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Abstract

For a family F of graphs, a graph G is said to be F -free if G contains
no member of F as an induced subgraph. We let G3(F) be the family of
3-connected F -free graphs. Let Pn and Cn denote the path and the cycle
of order n, respectively. Let S9({5}, ∅) be the tree obtained from P9 by
adding a vertex and joining it to the central vertex of P9, and S9({2}, ∅)
be the tree obtained by adding a vertex and joining it to a vertex adja-
cent to an endvertex of P9. We show that G3({C3, C4, S9({5}, ∅)}) and
G3({C3, C4, S9({2}, ∅)}) are finite families.

1 Introduction

By a graph, we mean a finite, simple, undirected graph. Let G be a graph. We
let V (G) and E(G) denote the vertex set and the edge set of G, respectively. For
u ∈ V (G), we let NG(u) and degG(u) denote the neighborhood and the degree
of G, respectively; thus degG(u) = |NG(u)|. We let δ(G) and ∆(G) denote the
minimum degree and the maximum degree of G, respectively. For U ⊆ V (G), we
set NG(U) = ∪u∈UNG(u), and let G[U ] denote the subgraph of G induced by U . For
U,U ′ ⊆ V (G) with U ∩ U ′ = ∅, we let EG(U,U ′) be the set of edges of G joining
a vertex in U and a vertex in U ′. When G is connected, for u, v ∈ V (G), we let
distG(u, v) denote the distance of u and v in G, and let diam(G) denote the maximum
of distG(u, v) as u and v range over V (G). We let Cn and Kn denote the cycle and
the complete graph of order n, respectively. We let Km1,m2 denote the complete
bipartite graph with partite sets having cardinalities m1 and m2, respectively. For
terms and symbols not defined here, we refer the reader to [1].

Let n ≥ 5 be an integer, and let I, J be subsets of {2, 3, . . . , n − 1} with J ⊆
{3, . . . , n− 2} and I ∩ J = ∅. We let Sn(I, J) denote the tree obtained from a path
u1u2 · · ·un of order n by adding vertices vi (i ∈ I ∪ J) and v′i (i ∈ J) and edges
uivi (i ∈ I ∪ J) and viv

′
i (i ∈ J). Also we let S∗ denote the tree obtained from a

path u1u2 · · ·u7 of order 7 by adding vertices v4, v
′
4, v
′′
4 and edges u4v4, v4v

′
4, v4v

′′
4 (see
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Figure 1). A tree T is a caterpillar if there exists a path P of T such that T − V (P )
has no edges. Note that Sn(I, ∅) is a caterpillar.

Figure 1: Trees Sn(I, J) and S∗.

For two graphs G and H, we say that G is H-free if G does not contain an induced
copy of H. For a family F of connected graphs, a graph G is said to be F-free if
G is H-free for every H ∈ F . For an integer k ≥ 2 and a family F of connected
graphs, let Gk(F) denote the family of k-connected F-free graphs. In this context,
members of F are often referred to as forbidden subgraphs. Note that Gk({C3, C4})
is the family of k-connected graphs with girth at least five.

Let k ≥ 2 be an integer. In this paper, we consider families F of connected
graphs such that

Gk(F) is a finite family. (1.1)

Note that if a family F satisfies (1.1), then for any property P on graphs, although
the proposition that all k-connected F-free graphs satisfy P with finite exceptions
holds, the proposition gives no information about P . Thus it is important to identify
families F satisfying (1.1) in advance. With such a motivation, studies of F satisfying
(1.1) have been started by Fujisawa, Plummer and Saito in [7]. In particular, it is
known that if a finite family F of connected graphs satisfies (1.1), then F contains a
complete graph, a complete bipartite graph and a tree. Based on this result, families
F satisfying (1.1) which can be written in the form F = {Kn, Km1,m2 , T} where
n ≥ 3, 2 ≤ m1 ≤ m2 and T is a tree, have intensively been studied (for a result
concerning the case where |F| = 4, we refer the reader to [8]). For k = 2, such families
are completely characterized in [7]. For k = 3, such families are characterized expect
for the case where n = 3 and m1 = m2 = 2 (see [2, 4, 6]). This paper is concerned
with the case where n = 3 and m1 = m2 = 2 (note that K3 = C3 and K2,2 = C4).

The following conjecture is proposed in [5].

Conjecture 1.1 Let T be a tree. Then G3({C3, C4, T}) is finite if and only if T
is a subgraph of one of S9({5}, ∅), S9({2}, ∅), S9(∅, {3}), S8({2, 5}, ∅), S8({7}, {3}),
S8({4, 5, 6}, {3}), S8({4}, {3, 6}), S7({2}, {4}), S7({3}, {4}), S7({4}, {3, 5}), S∗ and
S6(∅, {3, 4}).
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The “only if” part of the conjecture is proved in [5]. In this paper, we prove the
following theorem as a partial solution of the “if” part.

Theorem 1.2 The families G3({C3, C4, S9({5}, ∅)}), G3({C3, C4, S9({2}, ∅)}) and
G3({C3, C4, S8({2, 5}, ∅)}) are finite families.

The following lemma is well-known (for a proof, see for example Lemma 1.6 in [2]).

Lemma 1.3 Let m ≥ 2 and k ≥ 3 be integer, and let G be a graph with ∆(G) ≤ m
and diam(G) ≤ k. Then |V (G)| ≤ mk.

In view of Lemma 1.3, Theorem 1.2 follows from the following four propositions.

Proposition 1.4 Let G be a 3-connected {C3, C4, T}-free graph, where
T = S9({5}, ∅), S9({2}, ∅) or S8({2, 5}, ∅). Then diam(G) ≤ 7.

Proposition 1.5 Let G be a 3-connected {C3, C4, S9({5}, ∅)}-free graph. Then
∆(G) < 2 · 1041.

Proposition 1.6 Let G be a 3-connected {C3, C4, S9({2}, ∅)}-free graph. Then
∆(G) < 5.5 · 1035.

Proposition 1.7 Let G be a 3-connected {C3, C4, S8({2, 5}, ∅)}-free graph. Then
∆(G) ≤ 1220.

We remark that it is known that G3({C3, C4, S9(∅, {3})}) and G3({C3, C4,
S8({7}, {3})}) are finite families (see [3, 5]). Thus Conjecture 1.1 is reduced to the
following conjecture.

Conjecture 1.8 Let T be a tree isomorphic to S8({4, 5, 6}, {3}), S8({4}, {3, 6}),
S7({2}, {4}), S7({3}, {4}), S7({4}, {3, 5}), S∗ or S6(∅, {3, 4}). Then G3({C3, C4, T})
is a finite family.

We prove Proposition 1.4 in Section 2. After preparing auxiliary lemmas in
Sections 3 and 4, we prove Propositions 1.5–1.7 in Sections 5–7. In Section 3, we
make use of the fact that R(3, 3) = 6 and R(3, 6) = 18, where R(s, t) demotes the
usual Ramsey number, i.e., the minimum positive integer R such that any graph of
order at least R contains a complete subgraph of order s or an independent set of
cardinality t.

We conclude this section by stating a corollary of a famous theorem of Turán
[9]. Let n, k be integers with n ≥ k ≥ 1, and write n = kq + r, where q, r are
integers and 0 ≤ r ≤ k − 1. Turán’s theorem shows that if H is a graph of order
n and k is the maximum order of a complete subgraph of the complement of H,
then |E(H)| ≥ r|E(Kq+1)| + (k − r)|E(Kq)| (see Section 7.1 of [1]). Note that
k is the maximum cardinality of an independent set of H. Note also that since
2r|E(Kq+1)|+2(k−r)|E(Kq)| = kq2+(2r−k)q ≥ (kq+r)(q+r/k−1) = n(n/k−1),
the average degree d of H satisfies d ≥ n/k− 1, i.e., (d+ 1)k ≥ n. Thus we have the
following lemma, which we use in Section 3.
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Lemma 1.9 Let H be a graph with average degree d. Then H contains an indepen-
dent set with cardinality greater than or equal to n/(d+ 1).

2 Diameter

For simplicity, we hereafter let S9({5}, ∅), S9({2}, ∅) and S8({2, 5}, ∅) be denoted by
T9,1, T9,2 and T8.

In this section, we prove Proposition 1.4. Thus let T = T9,1, T9.2 or T8, and let G
be a 3-connected {C3, C4, T}-free graph and, by way of contradiction, suppose that
diam(G) ≥ 8. Take u, v ∈ V (G) with distG(u, v) = 8, and let P = u1u2 · · ·u9 be a
shortest u− v path. For each i ∈ {2, 5, 8}, take ai ∈ NG(ui)− {ui−1, ui+1}. Assume
first that T = T9,1. Note that a5ui /∈ E(G) for each i ∈ {3, 4, 6, 7} because G is
{C3, C4}-free. Since P is a shortest u − v path, we also have a5ui /∈ E(G) for each
i ∈ {1, 2, 8, 9}. Hence {u1, . . . , u9, a5} induces a copy of T9,1, which contradicts the
assumption that G is T9,1-free. In the case where T = T9,2, we can similarly get a
contradiction because {u1, . . . , u9, a2} induces a copy of T9,2.

We now assume that T = T8. Since P is a shortest u − v path, we have a2a5 /∈
E(G) or a5a8 /∈ E(G). By symmetry, we may assume that a2a5 /∈ E(G). then
arguing as above, we see that {u1, . . . , u8, a2, a5} induces a copy of T8, which is a
contradiction.

3 Paths of order four

Throughout the rest of this paper, we fix a 3-connected {C3, C4}-free graph G and,
for u ∈ V (G) and U ⊆ V (G), we write N(u) and N(U) for NG(u) and NG(U).

In this section and the following section, we study the relation between induced
paths joining two given vertices and the existence of an induced tree. For an integer
k ≥ 4 and two nonadjacent vertices v, w of G, we let

Mw
k (v) = {x ∈ N(v) | there exists an induced v − w path P of order k

such that NP (v) = {x}}.

In the remainder of this section and the following section, we let v, w be nonad-
jacent vertices of G. In this section, we deal with the case where Mw

4 (v) is large. We
first consider T9,1.

Lemma 3.1 Suppose that |Mw
4 (v)| ≥ 52. Then G contains an induced copy of T9,1.

