Forbidden caterpillars for 3-connected graphs with girth at least five

Yoshimi Egawa

Department of Applied Mathematics Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

Abstract

For a family \mathcal{F} of graphs, a graph G is said to be \mathcal{F} -free if G contains no member of \mathcal{F} as an induced subgraph. We let $\mathcal{G}_3(\mathcal{F})$ be the family of 3-connected \mathcal{F} -free graphs. Let P_n and C_n denote the path and the cycle of order n, respectively. Let $S_9(\{5\}, \emptyset)$ be the tree obtained from P_9 by adding a vertex and joining it to the central vertex of P_9 , and $S_9(\{2\}, \emptyset)$ be the tree obtained by adding a vertex and joining it to a vertex adjacent to an endvertex of P_9 . We show that $\mathcal{G}_3(\{C_3, C_4, S_9(\{5\}, \emptyset)\})$ and $\mathcal{G}_3(\{C_3, C_4, S_9(\{2\}, \emptyset)\})$ are finite families.

1 Introduction

By a graph, we mean a finite, simple, undirected graph. Let G be a graph. We let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For $u \in V(G)$, we let $N_G(u)$ and $\deg_G(u)$ denote the neighborhood and the degree of G, respectively; thus $\deg_G(u) = |N_G(u)|$. We let $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of G, respectively. For $U \subseteq V(G)$, we set $N_G(U) = \bigcup_{u \in U} N_G(u)$, and let G[U] denote the subgraph of G induced by U. For $U, U' \subseteq V(G)$ with $U \cap U' = \emptyset$, we let $E_G(U, U')$ be the set of edges of G joining a vertex in U and a vertex in U'. When G is connected, for $u, v \in V(G)$, we let $\operatorname{dist}_G(u, v)$ denote the distance of u and v in G, and let $\operatorname{diam}(G)$ denote the maximum of $\operatorname{dist}_G(u, v)$ as u and v range over V(G). We let C_n and K_n denote the cycle and the complete graph of order n, respectively. We let K_{m_1,m_2} denote the complete bipartite graph with partite sets having cardinalities m_1 and m_2 , respectively. For terms and symbols not defined here, we refer the reader to [1].

Let $n \geq 5$ be an integer, and let I, J be subsets of $\{2, 3, \ldots, n-1\}$ with $J \subseteq \{3, \ldots, n-2\}$ and $I \cap J = \emptyset$. We let $S_n(I, J)$ denote the tree obtained from a path $u_1u_2\cdots u_n$ of order n by adding vertices v_i $(i \in I \cup J)$ and v'_i $(i \in J)$ and edges u_iv_i $(i \in I \cup J)$ and $v_iv'_i$ $(i \in J)$. Also we let S^* denote the tree obtained from a path $u_1u_2\cdots u_7$ of order 7 by adding vertices v_4, v'_4, v''_4 and edges $u_4v_4, v_4v'_4, v_4v''_4$ (see

Figure 1). A tree T is a caterpillar if there exists a path P of T such that T - V(P) has no edges. Note that $S_n(I, \emptyset)$ is a caterpillar.

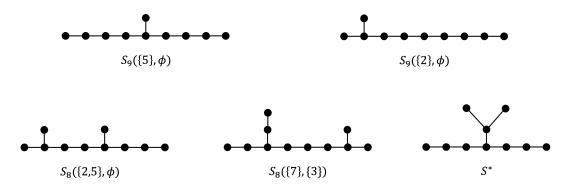


Figure 1: Trees $S_n(I, J)$ and S^* .

For two graphs G and H, we say that G is H-free if G does not contain an induced copy of H. For a family \mathcal{F} of connected graphs, a graph G is said to be \mathcal{F} -free if G is H-free for every $H \in \mathcal{F}$. For an integer $k \geq 2$ and a family \mathcal{F} of connected graphs, let $\mathcal{G}_k(\mathcal{F})$ denote the family of k-connected \mathcal{F} -free graphs. In this context, members of \mathcal{F} are often referred to as forbidden subgraphs. Note that $\mathcal{G}_k(\{C_3, C_4\})$ is the family of k-connected graphs with girth at least five.

Let $k \geq 2$ be an integer. In this paper, we consider families \mathcal{F} of connected graphs such that

$$\mathcal{G}_k(\mathcal{F})$$
 is a finite family. (1.1)

Note that if a family \mathcal{F} satisfies (1.1), then for any property P on graphs, although the proposition that all k-connected \mathcal{F} -free graphs satisfy P with finite exceptions holds, the proposition gives no information about P. Thus it is important to identify families \mathcal{F} satisfying (1.1) in advance. With such a motivation, studies of \mathcal{F} satisfying (1.1) have been started by Fujisawa, Plummer and Saito in [7]. In particular, it is known that if a finite family \mathcal{F} of connected graphs satisfies (1.1), then \mathcal{F} contains a complete graph, a complete bipartite graph and a tree. Based on this result, families \mathcal{F} satisfying (1.1) which can be written in the form $\mathcal{F} = \{K_n, K_{m_1,m_2}, T\}$ where $n \geq 3, 2 \leq m_1 \leq m_2$ and T is a tree, have intensively been studied (for a result concerning the case where $|\mathcal{F}| = 4$, we refer the reader to [8]). For k = 2, such families are completely characterized in [7]. For k = 3, such families are characterized expect for the case where n = 3 and $m_1 = m_2 = 2$ (see [2,4,6]). This paper is concerned with the case where n = 3 and $m_1 = m_2 = 2$ (note that $K_3 = C_3$ and $K_{2,2} = C_4$).

The following conjecture is proposed in [5].

Conjecture 1.1 Let T be a tree. Then $\mathcal{G}_3(\{C_3, C_4, T\})$ is finite if and only if T is a subgraph of one of $S_9(\{5\}, \emptyset)$, $S_9(\{2\}, \emptyset)$, $S_9(\emptyset, \{3\})$, $S_8(\{2, 5\}, \emptyset)$, $S_8(\{7\}, \{3\})$, $S_8(\{4, 5, 6\}, \{3\})$, $S_8(\{4\}, \{3, 6\})$, $S_7(\{2\}, \{4\})$, $S_7(\{3\}, \{4\})$, $S_7(\{4\}, \{3, 5\})$, S^* and $S_6(\emptyset, \{3, 4\})$.

The "only if" part of the conjecture is proved in [5]. In this paper, we prove the following theorem as a partial solution of the "if" part.

Theorem 1.2 The families $\mathcal{G}_3(\{C_3, C_4, S_9(\{5\}, \emptyset)\})$, $\mathcal{G}_3(\{C_3, C_4, S_9(\{2\}, \emptyset)\})$ and $\mathcal{G}_3(\{C_3, C_4, S_8(\{2, 5\}, \emptyset)\})$ are finite families.

The following lemma is well-known (for a proof, see for example Lemma 1.6 in [2]).

Lemma 1.3 Let $m \ge 2$ and $k \ge 3$ be integer, and let G be a graph with $\Delta(G) \le m$ and diam $(G) \le k$. Then $|V(G)| \le m^k$.

In view of Lemma 1.3, Theorem 1.2 follows from the following four propositions.

Proposition 1.4 Let G be a 3-connected $\{C_3, C_4, T\}$ -free graph, where $T = S_9(\{5\}, \emptyset), S_9(\{2\}, \emptyset)$ or $S_8(\{2, 5\}, \emptyset)$. Then diam $(G) \leq 7$.

Proposition 1.5 Let G be a 3-connected $\{C_3, C_4, S_9(\{5\}, \emptyset)\}$ -free graph. Then $\Delta(G) < 2 \cdot 10^{41}$.

Proposition 1.6 Let G be a 3-connected $\{C_3, C_4, S_9(\{2\}, \emptyset)\}$ -free graph. Then $\Delta(G) < 5.5 \cdot 10^{35}$.

Proposition 1.7 Let G be a 3-connected $\{C_3, C_4, S_8(\{2, 5\}, \emptyset)\}$ -free graph. Then $\Delta(G) \leq 1220$.

We remark that it is known that $\mathcal{G}_3(\{C_3, C_4, S_9(\emptyset, \{3\})\})$ and $\mathcal{G}_3(\{C_3, C_4, S_8(\{7\}, \{3\})\})$ are finite families (see [3,5]). Thus Conjecture 1.1 is reduced to the following conjecture.

Conjecture 1.8 Let T be a tree isomorphic to $S_8(\{4,5,6\},\{3\})$, $S_8(\{4\},\{3,6\})$, $S_7(\{2\},\{4\})$, $S_7(\{3\},\{4\})$, $S_7(\{4\},\{3,5\})$, S^* or $S_6(\emptyset,\{3,4\})$. Then $\mathcal{G}_3(\{C_3,C_4,T\})$ is a finite family.

We prove Proposition 1.4 in Section 2. After preparing auxiliary lemmas in Sections 3 and 4, we prove Propositions 1.5–1.7 in Sections 5–7. In Section 3, we make use of the fact that R(3,3) = 6 and R(3,6) = 18, where R(s,t) demotes the usual Ramsey number, i.e., the minimum positive integer R such that any graph of order at least R contains a complete subgraph of order s or an independent set of cardinality t.

We conclude this section by stating a corollary of a famous theorem of Turán [9]. Let n, k be integers with $n \ge k \ge 1$, and write n = kq + r, where q, r are integers and $0 \le r \le k - 1$. Turán's theorem shows that if H is a graph of order n and k is the maximum order of a complete subgraph of the complement of H, then $|E(H)| \ge r|E(K_{q+1})| + (k - r)|E(K_q)|$ (see Section 7.1 of [1]). Note that k is the maximum cardinality of an independent set of H. Note also that since $2r|E(K_{q+1})|+2(k-r)|E(K_q)| = kq^2 + (2r-k)q \ge (kq+r)(q+r/k-1) = n(n/k-1)$, the average degree d of H satisfies $d \ge n/k - 1$, i.e., $(d+1)k \ge n$. Thus we have the following lemma, which we use in Section 3.

Lemma 1.9 Let H be a graph with average degree d. Then H contains an independent set with cardinality greater than or equal to n/(d+1).

2 Diameter

For simplicity, we hereafter let $S_9(\{5\}, \emptyset)$, $S_9(\{2\}, \emptyset)$ and $S_8(\{2, 5\}, \emptyset)$ be denoted by $T_{9,1}, T_{9,2}$ and T_8 .

In this section, we prove Proposition 1.4. Thus let $T = T_{9,1}, T_{9,2}$ or T_8 , and let G be a 3-connected $\{C_3, C_4, T\}$ -free graph and, by way of contradiction, suppose that diam $(G) \geq 8$. Take $u, v \in V(G)$ with dist $_G(u, v) = 8$, and let $P = u_1 u_2 \cdots u_9$ be a shortest u - v path. For each $i \in \{2, 5, 8\}$, take $a_i \in N_G(u_i) - \{u_{i-1}, u_{i+1}\}$. Assume first that $T = T_{9,1}$. Note that $a_5 u_i \notin E(G)$ for each $i \in \{3, 4, 6, 7\}$ because G is $\{C_3, C_4\}$ -free. Since P is a shortest u - v path, we also have $a_5 u_i \notin E(G)$ for each $i \in \{1, 2, 8, 9\}$. Hence $\{u_1, \ldots, u_9, a_5\}$ induces a copy of $T_{9,1}$, which contradicts the assumption that G is $T_{9,1}$ -free. In the case where $T = T_{9,2}$, we can similarly get a contradiction because $\{u_1, \ldots, u_9, a_2\}$ induces a copy of $T_{9,2}$.

