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)
(v1,v3,v5) (v3,v5,v2) (v5,v2,v4) (v2,v4,v1) (v4,v1,v3)

d triple type d triple type d triple type d triple type d triple type

(0,1,35,4,38)
1 0 1 35 1 2 36 3 1 4 35 1 4 35 3 35 38 4 1 4 9 1 38 0 4 1 2 6 1 38 0 1 1 2 3
1 38 0 35 1 2 37 2 38 1 35 1 3 37 2 38 1 4 1 3 6 1 0 1 4 1 2 5 4 0 4 35 1 5 9

(0,2,31,8,37)
2 0 2 31 1 3 32 6 2 8 31 1 7 30 6 31 37 8 1 7 17 2 37 0 8 1 3 11 2 37 0 2 1 3 5
2 37 0 31 1 3 34 4 37 2 31 1 5 34 4 37 2 8 1 5 11 2 0 2 8 1 3 9 8 0 8 31 1 9 17

(0,3,29,10,36)
3 0 3 29 1 4 30 7 3 10 29 1 8 27 7 29 36 10 1 8 21 3 36 0 10 1 4 14 3 36 0 3 1 4 7
3 36 0 29 1 4 33 6 36 3 29 1 7 33 6 36 3 10 1 7 14 3 0 3 10 1 4 11 10 0 10 29 1 11 21

(0,5,21,18,34)
5 0 5 21 1 6 22 3 18 21 5 1 4 27 3 18 21 34 1 4 17 5 34 0 18 1 6 24 5 34 0 5 1 6 11
5 34 0 21 1 6 27 10 34 5 21 1 11 27 10 34 5 18 1 11 24 5 0 5 18 1 6 19 3 18 21 0 1 4 22

(0,6,20,19,33)
6 0 6 20 1 7 21 1 19 20 6 1 2 27 1 19 20 33 1 2 15 6 33 0 19 1 7 26 6 33 0 6 1 7 13
6 33 0 20 1 7 27 12 33 6 20 1 13 27 12 33 6 19 1 13 26 6 0 6 19 1 7 20 1 19 20 0 1 2 21

(0,7,27,12,32)
7 0 7 27 1 8 28 5 7 12 27 1 6 21 5 27 32 12 1 6 25 7 32 0 12 1 8 20 7 32 0 7 1 8 15
5 27 32 0 1 6 13 5 27 32 7 1 6 20 5 7 12 32 1 6 26 5 7 12 0 1 6 33 12 0 12 27 1 13 25

(0,9,22,17,30)
9 0 9 22 1 10 23 5 17 22 9 1 6 32 5 17 22 30 1 6 14 9 30 0 17 1 10 27 9 30 0 9 1 10 19
8 22 30 0 1 9 18 8 22 30 9 1 9 27 8 9 17 30 1 9 22 8 9 17 0 1 9 31 5 17 22 0 1 6 23

(0,11,24,15,28)
11 0 11 24 1 12 25 4 11 15 24 1 5 14 4 24 28 15 1 5 31 11 28 0 15 1 12 27 11 28 0 11 1 12 23
4 24 28 0 1 5 16 4 24 28 11 1 5 27 4 11 15 28 1 5 18 4 11 15 0 1 5 29 9 15 24 0 1 10 25

(0,14,23,16,25)
9 14 23 0 1 10 26 2 14 16 23 1 3 10 2 23 25 16 1 3 33 9 16 25 0 1 10 24 11 14 25 0 1 12 26
2 23 25 0 1 3 17 2 23 25 14 1 3 31 2 14 16 25 1 3 12 2 14 16 0 1 3 26 7 16 23 0 1 8 24
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(d) The remaining triplets are organized into reflected cycle pairs.

(v1,v2,v3,v4,v5)
(v1,v2,v3) (v2,v3,v4) (v3,v4,v5) (v4,v5,v1) (v5,v1,v2)

d triple type d triple type d triple type d triple type d triple type
First half of the reflected cycle pairs.

