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Abstract

For a family F of graphs, a graph G is said to be F-free if G contains
no member of F as an induced subgraph. We let G3(F) be the family of
3-connected F-free graphs. Let P, and C), denote the path and the cycle
of order n, respectively. Let So({5}, ) be the tree obtained from Py by
adding a vertex and joining it to the central vertex of Py, and Sg({2},0)
be the tree obtained by adding a vertex and joining it to a vertex adja-
cent to an endvertex of Py. We show that G3({C3,Cy, So({5},0)}) and
Gs({C5,Cy, So({2},0)}) are finite families.

1 Introduction

By a graph, we mean a finite, simple, undirected graph. Let G be a graph. We
let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For
u € V(G), we let Ng(u) and degg(u) denote the neighborhood and the degree
of G, respectively; thus deg,(u) = |Ng(u)|. We let §(G) and A(G) denote the
minimum degree and the maximum degree of G, respectively. For U C V(G), we
set Ng(U) = Uyer Ng(u), and let G[U] denote the subgraph of G induced by U. For
UU C V(G) with UNU" = 0, we let Eq(U,U’) be the set of edges of G joining
a vertex in U and a vertex in U’. When G is connected, for u, v € V(G), we let
distg (u, v) denote the distance of u and v in G, and let diam(G) denote the maximum
of distg(u,v) as u and v range over V(G). We let C,, and K,, denote the cycle and
the complete graph of order n, respectively. We let K,,, », denote the complete
bipartite graph with partite sets having cardinalities m; and ms, respectively. For
terms and symbols not defined here, we refer the reader to [1].

Let n > 5 be an integer, and let I,J be subsets of {2,3,...,n — 1} with J C
{3,...,n—2}and INJ = 0. Welet S,(I,J) denote the tree obtained from a path
uyug - - - u, of order n by adding vertices v; (i € I U J) and v, (i € J) and edges
wv; (1 € T'UJ) and v} (i € J). Also we let S* denote the tree obtained from a
path ujus - - - u7 of order 7 by adding vertices vg, v}, v) and edges uqvy, v4vl, v40] (see
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Figure 1). A tree T is a caterpillar if there exists a path P of T such that T'— V (P)
has no edges. Note that S,(I,0) is a caterpillar.
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So({5}, ¢) So({2}, 4)
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Sg({2,5}, ¢) Se({73,{3D)
Figure 1: Trees S,(/,J) and S*.

For two graphs G and H, we say that GG is H-free if G does not contain an induced
copy of H. For a family F of connected graphs, a graph G is said to be F-free if
G is H-free for every H € F. For an integer £ > 2 and a family F of connected
graphs, let Gi(F) denote the family of k-connected F-free graphs. In this context,
members of F are often referred to as forbidden subgraphs. Note that G({C3, C4})
is the family of k-connected graphs with girth at least five.

Let £ > 2 be an integer. In this paper, we consider families F of connected
graphs such that

Gr(F) is a finite family. (1.1)

Note that if a family F satisfies (1.1), then for any property P on graphs, although
the proposition that all k-connected F-free graphs satisfy P with finite exceptions
holds, the proposition gives no information about P. Thus it is important to identify
families F satisfying (1.1) in advance. With such a motivation, studies of F satisfying
(1.1) have been started by Fujisawa, Plummer and Saito in [7]. In particular, it is
known that if a finite family F of connected graphs satisfies (1.1), then F contains a
complete graph, a complete bipartite graph and a tree. Based on this result, families
F satisfying (1.1) which can be written in the form F = {K,, Ky, my, T} where
n > 3,2 < m; < myand T is a tree, have intensively been studied (for a result
concerning the case where |F| = 4, we refer the reader to [8]). For k = 2, such families
are completely characterized in [7]. For k = 3, such families are characterized expect
for the case where n = 3 and m; = my = 2 (see [2,4,6]). This paper is concerned
with the case where n = 3 and m; = my = 2 (note that K3 = C3 and Ky5 = Cy).

The following conjecture is proposed in [5].

Conjecture 1.1 Let T be a tree. Then G3({Cs,Cy,T}) is finite if and only if T
is a subgraph of one of So({5},0), Se({2},0), So(0,{3}), Ss({2,5},0), Ss({7},{3}),
§8§é4a{g> 461}},’){3})7 58({4}’ {3’ 6})7 S?({Z}v {4}>: S?({3}7 {4})7 S?({4}v {3’ 5}), S and
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The “only if” part of the conjecture is proved in [5]. In this paper, we prove the
following theorem as a partial solution of the “if” part.

Theorem 1.2 The families G3({C3, Cy, So({5},0)}), G3({Cs, Cy, So({2},0)}) and
G3({Cs,Cy, Ss({2,5},0)}) are finite families.

The following lemma is well-known (for a proof, see for example Lemma 1.6 in [2]).

Lemma 1.3 Let m > 2 and k > 3 be integer, and let G be a graph with A(G) < m
and diam(G) < k. Then |V(G)| < mk.

In view of Lemma 1.3, Theorem 1.2 follows from the following four propositions.

Proposition 1.4 Let G be a 3-connected {Cs,Cy,T}-free graph, where
T = So({5},0), So({2},0) or Ss({2,5},0). Then diam(G) < 7.

Proposition 1.5 Let G be a 3-connected {Cs,Cy, So({5},0)}-free graph. Then
A(G) < 2-10%.

Proposition 1.6 Let G be a 3-connected {Cs, Cy, So({2},0)}-free graph. Then
A(G) < 5.5-10%.

Proposition 1.7 Let G be a 3-connected {Cs, Cy, Ss({2,5},0)}-free graph. Then
A(G) < 1220.

We remark that it is known that G3({Cs,C4, So(0,{3})}) and G3({Cs,Cy,
Ss({7},{3})}) are finite families (see [3,5]). Thus Conjecture 1.1 is reduced to the
following conjecture.

Conjecture 1.8 Let T be a tree isomorphic to Ss({4,5,6},{3}), Ss({4},{3,6}),
57({2}7 {4}), 57({3}7 {4}), S7({4}a {37 5})7 S or SG((Z)> {37 4}) Then g3({c3> 047 T})

is a finite family.

We prove Proposition 1.4 in Section 2. After preparing auxiliary lemmas in
Sections 3 and 4, we prove Propositions 1.5-1.7 in Sections 5-7. In Section 3, we
make use of the fact that R(3,3) = 6 and R(3,6) = 18, where R(s,?) demotes the
usual Ramsey number, i.e., the minimum positive integer R such that any graph of
order at least R contains a complete subgraph of order s or an independent set of
cardinality t.

We conclude this section by stating a corollary of a famous theorem of Turan
[9]. Let n,k be integers with n > k > 1, and write n = kq + r, where ¢,r are
integers and 0 < r < k — 1. Turan’s theorem shows that if H is a graph of order
n and k is the maximum order of a complete subgraph of the complement of H,
then |E(H)| > r|E(Ky1)| + (K — r)|E(K,)| (see Section 7.1 of [1]). Note that
k is the maximum cardinality of an independent set of H. Note also that since
2| B(Kgir)|+ 20— 1) E(K,)| = ke + (2r — k)q > (kq+7)(g-+7/k—1) = n(n/k—1),
the average degree d of H satisfies d > n/k —1, i.e., (d+ 1)k > n. Thus we have the
following lemma, which we use in Section 3.
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Lemma 1.9 Let H be a graph with average degree d. Then H contains an indepen-
dent set with cardinality greater than or equal to n/(d + 1).

2 Diameter

For simplicity, we hereafter let So({5},0), S9({2},0) and Ss({2,5}, D) be denoted by
Tg71, TQ’Q and Tg.

In this section, we prove Proposition 1.4. Thus let T' = T4 1, Ty or T, and let G
be a 3-connected {Cs, Cy, T}-free graph and, by way of contradiction, suppose that
diam(G) > 8. Take u,v € V(G) with distg(u,v) = 8, and let P = ujus---ug be a
shortest u — v path. For each i € {2,5,8}, take a; € Ng(u;) — {w;—1,u;+1}. Assume
first that 7" = Ty ;. Note that asu; ¢ E(G) for each ¢ € {3,4,6,7} because G is
{C5, Cy}-free. Since P is a shortest u — v path, we also have asu; ¢ E(G) for each
i€ {1,2,8,9}. Hence {uy,...,uy,as} induces a copy of Ty, which contradicts the
assumption that G is Ty i-free. In the case where T' = T o, we can similarly get a
contradiction because {uy,...,ug, as} induces a copy of Ty .

We now assume that 7' = Ts. Since P is a shortest u — v path, we have asas ¢
E(G) or asas ¢ FE(G). By symmetry, we may assume that asas ¢ FE(G). then
arguing as above, we see that {us,...,us,as,as} induces a copy of Tg, which is a
contradiction.

3 Paths of order four

Throughout the rest of this paper, we fix a 3-connected {C3, Cy}-free graph G and,
for u € V(G) and U C V(G), we write N(u) and N(U) for Ng(u) and Ng(U).

In this section and the following section, we study the relation between induced
paths joining two given vertices and the existence of an induced tree. For an integer
k > 4 and two nonadjacent vertices v, w of GG, we let

M (v) = {x € N(v) | there exists an induced v —w path P of order k
such that Np(v) = {z}}.

In the remainder of this section and the following section, we let v, w be nonad-
jacent vertices of G. In this section, we deal with the case where M}’(v) is large. We
first consider Ty ;.

Lemma 3.1 Suppose that |M{’(v)| > 52. Then G contains an induced copy of Ty 1.