We now assume that $T = T_8$. Since P is a shortest u - v path, we have $a_2a_5 \notin E(G)$ or $a_5a_8 \notin E(G)$. By symmetry, we may assume that $a_2a_5 \notin E(G)$. then arguing as above, we see that $\{u_1, \ldots, u_8, a_2, a_5\}$ induces a copy of T_8 , which is a contradiction.

3 Paths of order four

Throughout the rest of this paper, we fix a 3-connected $\{C_3, C_4\}$ -free graph G and, for $u \in V(G)$ and $U \subseteq V(G)$, we write N(u) and N(U) for $N_G(u)$ and $N_G(U)$.

In this section and the following section, we study the relation between induced paths joining two given vertices and the existence of an induced tree. For an integer $k \geq 4$ and two nonadjacent vertices v, w of G, we let

 $M_k^w(v) = \{ x \in N(v) \mid \text{there exists an induced } v - w \text{ path } P \text{ of order } k \text{ such that } N_P(v) = \{x\} \}.$

In the remainder of this section and the following section, we let v, w be nonadjacent vertices of G. In this section, we deal with the case where $M_4^w(v)$ is large. We first consider $T_{9,1}$.

Lemma 3.1 Suppose that $|M_4^w(v)| \ge 52$. Then G contains an induced copy of $T_{9,1}$.

Proof. Take $a_1, \ldots, a_{52} \in M_4^w(v)$. For each $i \in \{1, \ldots, 52\}$, let va_ib_iw be an induced v - w path. Since G is $\{C_3, C_4\}$ -free, $\{a_i, b_i\} \cap \{a_j, b_j\} = \emptyset$ for any i, j with $i \neq j$, and

$$E(G[\{v, w\} \cup \{a_i, b_i | 1 \le i \le 52\}]) = \{va_i, a_i b_i, b_i w | 1 \le i \le 52\}.$$
(3.1)

For each $i \in \{1, \ldots, 52\}$, take $x_i \in N(a_i) - \{v, b_i\}$. By (3.1), $\{x_i | 1 \le i \le 52\} \cap (\{v, w\} \cup \{a_i, b_i | 1 \le i \le 52\}) = \emptyset$. Since G is $\{C_3, C_4\}$ -free, x_1, \ldots, x_{52} are distinct,

$$x_i a_j \notin E(G)$$
 for any $i, j \in \{1, \dots, 52\}$ with $i \neq j$, (3.2)

and

$$x_i v, x_i w, x_i b_i \notin E(G)$$
 for every $i \in \{1, \dots, 52\}.$ (3.3)

Now let D be the digraph on $\{1, \ldots, 52\}$ obtained by joining i to j $(i \neq j)$ if and only if $x_i b_j \in E(G)$, and let H be the (simple) graph obtained by ignoring the direction of the edges of D. Since G is $\{C_3, C_4\}$ -free, each $i \in \{1, \ldots, 52\}$ has outdegree at most one in D. Hence $|E(H)| \leq |V(H)|$, which means that the average degree of H is at most two. In view of Lemma 1.9, we may assume that $\{1, \ldots, 18\}$ is independent in H. Then by (3.2) and (3.3),

$$E_G(\{x_i \mid 1 \le i \le 18\}, \{v, w\} \cup \{a_i, b_i \mid 1 \le i \le 18\}) = \{x_i a_i \mid 1 \le i \le 18\}.$$
 (3.4)

Note that R(3,6) = 18. Since G is C_3 -free, we may assume that

$$\{x_i \mid 1 \le i \le 6\} \text{ is independent.} \tag{3.5}$$

For each $i \in \{1, \ldots, 6\}$, since G is $\{C_3, C_4\}$ -free, we can take $z_i \in N(x_i) - \{a_i\}$ so that $z_i w \notin E(G)$. By (3.4) and (3.5),

$$\{z_i \mid 1 \le i \le 6\} \cap (\{v, w\} \cup \{a_i, b_i \mid a \le i \le 18\} \cup \{x_i \mid 1 \le i \le 6\}) = \emptyset.$$

Since G is $\{C_3, C_4\}$ -free, we have

$$z_i v, z_i w, z_i a_i \notin E(G) \text{ for every } i \in \{1, \dots, 6\}.$$
(3.6)

Assume for the moment that some two indices in $\{1, \ldots, 6\}$, say 1 and 2, satisfy $z_1x_2 \in E(G)$. Since G is $\{C_3, C_4\}$ -free, $|N(z_1) \cap \{a_7, \ldots, a_{10}\}| \leq 1$ and $|N(z_1) \cap \{b_7, \ldots, b_{10}\}| \leq 1$. We may assume that $z_1a_7, z_1b_7, z_1a_8, z_1b_9 \notin E(G)$. Then by (3.1), (3.4), (3.5) and (3.6), $\{x_2, z_1, x_1, a_1, v, a_8, a_7, b_7, w, b_9\}$ induces a copy of $T_{9,1}$, as desired (see Figure 2).

Thus we may assume that

$$z_i x_j \notin E(G)$$
 for any $i, j \in \{1, \dots, 6\}$ with $i \neq j$. (3.7)

This in particular implies that z_1, \ldots, z_6 are distinct. Since G is $\{C_3, C_4\}$ -free, $|N(z_1) \cap \{a_3, \ldots, a_6\}| \le 1, |N(z_1) \cap \{b_3, \ldots, b_6\}| \le 1, |N(z_2) \cap \{a_3, \ldots, a_6\}| \le 1$ and $|N(z_2) \cap \{b_3, \ldots, b_6\}| \le 1$. We may assume that

$$z_1a_3, z_1b_3, z_2a_4, z_2b_4 \notin E(G). \tag{3.8}$$

Since G is $\{C_3, C_4\}$ -free, for each $u \in \{z_1, x_1, z_2, x_2, x_3, x_4\}$, we have $|N(u) \cap \{b_{19}, \ldots, b_{50}\}| \le 1$. We may assume that

$$E_G(\{z_1, x_1, z_2, x_2, x_3, x_4\}, \{b_{19}, \dots, b_{44}\}) = \emptyset.$$
(3.9)

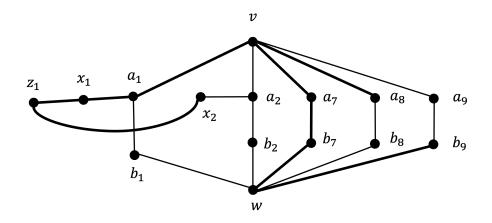


Figure 2: $T_{9,1}$ in Lemma 3.1 (first case).

For each
$$j \in \{19, \dots, 44\}$$
, take $y_j \in N(b_j) - \{w, a_j\}$. By (3.1) and (3.9),

$$\{y_{19}, \dots, y_{44}\} \cap (\{v, w, z_1, x_1, z_2, x_2, x_3, x_4\} \cup \{a_i, b_i \mid 1 \le i \le 44\}) = \emptyset.$$

Since G is $\{C_3, C_4\}$ -free, y_{19}, \ldots, y_{44} are distinct,

 $y_j b_i \notin E(G)$ for any $j \in \{19, \dots, 44\}$ and $i \in \{1, \dots, 44\}$ with $i \neq j$, (3.10) and

$$y_j v, y_j w \notin E(G)$$
 for every $j \in \{19, \dots, 44\}.$ (3.11)

If $N(\{z_1, x_1, a_1, x_3, a_3\}) \cap N(\{z_2, x_2, a_2, x_4, a_4\}) \supseteq \{y_{19}, \dots, y_{44}\}$, then there exist $u \in \{z_1, x_1, a_1, x_3, a_3\}$ and $u' \in \{z_2, x_2, a_2, x_4, a_4\}$ such that $|N(u) \cap N(u') \cap \{y_{19}, \dots, y_{44}\}| \ge 2$, which contradicts the assumption that G is $\{C_3, C_4\}$ -free. Thus

$$N(\{z_1, x_1, a_1, x_3, a_3\}) \cap N(\{z_2, x_2, a_2, x_4, a_4\}) \not\supseteq \{y_{19}, \dots, y_{44}\}.$$

We may assume that $N(\{z_1, x_1, a_1, x_3, a_3\}) \not\supseteq \{y_{19}, \ldots, y_{44}\}$. We may also assume that $y_{44} \notin N(\{z_1, x_1, a_1, x_3, a_3\})$. It now follows from (3.1) and (3.4) through (3.11) that $\{z_1, x_1, a_1, v, a_3, x_3, b_3, w, b_{44}, y_{44}\}$ induces a copy of $T_{9,1}$ (see Figure 3).

This completes the proof of Lemma 3.1.

Next we consider $T_{9,2}$.

Lemma 3.2 Suppose that $|M_4^w(v)| \ge 16$. Then G contains an induced copy of $T_{9,2}$.

Proof. Take $a_1, \ldots, a_{16} \in M_4^w(v)$. For each $i \in \{1, \ldots, 16\}$, let va_ib_iw be an induced v - w path, and take $x_i \in N(a_i) - \{v_i, b_i\}$. As in the proof of Lemma 3.1, we see that $\{x_i \mid 1 \le i \le 16\} \cap (\{v, w\} \cup \{a_i, b_i \mid 1 \le i \le 16\}) = \emptyset, x_1, \ldots, x_{16}$ are distinct,

$$E(G[\{v, w\} \cup \{a_i, b_i \mid 1 \le i \le 16\}]) = \{va_i, a_i b_i, b_i w \mid 1 \le i \le 16\},$$
(3.12)

$$x_i a_j \notin E(G)$$
 for any $i, j \in \{1, \dots, 16\}$ with $i \neq j$, (3.13)

and

$$x_i v, x_i w \notin E(G)$$
 for every $i \in \{1, \dots, 16\}.$ (3.14)

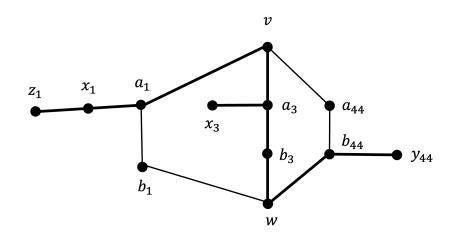


Figure 3: $T_{9,1}$ in Lemma 3.1 (second case).

Claim 3.2.1 Let $1 \leq i \leq 16$, and suppose that there exist $z \in N(x_i) - \{a_i\}$ and $u \in N(z) - \{x_i\}$ such that $zw, uv, uw \notin E(G)$. Then G contains an induced copy of $T_{9,2}$.