Proof. Take a1, . . . , a52 ∈Mw
4 (v). For each i ∈ {1, . . . , 52}, let vaibiw be an induced

v − w path. Since G is {C3, C4}-free, {ai, bi} ∩ {aj, bj} = ∅ for any i, j with i 6= j,
and

E(G[{v, w} ∪ {ai, bi|1 ≤ i ≤ 52}]) = {vai, aibi, biw|1 ≤ i ≤ 52}. (3.1)
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For each i ∈ {1, . . . , 52}, take xi ∈ N(ai) − {v, bi}. By (3.1), {xi|1 ≤ i ≤ 52} ∩
({v, w} ∪ {ai, bi|1 ≤ i ≤ 52}) = ∅. Since G is {C3, C4}-free, x1, . . . , x52 are distinct,

xiaj /∈ E(G) for any i, j ∈ {1, . . . , 52} with i 6= j, (3.2)

and

xiv, xiw, xibi /∈ E(G) for every i ∈ {1, . . . , 52}. (3.3)

Now let D be the digraph on {1, . . . , 52} obtained by joining i to j (i 6= j) if and only
if xibj ∈ E(G), and let H be the (simple) graph obtained by ignoring the direction of
the edges of D. Since G is {C3, C4}-free, each i ∈ {1, . . . , 52} has outdegree at most
one in D. Hence |E(H)| ≤ |V (H)|, which means that the average degree of H is at
most two. In view of Lemma 1.9, we may assume that {1, . . . , 18} is independent in
H. Then by (3.2) and (3.3),

EG({xi | 1 ≤ i ≤ 18}, {v, w} ∪ {ai, bi | 1 ≤ i ≤ 18}) = {xiai | 1 ≤ i ≤ 18}. (3.4)

Note that R(3, 6) = 18. Since G is C3-free, we may assume that

{xi | 1 ≤ i ≤ 6} is independent. (3.5)

For each i ∈ {1, . . . , 6}, since G is {C3, C4}-free, we can take zi ∈ N(xi) − {ai} so
that ziw /∈ E(G). By (3.4) and (3.5),

{zi | 1 ≤ i ≤ 6} ∩ ({v, w} ∪ {ai, bi | a ≤ i ≤ 18} ∪ {xi | 1 ≤ i ≤ 6}) = ∅.

Since G is {C3, C4}-free, we have

ziv, ziw, ziai /∈ E(G) for every i ∈ {1, . . . , 6}. (3.6)

Assume for the moment that some two indices in {1, . . . , 6}, say 1 and 2, satisfy
z1x2 ∈ E(G). Since G is {C3, C4}-free, |N(z1) ∩ {a7, . . . , a10}| ≤ 1 and |N(z1) ∩
{b7, . . . , b10}| ≤ 1. We may assume that z1a7, z1b7, z1a8, z1b9 /∈ E(G). Then by
(3.1), (3.4), (3.5) and (3.6), {x2, z1, x1, a1, v, a8, a7, b7, w, b9} induces a copy of T9,1,
as desired (see Figure 2).

Thus we may assume that

zixj /∈ E(G) for any i, j ∈ {1, . . . , 6} with i 6= j. (3.7)

This in particular implies that z1, . . . , z6 are distinct. Since G is {C3, C4}-free,
|N(z1) ∩ {a3, . . . , a6}| ≤ 1, |N(z1) ∩ {b3, . . . , b6}| ≤ 1, |N(z2) ∩ {a3, . . . a6}| ≤ 1 and
|N(z2) ∩ {b3, . . . , b6}| ≤ 1. We may assume that

z1a3, z1b3, z2a4, z2b4 /∈ E(G). (3.8)

Since G is {C3, C4}-free, for each u ∈ {z1, x1, z2, x2, x3, x4}, we have |N(u)∩{b19, . . . ,
b50}| ≤ 1. We may assume that

EG({z1, x1, z2, x2, x3, x4}, {b19, . . . , b44}) = ∅. (3.9)
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Figure 2: T9,1 in Lemma 3.1 (first case).

For each j ∈ {19, . . . , 44}, take yj ∈ N(bj)− {w, aj}. By (3.1) and (3.9),

{y19, . . . , y44} ∩ ({v, w, z1, x1, z2, x2, x3, x4} ∪ {ai, bi | 1 ≤ i ≤ 44}) = ∅.

Since G is {C3, C4}-free, y19, . . . , y44 are distinct,

yjbi /∈ E(G) for any j ∈ {19, . . . , 44} and i ∈ {1, . . . , 44} with i 6= j, (3.10)

and

yjv, yjw /∈ E(G) for every j ∈ {19, . . . , 44}. (3.11)

If N({z1, x1, a1, x3, a3})∩N({z2, x2, a2, x4, a4}) ⊇ {y19, . . . , y44}, then there exist u ∈
{z1, x1, a1, x3, a3} and u′ ∈ {z2, x2, a2, x4, a4} such that |N(u)∩N(u′)∩{y19, . . . , y44}|
≥ 2, which contradicts the assumption that G is {C3, C4}-free. Thus

N({z1, x1, a1, x3, a3}) ∩N({z2, x2, a2, x4, a4}) + {y19, . . . , y44}.

We may assume that N({z1, x1, a1, x3, a3}) + {y19, . . . , y44}. We may also assume
that y44 /∈ N({z1, x1, a1, x3, a3}). It now follows from (3.1) and (3.4) through (3.11)
that {z1, x1, a1, v, a3, x3, b3, w, b44, y44} induces a copy of T9,1 (see Figure 3).

This completes the proof of Lemma 3.1. �

Next we consider T9,2.

Lemma 3.2 Suppose that |Mw
4 (v)| ≥ 16. Then G contains an induced copy of T9,2.

Proof. Take a1, . . . , a16 ∈Mw
4 (v). For each i ∈ {1, . . . , 16}, let vaibiw be an induced

v − w path, and take xi ∈ N(ai) − {vi, bi}. As in the proof of Lemma 3.1, we see
that {xi| 1 ≤ i ≤ 16} ∩ ({v, w} ∪ {ai, bi | 1 ≤ i ≤ 16}) = ∅, x1, . . . , x16 are distinct,

E(G[{v, w} ∪ {ai, bi | 1 ≤ i ≤ 16}]) = {vai, aibi, biw | 1 ≤ i ≤ 16}, (3.12)

xiaj /∈ E(G) for any i, j ∈ {1, . . . , 16} with i 6= j, (3.13)

and

xiv, xiw /∈ E(G) for every i ∈ {1, . . . , 16}. (3.14)
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Figure 3: T9,1 in Lemma 3.1 (second case).

Claim 3.2.1 Let 1 ≤ i ≤ 16, and suppose that there exist z ∈ N(xi) − {ai} and
u ∈ N(z) − {xi} such that zw, uv, uw /∈ E(G). Then G contains an induced copy
of T9,2.

Proof. We may assume that i = 1. By (3.13) and (3.14), z /∈ {v, w}∪{a1, . . . , a16}.
Since zw, uv, uw /∈ E(G), we also have z, u /∈ {b1, . . . , b16} and u /∈ {a1, . . . , a16}.
Since G is {C3, C4}-free, zv, za1, ua1, ux1 /∈ E(G). From zv, zw /∈ E(G), we get u /∈
{v, w}. Since G is {C3, C4}-free, |N(t) ∩ {bi | 2 ≤ i ≤ 7}| ≤ 1 for each t ∈ {x1, z, u}.
We may assume that EG({x1, z, u}, {b2, b3, b4}) = ∅. Similarly |N(t)∩{a2, a3, a4}| ≤
1 for each t ∈ {z, u}. We may assume that za2, ua2 /∈ E(G). We now see from
(3.12), (3.13) and (3.14) that {b4, w, b3, b2, a2, v, a1, x1, z, u} induces a copy of T9,2
(see Figure 4).

Figure 4: T9,2 in Claim 3.2.1.

We return to the proof of the lemma. Since R(3, 3) = 6, we may assume that
{x1, x2, x3} is independent. For each i ∈ {1, 2, 3}, since G is {C3, C4}-free, we can
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take zi ∈ N(xi) − {ai} so that ziw /∈ E(G). Then {z1, z2, z3} ∩ {b1, . . . , b16} = ∅.
By (3.13) and (3.14), {z1, z2, z3} ∩ ({v, w} ∪ {a1, . . . , a16}) = ∅. Since {x1, x2, x3} is
independent, we also have {z1, z2, z3} ∩ {x1, x2, x3} = ∅. Since G is {C3, C4}-free,
ziv /∈ E(G) for every i ∈ {1, 2, 3}. Now if there exist i, j ∈ {1, 2, 3} with i 6= j
such that zixj ∈ E(G), then by (3.14), we can apply claim 3.2.1 with z = zi and
u = xj to see that G contains an induced copy of T9,2. Thus we may assume that
zixj /∈ E(G) for any i, j ∈ {1, 2, 3} with i 6= j which, in particular, implies that
z1, z2, z3 are distinct. Since G is C3-free, we may assume that z1z2 /∈ E(G), and we
thus have

{x1x2, z1x2, z2x1, z1z2, z1v, z2v, z1w, z2w, z1a1, z2a2} ∩ E(G) = ∅. (3.15)

For each i ∈ {1, 2}, take ui, u
′
i ∈ N(zi)−{xi} with ui 6= u′i. By (3.15), {u1, u′1, u2, u′2}∩

{v, w} = ∅. By Claim 3.2.1, we may assume that N(ui) ∩ {v, w} 6= ∅ and N(u′i) ∩
{v, w} 6= ∅ for each i ∈ {1, 2}. Since G is {C3, C4}-free, we also have |N(v) ∩
{ui, u′i}| ≤ 1 and |N(w)∩{ui, u′i}| ≤ 1 for each i ∈ {1, 2}. Thus we may assume that

uiv /∈ E(G) and uiw ∈ E(G) for each i ∈ {1, 2}. (3.16)

By (3.14), (3.15) and (3.16), {u1, u2} ∩ {x1, x2, z1, z2} = ∅ (it is possible that u1 =
u2). By (3.16), {u1, u2} ∩ {a1, . . . , a16} = ∅. Also we may clearly assume that
{u1, u2}∩{b3, b4, . . . , b14} = ∅. Since u1w, u2w ∈ E(G) by (3.16), from the assumption
that G is {C3, C4}-free, it follows that

EG({z1, z2}, {bj | 3 ≤ j ≤ 14}) = ∅ (3.17)

and

EG({u1, u2}, {aj, bj| 3 ≤ j ≤ 14}) = ∅. (3.18)

Also since G is {C3, C4}-free, |N(xi)∩ {bj | 3 ≤ j ≤ 14}| ≤ 1 for each i ∈ {1, 2}. We
may assume that

EG({x1, x2}, {bj | 3 ≤ j ≤ 12}) = ∅. (3.19)

For each j ∈ {3, . . . , 12}, take yj ∈ N(bj) − {w, aj}. We have {yj | 3 ≤ j ≤
12} ∩ ({v, w} ∪ {ai, bi | 1 ≤ i ≤ 12}) = ∅. By (3.17), (3.18) and (3.19), {yj | 3 ≤
j ≤ 12}∩ {x1, z1, u1, x2, z2, u2} = ∅. Since G is {C3, C4}-free, y3, . . . , y12 are distinct,
and we see from (3.16) that

yju1, yju2, yjv, yjw /∈ E(G) for every j ∈ {3, . . . , 12}. (3.20)

If N({a1, x1, z1}) ∩ N({a2, x2, z2}) ⊇ {y3, . . . , y12}. Then there exist t ∈ {a1, x1, z1}
and t′ ∈ {a2, x2, z2} such that |N(t) ∩ N(t′) ∩ {y3, . . . , y12}| ≥ 2, which contradicts
the assumption that G is {C3, C4}-free. Thus one of {a1, x1, z1} and {a2, x2, z2}, say
{a1, x1, z1}, satisfies N({a1, x1, z1}) + {y3, . . . , y12}. We may assume that

y12 /∈ N({a1, x1, z1}). (3.21)
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Since G is {C3, C4}-free, |N(z1)∩{a8, a9, a10, a11}| ≤ 1 and |N(y12)∩{a8, a9, a10, a11}|
≤ 1. We may assume that z1a10, y12a10, z1a11, y12a11 /∈ E(G). We now see from (3.11)
through (3.21) that {a11, v, a10, a1, x1, z1, u1, w, b12, y12} induces a copy of T9,2 (see
Figure 5).