Proof. Take ay,...,a5 € M}’ (v). Foreachi € {1,...,52}, let va;b;w be an induced
v —w path. Since G is {Cs, Cy}-free, {a;, b;} N {a;,b;} = 0 for any 4,5 with i # j,
and

E(G[{v,w} U{a;, b;|1 <i < 52}]) = {va;, a;b;, byw|l < i < 52}, (3.1)
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For each i € {1,...,52}, take z; € N(a;) — {v,b;}. By (3.1), {z;|1 < i <52} n
({v,w} U{a;, b1 <i <52}) = 0. Since G is {Cs3, Cy}-free, xq,. .., x5 are distinct,
zia; ¢ E(G) for any 4,5 € {1,...,52} with i # j, (3.2)
and
v, zw, x;b; ¢ E(G) for every i € {1,...,52}. (3.3)

Now let D be the digraph on {1,...,52} obtained by joining i to j (i # 7) if and only
if z;b; € E(G), and let H be the (simple) graph obtained by ignoring the direction of
the edges of D. Since G is {C3, Cy}-free, each i € {1,...,52} has outdegree at most
one in D. Hence |E(H)| < |V(H)|, which means that the average degree of H is at
most two. In view of Lemma 1.9, we may assume that {1,...,18} is independent in

H. Then by (3.2) and (3.3),
Eq({z; |1 <i <18}, {v,w}U{a;b; |1 <:<18}) ={xa; |1 <i<18}. (3.4)
Note that R(3,6) = 18. Since G is Cs-free, we may assume that
{z; ] 1 <1i <6} is independent. (3.5)

For each i € {1,...,6}, since G is {C3, Cy}-free, we can take z; € N(z;) — {a;} so
that z;w ¢ E(G). By (3.4) and (3.5),

{z]1<i<6}n{v,w}U{a;,b|a<i<18FU{z;|1<i<6})=0.
Since G is {C3, Cy}-free, we have
2iv, zw, zia; ¢ E(Q) for every i € {1,...,6}. (3.6)

Assume for the moment that some two indices in {1,...,6}, say 1 and 2, satisfy
2129 € FE(G). Since G is {Cs, Cy}-free, |N(z1) N {az,...,a10}] < 1 and |N(z1) N
{bz,...,bio}| < 1. We may assume that zjars, z1b7, z1a8, 2109 ¢ FE(G). Then by
(3.1), (3.4), (3.5) and (3.6), {x2, 21,21, a1,v,as,ar, by, w,be} induces a copy of Ty,
as desired (see Figure 2).

Thus we may assume that
zix; ¢ E(G) for any i,j € {1,...,6} with i # j. (3.7)

This in particular implies that zq,...,z2¢ are distinct. Since G is {C3, Cy}-free,
IN(z1) N{as, ... a6} <1, |[N(z1) N{bs,...,b6}| <1, |[N(22) N{as,...as}| <1 and
|N(2z2) N{bs,...,b6}| < 1. We may assume that

z1a3, 21b3, 2904, 22by g-f E(G) (3-8>

Since G is {C3, Cy}-free, for each u € {21, x1, 22, o, x3, 24}, we have [N (u) N {b, ...,
bso}| < 1. We may assume that

EG({Zh X1, 22,T2,T3, 174}, {619, ce e b44}) = 0. (3~9)
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w

Figure 2: Ty, in Lemma 3.1 (first case).

For each j € {19,...,44}, take y; € N(b;) — {w,a;}. By (3.1) and (3.9),
{y19, -y yaa} N ({0, w, 21,21, 22, T2, T3, x4} U{a;, b; | 1 < i < 44}) = 0.
Since G is {C3, Cy}-free, 419, .. ., ysq are distinct,
y;ibi ¢ E(G) for any j € {19,...,44} and i € {1,...,44} with ¢ # j, (3.10)
and
y;v,y;w ¢ E(G) for every j € {19,...,44}. (3.11)

If N({z1,21,a1,23,a3}) "N ({22, 22, a2, x4,a4}) 2 {419, .. .,Yssa}, then there exist u €

{z1,21,0a1, 3,03} and v’ € {23, 29, ag, x4, as} such that |[N(u) NN (v )N {y19, ..., Yas}|

> 2, which contradicts the assumption that G is {C5, Cy}-free. Thus
N({z1,21,a1,23,a3}) N N({22, 2, a2, T4, a4}) ;_b {yi9, - yaa}

We may assume that N({z1,21,a1,23,a3}) 2 {y19,...,y44}. We may also assume
that ya & N({z1,21,a1,23,a3}). It now follows from (3.1) and (3.4) through (3.11)
that {z1, 21, a1, v, as, x3, b3, w, by, yaa } induces a copy of Ty, (see Figure 3).

This completes the proof of Lemma 3.1. 0

Next we consider Tj .
Lemma 3.2 Suppose that |M{"(v)| > 16. Then G contains an induced copy of Ty.

Proof. Take ay,...,a16 € M}’ (v). Foreachi € {1,...,16}, let va;b;w be an induced
v —w path, and take z; € N(a;) — {v;, b;}. As in the proof of Lemma 3.1, we see
that {z;] 1 <i <16} N ({v,w}U{a;, b; |1 <i<16}) =0, z1,...,x16 are distinct,

E(GH{v,w} U{a;,b; | 1 <i<16}]) = {va;, a;b;, byw | 1 <i < 16}, (3.12)
zia; ¢ E(G) for any ¢,5 € {1,...,16} with ¢ # 7, (3.13)
and

zv,x;w ¢ E(G) for every ¢ € {1,...,16}. (3.14)
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Yaq

Figure 3: Ty, in Lemma 3.1 (second case).

Claim 3.2.1 Let 1 < i < 16, and suppose that there exist z € N(x;) — {a;} and
u € N(2) — {x;} such that zw,uv,uvw ¢ E(G). Then G contains an induced copy

Of T972.

Proof. We may assume that i = 1. By (3.13) and (3.14), z ¢ {v,w}U{a4, ..., a6}
Since zw,uv,uw ¢ FE(G), we also have z,u ¢ {by,...,big} and u ¢ {aq,...,a16}.
Since G is {Cs, Cy}-free, zv, zay, uay, ury ¢ E(G). From zv, zw ¢ E(G), we get u ¢
{v,w}. Since G is {C3, Cy}-free, [IN(t) N {b; |2 <1 < T7}| <1 for each t € {z1, z, u}.
We may assume that Eg({z1, z,u}, {ba,b3,bs}) = (). Similarly |N(¢)N{az,asz,as}| <
1 for each t € {z,u}. We may assume that zas,uas ¢ E(G). We now see from
(3.12), (3.13) and (3.14) that {bs, w,bs,bs, as,v,ay,x1,2,u} induces a copy of Tyo
(see Figure 4).

u
o— @ @ Ay

w

Figure 4: Ty in Claim 3.2.1.

We return to the proof of the lemma. Since R(3,3) = 6, we may assume that
{z1, 9,23} is independent. For each i € {1,2,3}, since G is {C3, C,}-free, we can
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take z; € N(x;) — {a;} so that z;w ¢ E(G). Then {z1, 29,23} N {b1,...,bis} = 0.
By (3.13) and (3.14), {z1, 22, 23} N ({v,w} U{a1,...,a16}) = 0. Since {z1, x9, 23} is
independent, we also have {21, 29, 23} N {x1, 29, 23} = 0. Since G is {Cs, Cy}-free,
ziv ¢ E(G) for every i € {1,2,3}. Now if there exist 7,5 € {1,2,3} with i # j
such that zz; € E(G), then by (3.14), we can apply claim 3.2.1 with z = z; and
u = x; to see that G contains an induced copy of Tyo. Thus we may assume that
zixj ¢ E(G) for any 4,7 € {1,2,3} with ¢ # j which, in particular, implies that
21, 29, 23 are distinct. Since G is Cs-free, we may assume that z1z; ¢ E(G), and we
thus have

{129, 219, 2001, 21 22, 210, 290, Z1W, Z2W, 21G1, 2902} N E(G) = (). (3.15)

Foreach i € {1, 2}, take u;, u; € N(z;)—{z;} with u; # u,. By (3.15), {uy, v}, ug, ub}n
{v,w} = 0. By Claim 3.2.1, we may assume that N(u;) N {v,w} # 0 and N(u}) N
{v,w} # 0 for each i € {1,2}. Since G is {C3,Cy}-free, we also have |N(v) N
{ug, u;}| < 1and |[N(w)N{u;u;}| <1 foreachi e {1,2}. Thus we may assume that

wv ¢ F(G) and u;w € E(G) for each i € {1, 2}. (3.16)

By (3.14), (3.15) and (3.16), {uy,us} N {x1, 22, 21, 22} = O (it is possible that u; =
uz). By (3.16), {ui,us2} N {as,...,a16} = 0. Also we may clearly assume that
{uy, ug}N{bs, b, ..., b1s} = 0. Since uyw, ugw € E(G) by (3.16), from the assumption
that G is {Cj5, Cy}-free, it follows that

Eo{z1, 2}, {by |3 <) <14}) =0 (3.17)
and
Eg({ul,UQ}, {aj,bj| 3 < ] < 14}) = w (318)

Also since G is {C3, Cy}-free, |[N(z;) N{b; | 3 < j < 14}| <1 for each i € {1,2}. We
may assume that

Eo({z1, 22}, {b;|3<j<12}) =0. (3.19)

For each j € {3,...,12}, take y; € N(b;) — {w,a;}. We have {y; | 3 < j <
12} N ({v,w} U{a;,b; | 1 <i<12}) =0. By (3.17), (3.18) and (3.19), {y; | 3 <
J <12} N{wy, 21, u1, 9, 29, us } = (. Since G is {Cs, Cy}-free, ys, . .., yio are distinct,

and we see from (3.16) that
yjur, yiuz, y;0, y;w ¢ E(G) for every j € {3,...,12}. (3.20)

If N({ay,z1,21}) N N({az, z2,22}) 2 {ys,...,v12}. Then there exist t € {ay,x1, 21}
and t' € {ag, g, 29} such that [N(t) N N(t') N {ys,...,y12}| > 2, which contradicts
the assumption that G is {C5, Cy}-free. Thus one of {ay, 1, 21} and {as, 29, 22}, say
{ay, x1, 21}, satisfies N({a1,21,21}) 2 {ys,--.,v12}. We may assume that

yi2 & N({a1,z1,21}). (3.21)
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Since G is {C5, Cy }-free, | N(z1)N{as, ag, a1g, a11}| < 1 and |N(y12) N{as, ag, aip, a11}|
< 1. We may assume that zja10, ¥12610, 21011, Y12a11 ¢ E(G). We now see from (3.11)
through (3.21) that {a1,v, ai, a1, 1, 21, u1,w, bia, y12} induces a copy of Tyo (see
Figure 5).