Proof. We may assume that i = 1. By (3.13) and (3.14), $z \notin \{v, w\} \cup \{a_1, \ldots, a_{16}\}$. Since $zw, uv, uw \notin E(G)$, we also have $z, u \notin \{b_1, \ldots, b_{16}\}$ and $u \notin \{a_1, \ldots, a_{16}\}$. Since G is $\{C_3, C_4\}$ -free, $zv, za_1, ua_1, ux_1 \notin E(G)$. From $zv, zw \notin E(G)$, we get $u \notin \{v, w\}$. Since G is $\{C_3, C_4\}$ -free, $|N(t) \cap \{b_i \mid 2 \le i \le 7\}| \le 1$ for each $t \in \{x_1, z, u\}$. We may assume that $E_G(\{x_1, z, u\}, \{b_2, b_3, b_4\}) = \emptyset$. Similarly $|N(t) \cap \{a_2, a_3, a_4\}| \le 1$ for each $t \in \{z, u\}$. We may assume that $za_2, ua_2 \notin E(G)$. We now see from (3.12), (3.13) and (3.14) that $\{b_4, w, b_3, b_2, a_2, v, a_1, x_1, z, u\}$ induces a copy of $T_{9,2}$ (see Figure 4).

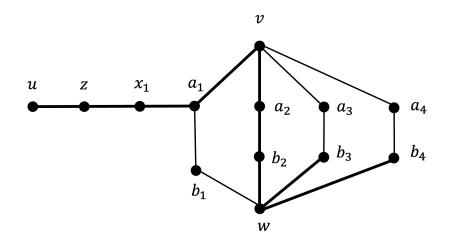


Figure 4: $T_{9,2}$ in Claim 3.2.1.

We return to the proof of the lemma. Since R(3,3) = 6, we may assume that $\{x_1, x_2, x_3\}$ is independent. For each $i \in \{1, 2, 3\}$, since G is $\{C_3, C_4\}$ -free, we can

take $z_i \in N(x_i) - \{a_i\}$ so that $z_i w \notin E(G)$. Then $\{z_1, z_2, z_3\} \cap \{b_1, \ldots, b_{16}\} = \emptyset$. By (3.13) and (3.14), $\{z_1, z_2, z_3\} \cap (\{v, w\} \cup \{a_1, \ldots, a_{16}\}) = \emptyset$. Since $\{x_1, x_2, x_3\}$ is independent, we also have $\{z_1, z_2, z_3\} \cap \{x_1, x_2, x_3\} = \emptyset$. Since G is $\{C_3, C_4\}$ -free, $z_i v \notin E(G)$ for every $i \in \{1, 2, 3\}$. Now if there exist $i, j \in \{1, 2, 3\}$ with $i \neq j$ such that $z_i x_j \in E(G)$, then by (3.14), we can apply claim 3.2.1 with $z = z_i$ and $u = x_j$ to see that G contains an induced copy of $T_{9,2}$. Thus we may assume that $z_i x_j \notin E(G)$ for any $i, j \in \{1, 2, 3\}$ with $i \neq j$ which, in particular, implies that z_1, z_2, z_3 are distinct. Since G is C_3 -free, we may assume that $z_1 z_2 \notin E(G)$, and we thus have

$$\{x_1x_2, z_1x_2, z_2x_1, z_1z_2, z_1v, z_2v, z_1w, z_2w, z_1a_1, z_2a_2\} \cap E(G) = \emptyset.$$
(3.15)

For each $i \in \{1, 2\}$, take $u_i, u'_i \in N(z_i) - \{x_i\}$ with $u_i \neq u'_i$. By (3.15), $\{u_1, u'_1, u_2, u'_2\} \cap \{v, w\} = \emptyset$. By Claim 3.2.1, we may assume that $N(u_i) \cap \{v, w\} \neq \emptyset$ and $N(u'_i) \cap \{v, w\} \neq \emptyset$ for each $i \in \{1, 2\}$. Since G is $\{C_3, C_4\}$ -free, we also have $|N(v) \cap \{u_i, u'_i\}| \leq 1$ and $|N(w) \cap \{u_i, u'_i\}| \leq 1$ for each $i \in \{1, 2\}$. Thus we may assume that

$$u_i v \notin E(G) \text{ and } u_i w \in E(G) \text{ for each } i \in \{1, 2\}.$$
 (3.16)

By (3.14), (3.15) and (3.16), $\{u_1, u_2\} \cap \{x_1, x_2, z_1, z_2\} = \emptyset$ (it is possible that $u_1 = u_2$). By (3.16), $\{u_1, u_2\} \cap \{a_1, \ldots, a_{16}\} = \emptyset$. Also we may clearly assume that $\{u_1, u_2\} \cap \{b_3, b_4, \ldots, b_{14}\} = \emptyset$. Since $u_1w, u_2w \in E(G)$ by (3.16), from the assumption that G is $\{C_3, C_4\}$ -free, it follows that

$$E_G(\{z_1, z_2\}, \ \{b_j \mid 3 \le j \le 14\}) = \emptyset$$
(3.17)

and

$$E_G(\{u_1, u_2\}, \ \{a_j, b_j | \ 3 \le j \le 14\}) = \emptyset.$$
(3.18)

Also since G is $\{C_3, C_4\}$ -free, $|N(x_i) \cap \{b_j \mid 3 \le j \le 14\}| \le 1$ for each $i \in \{1, 2\}$. We may assume that

$$E_G(\{x_1, x_2\}, \ \{b_j \mid 3 \le j \le 12\}) = \emptyset.$$
(3.19)

For each $j \in \{3, ..., 12\}$, take $y_j \in N(b_j) - \{w, a_j\}$. We have $\{y_j \mid 3 \leq j \leq 12\} \cap (\{v, w\} \cup \{a_i, b_i \mid 1 \leq i \leq 12\}) = \emptyset$. By (3.17), (3.18) and (3.19), $\{y_j \mid 3 \leq j \leq 12\} \cap \{x_1, z_1, u_1, x_2, z_2, u_2\} = \emptyset$. Since G is $\{C_3, C_4\}$ -free, y_3, \ldots, y_{12} are distinct, and we see from (3.16) that

$$y_j u_1, y_j u_2, y_j v, y_j w \notin E(G)$$
 for every $j \in \{3, \dots, 12\}.$ (3.20)

If $N(\{a_1, x_1, z_1\}) \cap N(\{a_2, x_2, z_2\}) \supseteq \{y_3, \dots, y_{12}\}$. Then there exist $t \in \{a_1, x_1, z_1\}$ and $t' \in \{a_2, x_2, z_2\}$ such that $|N(t) \cap N(t') \cap \{y_3, \dots, y_{12}\}| \ge 2$, which contradicts the assumption that G is $\{C_3, C_4\}$ -free. Thus one of $\{a_1, x_1, z_1\}$ and $\{a_2, x_2, z_2\}$, say $\{a_1, x_1, z_1\}$, satisfies $N(\{a_1, x_1, z_1\}) \not\supseteq \{y_3, \dots, y_{12}\}$. We may assume that

$$y_{12} \notin N(\{a_1, x_1, z_1\}). \tag{3.21}$$

Since G is $\{C_3, C_4\}$ -free, $|N(z_1) \cap \{a_8, a_9, a_{10}, a_{11}\}| \leq 1$ and $|N(y_{12}) \cap \{a_8, a_9, a_{10}, a_{11}\}| \leq 1$. We may assume that $z_1a_{10}, y_{12}a_{10}, z_1a_{11}, y_{12}a_{11} \notin E(G)$. We now see from (3.11) through (3.21) that $\{a_{11}, v, a_{10}, a_1, x_1, z_1, u_1, w, b_{12}, y_{12}\}$ induces a copy of $T_{9,2}$ (see Figure 5).

This completes the proof of Lemma 3.2.

Finally we consider T_8 .

Lemma 3.3 Suppose that $|M_4^w(v)| \ge 6$. Then G contains a copy of T_8 .

Proof. Take $a_1, \ldots, a_6 \in M_4^w(v)$. For each $i \in \{1, \ldots, 6\}$, let va_ib_iw be an induced v-w path. Take $x_1 \in N(a_1)-\{v, b_1\}$, and take $z_1 \in N(x_1)-\{a_1\}$ so that $z_1w \notin E(G)$. As in Lemma 3.2, we get $E(G[\{v, w\} \cup \{a_i, b_i | 1 \le i \le 6\}]) = \{va_i, a_ib_i, b_iw | 1 \le i \le 6\}, x_1, z_1 \notin \{v, w\} \cup \{a_i, b_i | 1 \le i \le 6\}, x_1a_i \notin E(G)$ for every $i \in \{2, \ldots, 6\}$, and $x_1v, x_1w, z_1v, z_1a_1 \notin E(G)$. Since G is $\{C_3, C_4\}$ -free, $|N(x_1) \cap \{b_2, \ldots, b_6\}| \le 1$, $|N(z_1) \cap \{a_2, \ldots, a_6\} \le 1$ and $|N(z_1) \cap \{b_2, \ldots, b_6\}| \le 1$. Hence $|\{i \in \{2, \ldots, 6\} | x_1b_i, z_1a_i, z_1b_i \notin E(G)\}| \ge 2$. We may assume that $x_1b_2, z_1a_2, z_1b_2 \notin E(G)$. Similarly $|\{i \in \{3, \ldots, 6\} | x_1b_i, z_1b_i \notin E(G)\}| \ge 2$. We may assume that $x_1b_3, z_1b_3, x_1b_4, z_1b_4 \notin E(G)$. Finally $|\{i \in \{5, 6\} | z_1a_i \notin E(G)\}| \ge 1$. We may assume that $z_1a_5 \notin E(G)$. It follows that $\{b_4, w, b_3, b_2, a_2, v, a_5, a_1, x_1, z_1\}$ induces a copy of T_8 (see Figure 6).

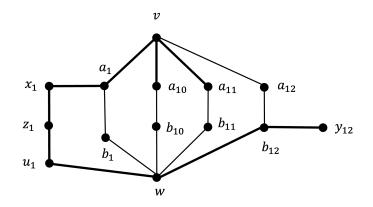


Figure 5: $T_{9,2}$ in Lemma 3.2.

4 Paths of order five

We continue with the notation of the preceding section. In this section, we deal with the case where $M_5^w(v)$ is large.

Lemma 4.1 Suppose that $|M_4^w(v) \cup M_5^w(v)| \ge 5458$. Then G contains an induced copy of $T_{9,1}$.

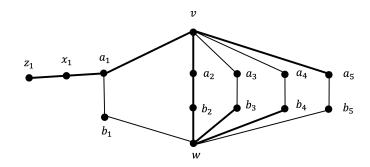


Figure 6: T_8 in Lemma 3.3.