This completes the proof of Lemma 3.2. �

Finally we consider T8.

Lemma 3.3 Suppose that |Mw
4 (v)| ≥ 6. Then G contains a copy of T8.

Proof. Take a1, . . . , a6 ∈ Mw
4 (v). For each i ∈ {1, . . . , 6}, let vaibiw be an induced

v−w path. Take x1 ∈ N(a1)−{v, b1}, and take z1 ∈ N(x1)−{a1} so that z1w /∈ E(G).
As in Lemma 3.2, we get E(G[{v, w} ∪ {ai, bi| 1 ≤ i ≤ 6}]) = {vai, aibi, biw | 1 ≤
i ≤ 6}, x1, z1 /∈ {v, w} ∪ {ai, bi | 1 ≤ i ≤ 6}, x1ai /∈ E(G) for every i ∈ {2, . . . , 6},
and x1v, x1w, z1v, z1a1 /∈ E(G). Since G is {C3, C4}-free, |N(x1) ∩ {b2. . . . , b6}| ≤
1, |N(z1) ∩ {a2, . . . , a6} ≤ 1 and |N(z1) ∩ {b2, . . . , b6}| ≤ 1. Hence |{i ∈ {2, . . . , 6} |
x1bi, z1ai, z1bi /∈ E(G)}| ≥ 2. We may assume that x1b2, z1a2, z1b2 /∈ E(G). Similarly
|{i ∈ {3, . . . , 6} | x1bi, z1bi /∈ E(G)}| ≥ 2. We may assume that x1b3, z1b3, x1b4, z1b4 /∈
E(G). Finally |{i ∈ {5, 6} | z1ai /∈ E(G)}| ≥ 1. We may assume that z1a5 /∈ E(G).
It follows that {b4, w, b3, b2, a2, v, a5, a1, x1, z1} induces a copy of T8 (see Figure 6).

�

Figure 5: T9,2 in Lemma 3.2.

4 Paths of order five

We continue with the notation of the preceding section. In this section, we deal with
the case where Mw

5 (v) is large.

Lemma 4.1 Suppose that |Mw
4 (v) ∪Mw

5 (v)| ≥ 5458. Then G contains an induced
copy of T9,1.
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Figure 6: T8 in Lemma 3.3.

Proof. In view of Lemma 3.1, we may assume that |Mw
4 (v)| ≤ 51. Then |Mw

5 (v)−
Mw

4 (v)| ≥ 5407. Take a1, . . . , a5407 ∈ Mw
5 (v) −Mw

4 (v). For each i ∈ {1, . . . , 5407},
let vaibiciw be an induced v − w path. If there exists c ∈ {c1, . . . , c5407} such that
|{i ∈ {1, . . . , 5407} | ci = c}| ≥ 52, then |M c

4(v)| ≥ 52, and hence the desired
conclusion follows from Lemma 3.1. Thus we may assume that |{i ∈ {1, . . . , 5407} |
ci = c}| ≤ 51 for each c ∈ {c1, . . . , c5407}. Then |{c1, . . . , c5407}| ≥ d5407/51e = 107.
We may assume that c1, . . . , c107 are distinct. Since G is {C3, C4}-free, we see that
{ai, bi, ci}∩{aj, bj, cj} = ∅ for any i, j ∈ {1, . . . , 107} with i 6= j. Since a1, . . . , a107 /∈
Mw

4 (v), aicj /∈ E(G) for any i, j ∈ {1, . . . , 107} with i 6= j. Since G is {C3, C4}-free,
it follows that

E(G[{v, w} ∪ {ai, bi, ci | 1 ≤ i ≤ 107}])− {vai, aibi, bici, ciw | 1 ≤ i ≤ 107}
= E(G[{bi | 1 ≤ i ≤ 107}]). (4.1)

Note that N(b1) ∩ {bi | 2 ≤ i ≤ 107} ∈ Mw
4 (b1). Thus by Lemma 3.1, we may

assume that |N(b1) ∩ {bi | 2 ≤ i ≤ 107}| ≤ 51. We may assume that

b1bi /∈ E(G) for every i ∈ {2, . . . , 56}. (4.2)

Take y1 ∈ N(b1)− {a1, c1}. By (4.1) and (4.2), y1 /∈ {v, w} ∪ {ai, bi, ci| 1 ≤ i ≤ 56}.
Since G is {C3, C4}-free,

y1v, y1w, y1a1, y1c1 /∈ E(G). (4.3)

Note that b1 ∈ Mw
4 (y1) and N(y1) ∩ {bi | 2 ≤ i ≤ 56} ⊆ Mw

4 (y1). Thus by Lemma
3.1, we may assume that |N(y1) ∩ {bi | 2 ≤ i ≤ 56}| ≤ 50. We may assume that

y1bi /∈ E(G) for every i ∈ {2, . . . , 6}. (4.4)

Since G is {C3, C4}-free, |N(y1)∩{a2, . . . , a6}| ≤ 1 and |N(y1)∩{c2, . . . c6}| ≤ 1. We
may assume that y1a2, y1a3 /∈ E(G) and y1c4, y1c5 /∈ E(G). Since G is {C3, C4}-free,
one of b2 and b3, say b2, and one of b4 and b5, say b4, are nonadjacent. It now follows
from (4.1) through (4.4) that {b2, a2, v, a1, b1, y1, c1, w, c4, b4} induces a copy of T9,1,
as desired (see Figure 7). �
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Figure 7: T9,1 in Lemma 4.1.

Lemma 4.2 Suppose that |Mw
4 (v) ∪Mw

5 (v)| ≥ 526. Then G contains an induced
copy of T9,2.

Proof. By Lemma 3.2, we may assume that |Mw
5 (v) −Mw

4 (v)| ≥ 526 − 15 = 511.
Take a1, . . . , a511 ∈ Mw

5 (v) − Mw
4 (v). For each i ∈ {1, . . . , 511}, let vaibiciw be

an induced v − w path. By Lemma 3.2, we may assume that |{c1, . . . , c511}| ≥
d511/15e = 35. We may assume that c1, . . . , c35 are distinct. As in the proof of
Lemma 4.1, we get

E(G[{v, w} ∪ {ai, bi, ci | 1 ≤ i ≤ 35}])− {vai, aibi, bici, ciw | 1 ≤ i ≤ 35}
= E(G[{bi | 1 ≤ i ≤ 35}]). (4.5)

Take x1 ∈ N(a1) − {v, b1}. By (4.5), x1 /∈ {v, w} ∪ {ai, bi, ci | 1 ≤ i ≤ 35}. Since
a1 /∈Mw

4 (v),

x1w /∈ E(G). (4.6)

Since G is {C3, C4}-free,

x1ai /∈ E(G) for every i ∈ {2, . . . , 35} and x1v,x1b1 /∈ E(G). (4.7)

In view of Lemma 3.2, we may assume that |N(b1)∩{b2, . . . , b35}| ≤ 15 and |N(x1)∩
{b2, . . . , b35}| ≤ 15. We may assume that

b1bi, x1bi /∈ E(G) for every i ∈ {2, 3, 4, 5}. (4.8)

Since G is {C3, C4}-free, |N(x1) ∩ {c2, c3, c4, c5}| ≤ 1. We may assume that x1c2,
x1c3, x1c4 /∈ E(G). Since G is C3-free, we may assume that b2b3 /∈ E(G). It now
follows from (4.5) through (4.8) that {b1, a1, x1, v, a2, b2, c2, w, c3, b3} induces a copy
of T9,2 (see Figure 8). �

Lemma 4.3 Suppose that |Mw
4 (v)∪Mw

5 (v)| ≥ 61. Then G contains an induced copy
of T8.
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Figure 8: T9,2 in Lemma 4.2.

Proof. By Lemma 3.3, we may assume that |Mw
5 (v)−Mw

4 (v)| ≥ 61− 5 = 56. Take
a1, . . . , a56 ∈ Mw

5 (v) −Mw
4 (v). For each i ∈ {1, . . . , 56}, let vaibiciw be an induced

v − w path. By Lemma 3.3, we may assume that |{c1, . . . , c56}| ≥ d56/5e = 12. We
may assume that c1, . . . , c12 are distinct. As in Lemma 4.1, we get E(G[{v, w} ∪
{ai, bi, ci | 1 ≤ i ≤ 12}])− {vai, aibi, bici, ciq | 1 ≤ i ≤ 12} = E(G[{bi| 1 ≤ i ≤ 12}]).
Take x1 ∈ N(a1) − {v, b1}. As in Lemma 4.2, x /∈ {v, w} ∪ {ai, bi, ci| 1 ≤ i ≤ 12},
x1w, x1v, x1b1, x1c1 /∈ E(G), and x1ai /∈ E(G) for every i ∈ {2, . . . , 12}. In view of
Lemma 3.3, we may assume that |N(b1) ∩ {bi | 2 ≤ i ≤ 12}| ≤ 5 and |N(x1) ∩ {bi |
2 ≤ i ≤ 12}| ≤ 5. We may assume that b1b2, x1b2 /∈ E(G). Since G is {C3, C4}-free,
|N(x1) ∩ {c3, c4, c5}| ≤ 1. We may assume that x1c3, x1c4 /∈ E(G). It follows that
{c4, w, c3, c1, b1, a1, x1, v, a2, b2} induces a copy of T8 (see Figure 9). �

Figure 9: T8 in Lemma 4.3.

5 Proof of Proposition 1.5

Recall that G is a 3-connected {C3, C4}-free graph. Throughout the rest of this
paper, we fix a vertex w ∈ V (G) with degG(w) = ∆(G).
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For a vertex u ∈ V (G) and a nonnegative integer d, let Nd(u) be the set of vertices
of G such that distG(u, v) = d, and let N≤d(u) = ∪0≤i≤d Ni(u) and N≥d(u) =
∪i≥d Ni(u); thus N0(u) = {u} and N1(u) = N(u). Clearly N(w) is independent,
|N(x) ∩N2(w)| ≥ 2 for every x ∈ N(w), and

|N(y) ∩N(w)| ≤ 1 for every y ∈ N≥2(w). (5.1)

We have δ(G[N≥2(w)]) ≥ 2 by (5.1). As in [3], for U ⊆ V (G), we let L(U) denote
the set of those vertices v ∈ N2(w) ∪ N3(w) for which there exists a v − w path of
order four avoiding U . The following two lemmas are proved in Section 5 of [3].