This completes the proof of Lemma 3.2. U

Finally we consider 7.

Lemma 3.3 Suppose that | My’ (v)| > 6. Then G contains a copy of Ts.

Proof. Take ay,...,as € M{’(v). For each i € {1,...,6}, let va;b;w be an induced
v—w path. Take z; € N(a;)—{v, b}, and take z; € N(x1)—{a1} so that zyw ¢ E(G).
As in Lemma 3.2, we get E(G[{v,w} U{a;,b;| 1 < i < 6}]) = {va;,a;b;,b;w | 1 <
i <6},21,21 ¢ {v,w}U{a;,b; | 1 <i <6}, 29a; ¢ E(G) for every i € {2,...,6},
and v, 1w, 210, z1a1 ¢ E(G). Since G is {C3, Cy}-free, |N(zq1) N {bs....,bs}| <
1,|N(z1) N{ag,...,a6} <1 and |[N(z1) N{ba,...,bs}| < 1. Hence [{i € {2,...,6} |
x1b;, 2104, 210; ¢ E(G)} > 2. We may assume that z1bs, 2109, 2102 ¢ E(G). Similarly
{ie{3,...,6} | x1b;, z1b; ¢ E(G)}| > 2. We may assume that x1bs, 2103, 2104, 2104 ¢
E(G). Finally [{i € {5, 6} | z1a; ¢ E(G)}| > 1. We may assume that z1a5 ¢ E(G).
It follows that {by,w,bs, by, as, v, as, a1, 1,2} induces a copy of Ty (see Figure 6).

O

V12

Figure 5: Ty in Lemma 3.2.

4 Paths of order five

We continue with the notation of the preceding section. In this section, we deal with
the case where M (v) is large.

Lemma 4.1 Suppose that | My’ (v) U M¥(v)| > 5458. Then G contains an induced
copy of Ty
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a

w

Figure 6: T3 in Lemma 3.3.

Proof. In view of Lemma 3.1, we may assume that [M}’(v)| < 51. Then |M(v) —
M (v)| > 5407. Take ay,...,as07 € M¥(v) — M}’ (v). For each i € {1,...,5407},
let va;b;c;w be an induced v — w path. If there exists ¢ € {cy, ..., 5407} such that
{i € {1,...,5407} | ¢; = ¢}| > 52, then |M{(v)| > 52, and hence the desired
conclusion follows from Lemma 3.1. Thus we may assume that [{i € {1,...,5407} |
¢; = c}| <51 for each ¢ € {c1,..., 5007}, Then |{cy,...,csa07}| > [5407/51] = 107.
We may assume that ¢y, ..., cjo7 are distinct. Since G is {Cs, Cy}-free, we see that
{ai, bi,c;} N {aj,bj,¢;} =0 for any i, j € {1,...,107} with i # j. Since a4, ..., a107 ¢
My (v),a;c; ¢ E(G) for any 4,5 € {1,...,107} with ¢ # j. Since G is {C3, Cy}-free,
it follows that

E(G{v,w} U{a;,b;,c; | 1 <i<107}]) — {va;, a;b;, bici, cow | 1 < i < 107}
= E(G[{b; | 1 <i<107})). (4.1)

Note that N(by) N {b; | 2 < i < 107} € M{(by). Thus by Lemma 3.1, we may
assume that [N (b)) N{b; | 2 <i <107} < 51. We may assume that

bib; ¢ E(G) for every i € {2,...,56}. (4.2)

Take vy € N(by) — {a1,c1}. By (4.1) and (4.2), y1 ¢ {v,w} U {a;, b;,¢;| 1 <i < 56}.
Since G is {C3, Cy}-free,

nv, 1w, yiar, yicr ¢ E(G). (4.3)

Note that by € Mg (y1) and N(y1) N {b; | 2 < i <56} C M;’(y;). Thus by Lemma
3.1, we may assume that |N(y;) N{b; | 2 <i <56} <50. We may assume that

yib; ¢ E(G) for every i € {2,...,6}. (4.4)

Since G is {C5, Cy}-free, |N(y1)N{az,...,a6}| < 1and |N(y;)N{ca,...c} < 1. We
may assume that yias, y1a3 ¢ E(G) and yicq, y1¢5 € E(G). Since G is {Cy, Cy}-free,
one of by and b3, say by, and one of by and b5, say by, are nonadjacent. It now follows
from (4.1) through (4.4) that {bs, as,v,a1,b1,y1,c1,w,cq, by} induces a copy of Ty,
as desired (see Figure 7). O
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v
aq a,
by
V1 by
€1 Cy
w

Figure 7: Ty, in Lemma 4.1.

Lemma 4.2 Suppose that |M"(v) U M¥(v)| > 526. Then G contains an induced
copy of Ty .

Proof. By Lemma 3.2, we may assume that |M?(v) — M’(v)| > 526 — 15 = 511.
Take ay,...,a511 € MP(v) — M}’ (v). For each i € {1,...,511}, let va;bic;w be
an induced v — w path. By Lemma 3.2, we may assume that |{ci,...,¢c51} >

[611/15] = 35. We may assume that ci,...,cg5 are distinct. As in the proof of
Lemma 4.1, we get

E(G{v,w} U{a;,bi,¢; | 1 <i <35}]) — {wvay, a;b;, bici, c;w | 1 < i < 35}
= E(G[{b; | 1 <i<35}]). (4.5)

Take 1 € N(a1) — {v,b1}. By (4.5), 1 ¢ {v,w} U{a;,bi,c; | 1 < i < 35}. Since
a1 ¢ Mf(”)?

rw ¢ E(G). (4.6)
Since G is {C3, Cy}-free,
r1a; ¢ E(G) for every i € {2,...,35} and 210,210, ¢ E(G). (4.7)

In view of Lemma 3.2, we may assume that |N(by) N {bs,...,bss}| < 15 and |N(z1)N
{ba,...,b3s}| < 15. We may assume that

bib;, x1b; ¢ E(G) for every i € {2,3,4,5}. (4.8)

Since G is {Cs, Cy}-free, |[N(x1) N {co,c3,c4,¢5} < 1. We may assume that xjcs,
zic3, T1cy ¢ E(G). Since G is Cs-free, we may assume that bebs ¢ E(G). It now
follows from (4.5) through (4.8) that {b1, a1, z1,v, as, bs, ca,w, c3, b3} induces a copy
of Ty 5 (see Figure 8). O

Lemma 4.3 Suppose that | Mg’ (v)UMY(v)| > 61. Then G contains an induced copy
Of Tg .
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X1 as
b, bs
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w

Figure 8: Ty in Lemma 4.2.

Proof. By Lemma 3.3, we may assume that | M (v) — M (v)| > 61 — 5 = 56. Take
ai,...,as5 € M¥(v) — M (v). For each i € {1,...,56}, let va;b;c;w be an induced
v —w path. By Lemma 3.3, we may assume that |{c,...,cs}| > [56/5] = 12. We
may assume that c;,...,cjo are distinct. As in Lemma 4.1, we get E(G[{v,w} U
{ai, bi,c; | 1 <0 <12}]) — {va;, a;b;, bici,ciq | 1 <i <12} = E(GH{b| 1 <@ < 12}]).
Take z; € N(ay) — {v,b1}. As in Lemma 4.2, z ¢ {v,w} U {a;, b;,¢;| 1 < i < 12},
Tw, x10, 210y, 1101 ¢ E(G), and z1a; ¢ E(G) for every i € {2,...,12}. In view of
Lemma 3.3, we may assume that [N (b)) N{b; | 2 <i <12} <5 and |N(zy) N{b; |
2 <i <12} < 5. We may assume that byby, 21062 ¢ E(G). Since G is {Cjs, Cy}-free,
|IN(z1) N {es,eq,05} < 1. We may assume that xic3, x1c4 ¢ E(G). It follows that

{cs,w, c3,¢1,b1,a1,21,v,a9,by} induces a copy of Ty (see Figure 9). O
v
a,
X1 Q4
b, by
51 Cy
w

Figure 9: T3 in Lemma 4.3.

5 Proof of Proposition 1.5

Recall that G is a 3-connected {Cj,Cy}-free graph. Throughout the rest of this
paper, we fix a vertex w € V(G) with degq(w) = A(G).
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For a vertex u € V(G) and a nonnegative integer d, let Ny(u) be the set of vertices
of G such that distg(u, v) = d, and let N<y(u) = Up<i<a Ni(u) and Ns4(u) =
Uisa Ni(u); thus No(u) = {u} and Ny(u) = N(u). Clearly N(w) is independent,
|N(x) N Nay(w)| > 2 for every x € N(w), and

IN(y) N N(w)| <1 for every y € Nso(w). (5.1)

We have §(G[Nxsa(w)]) > 2 by (5.1). Asin [3], for U C V(G), we let L(U) denote
the set of those vertices v € Ny(w) U N3(w) for which there exists a v — w path of
order four avoiding U. The following two lemmas are proved in Section 5 of [3].