Proof. In view of Lemma 3.1, we may assume that $|M_4^w(v)| \leq 51$. Then $|M_5^w(v) - M_4^w(v)| \geq 5407$. Take $a_1, \ldots, a_{5407} \in M_5^w(v) - M_4^w(v)$. For each $i \in \{1, \ldots, 5407\}$, let $va_ib_ic_iw$ be an induced v - w path. If there exists $c \in \{c_1, \ldots, c_{5407}\}$ such that $|\{i \in \{1, \ldots, 5407\} \mid c_i = c\}| \geq 52$, then $|M_4^c(v)| \geq 52$, and hence the desired conclusion follows from Lemma 3.1. Thus we may assume that $|\{i \in \{1, \ldots, 5407\} \mid c_i = c\}| \leq 51$ for each $c \in \{c_1, \ldots, c_{5407}\}$. Then $|\{c_1, \ldots, c_{5407}\}| \geq \lceil 5407/51 \rceil = 107$. We may assume that c_1, \ldots, c_{107} are distinct. Since G is $\{C_3, C_4\}$ -free, we see that $\{a_i, b_i, c_i\} \cap \{a_j, b_j, c_j\} = \emptyset$ for any $i, j \in \{1, \ldots, 107\}$ with $i \neq j$. Since G is $\{C_3, C_4\}$ -free, it follows that

$$E(G[\{v, w\} \cup \{a_i, b_i, c_i \mid 1 \le i \le 107\}]) - \{va_i, a_ib_i, b_ic_i, c_iw \mid 1 \le i \le 107\}$$

= $E(G[\{b_i \mid 1 \le i \le 107\}]).$ (4.1)

Note that $N(b_1) \cap \{b_i \mid 2 \le i \le 107\} \in M_4^w(b_1)$. Thus by Lemma 3.1, we may assume that $|N(b_1) \cap \{b_i \mid 2 \le i \le 107\}| \le 51$. We may assume that

$$b_1 b_i \notin E(G)$$
 for every $i \in \{2, \dots, 56\}$. (4.2)

Take $y_1 \in N(b_1) - \{a_1, c_1\}$. By (4.1) and (4.2), $y_1 \notin \{v, w\} \cup \{a_i, b_i, c_i | 1 \le i \le 56\}$. Since G is $\{C_3, C_4\}$ -free,

$$y_1v, y_1w, y_1a_1, y_1c_1 \notin E(G).$$
 (4.3)

Note that $b_1 \in M_4^w(y_1)$ and $N(y_1) \cap \{b_i \mid 2 \le i \le 56\} \subseteq M_4^w(y_1)$. Thus by Lemma 3.1, we may assume that $|N(y_1) \cap \{b_i \mid 2 \le i \le 56\}| \le 50$. We may assume that

$$y_1 b_i \notin E(G)$$
 for every $i \in \{2, \dots, 6\}.$ (4.4)

Since G is $\{C_3, C_4\}$ -free, $|N(y_1) \cap \{a_2, \ldots, a_6\}| \leq 1$ and $|N(y_1) \cap \{c_2, \ldots, c_6\}| \leq 1$. We may assume that $y_1a_2, y_1a_3 \notin E(G)$ and $y_1c_4, y_1c_5 \notin E(G)$. Since G is $\{C_3, C_4\}$ -free, one of b_2 and b_3 , say b_2 , and one of b_4 and b_5 , say b_4 , are nonadjacent. It now follows from (4.1) through (4.4) that $\{b_2, a_2, v, a_1, b_1, y_1, c_1, w, c_4, b_4\}$ induces a copy of $T_{9,1}$, as desired (see Figure 7).

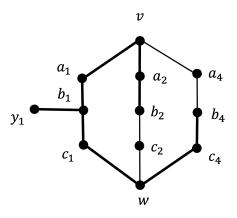


Figure 7: $T_{9,1}$ in Lemma 4.1.

Lemma 4.2 Suppose that $|M_4^w(v) \cup M_5^w(v)| \ge 526$. Then G contains an induced copy of $T_{9,2}$.

Proof. By Lemma 3.2, we may assume that $|M_5^w(v) - M_4^w(v)| \ge 526 - 15 = 511$. Take $a_1, \ldots, a_{511} \in M_5^w(v) - M_4^w(v)$. For each $i \in \{1, \ldots, 511\}$, let $va_ib_ic_iw$ be an induced v - w path. By Lemma 3.2, we may assume that $|\{c_1, \ldots, c_{511}\}| \ge [511/15] = 35$. We may assume that c_1, \ldots, c_{35} are distinct. As in the proof of Lemma 4.1, we get

$$E(G[\{v, w\} \cup \{a_i, b_i, c_i \mid 1 \le i \le 35\}]) - \{va_i, a_ib_i, b_ic_i, c_iw \mid 1 \le i \le 35\}$$

= $E(G[\{b_i \mid 1 \le i \le 35\}]).$ (4.5)

Take $x_1 \in N(a_1) - \{v, b_1\}$. By (4.5), $x_1 \notin \{v, w\} \cup \{a_i, b_i, c_i \mid 1 \le i \le 35\}$. Since $a_1 \notin M_4^w(v)$,

$$x_1w \notin E(G). \tag{4.6}$$

Since G is $\{C_3, C_4\}$ -free,

 $x_1a_i \notin E(G)$ for every $i \in \{2, \dots, 35\}$ and $x_1v_1x_1b_1 \notin E(G)$. (4.7)

In view of Lemma 3.2, we may assume that $|N(b_1) \cap \{b_2, \ldots, b_{35}\}| \leq 15$ and $|N(x_1) \cap \{b_2, \ldots, b_{35}\}| \leq 15$. We may assume that

$$b_1 b_i, x_1 b_i \notin E(G)$$
 for every $i \in \{2, 3, 4, 5\}.$ (4.8)

Since G is $\{C_3, C_4\}$ -free, $|N(x_1) \cap \{c_2, c_3, c_4, c_5\}| \leq 1$. We may assume that x_1c_2 , $x_1c_3, x_1c_4 \notin E(G)$. Since G is C_3 -free, we may assume that $b_2b_3 \notin E(G)$. It now follows from (4.5) through (4.8) that $\{b_1, a_1, x_1, v, a_2, b_2, c_2, w, c_3, b_3\}$ induces a copy of $T_{9,2}$ (see Figure 8).

Lemma 4.3 Suppose that $|M_4^w(v) \cup M_5^w(v)| \ge 61$. Then G contains an induced copy of T_8 .

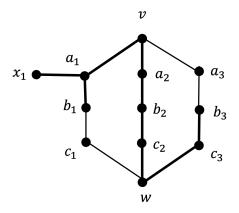


Figure 8: $T_{9,2}$ in Lemma 4.2.

Proof. By Lemma 3.3, we may assume that $|M_5^w(v) - M_4^w(v)| \ge 61 - 5 = 56$. Take $a_1, \ldots, a_{56} \in M_5^w(v) - M_4^w(v)$. For each $i \in \{1, \ldots, 56\}$, let $va_ib_ic_iw$ be an induced v - w path. By Lemma 3.3, we may assume that $|\{c_1, \ldots, c_{56}\}| \ge \lceil 56/5 \rceil = 12$. We may assume that c_1, \ldots, c_{12} are distinct. As in Lemma 4.1, we get $E(G[\{v, w\} \cup \{a_i, b_i, c_i \mid 1 \le i \le 12\}]) - \{va_i, a_ib_i, b_ic_i, c_iq \mid 1 \le i \le 12\} = E(G[\{b_i \mid 1 \le i \le 12\}])$. Take $x_1 \in N(a_1) - \{v, b_1\}$. As in Lemma 4.2, $x \notin \{v, w\} \cup \{a_i, b_i, c_i \mid 1 \le i \le 12\}$, $x_1w, x_1v, x_1b_1, x_1c_1 \notin E(G)$, and $x_1a_i \notin E(G)$ for every $i \in \{2, \ldots, 12\}$. In view of Lemma 3.3, we may assume that $|N(b_1) \cap \{b_i \mid 2 \le i \le 12\}| \le 5$ and $|N(x_1) \cap \{b_i \mid 2 \le i \le 12\}| \le 5$. We may assume that $b_1b_2, x_1b_2 \notin E(G)$. Since G is $\{C_3, C_4\}$ -free, $|N(x_1) \cap \{c_3, c_4, c_5\}| \le 1$. We may assume that $x_1c_3, x_1c_4 \notin E(G)$. It follows that $\{c_4, w, c_3, c_1, b_1, a_1, x_1, v, a_2, b_2\}$ induces a copy of T_8 (see Figure 9). □

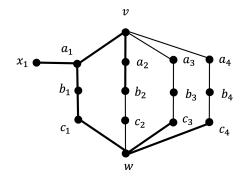


Figure 9: T_8 in Lemma 4.3.

5 Proof of Proposition 1.5

Recall that G is a 3-connected $\{C_3, C_4\}$ -free graph. Throughout the rest of this paper, we fix a vertex $w \in V(G)$ with $\deg_G(w) = \Delta(G)$.

For a vertex $u \in V(G)$ and a nonnegative integer d, let $N_d(u)$ be the set of vertices of G such that $\operatorname{dist}_G(u, v) = d$, and let $N_{\leq d}(u) = \bigcup_{0 \leq i \leq d} N_i(u)$ and $N_{\geq d}(u) = \bigcup_{i \geq d} N_i(u)$; thus $N_0(u) = \{u\}$ and $N_1(u) = N(u)$. Clearly N(w) is independent, $|N(x) \cap N_2(w)| \geq 2$ for every $x \in N(w)$, and

$$|N(y) \cap N(w)| \le 1 \text{ for every } y \in N_{\ge 2}(w).$$

$$(5.1)$$

We have $\delta(G[N_{\geq 2}(w)]) \geq 2$ by (5.1). As in [3], for $U \subseteq V(G)$, we let L(U) denote the set of those vertices $v \in N_2(w) \cup N_3(w)$ for which there exists a v - w path of order four avoiding U. The following two lemmas are proved in Section 5 of [3].

Lemma 5.1 Let $X \subseteq N_{\geq 2}(w)$, and set $Y_1 = (X \cup N(X)) \cap N_2(w)$, $Y_2 = N(Y_1) \cap N(w)$, $Z_1 = N(X) \cap L(X)$, $Z_2 = (X \cup N(X \cup Z_1)) \cap N_2(w)$ and $Z_3 = N(Z_2) \cap N(w)$. Then the following hold.

- (i) If $a \in N(w) Y_2$, then $E_G(X, N_{<1}(a)) = \emptyset$.
- (ii) If $a \in N(w) Z_3$, then $E_G(X, N_{\leq 2}(a) Z_3) = \emptyset$.

Lemma 5.2 Let $X \subseteq N_{\geq 2}(w)$. Then $N(X) \cap N_2(w) \subseteq \bigcup_{u \in X} M_4^w(u)$ and $N(X) \cap L(X) \subseteq \bigcup_{u \in X} M_5^w(u)$.

The following lemma follows from Lemma 5.2 and (5.1), and is virtually the same as Lemma 5.3 in [3].

Lemma 5.3 Let $X \subseteq N_{\geq 2}(w)$, and let Y_1, Y_2, Z_1, Z_2, Z_3 be as in Lemma 5.2. Then

- (i) $|Y_2| \le |Y_1| \le |X N(X)| + \sum_{u \in X} |M_4^w(u)|,$
- (ii) $|Z_1| \leq \sum_{u \in X} |M_5^w(u)|$, and
- (iii) $|Z_3| \le |Z_2| \le |X N(X \cup Z_1)| + \sum_{u \in X \cup Z_1} |M_4^w(u)|.$

In this section, we prove Proposition 1.5. By way of contradiction, suppose that G is $T_{9,1}$ -free and $\Delta(G) \geq 2 \cdot 10^{41}$. By Lemmas 3.1 and 4.1,

$$|M_4^w(u)| \le 51 \text{ and } |M_5^w(u)| \le |M_4^w(u) \cup M_5^w(u)| \le 5457 \text{ for every } u \in N_{\ge 2}(w).$$
(5.2)

We derive a contradiction by proving several claims. The main claim is Claim 5.13, in which we show that $\Delta(G[N_{\geq 2}(w)]) < 5.5 \cdot 10^3$. We start with two claims concerning paths in G - w.