Lemma 5.1 Let X ⊆ N≥2(w), and set Y1 = (X ∪ N(X)) ∩ N2(w), Y2 = N(Y1) ∩
N(w), Z1 = N(X)∩L(X), Z2 = (X ∪N(X ∪Z1))∩N2(w) and Z3 = N(Z2)∩N(w).
Then the following hold.

(i) If a ∈ N(w)− Y2, then EG(X, N≤1(a)) = ∅.

(ii) If a ∈ N(w)− Z3, then EG(X, N≤2(a)− Z3) = ∅.

Lemma 5.2 Let X ⊆ N≥2(w). Then N(X) ∩ N2(w) ⊆ ∪u∈XMw
4 (u) and N(X) ∩

L(X) ⊆ ∪u∈XMw
5 (u).

The following lemma follows from Lemma 5.2 and (5.1), and is virtually the same
as Lemma 5.3 in [3].

Lemma 5.3 Let X ⊆ N≥2(w), and let Y1, Y2, Z1, Z2, Z3 be as in Lemma 5.2. Then

(i) |Y2| ≤ |Y1| ≤ |X −N(X)|+ Σu∈X |Mw
4 (u)|,

(ii) |Z1| ≤ Σu∈X |Mw
5 (u)|, and

(iii) |Z3| ≤ |Z2| ≤ |X −N(X ∪ Z1)|+ Σu∈X∪Z1|Mw
4 (u)|.

In this section, we prove Proposition 1.5. By way of contradiction, suppose that
G is T9,1-free and ∆(G) ≥ 2 · 1041. By Lemmas 3.1 and 4.1,

|Mw
4 (u)| ≤ 51 and |Mw

5 (u)| ≤ |Mw
4 (u) ∪Mw

5 (u)| ≤ 5457 for every u ∈ N≥2(w).
(5.2)

We derive a contradiction by proving several claims. The main claim is Claim 5.13, in
which we show that ∆(G[N≥2(w)]) < 5.5 · 103. We start with two claims concerning
paths in G− w.

Claim 5.4 Let a6a5a4a3a2a
′
3 be a path in G[N≥2(w)] with a2 ∈ N2(w), and write

N(a2) ∩N(w) = {a1}. Then {a6a2, a6a′3, a6a1, a5a′3, a5a1} ∩ E(G) 6= ∅.
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Proof. Set X = {a2, . . . , a6, a′3}. We have X−N(X) = ∅. Suppose that {a6a2, a6a′3,
a6a1, a5a

′
3, a5a1} ∩ E(G) = ∅. Then E(G[X ∪ {a1}]) = {a6a5, a5a4, a4a3, a3a2, a2a′3,

a2a1}. Let Y2 be as in Lemma 5.1. By Lemma 5.3 (i) and (5.2), |Y2| ≤ 6 · 51 <
|N(w)|. Take b1 ∈ N(w) − Y2 and b2 ∈ N(b1) ∩N≥2(w) (see Figure 10). Since G is
{C3, C4}-free, E(G[{a1, w, b1, b2}]) = {a1w,wb1, b1b2}. Since EG(X, {w, b1, b2}) = ∅
by Lemma 5.1 (i), it follows that X ∪ {a1, w, b1 b2} induces a copy of T9,1, which
contradicts the assumption that G is T9,1-free. �

Claim 5.5 Let a5a4a3a2a1a
′
2 be a path in G−w with a1 ∈ N(w) and a2, a3, a4, a5, a

′
2

∈ N≥2(w). Then {a5a1, a5a′2, a4a′2} ∩ E(G) 6= ∅

Proof. Set X = {a2, . . . , a5, a′2}, and let Z1, Z3 be as in Lemma 5.1. We have
X −N(X ∪ Z1) ⊆ X −N(X) ⊆ {a′2}. Suppose that {a5a1, a5a′2, a4a′2} ∩ E(G) = ∅.
Then E(G[X ∪ {a1}]) = {a5a4, a4a3, a3a2, a2a1, a1a′2}. By Lemma 5.3 (ii), (iii) and
(5.2), |Z1| ≤ 5 · 5457 = 27285 and |Z3| ≤ 1 + 27290 · 51 < |N(w)|. Take b1 ∈

Figure 10: T9,1 in Claim 5.4.

N(w)− Z3 and b2 ∈ N(b1) ∩N≥2(w). Since |N(b2) ∩N≥2(w)| ≥ 2, we can take b3 ∈
N(b2)∩N≥2(w) so that a1b3 /∈ E(G) (see Figure 11). Then E(G[{a1, w, b1, b2, b3}]) =
{a1w,wb1, b1b2, b2b3}. Since EG(X, {w, b1, b2, b3}) = ∅ by Lemma 5.1 (ii), it follows
that X ∪ {a1, w, b1, b2, b3} induces a copy of T9,1, a contradiction. �

Claim 5.6 We have N≥4(w) = ∅.

Proof. Suppose that N≥4(w) 6= ∅. Take u ∈ N4(w), and take z, z′, z′′ ∈ N(u)
so that z ∈ N3(w). Take y ∈ N(z) ∩ N2(w), write N(y) ∩ N(w) = {x}, and
take y′ ∈ (N(x) ∩ N2(w)) − {y}. Since z′, z′′ ∈ N≥3(w) and u ∈ N4(w), we have
z′x, z

′′
x /∈ E(G) and uy′ /∈ E(G). Since z′, z

′′ ∈ N(u), |N(y′) ∩ {z′, z′′}| ≤ 1.
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Figure 11: T9,1 in Claim 5.5.

Consequently we get a contradiction by applying Claim 5.5 to z′uzyxy′ or z
′′
uzyxy′.

�

Set

R1 = {z ∈ N3(w) | |N(z) ∩N2(w)| = 1},
R2 = {z ∈ N3(w) | |N(z) ∩N2(w)| ≥ 2}.

For the purpose of showing that ∆(G[N≥2(w)]) < 5.5 · 103, we aim at bounding
|N(y) ∩R1| for y ∈ N2(w) (Claim 5.11). We here prove a technical claim.

Claim 5.7 Let z ∈ R1 and z′ ∈ N3(w) with zz′ ∈ E(G). Write N(z)∩N2(w) = {y},
let y′ ∈ N(z′) ∩ N2(w), and write N(y) ∩ N(w) = {x} and N(y′) ∩ N(w) = {x′}.
Then x = x′.

Proof. SinceG is C3-free, y 6= y′. Suppose that x 6= x′. Then yx′ /∈ E(G). Take y′′ ∈
(N(x′)∩N2(w))−{y′}. Since yx′ /∈ E(G), y′′ 6= y. Since z ∈ R1, zy

′′ /∈ E(G). Since
z ∈ R1, we can take z′′ ∈ N(z)∩N3(w) with z′′ 6= z′. Since x′ ∈ N(w), z′′x′ /∈ E(G).
Consequently {z′′x′, yx′, zy′′} ∩ E(G) = ∅. Since y, z′′ ∈ N(z), |N(y

′′
) ∩ {y, z′′}| ≤ 1.

Therefore we get a contradiction by applying Claim 5.5 to yzz′y′x′y′′ or z′′zz′y′x′y′′.
�

Using Claim 5.7, we obtain the following three claims.

Claim 5.8 Let H be a component of G[R1]. Then N(V (H))∩N2(w) is independent
and |N(N(V (H)) ∩N2(w)) ∩N(w)| = 1.

Proof. Since H is connected, it follows from Claim 5.7 that N(y)∩N(w) = N(y′)∩
N(w) for all y, y′ ∈ N(V (H)) ∩N2(w), which implies that |N(N(V (H)) ∩N2(w)) ∩
N(w)| = 1. Since G is C3-free, it follows that N(V (H))∩N2(w) is independent. �
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Claim 5.9 We have ∆(G[R1]) ≤ 2.

Proof. Suppose that there exists z0 ∈ R1 with degG[R1](z0) ≥ 3, and take three
distinct vertices z, z′, z′′ in N(z0)∩R1. Write N(z)∩N2(w) = {y}, N(z′)∩N2(w) =
{y′} and N(y) ∩ N(w) = {x}. Since G is {C3, C4}-free, y 6= y′. By Claim 5.8,
y′x ∈ E(G). Since z′′ ∈ N3(w) and x ∈ N(w), z′′x /∈ E(G). Since G is {C3, C4}-free,
z′′y′, z0y

′ /∈ E(G). Consequently we get a contradiction by applying Claim 5.5 to
z′′z0zyxy

′. �

Claim 5.10 We have EG(R1, R2) = ∅.

Proof. Suppose that there exist z ∈ R1 and z′ ∈ R2 with zz′ ∈ E(G). Write
N(z) ∩N2(w) = {y} and N(y) ∩N(w) = {x}, and take y′, y′′ ∈ N(z′) ∩N2(w) with
y′ 6= y′′. By Claim 5.7, y′x, y′′x ∈ E(G), which contradicts the assumption that G is
{C3, C4}-free. �

Since degG(z) ≥ 3 for all z ∈ R1, it follows from Claims 5.6, 5.9 and 5.10 that
each component of G[R1] is a cycle, and is a component of G[N3(w)] = G[N≥3(w)].
The following claim is a key result in bounding ∆(G[N≥2(w)]).

Claim 5.11 For every y ∈ N2(w), |N(y) ∩R1| ≤ 6.

Proof. Suppose that there exists y1 ∈ N2(w) such that |N(y1)∩R1| ≥ 7. We derive
a contradiction by proving several subclaims concerning components of G[R1].

Subclaim 5.11.1 Let H be a component of G[R1] with N(y1) ∩ V (H) 6= ∅. Then
|V (H)| ≡ 0 (mod 3), and we can write H = z1z2 . . . z|V (H)|z1 so that N(zj)∩N2(w) =
{y1} for every j with j ≡ 1 (mod 3).

Proof. Take u1 ∈ N(y1)∩V (H) and u2 ∈ N(u1)∩V (H), and write (N(u2)∩V (H))−
{u1} = {u3} and (N(u3)∩V (H))−{u2} = {u4}. Suppose that u4y1 /∈ E(G). Since H
is a cycle and |(N(y1)∩R1)−{u1}| ≥ 7−1 ≥ 2, there exists z ∈ (N(y1)∩R1)−{u1}
with u3z, u4z /∈ E(G). Write N(y1) ∩ N(w) = {x}. Since u3, u4 ∈ N3(w) and
x ∈ N(w), u3x, u4x /∈ E(G). Consequently we get a contradiction by applying
Claim 5.4 to u4u3u2u1y1z. Thus u4y1 ∈ E(G). Since u1 ∈ N(y1)∩V (H) is arbitrary,
this implies the desired conclusion. �

Subclaim 5.11.2 Let H be a component of G[R1] with N(y1)∩V (H) 6= ∅, and write
|V (H)| = 3m. Then N(V (H)) ∩ N2(w) is an independent set of cardinality 3, and
we can write H = z1z2 . . . z3mz1 and N(V (H))∩N2(w) = {y1, y2, y3} so that for each
k ∈ {1, 2, 3}, N(zj) ∩N2(w) = {yk} for every j with j ≡ k (mod 3).