Lemma 5.1 Let X C Nso(w), and set Y7 = (X UN(X)) N No(w), Yo = N(Y7) N
N(w), Zy = N(X)NL(X), Zy = (XUN(XUZ))NNy(w) and Z3 = N(Z3) NN (w).
Then the following hold.

(i) If a € N(w) — Ya, then Eg(X, N<i(a)) = 0.
(11) Ifa € N(’U}) — Zg, then EG(X, Ngz(a) — Zg) = @

Lemma 5.2 Let X C Nso(w). Then N(X) N Ny(w) C Uyex My’ (u) and N(X) N
L(X) C Upyex M¥(u).

The following lemma follows from Lemma 5.2 and (5.1), and is virtually the same
as Lemma 5.3 in [3].

Lemma 5.3 Let X C Nso(w), and let Y1,Ys, Zy, Zo, Z3 be as in Lemma 5.2. Then
(i) [Yo| < V1] < [X = N(X)| 4+ Zuex| M (v)],

(i) |Z1] < Suex|ME(w)], and

(il) [Z] < [Zo] < |X = N(X U Z1)| + Buexuz, [M{ (u)].

In this section, we prove Proposition 1.5. By way of contradiction, suppose that
G is Ty -free and A(G) > 2-10%. By Lemmas 3.1 and 4.1,

M (u)] <51 and | M (u)| < |M°(u) U M (u)| < 5457 for every u € Nso(w).
(5.2)

We derive a contradiction by proving several claims. The main claim is Claim 5.13, in
which we show that A(G[N>q(w)]) < 5.5-103. We start with two claims concerning
paths in G — w.

Claim 5.4 Let agasasaszasaly be a path in G[Nso(w)] with ay € No(w), and write
N(az) N N(w) = {a1}. Then {asas, asay, agay, asay, asa; } N E(G) # 0.
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Proof. Set X ={as,...,as,a5}. We have X — N(X) = (). Suppose that {agaz, agaj,
agay, asay, asar} N E(G) = 0. Then E(G[X U{a1}]) = {asas, asas, asas, azas, asd,
aza;}. Let Y; be as in Lemma 5.1. By Lemma 5.3 (i) and (5.2), [Y2| < 651 <
|N(w)|. Take by € N(w) — Y3 and by € N(b1) N Nso(w) (see Figure 10). Since G is
{Cs, Cy}-free, E(G[{ay,w, b, b2}]) = {ayw,wby, bibs}. Since Eq(X, {w, by, by}) =0
by Lemma 5.1 (i), it follows that X U {aj,w,b; by} induces a copy of Tg;, which
contradicts the assumption that G is Ty ;-free. O

Claim 5.5 Let asagazasaial, be a path in G —w with ay € N(w) and as, as, ay, as, ay
€ Nxo(w). Then {asar, asay, aga} N E(G) # 0

Proof. Set X = {aq,...,as,a5}, and let Zy,Z3 be as in Lemma 5.1. We have
X —N(XUZ)CX—N(X) C {a,}. Suppose that {asa1,asah, asab} N E(G) = 0.
Then E(G[X U{a1}]) = {asas, asas, azas, asay, a1ay}. By Lemma 5.3 (ii), (iii) and
(5.2), |Z)] < 55457 = 27285 and |Zs| < 1+ 27200 - 51 < |N(w)|. Take b, €

Qe
as
Ay
a3 aé
b
Naz (W) az 28
a, bl
N(w) /'

Figure 10: Ty; in Claim 5.4.

N(w) — Z3 and by € N(by) N Nso(w). Since |N(bg) N N>o(w)| > 2, we can take by €
N(bg) N N>o(w) so that a1bs ¢ E(G) (see Figure 11). Then E(G[{a1,w, by, be,b3}]) =
{a1w, why, byby, babs}. Since Eg(X,{w,by,be,b3}) = 0 by Lemma 5.1 (ii), it follows
that X U {ay,w, by, by, b} induces a copy of Ty 1, a contradiction. O

Claim 5.6 We have Ns4(w) = 0.

Proof. Suppose that Ns4(w) # 0. Take u € Ny(w), and take z,2’, 2" € N(u)
so that z € N3(w). Take y € N(z) N No(w), write N(y) N N(w) = {z}, and
take ¢y € (N(z) N Na(w)) — {y}. Since 2/,2” € Nsz(w) and v € Ny(w), we have
Zr,2'v ¢ B(G) and uy’ ¢ E(G). Since 2/,z" € N(u), [N@)Nn{z, 2"} < 1.
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as

ay
as 0’
Ns,(w) a / a ) b,
N(w) “1\./\ b

Figure 11: Ty in Claim 5.5.

Consequently we get a contradiction by applying Claim 5.5 to 2uzyzy’ or 2 uzyzy'.
O

Set

R, = {Z S Ng(w)

| IN(2) N Nay(w)| =1},
Ry = {z € N3(w) |

|
IN(2) N Ny(w)]| > 2},
For the purpose of showing that A(G[Ns2(w)]) < 5.5 103, we aim at bounding
|IN(y) N Ry for y € Nay(w) (Claim 5.11). We here prove a technical claim.

Claim 5.7 Letz € Ry and 2’ € N3(w) with z2' € E(G). Write N(z)NNo(w) = {y},
let y € N(2') N Nao(w), and write N(y) N N(w) = {z} and N(y') N N(w) = {z'}.
Then x = 2.

Proof.  Since G is Cs-free, y # 3. Suppose that z # 2’. Then ya' ¢ E(G). Takey” €
(N(2")NNo(w)) —{y'}. Since yz' ¢ E(G), y" #y. Since z € Ry, zy " ¢ E(G). Since
z € Ry, we can take 2" € N(z) N N3(w) with 2” # 2'. Since 2/ € N(w), 2"2' ¢ E(Q).
Consequently {22/, y2’, zy"} N E(G) = (). Since y, 2" € N(2),|N(y")n{y, 2"} < 1.

Tod onl oy 1ol 1

Therefore we get a contradiction by applying Claim 5.5 to yzz'y'x'y” or 2" zz'y'x'y".
]

Using Claim 5.7, we obtain the following three claims.

Claim 5.8 Let H be a component of G[Ry]. Then N(V(H))N Ny(w) is independent
and [IN(N(V(H)) NNy(w)) N N(w)| = 1.

Proof.  Since H is connected, it follows from Claim 5.7 that N(y) NN (w) = N(y')N
N(w) for all y,y' € N(V(H)) N No(w), which implies that |[N(N(V(H)) N Ny(w)) N
N(w)| = 1. Since G is Cs-free, it follows that N(V(H)) N No(w) is independent. [
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Claim 5.9 We have A(G[R,]) < 2.

Proof. Suppose that there exists 2y € Ry with deggp,j(20) > 3, and take three
distinct vertices z, 2/, 2" in N(zp) N Ry. Write N(z) N No(w) = {y}, N(z') N No(w) =
{y'} and N(y) N N(w) = {z}. Since G is {C3,Cy}-free, y # y'. By Claim 5.8,
y'z € E(G). Since 2" € N3(w) and z € N(w), 2"z ¢ E(G). Since G is {Cs, Cy}-free,
2"y 2oy ¢ E(G). Consequently we get a contradiction by applying Claim 5.5 to
2 z0zyxy’. O

Claim 5.10 We have Eg(R1, Rs) = 0.

Proof. Suppose that there exist z € Ry and 2’ € Ry with 22’ € E(G). Write
N(z) N Ny(w) = {y} and N(y) N N(w) = {z}, and take ¢/, y" € N(2') N Ny(w) with
y' #y". By Claim 5.7, y/x,y"x € E(G), which contradicts the assumption that G is
{C5, Cy}-free. O

Since degy(2z) > 3 for all z € Ry, it follows from Claims 5.6, 5.9 and 5.10 that
each component of G[R;] is a cycle, and is a component of G[N3(w)] = G[N>3(w)].
The following claim is a key result in bounding A(G[Ns2(w)]).

Claim 5.11 For every y € Na(w), |N(y) N Ry| < 6.

Proof.  Suppose that there exists y; € No(w) such that [N (y;) N Ry| > 7. We derive
a contradiction by proving several subclaims concerning components of G[R;].

Subclaim 5.11.1 Let H be a component of G[R;] with N(y;) N V(H) # 0. Then
\V(H)| =0 (mod 3), and we can write H = 2125 ... 2y (m)|z1 S0 that N(z;) N Na(w) =
{y1} for every j with j =1 (mod 3).

Proof. Takeu; € N(y;)NV (H) and us € N(uy)NV(H), and write (N (ug)NV (H))—
{u1} = {us} and (N (u3)NV(H))—{us} = {us}. Suppose that usy, ¢ E(G). Since H
is a cycle and |(N(y1) N Ry) —{ur}| > 7—1 > 2, there exists z € (N(y1) N Ry) — {u1}
with ugz,uyz ¢ E(G). Write N(y1) N N(w) = {z}. Since uz,uy € N3(w) and
x € N(w), ugz,usx ¢ E(G). Consequently we get a contradiction by applying
Claim 5.4 to ugususuiy;z. Thus usy; € F(G). Since uy € N(y;) NV (H) is arbitrary,
this implies the desired conclusion. 0

Subclaim 5.11.2 Let H be a component of G[Ry] with N(y1)NV (H) # 0, and write
\V(H)| = 3m. Then N(V(H)) N Ny(w) is an independent set of cardinality 3, and
we can write H = 2129 ... 23,21 and N(V(H)) N No(w) = {y1, Y2, Y3} so that for each
ke {1,2,3}, N(z;) N Na(w) = {yx} for every j with j =k (mod 3).