Claim 5.4 Let $a_6a_5a_4a_3a_2a'_3$ be a path in $G[N_{\geq 2}(w)]$ with $a_2 \in N_2(w)$, and write $N(a_2) \cap N(w) = \{a_1\}$. Then $\{a_6a_2, a_6a'_3, a_6a_1, a_5a'_3, a_5a_1\} \cap E(G) \neq \emptyset$.

Proof. Set $X = \{a_2, \ldots, a_6, a'_3\}$. We have $X - N(X) = \emptyset$. Suppose that $\{a_6a_2, a_6a'_3, a_6a_1, a_5a'_3, a_5a_1\} \cap E(G) = \emptyset$. Then $E(G[X \cup \{a_1\}]) = \{a_6a_5, a_5a_4, a_4a_3, a_3a_2, a_2a'_3, a_2a_1\}$. Let Y_2 be as in Lemma 5.1. By Lemma 5.3 (i) and (5.2), $|Y_2| \leq 6 \cdot 51 < |N(w)|$. Take $b_1 \in N(w) - Y_2$ and $b_2 \in N(b_1) \cap N_{\geq 2}(w)$ (see Figure 10). Since G is $\{C_3, C_4\}$ -free, $E(G[\{a_1, w, b_1, b_2\}]) = \{a_1w, wb_1, b_1b_2\}$. Since $E_G(X, \{w, b_1, b_2\}) = \emptyset$ by Lemma 5.1 (i), it follows that $X \cup \{a_1, w, b_1, b_2\}$ induces a copy of $T_{9,1}$, which contradicts the assumption that G is $T_{9,1}$ -free. □

Claim 5.5 Let $a_5a_4a_3a_2a_1a'_2$ be a path in G-w with $a_1 \in N(w)$ and $a_2, a_3, a_4, a_5, a'_2 \in N_{\geq 2}(w)$. Then $\{a_5a_1, a_5a'_2, a_4a'_2\} \cap E(G) \neq \emptyset$

Proof. Set $X = \{a_2, \ldots, a_5, a'_2\}$, and let Z_1, Z_3 be as in Lemma 5.1. We have $X - N(X \cup Z_1) \subseteq X - N(X) \subseteq \{a'_2\}$. Suppose that $\{a_5a_1, a_5a'_2, a_4a'_2\} \cap E(G) = \emptyset$. Then $E(G[X \cup \{a_1\}]) = \{a_5a_4, a_4a_3, a_3a_2, a_2a_1, a_1a'_2\}$. By Lemma 5.3 (ii), (iii) and (5.2), $|Z_1| \leq 5 \cdot 5457 = 27285$ and $|Z_3| \leq 1 + 27290 \cdot 51 < |N(w)|$. Take $b_1 \in$

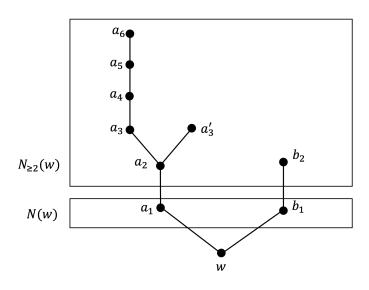


Figure 10: $T_{9,1}$ in Claim 5.4.

 $N(w) - Z_3$ and $b_2 \in N(b_1) \cap N_{\geq 2}(w)$. Since $|N(b_2) \cap N_{\geq 2}(w)| \geq 2$, we can take $b_3 \in N(b_2) \cap N_{\geq 2}(w)$ so that $a_1b_3 \notin E(G)$ (see Figure 11). Then $E(G[\{a_1, w, b_1, b_2, b_3\}]) = \{a_1w, wb_1, b_1b_2, b_2b_3\}$. Since $E_G(X, \{w, b_1, b_2, b_3\}) = \emptyset$ by Lemma 5.1 (ii), it follows that $X \cup \{a_1, w, b_1, b_2, b_3\}$ induces a copy of $T_{9,1}$, a contradiction. \Box

Claim 5.6 We have $N_{\geq 4}(w) = \emptyset$.

Proof. Suppose that $N_{\geq 4}(w) \neq \emptyset$. Take $u \in N_4(w)$, and take $z, z', z'' \in N(u)$ so that $z \in N_3(w)$. Take $y \in N(z) \cap N_2(w)$, write $N(y) \cap N(w) = \{x\}$, and take $y' \in (N(x) \cap N_2(w)) - \{y\}$. Since $z', z'' \in N_{\geq 3}(w)$ and $u \in N_4(w)$, we have $z'x, z''x \notin E(G)$ and $uy' \notin E(G)$. Since $z', z'' \in N(u)$, $|N(y') \cap \{z', z''\}| \leq 1$.

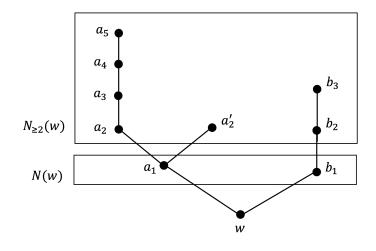


Figure 11: $T_{9,1}$ in Claim 5.5.

Consequently we get a contradiction by applying Claim 5.5 to z'uzyxy' or z''uzyxy'.

Set

$$R_1 = \{ z \in N_3(w) \mid |N(z) \cap N_2(w)| = 1 \},\$$

$$R_2 = \{ z \in N_3(w) \mid |N(z) \cap N_2(w)| \ge 2 \}.$$

For the purpose of showing that $\Delta(G[N_{\geq 2}(w)]) < 5.5 \cdot 10^3$, we aim at bounding $|N(y) \cap R_1|$ for $y \in N_2(w)$ (Claim 5.11). We here prove a technical claim.

Claim 5.7 Let $z \in R_1$ and $z' \in N_3(w)$ with $zz' \in E(G)$. Write $N(z) \cap N_2(w) = \{y\}$, let $y' \in N(z') \cap N_2(w)$, and write $N(y) \cap N(w) = \{x\}$ and $N(y') \cap N(w) = \{x'\}$. Then x = x'.

Proof. Since G is C₃-free, $y \neq y'$. Suppose that $x \neq x'$. Then $yx' \notin E(G)$. Take $y'' \in (N(x') \cap N_2(w)) - \{y'\}$. Since $yx' \notin E(G)$, $y'' \neq y$. Since $z \in R_1$, $zy'' \notin E(G)$. Since $z \in R_1$, we can take $z'' \in N(z) \cap N_3(w)$ with $z'' \neq z'$. Since $x' \in N(w)$, $z''x' \notin E(G)$. Consequently $\{z''x', yx', zy''\} \cap E(G) = \emptyset$. Since $y, z'' \in N(z), |N(y'') \cap \{y, z''\}| \leq 1$. Therefore we get a contradiction by applying Claim 5.5 to yzz'y'x'y'' or z''zz'y'x'y''. □

Using Claim 5.7, we obtain the following three claims.

Claim 5.8 Let H be a component of $G[R_1]$. Then $N(V(H)) \cap N_2(w)$ is independent and $|N(N(V(H)) \cap N_2(w)) \cap N(w)| = 1$.

Proof. Since H is connected, it follows from Claim 5.7 that $N(y) \cap N(w) = N(y') \cap N(w)$ for all $y, y' \in N(V(H)) \cap N_2(w)$, which implies that $|N(N(V(H)) \cap N_2(w)) \cap N(w)| = 1$. Since G is C_3 -free, it follows that $N(V(H)) \cap N_2(w)$ is independent. \Box

Claim 5.9 We have $\Delta(G[R_1]) \leq 2$.

Proof. Suppose that there exists $z_0 \in R_1$ with $\deg_{G[R_1]}(z_0) \geq 3$, and take three distinct vertices z, z', z'' in $N(z_0) \cap R_1$. Write $N(z) \cap N_2(w) = \{y\}$, $N(z') \cap N_2(w) = \{y'\}$ and $N(y) \cap N(w) = \{x\}$. Since G is $\{C_3, C_4\}$ -free, $y \neq y'$. By Claim 5.8, $y'x \in E(G)$. Since $z'' \in N_3(w)$ and $x \in N(w)$, $z''x \notin E(G)$. Since G is $\{C_3, C_4\}$ -free, $z''y', z_0y' \notin E(G)$. Consequently we get a contradiction by applying Claim 5.5 to $z''z_0zyxy'$.

Claim 5.10 We have $E_G(R_1, R_2) = \emptyset$.

Proof. Suppose that there exist $z \in R_1$ and $z' \in R_2$ with $zz' \in E(G)$. Write $N(z) \cap N_2(w) = \{y\}$ and $N(y) \cap N(w) = \{x\}$, and take $y', y'' \in N(z') \cap N_2(w)$ with $y' \neq y''$. By Claim 5.7, $y'x, y''x \in E(G)$, which contradicts the assumption that G is $\{C_3, C_4\}$ -free.

Since $\deg_G(z) \geq 3$ for all $z \in R_1$, it follows from Claims 5.6, 5.9 and 5.10 that each component of $G[R_1]$ is a cycle, and is a component of $G[N_3(w)] = G[N_{\geq 3}(w)]$. The following claim is a key result in bounding $\Delta(G[N_{\geq 2}(w)])$.

Claim 5.11 For every $y \in N_2(w)$, $|N(y) \cap R_1| \le 6$.

Proof. Suppose that there exists $y_1 \in N_2(w)$ such that $|N(y_1) \cap R_1| \ge 7$. We derive a contradiction by proving several subclaims concerning components of $G[R_1]$.

Subclaim 5.11.1 Let H be a component of $G[R_1]$ with $N(y_1) \cap V(H) \neq \emptyset$. Then $|V(H)| \equiv 0 \pmod{3}$, and we can write $H = z_1 z_2 \dots z_{|V(H)|} z_1$ so that $N(z_j) \cap N_2(w) = \{y_1\}$ for every j with $j \equiv 1 \pmod{3}$.

Proof. Take $u_1 \in N(y_1) \cap V(H)$ and $u_2 \in N(u_1) \cap V(H)$, and write $(N(u_2) \cap V(H)) - \{u_1\} = \{u_3\}$ and $(N(u_3) \cap V(H)) - \{u_2\} = \{u_4\}$. Suppose that $u_4y_1 \notin E(G)$. Since H is a cycle and $|(N(y_1) \cap R_1) - \{u_1\}| \ge 7 - 1 \ge 2$, there exists $z \in (N(y_1) \cap R_1) - \{u_1\}$ with $u_3z, u_4z \notin E(G)$. Write $N(y_1) \cap N(w) = \{x\}$. Since $u_3, u_4 \in N_3(w)$ and $x \in N(w), u_3x, u_4x \notin E(G)$. Consequently we get a contradiction by applying Claim 5.4 to $u_4u_3u_2u_1y_1z$. Thus $u_4y_1 \in E(G)$. Since $u_1 \in N(y_1) \cap V(H)$ is arbitrary, this implies the desired conclusion.

Subclaim 5.11.2 Let H be a component of $G[R_1]$ with $N(y_1) \cap V(H) \neq \emptyset$, and write |V(H)| = 3m. Then $N(V(H)) \cap N_2(w)$ is an independent set of cardinality 3, and we can write $H = z_1 z_2 \dots z_{3m} z_1$ and $N(V(H)) \cap N_2(w) = \{y_1, y_2, y_3\}$ so that for each $k \in \{1, 2, 3\}, N(z_j) \cap N_2(w) = \{y_k\}$ for every j with $j \equiv k \pmod{3}$.