Proof. By Subclaim 5.11.1, we can write H = z1z2 . . . z3mz1 so that N(z3i+1) ∩
N2(w) = {y1} for every i ∈ {0, 1, . . . ,m − 1}. Take h ∈ {0, 1, . . .m − 1}, and write
N(z3h+2) ∩N2(w) = {y2}. Then y2 6= y1. Suppose that z3h−1y2 /∈ E(G) (indices of z
are to be read modulo 3m). Take u ∈ (N(y2) ∩ N≥2(w)) − {z3h+2}. We show that
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Figure 12: T9,1 in Subclaim 5.11.3.

z3hu, z3h−1u /∈ E(G). Suppose that {z3hu, z3h−1u} ∩ E(G) 6= ∅. If u ∈ N2(w), then
u, y2 ∈ N(V (H)) ∩ N2(w), and hence uy2 /∈ E(G) by Claim 5.8, which contradicts
our choice of u. Thus u ∈ N3(w). Since {z3hu, z3h−1u} ∩ E(G) 6= ∅, this forces u ∈
{z3h+1, z3h, z3h−1, z3h−2}. Since G is {C3, C4}-free and z3h−1y2 /∈ E(G), it follows that
u = z3h−2, which contradicts the fact that N(z3h−2) ∩ N2(w) = {y1}. Consequently
z3hu, z3h−1u /∈ E(G). Write N(y2) ∩ N(w) = {x}. Since z3h, z3h−1 ∈ N3(w) and
x ∈ N(w), z3hx, z3h−1x /∈ E(G). Therefore we get a contradiction by applying Claim
5.4 to z3h−1z3hz3h+1z3h+2y2u. Thus z3h−1y2 ∈ E(G). Since h is arbitrary, this implies
that N(z3i+2) ∩ N2(w) = {y2} for every i ∈ {0, 1, . . . ,m − 1}. Similarly if we write
N(z3)∩N2(w) = {y3}, then N(z3i+3)∩N2(w) = {y3} for every i ∈ {0, 1, . . . ,m− 1}.
Hence N(V (H))∩N2(w) = {y1, y2, y3}, and {y1, y2, y3} is independent by Claim 5.8.

�

Subclaim 5.11.3 Let H be a component of G[R1] with N(y1) ∩ R1 6= ∅. Then
|V (H)| ≤ 9.

Proof. Write |V (H)| = 3m, and let H = z1z2 . . . z3mz1 and N(V (H)) ∩W2(z) =
{y1, y2, y3} be as in Subclaim 5.11.2. Suppose that |V (H)| ≥ 10. Then m ≥ 4. Since
{y1, y2, y3} is independent by Subclaim 5.11.2. {z6, y3, z3, z4, y1, z1, z10, z11, y2, z8} in-
duces a copy of T9,1, a contradiction (see Figure 12). �

We can now complete the proof of Claim 5.11. Since |N(y1) ∩ R1| ≥ 7, it fol-
lows from Subclaim 5.11.3 that there exist three distinct components of G[R1] in-
tersecting with N(y1). Let H,H ′, H ′′ be such components. Write |V (H)| = 3m
and |V (H ′)| = 3m′ (m,m′ ∈ {2, 3}). Let H = z1z2 . . . z3mz1 and N(V (H)) ∩
N2(w) = {y1, y2, y3} be as in Subclaim 5.11.2, and also let H ′ = z′1z

′
2 . . . z

′
3m′z

′
1

and N(V (H ′)) ∩ N2(w) = {y1, y′2, y′3} be as in Subclaim 5.11.2 (it is possible that
{y2, y3}∩{y′2, y′3} 6= ∅). Write N(y1)∩N(w) = {x}. Applying Claim 5.8 to H and H ′,
we see that {y1, y2, y3, y′2, y′3} ⊆ N(x). Hence {y1, y2, y3, y′2, y′3} is independent. We
have y2 6= y′2 or y2 6= y′3. Replacing y′2 by y′3 and z′1z

′
2 . . . z

′
3m′z

′
1 by z′1z

′
3m′z

′
3m′−1 . . . z

′
2z
′
1

if necessary, we may assume that y2 6= y′2. Take z ∈ N(y1) ∩ V (H
′′
). We now see

that {z5, y2, z2, z1, y1, z, z′1, z′2, y′2, z′5} induces a copy of T9,1 (see Figure 13). This is a
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Figure 13: T9,1 in Claim 5.11.

contradiction, which completes the proof of Claim 5.11. �

Recall that for y ∈ N≥2(w), L({y}) denotes the set of those vertices v ∈ N2(w)∪
N3(w) for which there exists a v − w path of order four avoiding y.

Claim 5.12 For every y ∈ N2(w), |N(y) ∩ (N2(w) ∪R2)| ≤ 5457.

Proof. Let y ∈ N2(w). By the definition of L({y}) and R2, R2 ⊆ L({y}). Hence
N(y) ∩ N2(w) ⊆ Mw

4 (y) and N(y) ∩ R2 ⊆ Mw
5 (y) by Lemma 5.2. Consequently

|N(y) ∩ (N2(w) ∪R2)| ≤ |Mw
4 (y) ∪Mw

5 (y)| ≤ 5457 by (5.2). �

Claim 5.13 We have ∆(G[N≥2(w)]) < 5.5 · 103.

Proof. Let y ∈ N≥2(w). If y ∈ N2(w), then it follows from Claims 5.11 and 5.12
that degG[N≥2(w)]

(y) = |N(y)∩R1|+ |N(y)∩ (N2(w)∪R2)| ≤ 6 + 5457 < 5.5 · 103; if

y ∈ N3(w), then N(y)∩N3(w) ⊆ N(y)∩L({y}) by the definition of L({y}), and hence
degG[N≥2(w)]

(y) = |N(y) ∩ (N2(w) ∪ N3(w))| ≤ |Mw
4 (y) ∪Mw

5 (y)| ≤ 5457 < 5.5 · 103

by Lemma 5.2 and (5.2). Since y ∈ N≥2(w) is arbitrary, we obtain ∆(G[N≥2(w)]) <
5.5 · 103, as desired. �

We proceed to consider components of G[N≥2(w)].

Claim 5.14 If H and H ′ are components of G[N≥2(w)], then we have N(V (H)) ∩
N(w) ⊆ N(V (H ′)) ∩N(w) or N(V (H ′)) ∩N(w) ⊆ N(V (H)) ∩N(w).

Proof. Suppose that there exist components H, H ′ of G[N≥2(w)] such that
(N(V (H))−N(V (H ′))) ∩N(w) 6= ∅ and (N(V (H ′))−N(V (H))) ∩N(w) 6= ∅, and
let a1 ∈ (N(V (H))−N(V (H ′))) ∩N(w) and b1 ∈ (N(V (H ′))−N(V (H))) ∩N(w).
Take a2 ∈ N(a1) ∩ V (H) and b2 ∈ N(b1) ∩ V (H ′). Since δ(G[N≥2(w)]) ≥ 2,
there exist a3, a4 ∈ V (H) − {a2} with a3 6= a4 such that a2a3, a3a4 ∈ E(G).
Since G is {C3, C4}-free and a4 ∈ N≥2(w), it follows that wa1a2a3a4 is an in-
duced path. Similarly there exist b3, b4 ∈ V (H ′) such that wb1b2b3b4 is an in-
duced path. We have |N({a2, a3, a4, b2, b3, b4}) ∩ N(w)| ≤ 6 by (5.1). Take c ∈
N(w)−N({a2a3, a4, b2, b3, b4}). Then {a4, a3, a2, a1, w, c, b1, b2, b3, b4} induces a copy
of T9,1, a contradiction. �
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Claim 5.15 There exists a component H of G[N≥2(w)] such that |V (H)| ≥ 2 · 1041.

Proof. Since N(N2(w)) ⊇ N(w), we see from Claim 5.14 that there exists a com-
ponent H of G[N≥2(w)] such that N(V (H)) ⊇ N(w). By (5.1), it follows that
|V (H)| ≥ |N(w)| ≥ 2 · 1041. �

Let H be as in Claim 5.15. In view of Lemma 1.3, it follows from Claim 5.13
that if diam(H) ≤ 11, then |V ((H)| < (5.5 · 103)11 < 2 · 1041, a contradiction. Thus
diam(H) ≥ 12. Take y, y′ ∈ V (H) with distH(y, y′) = 12, and let P = y1y2 . . . y13 be
a shortest y − y′ path in H.

Claim 5.16 We have y5, y6, y7 ∈ N2(w).

Proof. Suppose that yi ∈ N3(w) for some i ∈ {5, 6, 7}, and take z ∈ N(yi) −
{yi−1, yi+1}. Then z ∈ N≥2(w). Since G is {C3, C4}-free and P is a shortest y −
y′path in G[N≥2(w)], it follows that {yi−4, yi−3, . . . , yi+4, z} induces a copy of T9,1, a
contradiction. �

Claim 5.17 Let 5 ≤ i ≤ 9. Suppose that yi ∈ N2(w), and write N(yi)∩N(w) = {x}.
Then yi−3, yi+3 ∈ N(x).

Proof. If N(x) ∩ {yi−4, yi−3, yi+3, yi+4} = ∅, then {yi−4, yi−3, . . . , yi+4, x} induces a
copy of T9,1, a contradiction, Thus N(x) ∩ {yi−4, yi−3, yi+3, yi+4} 6= ∅. Suppose that
N(x)∩{yi−3, yi+3} = ∅. Then N(x)∩{yi−4, yi+4} 6= ∅. We may assume that xyi+4 ∈
E(G). Since P is an induced path, yi−3yi+4, yi−2yi+4 /∈ E(G). Hence we get a contra-
diction by applying Claim 5.5 to yi−3yi−2yi−1yixyi+4. Thus N(x) ∩ {yi−3, yi+3} 6= ∅.
Now if xyi−3 /∈ E(G), then xyi+3 ∈ E(G) and, since yi−3yi+3, yi−2yi+3 /∈ E(G), we get
a contradiction by applying Claim 5.5 to yi−3yi−2yi−1yixyi+3. Thus xyi−3 ∈ E(G).
By symmetry, we also obtain xyi+3 ∈ E(G), as desired. �

We are now in a position to complete the proof of Proposition 1.5. Having
Claim 5.16 in mind, write N(y5) ∩N(w) = {x2}, N(y6) ∩N(w) = {x3} and N(y7) ∩
N(w) = {x1}. Then it follows from Claim 5.17 that for each k ∈ {0, 1, 2}, N(yi) ∩
N(w) = {xk} for every i ∈ {2, 3, . . . , 12} with i ≡ k(mod 3). Since N(w) is inde-
pendent and P is an induced path, it follows that {y7, x1, y4, y5, x2, y2, y11, y12, x3, y9}
induces a copy of T9,1 (see Figure 14). This contradicts the assumption that G is
T9,1-free.