Proof. By Subclaim 5.11.1, we can write H = 2125... 23,21 S0 that N(z3;41) N
No(w) = {y1} for every i € {0,1,...,m — 1}. Take h € {0,1,...m — 1}, and write
N(z3p42) N Na(w) = {y2}. Then ys # y1. Suppose that z3,_1y2 ¢ E(G) (indices of z
are to be read modulo 3m). Take u € (N(y2) N Nso(w)) — {z3n12}. We show that
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Z1 Z3 Z3 Zy Z5 Zg Z7 Zg Z9 Z19 211
L 2 L @ @
Y1 V3 Y2

Figure 12: Ty, in Subclaim 5.11.3.

23p, z3p—1u ¢ E(G). Suppose that {zspu, z3p_1u} N E(G) # 0. If u € No(w), then
u,y2 € N(V(H)) N No(w), and hence uy, ¢ E(G) by Claim 5.8, which contradicts
our choice of u. Thus u € N3(w). Since {z3pu, z3,_1u} N E(G) # (0, this forces u €
{23h+1; Z3hs Z3h—15 Zgh_g}. Since G is {03, C'4}—free and Z3h—1Y2 §é E(G), it follows that
u = z3p_9, which contradicts the fact that N(z3,_2) N No(w) = {y1}. Consequently
Z3pu, 23p—1u & E(G). Write N(y2) N N(w) = {x}. Since 23, 23,1 € N3(w) and
x € N(w), z3px, 2312 ¢ E(G). Therefore we get a contradiction by applying Claim
5.4 t0 z3p_123n230+123n12Y2u. Thus z3,_1y2 € E(G). Since h is arbitrary, this implies
that N(z3;42) N Na(w) = {ya} for every ¢ € {0,1,...,m — 1}. Similarly if we write
N(z3) N Nao(w) = {ys}, then N(z3;13) N No(w) = {ys} for every i € {0,1,...,m—1}.
Hence N(V(H))N No(w) = {y1, Y2, 3}, and {y1,y2, y3} is independent by Claim 5.8.

0

Subclaim 5.11.3 Let H be a component of G[Ry] with N(y1) N Ry # 0. Then
V()| <9

Proof. Write |V(H)| = 3m, and let H = 2125 ... 23,21 and N(V(H)) N Wa(z) =
{1, y2,ys} be as in Subclaim 5.11.2. Suppose that |V (H)| > 10. Then m > 4. Since
{y1,v2,y3} is independent by Subclaim 5.11.2. {zg, y3, 23, 24, Y1, 21, 210, 211, Y2, 28 } i
duces a copy of Ty 1, a contradiction (see Figure 12). O

We can now complete the proof of Claim 5.11. Since |N(y;) N Ry| > 7, it fol-
lows from Subclaim 5.11.3 that there exist three distinct components of G[R;] in-
tersecting with N(y;). Let H, H', H” be such components. Write |V(H)| = 3m
and |V(H")| = 3m' (m,m’ € {2,3}). Let H = z125...23m,21 and N(V(H)) N
Ny(w) = {v1,¥2,y3} be as in Subclaim 5.11.2, and also let H' = 2{z}...25, 2
and N(V(H")) N Na(w) = {y1, 95, y3} be as in Subclaim 5.11.2 (it is possible that
{y2, ys N {vh, v4} # 0). Write N(y1)NN(w) = {z}. Applying Claim 5.8 to H and H’,
we see that {y1,va, ys, 5, ¥4} € N(z). Hence {y1,y2,ys,y5, ¥4} is independent. We
have yo # y5 or yo # y5. Replacing y5 by y5 and 2125 ... 25,21 by 2125, 25 ... 252
if necessary, we may assume that y, # . Take z € N(y) N V(H"). We now see
that {zs5, ya, 22, 21, Y1, 2, 21, 25, Yh, 25 } induces a copy of Ty (see Figure 13). This is a
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Figure 13: Ty in Claim 5.11.

contradiction, which completes the proof of Claim 5.11. O

Recall that for y € Nso(w), L({y}) denotes the set of those vertices v € Ny(w)U
N3(w) for which there exists a v — w path of order four avoiding y.

Claim 5.12 For every y € Na(w), |N(y) N (Na(w)U Ry)| < 5457.

Proof. Let y € Ny(w). By the definition of L({y}) and Rs, Ry C L({y}). Hence
N(y) N Na(w) € M (y) and N(y) N Ry C M¥(y) by Lemma 5.2. Consequently
[N (y) N (Na(w) U Ry)| < [My(y) U Mg*(y)| < 5457 by (5.2). 0

Claim 5.13 We have A(G[Nsq(w)]) < 5.5 - 10°.

Proof. Let y € Nso(w). If y € Ny(w), then it follows from Claims 5.11 and 5.12
that deggiv.,(w)(¥) = IN(y) N Ri| + [N (y) N (Na(w) U Rp)| < 6+ 5457 < 5.5-10% if
y € N3(w), then N(y)NN3(w) € N(y)NL({y}) by the definition of L({y}), and hence
degan., ) () = [N(y) N (Na(w) U Ns(w))| < [M(y) U My (y)| < 5457 < 5.5 - 10°
by Lemma 5 2 and (5.2). Since y € Nso(w) is arbitrary, we obtain A(G[Nsq(w)]) <
5.5 - 103, as desired. O

We proceed to consider components of G[Nxq(w)].

Claim 5.14 If H and H' are components of G[Nsa(w)], then we have N(V(H)) N
N(w) C N(V(H") N N(w) or N(V(H")) N N(w) C N(V(H)) N N(w).

Proof. Suppose that there exist components H, H’ of G[Nso(w)| such that
(N(V(H)) = N(V(H")) N N(w) # 0 and (N(V(H')) — N(V(H))) N N(w) # 0, and
let a; € (N(V(H)) — N(V(H"))N N(w) and by € (N(V(H')) — N(V(H))) N N(w).
Take az € N(ay) N V(H) and by € N(by) N V(H'). Since 0(G[Ns2(w)]) > 2,
there exist as,ay € V(H) — {as} with a3 # a4 such that asas,asay € E(G).
Since G is {C3,Cy}-free and a4 € Nso(w), it follows that wajasazay is an in-
duced path. Similarly there exist b3, by € V(H') such that wbibybsby is an in-
duced path. We have |N({ag,as, as,ba,b3,b4}) N N(w)| < 6 by (5.1). Take ¢ €
N(w) — N({asgas, as,bs, b3, bs}). Then {ay,as, as,ar,w,c, by, bs,bs, by} induces a copy
of Ty 1, a contradiction. O



Y. EGAWA / AUSTRALAS. J. COMBIN. 90 (3) (2024), 231-261 249

Claim 5.15 There exists a component H of G[Nso(w)] such that |V (H)| > 2-10%.

Proof.  Since N(Ny(w)) 2 N(w), we see from Claim 5.14 that there exists a com-
ponent H of G[N>s(w)] such that N(V(H)) 2 N(w). By (5.1), it follows that
V(H)| = |N(w)| = 2- 10" O

Let H be as in Claim 5.15. In view of Lemma 1.3, it follows from Claim 5.13
that if diam(H) < 11, then |V((H)| < (5.5-10%)" < 210, a contradiction. Thus
diam(H) > 12. Take y,y' € V(H) with disty(y,y") = 12, and let P = 4195 ...y13 be
a shortest y — ¢/ path in H.

Claim 5.16 We have ys, ys, y7 € Na(w).

Proof. Suppose that y; € N3(w) for some i € {5,6,7}, and take z € N(y;) —
{Yi—1,Yis1}. Then z € Nso(w). Since G is {Cs, Cy}-free and P is a shortest y —
y'path in G[Nso(w)], it follows that {y;_4,yi—s3, ..., Yit4, 2} induces a copy of Ty 1, a
contradiction. O

Claim 5.17 Let5 <i <9. Suppose thaty; € Ny(w), and write N (y;) "N (w) = {z}.
Then yi—3,yiys3 € N(x).

Proof. 1t N(z) 0 {yi_a,Yi—3,Yir3, Yiza} = O, then {y;_4,vi_3,...,Yira, x} induces a
copy of Ty, a contradiction, Thus N(x) N {yi—4, Vi3, Yi+3, Yiray 7 0. Suppose that
N(z)N{yi—3,yir3} = 0. Then N(x) N{yi—4, yira} # 0. We may assume that zy; .4 €
E(G). Since P is an induced path, y;_3yi+4, Yi—2yira ¢ E(G). Hence we get a contra-
diction by applying Claim 5.5 to y;_3y;_2yi_1¥ityira. Thus N(x) N {yi_3,yir3} # 0.
Now if zy;—3 ¢ E(G), then zy;3 € E(G) and, since y;—3¥its, Yi—2yi+s € E(G), we get
a contradiction by applying Claim 5.5 to y;_sy; o¥i 1y;xy;r3. Thus xy; 3 € E(G).
By symmetry, we also obtain zy;,3 € E(G), as desired. O

We are now in a position to complete the proof of Proposition 1.5. Having
Claim 5.16 in mind, write N(y5) N N(w) = {z2}, N(ys) N N(w) = {z3} and N(y;) N
N(w) = {x1}. Then it follows from Claim 5.17 that for each k € {0,1,2}, N(y;) N
N(w) = {x} for every i € {2,3,...,12} with ¢ = k(mod 3). Since N(w) is inde-
pendent and P is an induced path, it follows that {y7, 1, Y4, Us, 2, Y2, Y11, Y12, T3, Yo }
induces a copy of Ty, (see Figure 14). This contradicts the assumption that G is
Tg71—free.