Proof. By Subclaim 5.11.1, we can write $H = z_1 z_2 \dots z_{3m} z_1$ so that $N(z_{3i+1}) \cap N_2(w) = \{y_1\}$ for every $i \in \{0, 1, \dots, m-1\}$. Take $h \in \{0, 1, \dots, m-1\}$, and write $N(z_{3h+2}) \cap N_2(w) = \{y_2\}$. Then $y_2 \neq y_1$. Suppose that $z_{3h-1}y_2 \notin E(G)$ (indices of z are to be read modulo 3m). Take $u \in (N(y_2) \cap N_{\geq 2}(w)) - \{z_{3h+2}\}$. We show that

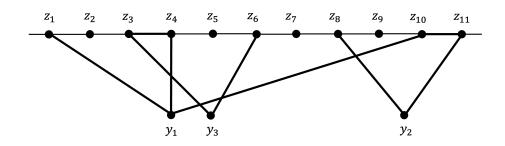


Figure 12: $T_{9,1}$ in Subclaim 5.11.3.

 $z_{3h}u, z_{3h-1}u \notin E(G)$. Suppose that $\{z_{3h}u, z_{3h-1}u\} \cap E(G) \neq \emptyset$. If $u \in N_2(w)$, then $u, y_2 \in N(V(H)) \cap N_2(w)$, and hence $uy_2 \notin E(G)$ by Claim 5.8, which contradicts our choice of u. Thus $u \in N_3(w)$. Since $\{z_{3h}u, z_{3h-1}u\} \cap E(G) \neq \emptyset$, this forces $u \in \{z_{3h+1}, z_{3h}, z_{3h-1}, z_{3h-2}\}$. Since G is $\{C_3, C_4\}$ -free and $z_{3h-1}y_2 \notin E(G)$, it follows that $u = z_{3h-2}$, which contradicts the fact that $N(z_{3h-2}) \cap N_2(w) = \{y_1\}$. Consequently $z_{3h}u, z_{3h-1}u \notin E(G)$. Write $N(y_2) \cap N(w) = \{x\}$. Since $z_{3h}, z_{3h-1} \in N_3(w)$ and $x \in N(w), z_{3h}x, z_{3h-1}x \notin E(G)$. Therefore we get a contradiction by applying Claim 5.4 to $z_{3h-1}z_{3h}z_{3h+1}z_{3h+2}y_2u$. Thus $z_{3h-1}y_2 \in E(G)$. Since h is arbitrary, this implies that $N(z_{3i+2}) \cap N_2(w) = \{y_2\}$ for every $i \in \{0, 1, \ldots, m-1\}$. Similarly if we write $N(z_3) \cap N_2(w) = \{y_3\}$, then $N(z_{3i+3}) \cap N_2(w) = \{y_3\}$ for every $i \in \{0, 1, \ldots, m-1\}$. Hence $N(V(H)) \cap N_2(w) = \{y_1, y_2, y_3\}$, and $\{y_1, y_2, y_3\}$ is independent by Claim 5.8.

Subclaim 5.11.3 Let H be a component of $G[R_1]$ with $N(y_1) \cap R_1 \neq \emptyset$. Then $|V(H)| \leq 9$.

Proof. Write |V(H)| = 3m, and let $H = z_1 z_2 ... z_{3m} z_1$ and $N(V(H)) \cap W_2(z) = \{y_1, y_2, y_3\}$ be as in Subclaim 5.11.2. Suppose that $|V(H)| \ge 10$. Then $m \ge 4$. Since $\{y_1, y_2, y_3\}$ is independent by Subclaim 5.11.2. $\{z_6, y_3, z_3, z_4, y_1, z_1, z_{10}, z_{11}, y_2, z_8\}$ induces a copy of $T_{9,1}$, a contradiction (see Figure 12). □

We can now complete the proof of Claim 5.11. Since $|N(y_1) \cap R_1| \geq 7$, it follows from Subclaim 5.11.3 that there exist three distinct components of $G[R_1]$ intersecting with $N(y_1)$. Let H, H', H'' be such components. Write |V(H)| = 3m and $|V(H')| = 3m' \ (m, m' \in \{2, 3\})$. Let $H = z_1 z_2 \dots z_{3m} z_1$ and $N(V(H)) \cap N_2(w) = \{y_1, y_2, y_3\}$ be as in Subclaim 5.11.2, and also let $H' = z'_1 z'_2 \dots z'_{3m'} z'_1$ and $N(V(H')) \cap N_2(w) = \{y_1, y'_2, y'_3\}$ be as in Subclaim 5.11.2 (it is possible that $\{y_2, y_3\} \cap \{y'_2, y'_3\} \neq \emptyset$). Write $N(y_1) \cap N(w) = \{x\}$. Applying Claim 5.8 to H and H', we see that $\{y_1, y_2, y_3, y'_2, y'_3\} \subseteq N(x)$. Hence $\{y_1, y_2, y_3, y'_2, y'_3\}$ is independent. We have $y_2 \neq y'_2$ or $y_2 \neq y'_3$. Replacing y'_2 by y'_3 and $z'_1 z'_2 \dots z'_{3m'} z'_1$ by $z'_1 z'_{3m'} z'_{3m'-1} \dots z'_2 z'_1$ if necessary, we may assume that $y_2 \neq y'_2$. Take $z \in N(y_1) \cap V(H'')$. We now see that $\{z_5, y_2, z_2, z_1, y_1, z, z'_1, z'_2, y'_2, z'_5\}$ induces a copy of $T_{9,1}$ (see Figure 13). This is a

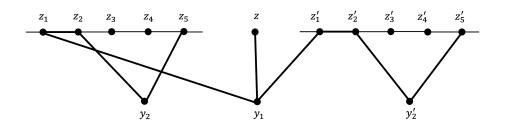


Figure 13: $T_{9,1}$ in Claim 5.11.

contradiction, which completes the proof of Claim 5.11.

Recall that for $y \in N_{\geq 2}(w)$, $L(\{y\})$ denotes the set of those vertices $v \in N_2(w) \cup N_3(w)$ for which there exists a v - w path of order four avoiding y.

Claim 5.12 For every $y \in N_2(w)$, $|N(y) \cap (N_2(w) \cup R_2)| \le 5457$.

Proof. Let $y \in N_2(w)$. By the definition of $L(\{y\})$ and $R_2, R_2 \subseteq L(\{y\})$. Hence $N(y) \cap N_2(w) \subseteq M_4^w(y)$ and $N(y) \cap R_2 \subseteq M_5^w(y)$ by Lemma 5.2. Consequently $|N(y) \cap (N_2(w) \cup R_2)| \leq |M_4^w(y) \cup M_5^w(y)| \leq 5457$ by (5.2).

Claim 5.13 We have $\Delta(G[N_{\geq 2}(w)]) < 5.5 \cdot 10^3$.

Proof. Let $y \in N_{\geq 2}(w)$. If $y \in N_2(w)$, then it follows from Claims 5.11 and 5.12 that deg_{*G*[*N*≥2(*w*)]}(*y*) = |*N*(*y*) ∩ *R*₁| + |*N*(*y*) ∩ (*N*₂(*w*) ∪ *R*₂)| ≤ 6 + 5457 < 5.5 · 10³; if $y \in N_3(w)$, then $N(y) ∩ N_3(w) ⊆ N(y) ∩ L(\{y\})$ by the definition of $L(\{y\})$, and hence deg_{*G*[*N*≥2(*w*)]}(*y*) = |*N*(*y*) ∩ (*N*₂(*w*) ∪ *N*₃(*w*))| ≤ |*M*^{*w*}₄(*y*) ∪ *M*^{*w*}₅(*y*)| ≤ 5457 < 5.5 · 10³ by Lemma 5.2 and (5.2). Since $y ∈ N_{\geq 2}(w)$ is arbitrary, we obtain $\Delta(G[N_{\geq 2}(w)]) < 5.5 · 10³$, as desired.

We proceed to consider components of $G[N_{\geq 2}(w)]$.

Claim 5.14 If H and H' are components of $G[N_{\geq 2}(w)]$, then we have $N(V(H)) \cap N(w) \subseteq N(V(H')) \cap N(w)$ or $N(V(H')) \cap N(w) \subseteq N(V(H)) \cap N(w)$.

Proof. Suppose that there exist components H, H' of $G[N_{\geq 2}(w)]$ such that $(N(V(H)) - N(V(H'))) \cap N(w) \neq \emptyset$ and $(N(V(H')) - N(V(H))) \cap N(w) \neq \emptyset$, and let $a_1 \in (N(V(H)) - N(V(H'))) \cap N(w)$ and $b_1 \in (N(V(H')) - N(V(H))) \cap N(w)$. Take $a_2 \in N(a_1) \cap V(H)$ and $b_2 \in N(b_1) \cap V(H')$. Since $\delta(G[N_{\geq 2}(w)]) \geq 2$, there exist $a_3, a_4 \in V(H) - \{a_2\}$ with $a_3 \neq a_4$ such that $a_2a_3, a_3a_4 \in E(G)$. Since G is $\{C_3, C_4\}$ -free and $a_4 \in N_{\geq 2}(w)$, it follows that $wa_1a_2a_3a_4$ is an induced path. Similarly there exist $b_3, b_4 \in V(H')$ such that $wb_1b_2b_3b_4$ is an induced path. We have $|N(\{a_2, a_3, a_4, b_2, b_3, b_4\}) \cap N(w)| \leq 6$ by (5.1). Take $c \in N(w) - N(\{a_2a_3, a_4, b_2, b_3, b_4\})$. Then $\{a_4, a_3, a_2, a_1, w, c, b_1, b_2, b_3, b_4\}$ induces a copy of $T_{9,1}$, a contradiction. □

Claim 5.15 There exists a component H of $G[N_{\geq 2}(w)]$ such that $|V(H)| \geq 2 \cdot 10^{41}$.

Proof. Since $N(N_2(w)) \supseteq N(w)$, we see from Claim 5.14 that there exists a component H of $G[N_{\geq 2}(w)]$ such that $N(V(H)) \supseteq N(w)$. By (5.1), it follows that $|V(H)| \ge |N(w)| \ge 2 \cdot 10^{41}$.

Let H be as in Claim 5.15. In view of Lemma 1.3, it follows from Claim 5.13 that if diam $(H) \leq 11$, then $|V((H)| < (5.5 \cdot 10^3)^{11} < 2 \cdot 10^{41}$, a contradiction. Thus diam $(H) \geq 12$. Take $y, y' \in V(H)$ with dist_H(y, y') = 12, and let $P = y_1 y_2 \dots y_{13}$ be a shortest y - y' path in H.

Claim 5.16 We have $y_5, y_6, y_7 \in N_2(w)$.

Proof. Suppose that $y_i \in N_3(w)$ for some $i \in \{5, 6, 7\}$, and take $z \in N(y_i) - \{y_{i-1}, y_{i+1}\}$. Then $z \in N_{\geq 2}(w)$. Since G is $\{C_3, C_4\}$ -free and P is a shortest y - y' path in $G[N_{\geq 2}(w)]$, it follows that $\{y_{i-4}, y_{i-3}, \ldots, y_{i+4}, z\}$ induces a copy of $T_{9,1}$, a contradiction.