This completes the proof of Proposition 1.5.

6 Proof of Proposition 1.6

Recall that w is a vertex of a 3-connected {C3, C4}-free graph G with degG(w) =
∆(G). In this section, we prove Proposition 1.6. By way of contradiction, suppose
that G is T9,2-free and ∆(G) ≥ 5.5 · 1035. We argue as in Section 5. The main claim
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Figure 14: T9,1 yielding the final contradiction.

is Claim 6.11. By Lemmas 3.2 and 4.2,

|Mw
4 (u)| ≤ 15 and |Mw

5 (u)| ≤ |Mw
4 (u) ∪Mw

5 (u)| ≤ 525 for every u ∈ N≥2(w).
(6.1)

Claim 6.1 Let a6a5a4a3a2a1 be a path in G − w with a1 ∈ N(w) and a2, . . . , a6 ∈
N≥2(w). Then {a6a2, a6a1, a5a1} ∩ E(G) 6= ∅.

Proof. Set X = {a2, . . . , a6}. We have X − N(X) = ∅. Suppose that {a6a2, a6a1,
a5a1} ∩ E(G) = ∅. Then E(G[X ∪ {a1}]) = {a6a5, a5a4, a4a3, a3a2, a2a1}. Let Y2
be as in Lemma 5.1. By Lemma 5.3 (i) and (6.1), |Y2| ≤ 5 · 15 < |N(w)|. Take
b1 ∈ N(w)− Y2, and take b2, b

′
2 ∈ N(b1) ∩N≥2(w) with b2 6= b′2 (see Figure 15). We

have E(G[{a1, w, b1, b2, b′2}]) = {a1w,wb1, b1b2, b1b′2}. Since EG(X, {w, b1, b2, b′2}) =
∅ by Lemma 5.1(i), it follows that X ∪ {a1, w, b1, b2, b′2} induces a copy of T9,2, a
contradiction. �

Claim 6.2 Let a5, a
′
5, a4, a3, a2 ∈ N≥2(w) be vertices such that {a5a4, a′5a4, a4a3,

a3a2} ⊆ E(G) and a2 ∈ N2(w), and write N(a2)∩N(w) = {a1}. Then {a5a1, a′5a1}∩
E(G) 6= ∅.

Proof. Set X = {a2, . . . , a5, a′5}. We have X−N(X) = ∅. Suppose that {a5a1, a′5a1}
∩ E(G) = ∅. Then E(G[X ∪ {a1}]) = {a5a4, a′5a4, a4a3, a3a2, a2a1}. Let Z1, Z3 be
as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and (6.1), |Z1| ≤ 5 · 525 = 2625 and
|Z3| ≤ 2630 · 15 < |N(w)|. Take b1 ∈ N(w) − Z3 and b2 ∈ N(b1) ∩ N≥2(w).
Since |N(b2) ∩ N≥2(w)| ≥ 2, we can take b3 ∈ N(b2) ∩ N≥2(w) so that a1b3 /∈
E(G) (see Figure 16). Then E(G[{a1, w, b1, b2, b3}]) = {a1w,wb1, b1b2, b2b3}. Since
EG(X, {w, b1, b2, b3}) = ∅ by Lemma 5.1 (ii), it follows that X ∪ {a1, w, b1, b2, b3}
induces a copy of T9,2, a contradiction. �

Claim 6.3 We have N≥4(w) = ∅ and ∆(G[N3(w)]) ≤ 2.

Proof. Suppose that N≥4(w) 6= ∅ or ∆(G[N3(w)]) ≥ 3. If N≥4(w) 6= ∅, then let u ∈
N4(w), if ∆(G[N3(w)]) ≥ 3, then take u ∈ N3(w) so that |N(u) ∩N3(w)| ≥ 3. Then
we can take z, z′, z′′ ∈ N(u) ∩ N≥3(w) so that z ∈ N3(w). Take y ∈ N(z) ∩ N2(w),
and write N(y) ∩ N(w) = {x}. Since z′, z′′ ∈ N≥3(w), we have z′x, z′′x /∈ E(G).
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Figure 15: T9,2 in Claim 6.1.

Figure 16: T9,2 in Claim 6.2.

Hence we get a contradiction by applying Claim 6.2 to {z′, z′′, u, z, y}. �

Set

R1 = {z ∈ N3(w) | |N(z) ∩N2(w)| = 1},
R2 = {z ∈ N3(w) | |N(z) ∩N2(w)| ≥ 2}.

Claim 6.4 Let z ∈ R1 and z′ ∈ N3(w) with zz′ ∈ E(G). Write N(z)∩N2(w) = {y},
let y′ ∈ N(z′) ∩ N2(w), and write N(y) ∩ N(w) = {x} and N(y′) ∩ N(w) = {x′}.
Then x = x′.

Proof. Since G is C3-free, y 6= y′. Suppose that x 6= x′. Then yx′ /∈ E(G). Since
z ∈ R1, we can take z′′ ∈ N(z)∩N3(w) with z′′ 6= z′. Since x′ ∈ N(w), z′′x′ /∈ E(G).
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Consequently we get a contradiction by applying Claim 6.2 to {z′′ , z, y, z′, y′}. �

As in Section 5, the following two claims follow from Claim 6.4.

Claim 6.5 Let H be a component of G[R1]. Then N(V (H))∩N2(w) is independent
and |N(N(V (H))) ∩N2(w)) ∩N(w)| = 1. �

Claim 6.6 We have EG(R1, R2) = ∅. �

It follows from Claims 6.3 and 6.6 that each component of G[R1] is a cycle, and
is a component of G[N3(w)] = G[N≥3(w)].

Claim 6.7 Let H be a component of G[R1]. Then |V (H)| ≡ 0 (mod 3), N(V (H))∩
N2(w) is an independent set of cardinality 3, and we can write H = z1z2 . . . z3mz1 and
N(V (H))∩N2(w) = {y1, y2, y3} so that for each k ∈ {1, 2, 3}, N(zj)∩N2(w) = {yk}
for every j with j ≡ k(mod 3).

Proof. Take u1 ∈ V (H) and u2 ∈ N(u1)∩V (H), and write (N(u2)∩V (H))−{u1} =
{u3} and (N(u3) ∩ V (H)) − |u2} = {u4}. Write N(uk) ∩ N2(w) = {yk} for each
k ∈ {1, 2, 3}, and write N(y1) ∩ N(w) = {x}. Since G is {C3, C4}-free, y1 6= y2 6=
y3 6= y1. By Claim 6.5, {y1, y2, y3} is independent. Suppose that u4y1 /∈ E(G). Since
u3, u4 ∈ N3(w) and x ∈ N(w), u3x, u4x /∈ E(G). Hence we get a contradiction
by applying Claim 6.1 to u4u3u2u1y1x. Thus u4y1 ∈ E(G). Since u1 ∈ V (H) is
arbitrary, this implies the desired conclusion. �

Claim 6.8 For each y ∈ N2(w), y is adjacent to at most one component of G[R1].

Proof. Suppose that there exists y1 ∈ N2(w) such that y1 is adjacent to two distinct
components H,H ′ of G[R1]. Having Claim 6.7 in mind, write |V (H)| = 3m and
|V (H ′)| = 3m′ (m,m′ ≥ 2). Let H = z1z2 . . . z3mz1 and N(V (H)) ∩ N2(w) =
{y1, y2, y3} be as in Claim 6.7, and also let H ′ = z′1z

′
2 . . . z

′
3m′z

′
1 and N(V (H ′)) ∩

N2(w) = {y1, y′2, y′3} be as in Claim 6.7. We have y2 6= y′2 or y2 6= y′3. By the
symmetry of y′2 and y′3, we may assume that y2 6= y′2. Write N(y1) ∩ N(w) = {x}.
By Claim 6.5, {y1, y2, y3, y′2, y′3} ⊆ N(x). Hence {y1, y2, y3, y′2, y′3} is independent.
Suppose that N(y2) − {x} − (V (H) ∪ V (H ′))) 6= ∅ and take z ∈ N(y2) − {x} −
(V (H)∪V (H ′)). Then z ∈ (N2(w)−{y1, y2, y3, y′2, y′3})∪ (N3(w)− (V (H)∪V (H ′)).
Since N(V (H)∪ V (H ′))∩N2(w) = {y1, y2, y3, y′2, y′3} and H and H ′ are components
of G[N3(w)], we obtain N(z) ∩ (V (H) ∪ V (H ′)) = ∅. Since {y1, y2, y′2} ⊆ N(x)
and G is {C3, C4}-free, we also see that N(z) ∩ {y1, y2, y′2} = {y2}. Consequently
{z, y2, z5, z2, z1, y1, z′1, z′2, y′2, z′5} induces a copy of T9,2, which is a contradiction (see
Figure 17). Thus N(y2) − {x} ⊆ V (H) ∪ V (H ′). By the symmetry of y2 and y3,
we get N(y3) − {x} ⊆ V (H) ∪ V (H ′). By the symmetry of H and H ′, we also
obtain (N(y′2) ∪ N(y′3)) − {x} ⊆ V (H) ∪ V (H ′). Therefore {x, y1} is a separator.
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This contradicts the assumption that G is 3-connected, and completes the proof of
Claim 6.8. �

Figure 17: T9.2 in Claim 6.8.

Claim 6.9 For every y ∈ N2(w), |N(y) ∩R1| ≤ 4.

Proof. Suppose that there exists y1 ∈ N2(w) such that |N(y1)∩R1| ≥ 5. By Claim
6.8, there exists a component H of G[R1] such that |N(y1) ∩ V (H)| ≥ 5. Let H =
z1z2 . . . z3mz1 and N(V (H))∩N2(w) = {y1, y2, y3} be as in Claim 6.7. Since |N(y1)∩
V (H)| ≥ 5, we have m ≥ 5. We now see that {z8, y2, z14. z11, z10, y1, z4, z3, y3, z6}
induces a copy of T9,2, a contradiction (see Figure 18). �

Claim 6.10 For every y ∈ N2(w), |N(y) ∩ (N2(w) ∪R2)| ≤ 525.

Proof. Let y ∈ N2(w). By the definition of L({y}) and R2, R2 ⊆ L({y}). Hence
N(y) ∩ N2(w) ⊆ Mw

4 (y) and N(y) ∩ R2 ⊆ Mw
5 (y) by Lemma 5.2. Consequently

|N(y) ∩ (N2(w) ∪R2)| ≤ |Mw
4 (y) ∪Mw

5 (y)| ≤ 525 by (6.1). �

Claim 6.11 We have ∆(G[N≥2(w)]) < 530.