This completes the proof of Proposition 1.5.

6 Proof of Proposition 1.6

Recall that w is a vertex of a 3-connected {C3, Cy}-free graph G with degq(w) =
A(G). In this section, we prove Proposition 1.6. By way of contradiction, suppose
that G is Tyo-free and A(G) > 5.5-10%. We argue as in Section 5. The main claim
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Y2 V3 YVa Vs Ve Y7 Vs Yo Yio Y11 V12
L 2 L @ @

X2 X1 X3

Figure 14: Ty yielding the final contradiction.

is Claim 6.11. By Lemmas 3.2 and 4.2,

| M (u)| < 15 and | M (u)| < [My'(u) U M (u)] < 525 for every u € Nso(w).

Claim 6.1 Let agasasazasay be a path in G — w with a; € N(w) and ag, ..., a6 €
Nso(w). Then {agaz, asar,asar} N E(G) # 0.

Proof. Set X = {ag,...,as}. We have X — N(X) = (). Suppose that {agaz, aga,
asar} N E(G) = 0. Then E(G[X U {a1}]) = {asas, asas, asas,azas, azar}. Let Ys
be as in Lemma 5.1. By Lemma 5.3 (i) and (6.1), |Y3] < 5-15 < |N(w)|. Take
by € N(w) — Ya, and take by, b, € N(by) N N>o(w) with by # b, (see Figure 15). We
have E(G[{a1,w,by,be,b5}]) = {a1w,wby, biby, bibl}. Since Eq(X, {w, by, by, bs}) =
0 by Lemma 5.1(i), it follows that X U {a1,w, by, b2, by} induces a copy of Tys, a
contradiction. 0J

Claim 6.2 Let as,ak,aq,a3,a0 € Nso(w) be wvertices such that {asas, atay, asas,
asas}y C E(G) and ay € Nay(w), and write N(az) NN (w) = {a1}. Then {asay,ata;}N
E(G) #0.

Proof. Set X = {ag,...,as,a5}. We have X —N(X) = (). Suppose that {asa, aka;}
NE(G) = 0. Then E(G[X U{a1}]) = {asas, akaq, asas, azas, asar}. Let Zy, Z3 be
as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and (6.1), |Z1] < 5-525 = 2625 and
|Z5] < 2630 - 15 < |N(w)|. Take by € N(w) — Z3 and by € N(by) N Nxo(w).
Since |N(b2) N Nso(w)| > 2, we can take by € N(by) N N>o(w) so that aibs ¢
E(G) (see Figure 16) Then E(G[{al,w,bl, bg,b3}]) = {alw,wbl,blbg,beg}. Since
Eq(X,{w,b1,bs,b3}) = 0 by Lemma 5.1 (ii), it follows that X U {ay,w, b1, by, b3}
induces a copy of Ty o, a contradiction. O

Claim 6.3 We have N>4(w) =0 and A(G[N3(w)]) < 2.

Proof. Suppose that Ns4(w) # 0 or A(G[N3(w)]) > 3. If Nsy(w) # 0, then let u €
Ny(w), if A(G[Ng( )]) > 3, then take u € N3(w) so that |[N(u) N N3(w)| > 3. Then
we can take z, 2/, 2" € N(u) N Nsg(w) so that z € N3(w). Take y € N(z) N Na(w),
and write N(y) N(w) = {z}. Since 2/,2" € Nx3(w), we have 'z, 2"z ¢ E(G).
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Figure 15: Ty in Claim 6.1.
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Figure 16: Ty in Claim 6.2.

Hence we get a contradiction by applying Claim 6.2 to {2/, 2", u, z, y}. O
Set

Ry ={z € N3(w) | [N(z) N Na(w)| = 1},
Ry = {z € N3(w) | |IN(2) N Na(w)| > 2}.

Claim 6.4 Let z € Ry and 2’ € N3(w) with zz' € E(G). Write N(z)NNy(w) = {y},
let y' € N(2') N Ny(w), and write N(y) N N(w) = {z} and N(y') N N(w) = {2'}.
Then x = x'.

Proof.  Since G is Cs-free, y # y'. Suppose that = # 2/. Then yz’ ¢ E(G). Since
z € Ry, we can take 2 € N(z) N N3(w) with 2 # 2. Since 2’ € N(w), 2"z’ ¢ E(Q).
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Consequently we get a contradiction by applying Claim 6.2 to {z",z,9,2',%'}. O

As in Section 5, the following two claims follow from Claim 6.4.
Claim 6.5 Let H be a component of G[Ry]). Then N(V(H)) N Ny(w) is independent
and [IN(N(V(H))) N No(w)) N N(w)| = 1. O

Claim 6.6 We have Eg(Ry, Ry) = 0. O

It follows from Claims 6.3 and 6.6 that each component of G[R;] is a cycle, and
is a component of G[N3(w)] = G[N>3(w)].

Claim 6.7 Let H be a component of G[R;]. Then |V(H)| =0 (mod 3), N(V(H))N
No(w) is an independent set of cardinality 3, and we can write H = 2125 . .. 23,21 and
N(V(H))N No(w) = {y1, Y2, Y3} so that for each k € {1,2,3}, N(z;) N No(w) = {yx}
for every j with j = k(mod 3).

Proof. Takewu, € V(H) and uy € N(up)NV(H), and write (N (ug) NV (H))—{us} =
{us} and (N(u3z) N V(H)) — |ug} = {us}. Write N(ux) N No(w) = {yx} for each
k€ {1,2,3}, and write N(y1) N N(w) = {z}. Since G is {Cs, Cy}-free, y1 # yo #
ys # y1. By Claim 6.5, {y1,y2,ys} is independent. Suppose that u,y; ¢ E(G). Since
ug,ug € N3(w) and x € N(w), ugz,uyx ¢ E(G). Hence we get a contradiction
by applying Claim 6.1 to wjususuiyix. Thus uuy; € E(G). Since uy € V(H) is
arbitrary, this implies the desired conclusion. 0

Claim 6.8 For each y € No(w),y is adjacent to at most one component of G[R;].

Proof.  Suppose that there exists y; € No(w) such that y; is adjacent to two distinct
components H, H of G[R,]. Having Claim 6.7 in mind, write |V (H)| = 3m and
\V(H")| = 3m' (m,m’ > 2). Let H = z123...23,21 and N(V(H)) N Ny(w) =
{y1,y2,y3} be as in Claim 6.7, and also let H' = 2{z}...2% 21 and N(V(H')) N
No(w) = {y1,95,y5} be as in Claim 6.7. We have yo # v or yo # y4. By the
symmetry of ¢}, and y4, we may assume that yo # y5. Write N(y;) N N(w) = {z}.
By Claim 6.5, {y1,92, 3,95, y5} € N(x). Hence {y1,y2,ys, 5, y4} is independent.
Suppose that N(ys) — {z} — (V(H) UV (H'))) # 0 and take z € N(y2) — {2} —
(V(H)UV(H")). Then z € (Na(w) — {y1, 42, y3, 45, y5}) U (N3(w) — (V(H) UV (H)).
Since N(V(H)UV (H")) N No(w) = {y1, Y2, Y3, 5, ¥4} and H and H' are components
of G[N3(w)], we obtain N(z) N (V(H) U V(H') = 0. Since {y1,y2,95} € N(x)
and G is {C5, Cy}-free, we also see that N(2) N {y1,vy2, ¥4} = {y2}. Consequently
{2, y2, 25, 22, 21, Y1, 21, 25, Yh, 25 } induces a copy of Ty, which is a contradiction (see
Figure 17). Thus N(y2) — {z} C V(H) UV (H'). By the symmetry of y, and ys,
we get N(ys3) — {z} C V(H)UV(H'). By the symmetry of H and H’, we also
obtain (N(y5) U N(v5)) — {z} € V(H)UV(H'). Therefore {z,y,} is a separator.
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This contradicts the assumption that G is 3-connected, and completes the proof of
Claim 6.8. O

Y2 Y1 Y2

Figure 17: Ty, in Claim 6.8.

Claim 6.9 For every y € No(w), |N(y) N Ry| < 4.

Proof.  Suppose that there exists y; € No(w) such that |N(y1) N Ry| > 5. By Claim
6.8, there exists a component H of G[R;] such that |[N(y;) NV (H)| > 5. Let H =
2125 ... z3mz1 and N(V(H))N Na(w) = {y1,y2, y3} be as in Claim 6.7. Since |N(y;)N
V(H)| > 5, we have m > 5. We now see that {zgs,ys, z14- 211, 210, Y1, 24, 23, Y3, 26 }
induces a copy of Tj o, a contradiction (see Figure 18). O

Claim 6.10 For every y € No(w), |N(y) N (No(w) U Ry)| < 525.

Proof. Let y € No(w). By the definition of L({y}) and Rs, Ry C L({y}). Hence
N(y) N Na(w) € M (y) and N(y) N Ry € M¥(y) by Lemma 5.2. Consequently
[N (y) 0 (Na(w) U RBy)| < [M(y) U Mg (y)| < 525 by (6.1). m

Claim 6.11 We have A(G[N>2(w)]) < 530.

Proof. Let y € Nso(w). If y € Na(w), then it follows from Claims 6.9 and 6.10 that
degain., ) (¥) = IN(y) N Ri|+[N(y) N (Nao(w) URy)| < 44525 = 529; if y € N3(w),
then degc[zv22(w (y) = IN(y) N Na(w)| + [N (y) N N3(w)| < [M(y)|+ A(G[Ns(w)]) <
15+ 2 < 529 by Lemma 5.2, (6.1) and Claim 6.3. Since y € Nxy(y) is arbitrary, we

Z3 Z4 Zs Ze Z7 Zg Zg Z10 Z11 Z12 Z13 214
L 4 @ @ @ L
V3 1 Y2

Figure 18: Ty in Claim 6.9.
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obtain A(G[N>z(w)]) < 530. O

We divide the rest of the proof into two cases.
Case 1: There exists a component Hy of G[N>q(w)] such that |V (Hy)| > 2.75-10%°.