Claim 5.17 Let $5 \le i \le 9$. Suppose that $y_i \in N_2(w)$, and write $N(y_i) \cap N(w) = \{x\}$. Then $y_{i-3}, y_{i+3} \in N(x)$.

Proof. If $N(x) \cap \{y_{i-4}, y_{i-3}, y_{i+3}, y_{i+4}\} = \emptyset$, then $\{y_{i-4}, y_{i-3}, \dots, y_{i+4}, x\}$ induces a copy of $T_{9,1}$, a contradiction, Thus $N(x) \cap \{y_{i-4}, y_{i-3}, y_{i+3}, y_{i+4}\} \neq \emptyset$. Suppose that $N(x) \cap \{y_{i-3}, y_{i+3}\} = \emptyset$. Then $N(x) \cap \{y_{i-4}, y_{i+4}\} \neq \emptyset$. We may assume that $xy_{i+4} \in E(G)$. Since P is an induced path, $y_{i-3}y_{i+4}, y_{i-2}y_{i+4} \notin E(G)$. Hence we get a contradiction by applying Claim 5.5 to $y_{i-3}y_{i-2}y_{i-1}y_ixy_{i+4}$. Thus $N(x) \cap \{y_{i-3}, y_{i+3}\} \neq \emptyset$. Now if $xy_{i-3} \notin E(G)$, then $xy_{i+3} \in E(G)$ and, since $y_{i-3}y_{i+3}, y_{i-2}y_{i+3} \notin E(G)$, we get a contradiction by applying Claim 5.5 to $y_{i-3}y_{i-2}y_{i-1}y_ixy_{i+3}$. Thus $xy_{i-3} \in E(G)$, we get a contradiction by applying Claim 5.5 to $y_{i-3}y_{i-2}y_{i-1}y_ixy_{i+3}$. Thus $xy_{i-3} \in E(G)$. By symmetry, we also obtain $xy_{i+3} \in E(G)$, as desired.

We are now in a position to complete the proof of Proposition 1.5. Having Claim 5.16 in mind, write $N(y_5) \cap N(w) = \{x_2\}, N(y_6) \cap N(w) = \{x_3\}$ and $N(y_7) \cap N(w) = \{x_1\}$. Then it follows from Claim 5.17 that for each $k \in \{0, 1, 2\}, N(y_i) \cap N(w) = \{x_k\}$ for every $i \in \{2, 3, ..., 12\}$ with $i \equiv k \pmod{3}$. Since N(w) is independent and P is an induced path, it follows that $\{y_7, x_1, y_4, y_5, x_2, y_2, y_{11}, y_{12}, x_3, y_9\}$ induces a copy of $T_{9,1}$ (see Figure 14). This contradicts the assumption that G is $T_{9,1}$ -free.

This completes the proof of Proposition 1.5.

6 Proof of Proposition 1.6

Recall that w is a vertex of a 3-connected $\{C_3, C_4\}$ -free graph G with $\deg_G(w) = \Delta(G)$. In this section, we prove Proposition 1.6. By way of contradiction, suppose that G is $T_{9,2}$ -free and $\Delta(G) \geq 5.5 \cdot 10^{35}$. We argue as in Section 5. The main claim

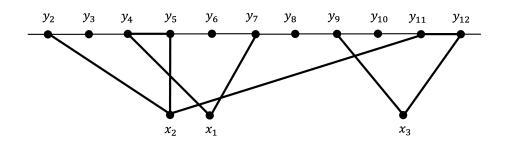


Figure 14: $T_{9,1}$ yielding the final contradiction.

is Claim 6.11. By Lemmas 3.2 and 4.2,

$$|M_4^w(u)| \le 15 \text{ and } |M_5^w(u)| \le |M_4^w(u) \cup M_5^w(u)| \le 525 \text{ for every } u \in N_{\ge 2}(w).$$
(6.1)

Claim 6.1 Let $a_6a_5a_4a_3a_2a_1$ be a path in G - w with $a_1 \in N(w)$ and $a_2, \ldots, a_6 \in N_{\geq 2}(w)$. Then $\{a_6a_2, a_6a_1, a_5a_1\} \cap E(G) \neq \emptyset$.

Proof. Set $X = \{a_2, \ldots, a_6\}$. We have $X - N(X) = \emptyset$. Suppose that $\{a_6a_2, a_6a_1, a_5a_1\} \cap E(G) = \emptyset$. Then $E(G[X \cup \{a_1\}]) = \{a_6a_5, a_5a_4, a_4a_3, a_3a_2, a_2a_1\}$. Let Y_2 be as in Lemma 5.1. By Lemma 5.3 (i) and (6.1), $|Y_2| \le 5 \cdot 15 < |N(w)|$. Take $b_1 \in N(w) - Y_2$, and take b_2 , $b'_2 \in N(b_1) \cap N_{\ge 2}(w)$ with $b_2 \neq b'_2$ (see Figure 15). We have $E(G[\{a_1, w, b_1, b_2, b'_2\}]) = \{a_1w, wb_1, b_1b_2, b_1b'_2\}$. Since $E_G(X, \{w, b_1, b_2, b'_2\}) = \emptyset$ by Lemma 5.1(i), it follows that $X \cup \{a_1, w, b_1, b_2, b'_2\}$ induces a copy of $T_{9,2}$, a contradiction. □

Claim 6.2 Let $a_5, a'_5, a_4, a_3, a_2 \in N_{\geq 2}(w)$ be vertices such that $\{a_5a_4, a'_5a_4, a_4a_3, a_3a_2\} \subseteq E(G)$ and $a_2 \in N_2(w)$, and write $N(a_2) \cap N(w) = \{a_1\}$. Then $\{a_5a_1, a'_5a_1\} \cap E(G) \neq \emptyset$.

Proof. Set $X = \{a_2, \ldots, a_5, a'_5\}$. We have $X - N(X) = \emptyset$. Suppose that $\{a_5a_1, a'_5a_1\} \cap E(G) = \emptyset$. Then $E(G[X \cup \{a_1\}]) = \{a_5a_4, a'_5a_4, a_4a_3, a_3a_2, a_2a_1\}$. Let Z_1, Z_3 be as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and (6.1), $|Z_1| \leq 5 \cdot 525 = 2625$ and $|Z_3| \leq 2630 \cdot 15 < |N(w)|$. Take $b_1 \in N(w) - Z_3$ and $b_2 \in N(b_1) \cap N_{\geq 2}(w)$. Since $|N(b_2) \cap N_{\geq 2}(w)| \geq 2$, we can take $b_3 \in N(b_2) \cap N_{\geq 2}(w)$ so that $a_1b_3 \notin E(G)$ (see Figure 16). Then $E(G[\{a_1, w, b_1, b_2, b_3\}]) = \{a_1w, wb_1, b_1b_2, b_2b_3\}$. Since $E_G(X, \{w, b_1, b_2, b_3\}) = \emptyset$ by Lemma 5.1 (ii), it follows that $X \cup \{a_1, w, b_1, b_2, b_3\}$ induces a copy of $T_{9,2}$, a contradiction. □

Claim 6.3 We have $N_{\geq 4}(w) = \emptyset$ and $\Delta(G[N_3(w)]) \leq 2$.

Proof. Suppose that $N_{\geq 4}(w) \neq \emptyset$ or $\Delta(G[N_3(w)]) \geq 3$. If $N_{\geq 4}(w) \neq \emptyset$, then let $u \in N_4(w)$, if $\Delta(G[N_3(w)]) \geq 3$, then take $u \in N_3(w)$ so that $|N(u) \cap N_3(w)| \geq 3$. Then we can take $z, z', z'' \in N(u) \cap N_{\geq 3}(w)$ so that $z \in N_3(w)$. Take $y \in N(z) \cap N_2(w)$, and write $N(y) \cap N(w) = \{x\}$. Since $z', z'' \in N_{\geq 3}(w)$, we have $z'x, z''x \notin E(G)$.

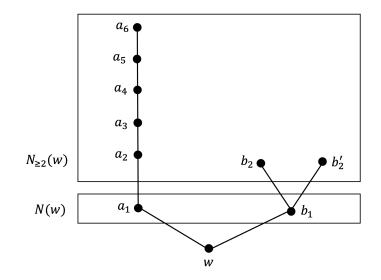


Figure 15: $T_{9,2}$ in Claim 6.1.

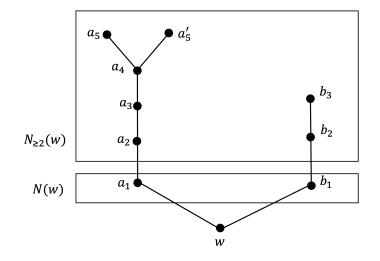


Figure 16: $T_{9,2}$ in Claim 6.2.

Hence we get a contradiction by applying Claim 6.2 to $\{z', z'', u, z, y\}$.

 Set

$$R_1 = \{ z \in N_3(w) \mid |N(z) \cap N_2(w)| = 1 \},\$$

$$R_2 = \{ z \in N_3(w) \mid |N(z) \cap N_2(w)| \ge 2 \}.$$

Claim 6.4 Let $z \in R_1$ and $z' \in N_3(w)$ with $zz' \in E(G)$. Write $N(z) \cap N_2(w) = \{y\}$, let $y' \in N(z') \cap N_2(w)$, and write $N(y) \cap N(w) = \{x\}$ and $N(y') \cap N(w) = \{x'\}$. Then x = x'.

Proof. Since G is C_3 -free, $y \neq y'$. Suppose that $x \neq x'$. Then $yx' \notin E(G)$. Since $z \in R_1$, we can take $z'' \in N(z) \cap N_3(w)$ with $z'' \neq z'$. Since $x' \in N(w)$, $z''x' \notin E(G)$.

Consequently we get a contradiction by applying Claim 6.2 to $\{z'', z, y, z', y'\}$. \Box

As in Section 5, the following two claims follow from Claim 6.4.

Claim 6.5 Let H be a component of $G[R_1]$. Then $N(V(H)) \cap N_2(w)$ is independent and $|N(N(V(H))) \cap N_2(w)) \cap N(w)| = 1$.

Claim 6.6 We have $E_G(R_1, R_2) = \emptyset$.

It follows from Claims 6.3 and 6.6 that each component of $G[R_1]$ is a cycle, and is a component of $G[N_3(w)] = G[N_{\geq 3}(w)]$.

Claim 6.7 Let H be a component of $G[R_1]$. Then $|V(H)| \equiv 0 \pmod{3}$, $N(V(H)) \cap N_2(w)$ is an independent set of cardinality 3, and we can write $H = z_1 z_2 \dots z_{3m} z_1$ and $N(V(H)) \cap N_2(w) = \{y_1, y_2, y_3\}$ so that for each $k \in \{1, 2, 3\}$, $N(z_j) \cap N_2(w) = \{y_k\}$ for every j with $j \equiv k \pmod{3}$.