Proof. Let y ∈ N≥2(w). If y ∈ N2(w), then it follows from Claims 6.9 and 6.10 that
degG[N≥2(w)]

(y) = |N(y)∩R1|+ |N(y)∩ (N2(w)∪R2)| ≤ 4 + 525 = 529; if y ∈ N3(w),

then degG[N≥2(w)]
(y) = |N(y)∩N2(w)|+ |N(y)∩N3(w)| ≤ |Mw

4 (y)|+∆(G[N3(w)]) ≤
15 + 2 ≤ 529 by Lemma 5.2, (6.1) and Claim 6.3. Since y ∈ N≥2(y) is arbitrary, we

Figure 18: T9,2 in Claim 6.9.
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obtain ∆(G[N≥2(w)]) < 530. �

We divide the rest of the proof into two cases.

Case 1: There exists a component H0 of G[N≥2(w)] such that |V (H0)| ≥ 2.75 · 1035.

In view of Lemma 1.3, it follows from Claim 6.11 that diam(H0) ≥ 14. Take
y, y′ ∈ V (H0) with distH0(y, y

′) = 14, and let P = y1y2 . . . y15 be a shortest y − y′
path in H. We argue as in Claims 5.16 and 5.17.

Claim 6.12 We have {y2, y3, . . . , y14} ⊆ N2(w).

Proof. Suppose that yi ∈ N3(w) for some i ∈ {2, . . . , 14}. By symmetry, we may as-
sume that i ≤ 8. Take z ∈ N(yi)−{yi−1, yi}. Then z ∈ N≥2(w). Since G is {C3, C4}-
free and P is a shortest y−y′ path in G[N≥2(w)], it follows that {yi−1, yi, . . . , yi+7, z}
induces a copy of T9,2, a contradiction. �

For each i ∈ {2, . . . , 14}, write N(yi) ∩N(w) = {xi}.

Claim 6.13 (i) Let 2 ≤ i ≤ 11. Then we have xiyi+3 ∈ E(G) or xiyi+4 ∈ E(G).
(ii) Let 5 ≤ i ≤ 14. Then we have xiyi−3 ∈ E(G) or xiyi−4 ∈ E(G).

Proof. Let 2 ≤ i ≤ 11, and suppose that xiyi+3, xiyi+4 /∈ E(G). Since P is an
induced path, yiyi+4 /∈ E(G). Hence we get a contradiction by applying Claim 6.1
to yi+4yi+3 . . . yixi. This proves (i), and (ii) can be verified in a similar way. �

Claim 6.14 (i) Let 2 ≤ i ≤ 10, and suppose that xiyi+4 ∈ E(G). Then xi+1yi+5 ∈
E(G).
(ii) Let 6 ≤ i ≤ 14, and suppose that xiyi−4 ∈ E(G). Then xi−1yi−5 ∈ E(G).

Proof. Let 2 ≤ i ≤ 10 and xiyi+4 ∈ E(G), and suppose that xi+1yi+5 /∈ E(G).
Then by Claim 6.13 (i), xi+1yi+4 ∈ E(G). Since N(yi+4) ∩ N(w) = {xi+4}, this
implies that xi+1 = xi+4 = xi, which contradicts the fact that G is C3-free. Thus
xi+1yi+5 ∈ E(G). This proves (i), and (ii) is verified in a similar way. �

Claim 6.15 Let 2 ≤ i ≤ 9, and suppose that xiyi+3 ∈ E(G). Then xi+1yi+4 ∈ E(G).

Proof. Suppose that xi+1yi+4 /∈ E(G). Then by Claim 6.13(i), xi+1yi+5 ∈ E(G),
which implies xi+1 = xi+5, and hence xi+5yi+1 ∈ E(G). Applying Claim 6.14 (ii) with
i replaced by i + 5, we get xi+4yi ∈ E(G), i.e., xiyi+4 ∈ E(G). Since xiyi+3 ∈ E(G)
by assumption, this contradicts the fact that G is C3-free. �

Note that we have x2y5 ∈ E(G) or x2y6 ∈ E(G) by Claim 6.13. Suppose that
x2y6 ∈ E(G). Then by Claim 6.14(i), for each k ∈ {2, 3, 4, 5}, N(yi) ∩N(w) = {xk}
for every i ∈ {2, . . . , 14} with i ≡ k(mod 4). Since G is {C3, C4}-free, this implies
that x2, x3, x4, x5 are distinct. We now see that {y14, x2, y6, y2, y3, x3, y11, y12, x4, y8}
induces a copy of T9,2, which contradicts the assumption that G is T9,2-free (see
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Figure 19). Consequently x2y5 ∈ E(G). By Claim 6.15, for each k ∈ {2, 3, 4},
N(yi) ∩ N(w) = {xk} for every i ∈ {2, . . . 13} with i ≡ k(mod 3). Therefore
{y2, x2, y8, y5, y6, x3, y12, y13. x1, y10} induces a copy of T9,2, which again contradicts
the assumption that G is T9,2-free (see Figure 19). This concludes the discussion for
Case 1. � Case 2: |V (H)| < 2.75 · 1035 for every component H of G[N≥2(w)].

Figure 19: T9,2 in Case 1.

Let H1, . . . , Hp be the components of G[N≥2(w)]. Since |N≥2(w)| ≥ 2|N(w)| ≥
1.1·1036 by (5.1), we have p ≥ 5. For each x ∈ N(w), define a subset g(x) of {1, . . . , p}
by g(x) = {α ∈ {1, . . . , p} | N(x) ∩ V (Hα) 6= ∅}. Since N(N(w)) ⊇ N2(w), we have
∪x∈N(w)g(x) = {1, . . . , p}.

Claim 6.16 If x, x′ ∈ N(w), then g(x) ⊆ g(x′) or g(x′) ⊆ g(x) or g(x)∩ g(x′) = ∅.

Proof. Suppose that g(x) − g(x′) 6= ∅, g(x′) − g(x) 6= ∅ and g(x) ∩ g(x′) 6= ∅,
and take α ∈ g(x) − g(x′), β ∈ g(x′) − g(x) and γ ∈ g(x) ∩ g(x′). Take y ∈
N(x) ∩ V (Hγ) and y′ ∈ N(x′) ∩ V (Hγ) so that distHγ (y, y′) is as small as possible,
and let y1 . . . yr (y1 = y, yr = y′) be a shortest y − y′ path in Hγ. We have r ≥ 2 by
(5.1). Take u ∈ N(x)∩V (Hα). Since δ(Hα) ≥ 2, we can take u′, u′′ ∈ N(u)∩V (Hα)
so that u′ 6= u′′. Take v ∈ N(x′) ∩ V (Hβ). Since δ(Hβ) ≥ 2, we can take v′, v′′ ∈
V (Hβ) − {v} so that vv′, v′v′′ ∈ E(G) (see Figure 20). By the minimality of r, we
have x, x′ /∈ N({y2, . . . , yr−1}). By (5.1), x /∈ N({y′, v}) and x′ /∈ N({y, u}). Since
β /∈ g(x) and α /∈ g(x′), we also get x /∈ N({v′, v′′}) and x′ /∈ N({u′, u′′}). Since G
is {C3, C4}-free, it follows that {u′, u, u′′, x, y1, . . . , yr, x′, v, v′, v′′} induces a copy of
Sr+7({2}, ∅) (see the second paragraph of Section 1 for the definition of Sn(I, J)).
Since T9,2 = S9({2}, ∅) is an induced subgraph of Sr+7({2}, ∅), this contradicts the
assumption that G is T9,2-free. �

SetA = {x ∈ N(w) | g(x) = {1, . . . , p}}. We distinguish three subcases according
as |A| ≤ 1, |A| = 2, or |A| ≥ 3.

Subcase 2-1: |A| ≤ 1.

Claim 6.17 We have ∪x∈N(w)−Ag(x) = {1, . . . , p}.

Proof. Suppose that ∪x∈N(w)−Ag(x) 6= {1, . . . , p}. Since ∪x∈N(w)g(x) = {1, . . . , p},
this implies |A| = 1. Take α ∈ {1, . . . , p} − (∪x∈N(w)−Ag(x)). By the definition of
g(x), N(V (Hα)) ∩ N(w) = A. Consequently Hα is a component of G − A, which
contradicts the assumption that G is 3-connected. �

Let I1, . . . , Iq(⊆ {1, . . . , p}) be the maximal sets among g(x) (x ∈ N(w) − A).
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Figure 20: Sr+7({2}, ∅) in Claim 6.16.

By Claim 6.17, I1 ∪ . . . ∪ Iq = {1, . . . , p}. By the definition of A, q ≥ 2. Set
B = ∪α∈I1V (Hα). Since q ≥ 2, B 6= N≥2(w). By Claim 6.16 and the maximality of
I1, g(x) ⊆ I1 for all x ∈ (N(B)∩N(w))−A which, by the definition of g(x), implies
that N((N(B)∩N(w))−A)∩N2(w) ⊆ B. Therefore G[B∪((N(B)∩N(w))−A)] is a
component of G−(A∪{w}), which contradicts the assumption that G is 3-connected.

Subcase 2-2: |A| = 2.

Write A = {x, x′}. Since G is 3-connected, H1 is not a component of G−{x, x′}.
Hence N(N(w) − {x, x′}) ∩ V (H1) 6= ∅. Take u ∈ N({x, x′}) ∩ V (H1) and u′ ∈
N(N(w) − {x, x′}) ∩ V (H1) so that distH1(u, u

′) is as small as possible. By the
symmetry of x and x′, we may assume that N(u) ∩ N(w) = {x}. Write N(u′) ∩
N(w) = {x′′}. Then x′′ /∈ A. Let u1, . . . , us (u1 = u, us = u′) be a shortest u−u′ path
in H1 (s ≥ 2). From the minimality of s, it follows that x, x′, x′′ /∈ N({u2, . . . , us−1}).
Take u′′ ∈ (N(x′′)∩N2(w))−{u′}. Then u′′ /∈ {u1, . . . , us}. Since G is {C3, C4}-free,
the minimality of s implies that u′′ /∈ N({u1, . . . , us}). Let α be the index with u′′ ∈
V (Hα) (it is possible that α = 1). Since x′′ /∈ A, there exists β with β /∈ g(x′′). Take
y′ ∈ N(x′)∩V (Hβ) and y ∈ N(x)∩V (Hβ) so that distHβ

(y′, y) is as small as possible,
and let y1 . . . yr(y1 = y′, yr = y) be a shortest y′ − y path in Hβ(r ≥ 2). Recall that
p ≥ 5. Take γ, γ′ ∈ {1, . . . , p} − {1, α, β} with γ 6= γ′, and take v ∈ N(x′) ∩ V (Hγ)
and v′ ∈ N(x′)∩V (Hγ′) (see Figure 21). Since β /∈ g(x′′), x′′ /∈ N({y2, . . . , yr−1}). By
the minimality of r, we have x′, x /∈ N({y2, . . . , yr−1}). Consequently it follows from
(5.1) that {v, x′, v′, y1, . . . , yr, x, u1, . . . , us, x′′, u′′} induces a copy of Sr+s+5({2}, ∅),
which contradicts the assumption that G is T9,2-free.

Figure 21: Sr+s+5({2}, ∅) in Subcase 2-2.
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Subcase 2-3: |A| ≥ 3.