In view of Lemma 1.3, it follows from Claim 6.11 that diam(H,) > 14. Take
v,y € V(Hy) with disty,(y, v') = 14, and let P = y19s...y15 be a shortest y — ¢/
path in H. We argue as in Claims 5.16 and 5.17.

Claim 6.12 We have {y2,ys3,...,y14a} C No(w).

Proof.  Suppose that y; € N3(w) for some ¢ € {2,...,14}. By symmetry, we may as-
sume that ¢ < 8. Take z € N(y;) —{yi—1,¥:}. Then z € Nso(w). Since G is {C3, Cy}-
free and P is a shortest y—¢/ path in G[Nsa(w)], it follows that {y;—1,vi, ..., Vit7, 2}
induces a copy of Ty 9, a contradiction. O

For each i € {2,...,14}, write N(y;) N N(w) = {z;}.

Claim 6.13 (i) Let 2 < i < 11. Then we have x;y;13 € E(G) or z;y;.4 € E(G).
(11) Let 5 < i < 14. Then we have x;y;_3 € E(G) or x;y;_4 € E(G).

Proof. Let 2 < i < 11, and suppose that z;y;.3, xyira ¢ F(G). Since P is an
induced path, y;y;.4 ¢ E(G). Hence we get a contradiction by applying Claim 6.1
tO Yiyalivs - - - yix;. This proves (i), and (ii) can be verified in a similar way. O

Claim 6.14 (i) Let 2 < i < 10, and suppose that x;y;+ 4 € E(G). Then x;11yi15 €
E(G).
(i1) Let 6 <1i < 14, and suppose that x;y;—4 € E(G). Then x;_1y;,—5 € E(G).

Proof. Let 2 < i < 10 and z;y;44 € E(G), and suppose that z;1y;15 ¢ E(G).
Then by Claim 6.13 (i), ;11914 € E(G). Since N(yitq) N N(w) = {44}, this
implies that x;1; = x;14 = ®;, which contradicts the fact that G is Cs-free. Thus
Tit1Yirs € E(G). This proves (i), and (ii) is verified in a similar way. O

Claim 6.15 Let 2 <i <9, and suppose that z;y;43 € E(G). Then x;11y;44 € E(G).

Proof. Suppose that z;,1y;14 ¢ E(G). Then by Claim 6.13(1), z;11vi15 € E(G),
which implies z;11 = z;15, and hence z;,5y;11 € E(G). Applying Claim 6.14 (ii) with
i replaced by 7 4+ 5, we get x;14y; € E(G), i.e., ;904 € E(G). Since x;y;13 € E(G)
by assumption, this contradicts the fact that G is Cs-free. O

Note that we have zoys € E(G) or zaoys € E(G) by Claim 6.13. Suppose that
zoys € F(G). Then by Claim 6.14(i), for each k € {2,3,4,5}, N(y;) N N(w) = {xx}
for every ¢ € {2,...,14} with ¢ = k(mod 4). Since G is {Cs5, Cy}-free, this implies
that xq, z3, x4, x5 are distinct. We now see that {yi4, 2, Ys, U2, Y3, T3, Y11, Y12, T4, Ys }
induces a copy of Tyo, which contradicts the assumption that G is Ty o-free (see
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Figure 19). Consequently zoys € E(G). By Claim 6.15, for each k € {2,3,4},
N(y;) N N(w) = {x} for every i € {2,...13} with ¢ = k(mod 3). Therefore
{y2, 2, Ys, Us, Y6, T3, Y12, Y13. T1,%10} induces a copy of Ty, which again contradicts
the assumption that G is Ty o-free (see Figure 19). This concludes the discussion for
Case 1. 0 Case 2: |V(H)| < 2.75-10% for every component H of G[Nsy(w)].

Y2 Y3 Ya Y5 Ye Y7 Y8 Yo Yio Y11 Yiz Y13 Y14 Y2 V3 Ya Ys Ve Y7 Ys Yo Yio Y11 Y12 Vi3

X2 X3 X4 X2 X3 X
Figure 19: Ty in Case 1.

Let Hy,..., H, be the components of G[N>o(w)]. Since |Nso(w)| > 2|N(w)| >
1.1-10%¢ by (5.1), we have p > 5. For each z € N(w), define a subset g(x) of {1,...,p}
by g(z) ={a € {l,...,p} | N(x) NV (H,) # 0}. Since N(N(w)) 2 Ny(w), we have
Usen()g(z) = {L,...,p}.

Claim 6.16 Ifz, 2’ € N(w), then g(x) C g(z') or g(z') C g(x) or g(z)Ng(x') = 0.

) €
Proof. Suppose that g(z) — g(2’) # 0, g(2') — g(z) # 0 and g(x) N g(z') # 0,
and take o € g(x) — g(2'), B € g(a’) — g(z) and v € g(x) N g(z'). Take y €
N(z) NV (H,) and v € N(z') NV (H,) so that d1stH7(y,y) is as small as possible,
and let y1 ...y, (y1 =y,y, =¥') be a shortest y — 3 path in H,. We have r > 2 by
(5.1). Take u € N(z)NV(H,). Since 6(H,) > 2, we can take v/, u” € N(u)NV(H,)
so that u' # u”. Take v € N(2') NV (Hp). Smce d(Hp) > 2, we can take v/, 0" €
V(Hg) — {v} so that vv',v'v" € E(G) (see Figure 20). By the minimality of r, we
have z,2" ¢ N({ys,. .. ,yT_l}). By (5.1), z ¢ N({y',v}) and 2’ ¢ N({y,u}). Since
B ¢ g(x) and a ¢ g(2'), we also get ¢ N({v/,v"}) and 2’ ¢ N({u/,u"}). Since G
is {C3, Cy}-free, it follows that {v',u,u”,z,y1,...,y,, @', v,0",0"} induces a copy of
Sr+7({2},0) (see the second paragraph of Section 1 for the definition of S, (1, .J)).
Since Tyo = S9({2},0) is an induced subgraph of S,.7({2},0), this contradicts the
assumption that G is Ty o-free. O

Set A={x € Nw) | g(z) ={1,...,p}}. Wedistinguish three subcases according
as |[A| <1, |A] =2, or |A| > 3.
Subcase 2-1: |A| < 1.

Claim 6.17 We have Ugen(w)-a9(x) = {1,...,p}.

Proof.  Suppose that Uzenw)—ag(x) # {1,...,p}. Since Ugenw)g(z) = {1,...,p},
this implies |A| = 1. Take « E {1 P} — (Ugen(w)—ag(x)). By the definition of
g(x), N(V(H,)) N N(w) = A. Consequently H, is a component of G — A, which
contradicts the assumption that G is 3-connected. U

Let Iy,...,I,(C {1,...,p}) be the maximal sets among g(z) (z € N(w) — A).
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Hq H, Hp

x x'

Figure 20: S,7({2},0) in Claim 6.16.

By Claim 6.17, I; U ... U I, = {1,...,p}. By the definition of A, ¢ > 2. Set
B = Uaer,V(H,). Since ¢ > 2, B # N>o(w). By Claim 6.16 and the maximality of
I, g(xz) C I forall z € (N(B)NN(w)) — A which, by the definition of g(z), implies
that N((N(B)NN(w))—A)NNy(w) C B. Therefore GIBU((N(B)NN(w))—A)] is a
component of G—(AU{w}), which contradicts the assumption that G is 3-connected.
Subcase 2-2: |A| = 2.

Write A = {x,2'}. Since G is 3-connected, H; is not a component of G — {z, 2'}.
Hence N(N(w) — {z,2’}) N V(H;) # 0. Take u € N({z,2'}) N V(H;) and «’ €
N(N(w) — {z,2'}) N V(H;) so that disty, (u,u’) is as small as possible. By the
symmetry of x and 2/, we may assume that N(u) N N(w) = {z}. Write N(u') N
N(w) = {2"}. Thenz” ¢ A. Let uy,...,us (uy = u,us = u') be a shortest u—u’ path
in Hy (s > 2). From the minimality of s, it follows that x, 2’, 2" ¢ N({ua, ..., us—1}).
Take u” € (N(2")N No(w)) —{u'}. Then v’ ¢ {uy,...,us}. Since G is {Cs, Cy}-free,
the minimality of s implies that u” ¢ N({us,...,us}). Let @ be the index with u” €
V(H,) (it is possible that o = 1). Since 2" ¢ A, there exists § with 5 ¢ g(2"). Take
y € N(z')NV(Hg) and y € N(x)NV (Hpg) so that disty, (3, y) is as small as possible,
and let 1 ...y, (y1 =¥,y = y) be a shortest ¢y — y path in Hgz(r > 2). Recall that
p > 5. Take 7,7 € {1,...,p} — {1, a, B} with v # 4/, and take v € N(2') NV (H,)
and v’ € N(2')NV(H,/) (see Figure 21). Since 8 ¢ g(z”),2” ¢ N({vy2,...,yr—1}). By
the minimality of r, we have ', ¢ N({ya,...,y,—1}). Consequently it follows from
(5.1) that {v,2',v",y1,...,yr, @, u1,...,us, 2", u"} induces a copy of S,yi5({2},0),
which contradicts the assumption that G is Tj o-free.

v v’ Y1 Yr Uy U u”
W/— ...... —.\\//p— ...... —\v
X’ x "

Figure 21: S, 4:5({2},0) in Subcase 2-2.
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Subcase 2-3: |A| > 3.