(0,1,3,7,15) 1 0 1 3 1 2 4 2 1 3 7 1 3 7 4 3 7 15 1 5 13 7 0 7 15 1 8 16 1 0 1 15 1 2 16
(0,1,7,10,18) 1 0 1 7 1 2 8 3 7 10 1 1 4 34 3 7 10 18 1 4 12 8 10 18 0 1 9 30 1 0 1 18 1 2 19
(0,1,8,3,12) 1 0 1 8 1 2 9 2 1 3 8 1 3 8 4 8 12 3 1 5 35 3 0 3 12 1 4 13 1 0 1 12 1 2 13
(0,1,10,17,21) 1 0 1 10 1 2 11 7 10 17 1 1 8 31 4 17 21 10 1 5 33 4 17 21 0 1 5 23 1 0 1 21 1 2 22
(0,1,13,31,11) 1 0 1 13 1 2 14 9 31 1 13 1 10 22 2 11 13 31 1 3 21 8 31 0 11 1 9 20 1 0 1 11 1 2 12
(0,2,14,37,13) 2 0 2 14 1 3 15 4 37 2 14 1 5 17 1 13 14 37 1 2 25 2 37 0 13 1 3 16 2 0 2 13 1 3 14
(0,3,25,32,14) 3 0 3 25 1 4 26 7 25 32 3 1 8 18 7 25 32 14 1 8 29 7 32 0 14 1 8 22 3 0 3 14 1 4 15
(0,4,18,8,23) 4 0 4 18 1 5 19 4 4 8 18 1 5 15 5 18 23 8 1 6 30 8 0 8 23 1 9 24 4 0 4 23 1 5 24
(0,5,17,34,11) 5 0 5 17 1 6 18 10 34 5 17 1 11 23 6 11 17 34 1 7 24 5 34 0 11 1 6 17 5 0 5 11 1 6 12
(0,6,21,3,15) 6 0 6 21 1 7 22 3 3 6 21 1 4 19 6 15 21 3 1 7 28 3 0 3 15 1 4 16 6 0 6 15 1 7 16
(0,8,22,37,20) 8 0 8 22 1 9 23 10 37 8 22 1 11 25 2 20 22 37 1 3 18 2 37 0 20 1 3 23 8 0 8 20 1 9 21
(0,9,20,3,19) 9 0 9 20 1 10 21 6 3 9 20 1 7 18 1 19 20 3 1 2 24 3 0 3 19 1 4 20 9 0 9 19 1 10 20

Second half of the reflected cycle pairs.
(0,8,12,14,15) 4 8 12 0 1 5 32 2 12 14 8 1 3 36 1 14 15 12 1 2 38 1 14 15 0 1 2 26 7 8 15 0 1 8 32
(0,8,11,17,18) 3 8 11 0 1 4 32 3 8 11 17 1 4 10 1 17 18 11 1 2 34 1 17 18 0 1 2 23 8 0 8 18 1 9 19
(0,9,4,11,12) 4 0 4 9 1 5 10 2 9 11 4 1 3 35 1 11 12 4 1 2 33 1 11 12 0 1 2 29 3 9 12 0 1 4 31
(0,4,11,20,21) 4 0 4 11 1 5 12 7 4 11 20 1 8 17 1 20 21 11 1 2 31 1 20 21 0 1 2 20 4 0 4 21 1 5 22
(0,19,37,10,11) 2 37 0 19 1 3 22 9 10 19 37 1 10 28 1 10 11 37 1 2 28 1 10 11 0 1 2 30 8 11 19 0 1 9 29
(0,15,38,11,13) 1 38 0 15 1 2 17 4 11 15 38 1 5 28 2 11 13 38 1 3 28 2 11 13 0 1 3 29 2 13 15 0 1 3 27
(0,21,28,11,14) 7 21 28 0 1 8 19 7 21 28 11 1 8 30 3 11 14 28 1 4 18 3 11 14 0 1 4 29 7 14 21 0 1 8 26
(0,15,5,19,23) 5 0 5 15 1 6 16 4 15 19 5 1 5 30 4 19 23 5 1 5 26 4 19 23 0 1 5 21 8 15 23 0 1 9 25
(0,16,33,6,11) 6 33 0 16 1 7 23 10 6 16 33 1 11 28 5 6 11 33 1 6 28 5 6 11 0 1 6 34 5 11 16 0 1 6 29
(0,12,33,9,15) 6 33 0 12 1 7 19 3 9 12 33 1 4 25 6 9 15 33 1 7 25 6 9 15 0 1 7 31 3 12 15 0 1 4 28
(0,22,37,12,20) 2 37 0 22 1 3 25 10 12 22 37 1 11 26 8 12 20 37 1 9 26 8 12 20 0 1 9 28 2 20 22 0 1 3 20
(0,16,38,10,19) 1 38 0 16 1 2 18 6 10 16 38 1 7 29 9 10 19 38 1 10 29 9 10 19 0 1 10 30 3 16 19 0 1 4 24
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