Take x, x′, x′′ ∈ A with x 6= x′ 6= x′′ 6= x. Choose y′ ∈ N(x′) ∩ V (H1) and
y ∈ N(x) ∩ V (H1) so that distH1(y

′, y) is as small as possible, and let y1 . . . yr (y1 =
y′, yr = y) be a shortest y′ − y path in H1 (r ≥ 2). Then x′, x /∈ N({y2, . . . , yr−1}).
Choose z ∈ N(x) ∩ V (H2) and z′ ∈ N(x′′) ∩ V (H2) so that distH2(z, z

′) is as small
as possible, and let z1 . . . zs (z1 = z, zs = z′) be a shortest z − z′ path in H2 (s ≥ 2).
Then x, x′′ /∈ N({z2, . . . , zs−1}). We assume that we have labeled x, x′ and x′′ so
that r + s is as small as possible. If x′′ ∈ N({y2, . . . , yr−1}), say x′′ ∈ N(yi), then
replacing x, x′′, y1 . . . yr and z1 . . . zs by x′′, x, y1 . . . yi and zs . . . z1, respectively, we get
a contradiction to the minimality of r + s. Thus x′′ /∈ N({y2, . . . , yr−1}). Similarly
x′ /∈ N({z2, . . . , zs−1}). Therefore N({y2, . . . , yr−1, z2, . . . , zs−1}) ∩ {x, x′, x′′} = ∅.
Take u ∈ N(x′′) ∩ V (H3), v ∈ N(x′) ∩ V (H4) and v′ ∈ N(x′) ∩ V (H5) (see Figure
22). It now follows from (5.1) that {v, x′, v′, y1, . . . , yr, x, z1, . . . , zs, x′′, u} induces a
copy of Sr+s+5({2}, ∅). This contradicts the assumption that G is T9,2-free.

This concludes the discussion for Case 2, and completes the proof of Proposi-
tion 1.6.

Figure 22: Sr+s+5({2}, ∅) in Subcase 2-3.

7 Proof of Proposition 1.7

In this section, we prove Proposition 1.7. Suppose that G is T8-free and ∆(G) ≥ 1221.
By Claims 3.3 and 4.3,

|Mw
4 (u)| ≤ 5 and |Mw

5 (u)| ≤ |Mw
4 (u) ∪Mw

5 (u)| ≤ 60 for every u ∈ N≥2(w). (7.1)

Claim 7.1 Let a5a4a3a2a
′
3 be a path in G[N≥2(w)] with a2 ∈ N2(w), and write

N(a2) ∩N(w) = {a1}. Then {a5a′3, a5a1} ∩ E(G) 6= ∅.

Proof. Set X = {a2, . . . , a5, a′3}. We have X−N(X) = ∅. Suppose that {a5a′3, a5a1}
∩ E(G) = ∅. Then E(G[X ∪ {a1}]) = {a5a4, a4a3, a3a2, a2a1, a2a′3}. Let Y2 be as
in Lemma 5.1. By Lemma 5.3 (i) and (7.1), |Y2| ≤ 5 · 5 < |N(w)|. Take b1 ∈
N(w) − Y2, and take b2, b

′
2 ∈ N(b1) ∩ N≥2(w) with b2 6= b′2 (see Figure 23). We

have E(G[{a1, w, b1, b2, b′2}]) = {a1w,wb1, b1b2, b1b′2}. Since EG(X, {w, b1, b2, b′2}) =
∅ by Lemma 5.1 (i), it follows that X ∪ {a1, w, b1, b2, b′2} induces a copy of T8, a
contradiction. �



Y. EGAWA/AUSTRALAS. J. COMBIN. 90 (3) (2024), 231–261 258

Figure 23: T8 in Claim 7.1.

Claim 7.2 We have N≥3(w) = ∅, and G[N2(w)] is 2-regular.

Proof. Recall that δ(G[N≥2(w)]) ≥ 2. By way of contradiction, suppose that
N≥3(w) 6= ∅ or ∆(G[N2(w)]) ≥ 3. If N≥3(w) 6= ∅, then take a3 ∈ N3(w); if
∆(G[N2(w)] ≥ 3, then take a3 ∈ N2(w) so that |N(a3) ∩ N2(w)| ≥ 3. Then we
can take a2, a4, a

′
4 ∈ N(a3) ∩ N≥2(w) so that a2 ∈ N2(w). Write N(a2) ∩ N(w) =

{a1}. Set X = {a2, a3, a4, a′4}. We have X − N(X) = ∅ and E(G[X ∪ {a1}]) =
{a4a3, a′4a3, a3a2, a2a1}. Let Z1, Z3 be as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and
(7.1), |Z1| ≤ 4 · 60 = 240 and |Z3| ≤ 244 · 5 < |N(w)|. Take b1 ∈ N(w) − Z3 and
b2 ∈ N(b1)∩N≥2(w). Since |N(b2)∩N≥2(w)| ≥ 2, we can take b3 ∈ N(b2)∩N≥2(w)
so that a1b3 /∈ E(G). Then E(G[{a1, w, b1, b2, b3}]) = {a1w,wb1, b1b2, b2b3}. By
Lemma 5.1 (ii), EG(X, {w, b1, b2, b3}) = ∅. By (5.1), |N(X ∪ {b2, b3}) ∩N(w)| ≤ 6 <
|N(w)|. Take c ∈ N(w)− (N(X ∪ {b2, b3}) ∩N(w)) (see Figure 24). It now follows
that X ∪ {a1, w, b1, b2, b3, c} induces a copy of T8, a contradiction. �

Figure 24: T8 in Claim 7.2.
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Let H1, . . . , Hp be the components of G[N2(w)]. By Claim 7.2, each Hα is a cycle.

Claim 7.3 Let α ∈ {1, . . . , p}, and suppose that |V (Hα)| 6= 5. Then |V (Hα)| ≡
0 (mod 3), |N(V (Hα)) ∩ N(w)| = 3, and we can write Hα = y1y2 · · · y3my1 and
N(V (Hα))∩N(w) = {x1, x2, x3} so that for each k ∈ {1, 2, 3}, N(yj)∩N2(w) = {xk}
for every j with j ≡ k (mod 3).

Proof. Since G is {C3, C4}-free, |V (Hα)| ≥ 6. Take u1 ∈ V (Hα), and write N(u1)∩
V (Hα) = {u0, u2}, (N(u2) ∩ V (Hα))− {u1} = {u3} and (N(u3) ∩ V (Hα))− {u2} =
{u4}. Also write N(u1) ∩ N(w) = {x}. Suppose that u4x /∈ E(G). Since Hα is a
cycle with |V (Hα)| ≥ 6, u4u0 /∈ E(G). Hence we get a contradiction by applying
Claim 7.1 to u4u3u2u1u0. Thus u4x ∈ E(G). Since u1 is arbitrary, this implies the
desired conclusion. �

For each α ∈ {1, . . . , p}, if |V (Hα)| = 5, then |N(V (Hα)) ∩ N(w)| = 5 by (5.1)
and, if |V (Hα)| 6= 5, then |N(V (Hα)) ∩ N(w)| = 3 by Claim 7.3. Hence p ≥
|N(w)|/5 ≥ 5. For each x ∈ N(w), set g(x) = {α ∈ {1, . . . , p} | N(x)∩ V (Hα) 6= ∅}.
We have ∪x∈N(w)g(x) = {1, . . . , p}.

Figure 25: T8 in Claim 7.4.

Claim 7.4 If x, x′ ∈ N(w), then g(x) ⊆ g(x′) or g(x′) ⊆ g(x) or g(x) ∩ g(x′) = ∅.

Proof. Suppose that g(x) − g(x′) 6= ∅, g(x′) − g(x) 6= ∅ and g(x) ∩ g(x′) 6= ∅, and
take α ∈ g(x)−g(x′), β ∈ g(x′)−g(x) and γ ∈ g(x)∩g(x′). Take y ∈ N(x′)∩V (Hγ).
Take u ∈ N(x)∩V (Hα), and write N(u)∩V (Hα) = {u′, u′′}. Take v ∈ N(x′)∩V (Hβ)
and v′ ∈ N(v)∩V (Hβ), and write (N(v′)∩V (Hβ))−{v} = {v′′} (see Figure 25). By
the choice of α and β, x /∈ N({v′, v′′}) and x′ /∈ N({u′, u′′}). Since G is {C3, C4}-free,
it now follows from (5.1) that {u′, u, u′′, x, w, x′, y, v, v′, v′′} induces a copy of T8, a
contradiction. �

Set A = {x ∈ N(w) | g(x) = {1, . . . , p}}. If |A| ≤ 1, then, in view of Claim 7.4,
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we get a contradiction by arguing in Subcase 2-1 in Section 6. Thus |A| ≥ 2. Take
x, x′ ∈ A with x 6= x′. Suppose that there exists an index α0 ∈ {1, . . . , p} for which we
can take y0 ∈ N(x)∩V (Hα0) and y′0 ∈ N(x′)∩V (Hα0) so that y0y

′
0 ∈ E(G). We may

assume that α0 = 1. Take y ∈ N(x′)∩V (H2). Since G is {C3, C4}-free, one of the two
neighbors of y in H2, say y′, satisfies N(y′)∩{x, x′} = ∅. Write N(y′)∩N(w) = {x′′}.
Take v ∈ N(x′)∩ V (H3), u ∈ N(x)∩ V (H4) and u′ ∈ N(x)∩ V (H5) (see Figure 26).
By (5.1), {u, x′′, u′, y0, y′0, x′, v, y, y′, x′′} induces a copy of T8, a contradiction.

Figure 26: T8 in the paragraph following the proof of Claim 7.4.

Figure 27: T8 yielding the final contradiction.

Consequently for each α ∈ {1, . . . , p}, yy′ /∈ E(G) for every y ∈ N(x) ∩ V (Hα)
and every y′ ∈ N(x′)∩V (Hα). In view of Claim 7.3, thus means that |V (Hα)| = 5 for
every α. Since G is {C3, C4}-free, it follows that |N(x)∩V (Hα)| = |N(x′)∩V (Hα)| =
1 for every α. Write H1 = y1y2y3y4y5y1 so that N(x) ∩ V (H1) = {y1} and N(x′) ∩
V (H1) = {y3}. Take v ∈ N(x′) ∩ V (H2) and v′ ∈ N(v) ∩ V (H2). Since yv /∈ E(G)
for every y ∈ N(x)∩V (H2), we see that xv′ /∈ E(G). Finally take u ∈ N(x)∩V (H3)
and u′ ∈ N(x) ∩ V (H4) (see Figure 27). Since |N(x) ∩ V (H1)| = |N(x′) ∩ V (H1)| =
|N(x′) ∩ V (H2)| = 1, it follows from (5.1) that {u, x, u′, y1, y2, y3, y4, x, v, v′} induces
a copy of T8, which contradicts the assumption that G is T8-free.

This completes the proof of Proposition 1.7.
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