Take x, 2’2" € A with © # 2’ # 2" # x. Choose ¥ € N(2') N V(H;) and
y € N(x) NV (H;) so that disty, (v/,y) is as small as possible, and let y; ...y, (y1 =
v,y = y) be a shortest y — y path in H; (r > 2). Then 2/, ¢ N({ya,...,yr_1}).
Choose z € N(x) NV(Hs) and 2’ € N(2") NV (H;) so that distpy,(z,2’) is as small
as possible, and let z1 ...z, (21 = 2,2, = 2’) be a shortest z — 2’ path in Hy (s > 2).
Then z,2"” ¢ N({z2,...,25-1}). We assume that we have labeled z,2’ and 2" so
that r 4 s is as small as possible. If " € N({ya,...,y.—1}), say 2" € N(y;), then
replacing z, 2", y1 ...y, and z1 ...z, by 2”7, 2,41 .. .y; and z . .. 21, respectively, we get
a contradiction to the minimality of  +s. Thus z” ¢ N({ye,...,¥r—1}). Similarly
¥ ¢ N({z2,...,2s-1}). Therefore N({ya,...,Yr_1,202,...,25-1}) N {z, 2’2"} = 0.
Take w € N(z")NV(H;), v € N(2')NV(Hy) and v' € N(2') NV (Hs) (see Figure
22). It now follows from (5.1) that {v, 2’ v, y1,...,ys, @, 21,. .., 25, 2", u} induces a
copy of S, s45({2},0). This contradicts the assumption that G is Ty o-free.

This concludes the discussion for Case 2, and completes the proof of Proposi-
tion 1.6.

H1 HZ
v v' 1 Yr Z Zs u
W/— ...... —o\\//o— ...... —o\\/
X’ X x!"

Figure 22: S, 415({2},0) in Subcase 2-3.

7 Proof of Proposition 1.7

In this section, we prove Proposition 1.7. Suppose that G is Tg-free and A(G) > 1221.
By Claims 3.3 and 4.3,

|IM(u)| <5 and |[M(u)| < |[My(u) UM (u)| < 60 for every u € Nso(w). (7.1)

Claim 7.1 Let asasazasal be a path in G[Nso(w)] with ay € Ny(w), and write
N(az) N N(w) = {a1}. Then {asa},asar} N E(G) # 0.

Proof. Set X = {ag,...,as,a5}. We have X —N(X) = ). Suppose that {asa}, asa; }
N E(G) = 0. Then E(G[X U{a1}]) = {asaq, asas, azas, azay, azal}. Let Yy be as
in Lemma 5.1. By Lemma 5.3 (i) and (7.1), |Yo| < 5-5 < |N(w)|. Take b; €
N(w) — Y, and take by, by, € N(by) N Nxo(w) with by # by (see Figure 23). We
have E(G[{al,w,bl,bg,bé}}) = {alw,wbl,blbg,blbg}. Since Eg(X, {w,bl,bg,bé}) =
() by Lemma 5.1 (i), it follows that X U {ay,w, b1, be, by} induces a copy of Ty, a
contradiction. O
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Figure 23: T3 in Claim 7.1.

Claim 7.2 We have N>z(w) = 0, and G[No(w)] is 2-regular.

Proof.  Recall that §(G[Nsa(w)]) > 2. By way of contradiction, suppose that
Nss(w) # 0 or A(G[Ny(w)]) > 3. If Nsz(w) # 0, then take az € Ni(w); if
A(G[Ny(w)] > 3, then take az € Ny(w) so that |N(az) N Na(w)| > 3. Then we
can take as, ayq,a) € N(az) N Nso(w) so that as € No(w). Write N(ag) N N(w) =
{a1}. Set X = {ag,as,a4,a}}. We have X — N(X) = 0 and E(G[X U{a}]) =
{aqas, djas, azas, asai }. Let Zy, Z3 be as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and
(7.1), |Z1] < 4-60 = 240 and |Z;| < 244 -5 < |N(w)|. Take b; € N(w) — Z and
by € N(b1) N Nso(w). Since |N(by) N Nso(w)| > 2, we can take by € N(bg) N Nso(w)
so that a1bs ¢ E(G). Then E(G[{a1,w,b, b, b3}]) = {ayw,wby,biby, babs}. By
Lemma 5.1 (ii), Eq(X, {w, by, b2,b3}) = 0. By (5.1), [N(X U{bs,b3}) N N(w)| <6 <
|N(w)|. Take ¢ € N(w) — (N(X U {bg,b3}) N N(w)) (see Figure 24). It now follows

that X U {ay,w, by, be,bs, c} induces a copy of Ty, a contradiction. O
a4, azll.
as ® b3
Nap (W) “ ¢ $ b2
N(w) a, .\ ® by /. c

Figure 24: Tg in Claim 7.2.
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Let Hy, ..., H, be the components of G[Ny(w)]. By Claim 7.2, each H, is a cycle.

Claim 7.3 Let a € {1,...,p}, and suppose that |V (H,)| # 5. Then |V(H,)| =
0 (mod 3), |IN(V(H,)) N N(w)| = 3, and we can write Hy, = y1y2- - Ysmy1 and
N(V(Ha))NN(w) = {1, 2, x3} so that for each k € {1,2,3}, N(y;)NNo(w) = {zx}
for every j with j = k (mod 3).

Proof.  Since G is {Cs, Cy}-free, |V (H,)| > 6. Take uy € V(H,), and write N (uy) N
V(Ha) = {uo, uz}t, (N(uz) NV (Ha)) = {ur} = {us} and (N(us) NV (Ha)) — {us} =
{ug}. Also write N(uy) N N(w) = {x}. Suppose that uyz ¢ E(G). Since H, is

cycle with |V (H,)| > 6, uqug ¢ E(G). Hence we get a contradiction by applying
Claim 7.1 to uqususujug. Thus uyxr € E(G). Since wu; is arbitrary, this implies the
desired conclusion. 0

For each a € {1,...,p}, if |V(H,)| = 5, then |[N(V(H,)) N N(w)| =5 by (5.1)
and, if |V(H,)| # 5, then |[N(V( )) N(w)| = 3 by Claim 7.3. Hence p >
|IN(w)|/5 > 5. For each x € N(w), set g(x) ={a € {1,...,p} | N(z) NV (H,) # 0}.
We have Ugenw)g(z) = {1,...,p}.

H, Hg
‘l7”

!

ul uu v
u y v

X
xl
w

Figure 25: T in Claim 7.4.

Claim 7.4 If z,2’ € N(w), then g(x) C g(x') or g(z') C g(z) or g(x) Ng(x’) = 0.

Proof. Suppose that g(z) — g(z') # 0, g(2') — g(z) # 0 and g(x) N g(z") # 0, and
take a € g(2)— g(2'), f € g(e’) - g(x) and 7 € g(x)Ngle’). Take y € N(z') NV (H,).
Take u € N(x)NV(H,), and write N(u)NV (H,) = {u',v"}. Takev € N(2")NV (Hp)
and v' € N(v)NV (Hg), and write (N (v')NV (Hg)) —{v} = {v"} (see Figure 25). By
the choice of v and B, 2 ¢ N({v',v"}) and 2’ ¢ N({/,u"}). Since G is {Cs5, Cy}-free,
it now follows from (5.1) that {u',u,u”, z,w, 2, y,v,v',v"} induces a copy of Tg, a
contradiction. O

Set A= {x € N(w) | g(x) ={1,...,p}}. If |A] <1, then, in view of Claim 7.4,
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we get a contradiction by arguing in Subcase 2-1 in Section 6. Thus |A| > 2. Take
x,x’ € Awith x # 2’. Suppose that there exists an index o € {1, ..., p} for which we
can take yp € N(z)NV (H,,) and y, € N(2') NV (H,,) so that yoy; € E(G). We may
assume that ag = 1. Takey € N(a')NV (Hz). Since G is {Cs, Cy}-free, one of the two
neighbors of y in Hy, say ¢/, satisfies N(y')N{z, 2’} = . Write N(y')NN(w) = {«”}.
Take v € N(2')NV(H3), u € N(z)NV(Hy) and v’ € N(z) NV (Hj) (see Figure 26).
By (5.1), {u, 2", v, yo, vy, ', v,y,y, 2"} induces a copy of T, a contradiction.

H, H,
u u' Yo Yo v y y'
X x’ "

Hy H,
u u' Y1 Y2 Y3 Ya v v’
\I//. ‘ .\.\//._—.
X x'

Figure 27: Ty yielding the final contradiction.

Consequently for each a € {1,...,p}, yy' ¢ E(G) for every y € N(z) NV (H,)
and every 3y € N(2')NV (H,). In view of Claim 7.3, thus means that |V (H,)| = 5 for
every a. Since G is {C3, Cy}-free, it follows that |N(z)NV (H,)| = [N (2" )NV (H,)| =
1 for every a. Write Hy = y192y3yaysy1 so that N(z) NV (Hy) = {y1} and N(z') N
V(H,) = {ys}. Take v € N(2') NV (H3) and v' € N(v) NV (Hy). Since yv ¢ E(G)
for every y € N(x) NV (Hz), we see that v’ ¢ E(G). Finally take u € N(z)NV (Hj3)
and v € N(x) NV (Hy) (see Figure 27). Since |[N(z) NV (Hy)| = |N(2") NV (Hy)| =
|IN(2') NV (Hs)| =1, it follows from (5.1) that {u, z, v, y1,y2, Y3, ys, z,v,v’'} induces
a copy of Tg, which contradicts the assumption that G is Tg-free.

This completes the proof of Proposition 1.7.
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