Proof. Take $u_1 \in V(H)$ and $u_2 \in N(u_1) \cap V(H)$, and write $(N(u_2) \cap V(H)) - \{u_1\} = \{u_3\}$ and $(N(u_3) \cap V(H)) - |u_2\} = \{u_4\}$. Write $N(u_k) \cap N_2(w) = \{y_k\}$ for each $k \in \{1, 2, 3\}$, and write $N(y_1) \cap N(w) = \{x\}$. Since G is $\{C_3, C_4\}$ -free, $y_1 \neq y_2 \neq y_3 \neq y_1$. By Claim 6.5, $\{y_1, y_2, y_3\}$ is independent. Suppose that $u_4y_1 \notin E(G)$. Since $u_3, u_4 \in N_3(w)$ and $x \in N(w)$, $u_3x, u_4x \notin E(G)$. Hence we get a contradiction by applying Claim 6.1 to $u_4u_3u_2u_1y_1x$. Thus $u_4y_1 \in E(G)$. Since $u_1 \in V(H)$ is arbitrary, this implies the desired conclusion.

Claim 6.8 For each $y \in N_2(w)$, y is adjacent to at most one component of $G[R_1]$.

Proof. Suppose that there exists $y_1 \in N_2(w)$ such that y_1 is adjacent to two distinct components H, H' of $G[R_1]$. Having Claim 6.7 in mind, write |V(H)| = 3m and $|V(H')| = 3m' \ (m, m' \ge 2)$. Let $H = z_1 z_2 \dots z_{3m} z_1$ and $N(V(H)) \cap N_2(w) =$ $\{y_1, y_2, y_3\}$ be as in Claim 6.7, and also let $H' = z'_1 z'_2 \dots z'_{3m'} z'_1$ and $N(V(H')) \cap$ $N_2(w) = \{y_1, y'_2, y'_3\}$ be as in Claim 6.7. We have $y_2 \neq y'_2$ or $y_2 \neq y'_3$. By the symmetry of y'_2 and y'_3 , we may assume that $y_2 \neq y'_2$. Write $N(y_1) \cap N(w) = \{x\}$. By Claim 6.5, $\{y_1, y_2, y_3, y'_2, y'_3\} \subseteq N(x)$. Hence $\{y_1, y_2, y_3, y'_2, y'_3\}$ is independent. Suppose that $N(y_2) - \{x\} - (V(H) \cup V(H')) \neq \emptyset$ and take $z \in N(y_2) - \{x\} - \{x\}$ $(V(H) \cup V(H'))$. Then $z \in (N_2(w) - \{y_1, y_2, y_3, y'_2, y'_3\}) \cup (N_3(w) - (V(H) \cup V(H')).$ Since $N(V(H) \cup V(H')) \cap N_2(w) = \{y_1, y_2, y_3, y'_2, y'_3\}$ and H and H' are components of $G[N_3(w)]$, we obtain $N(z) \cap (V(H) \cup V(H')) = \emptyset$. Since $\{y_1, y_2, y'_2\} \subseteq N(x)$ and G is $\{C_3, C_4\}$ -free, we also see that $N(z) \cap \{y_1, y_2, y'_2\} = \{y_2\}$. Consequently $\{z, y_2, z_5, z_2, z_1, y_1, z'_1, z'_2, y'_2, z'_5\}$ induces a copy of $T_{9,2}$, which is a contradiction (see Figure 17). Thus $N(y_2) - \{x\} \subseteq V(H) \cup V(H')$. By the symmetry of y_2 and y_3 , we get $N(y_3) - \{x\} \subseteq V(H) \cup V(H')$. By the symmetry of H and H', we also obtain $(N(y'_2) \cup N(y'_3)) - \{x\} \subseteq V(H) \cup V(H')$. Therefore $\{x, y_1\}$ is a separator.

252

This contradicts the assumption that G is 3-connected, and completes the proof of Claim 6.8. $\hfill \Box$

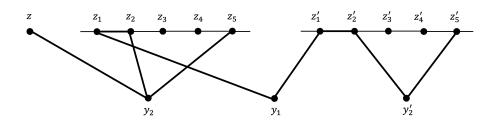


Figure 17: $T_{9,2}$ in Claim 6.8.

Claim 6.9 For every $y \in N_2(w)$, $|N(y) \cap R_1| \le 4$.

Proof. Suppose that there exists $y_1 \in N_2(w)$ such that $|N(y_1) \cap R_1| \geq 5$. By Claim 6.8, there exists a component H of $G[R_1]$ such that $|N(y_1) \cap V(H)| \geq 5$. Let $H = z_1 z_2 \ldots z_{3m} z_1$ and $N(V(H)) \cap N_2(w) = \{y_1, y_2, y_3\}$ be as in Claim 6.7. Since $|N(y_1) \cap V(H)| \geq 5$, we have $m \geq 5$. We now see that $\{z_8, y_2, z_{14}, z_{11}, z_{10}, y_1, z_4, z_3, y_3, z_6\}$ induces a copy of $T_{9,2}$, a contradiction (see Figure 18).

Claim 6.10 For every $y \in N_2(w)$, $|N(y) \cap (N_2(w) \cup R_2)| \le 525$.

Proof. Let $y \in N_2(w)$. By the definition of $L(\{y\})$ and $R_2, R_2 \subseteq L(\{y\})$. Hence $N(y) \cap N_2(w) \subseteq M_4^w(y)$ and $N(y) \cap R_2 \subseteq M_5^w(y)$ by Lemma 5.2. Consequently $|N(y) \cap (N_2(w) \cup R_2)| \leq |M_4^w(y) \cup M_5^w(y)| \leq 525$ by (6.1).

Claim 6.11 We have $\Delta(G[N_{\geq 2}(w)]) < 530$.

Proof. Let $y \in N_{\geq 2}(w)$. If $y \in N_2(w)$, then it follows from Claims 6.9 and 6.10 that $\deg_{G[N_{\geq 2}(w)]}(y) = |N(y) \cap R_1| + |N(y) \cap (N_2(w) \cup R_2)| \le 4 + 525 = 529$; if $y \in N_3(w)$, then $\deg_{G[N_{\geq 2}(w)]}(y) = |N(y) \cap N_2(w)| + |N(y) \cap N_3(w)| \le |M_4^w(y)| + \Delta(G[N_3(w)]) \le 15 + 2 \le 529$ by Lemma 5.2, (6.1) and Claim 6.3. Since $y \in N_{\geq 2}(y)$ is arbitrary, we

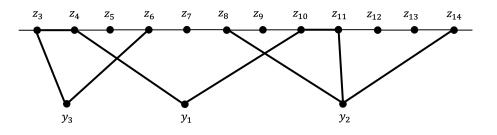


Figure 18: $T_{9,2}$ in Claim 6.9.

obtain $\Delta(G[N_{\geq 2}(w)]) < 530.$

We divide the rest of the proof into two cases.

Case 1: There exists a component H_0 of $G[N_{\geq 2}(w)]$ such that $|V(H_0)| \ge 2.75 \cdot 10^{35}$.

In view of Lemma 1.3, it follows from Claim 6.11 that $\operatorname{diam}(H_0) \geq 14$. Take $y, y' \in V(H_0)$ with $\operatorname{dist}_{H_0}(y, y') = 14$, and let $P = y_1 y_2 \dots y_{15}$ be a shortest y - y' path in H. We argue as in Claims 5.16 and 5.17.

Claim 6.12 We have $\{y_2, y_3, \ldots, y_{14}\} \subseteq N_2(w)$.

Proof. Suppose that $y_i \in N_3(w)$ for some $i \in \{2, \ldots, 14\}$. By symmetry, we may assume that $i \leq 8$. Take $z \in N(y_i) - \{y_{i-1}, y_i\}$. Then $z \in N_{\geq 2}(w)$. Since G is $\{C_3, C_4\}$ -free and P is a shortest y - y' path in $G[N_{\geq 2}(w)]$, it follows that $\{y_{i-1}, y_i, \ldots, y_{i+7}, z\}$ induces a copy of $T_{9,2}$, a contradiction.

For each $i \in \{2, ..., 14\}$, write $N(y_i) \cap N(w) = \{x_i\}$.

Claim 6.13 (i) Let $2 \le i \le 11$. Then we have $x_i y_{i+3} \in E(G)$ or $x_i y_{i+4} \in E(G)$. (ii) Let $5 \le i \le 14$. Then we have $x_i y_{i-3} \in E(G)$ or $x_i y_{i-4} \in E(G)$.

Proof. Let $2 \leq i \leq 11$, and suppose that $x_i y_{i+3}$, $x_i y_{i+4} \notin E(G)$. Since P is an induced path, $y_i y_{i+4} \notin E(G)$. Hence we get a contradiction by applying Claim 6.1 to $y_{i+4} y_{i+3} \dots y_i x_i$. This proves (i), and (ii) can be verified in a similar way. \Box

Claim 6.14 (i) Let $2 \le i \le 10$, and suppose that $x_iy_{i+4} \in E(G)$. Then $x_{i+1}y_{i+5} \in E(G)$.

(ii) Let $6 \le i \le 14$, and suppose that $x_i y_{i-4} \in E(G)$. Then $x_{i-1} y_{i-5} \in E(G)$.

Proof. Let $2 \leq i \leq 10$ and $x_i y_{i+4} \in E(G)$, and suppose that $x_{i+1} y_{i+5} \notin E(G)$. Then by Claim 6.13 (i), $x_{i+1} y_{i+4} \in E(G)$. Since $N(y_{i+4}) \cap N(w) = \{x_{i+4}\}$, this implies that $x_{i+1} = x_{i+4} = x_i$, which contradicts the fact that G is C_3 -free. Thus $x_{i+1} y_{i+5} \in E(G)$. This proves (i), and (ii) is verified in a similar way. \Box

Claim 6.15 Let $2 \leq i \leq 9$, and suppose that $x_i y_{i+3} \in E(G)$. Then $x_{i+1} y_{i+4} \in E(G)$.

Proof. Suppose that $x_{i+1}y_{i+4} \notin E(G)$. Then by Claim 6.13(i), $x_{i+1}y_{i+5} \in E(G)$, which implies $x_{i+1} = x_{i+5}$, and hence $x_{i+5}y_{i+1} \in E(G)$. Applying Claim 6.14 (ii) with i replaced by i + 5, we get $x_{i+4}y_i \in E(G)$, i.e., $x_iy_{i+4} \in E(G)$. Since $x_iy_{i+3} \in E(G)$ by assumption, this contradicts the fact that G is C_3 -free.

Note that we have $x_2y_5 \in E(G)$ or $x_2y_6 \in E(G)$ by Claim 6.13. Suppose that $x_2y_6 \in E(G)$. Then by Claim 6.14(i), for each $k \in \{2, 3, 4, 5\}$, $N(y_i) \cap N(w) = \{x_k\}$ for every $i \in \{2, \ldots, 14\}$ with $i \equiv k \pmod{4}$. Since G is $\{C_3, C_4\}$ -free, this implies that x_2, x_3, x_4, x_5 are distinct. We now see that $\{y_{14}, x_2, y_6, y_2, y_3, x_3, y_{11}, y_{12}, x_4, y_8\}$ induces a copy of $T_{9,2}$, which contradicts the assumption that G is $T_{9,2}$ -free (see

254

Figure 19). Consequently $x_2y_5 \in E(G)$. By Claim 6.15, for each $k \in \{2,3,4\}$, $N(y_i) \cap N(w) = \{x_k\}$ for every $i \in \{2, \ldots, 13\}$ with $i \equiv k \pmod{3}$. Therefore $\{y_2, x_2, y_8, y_5, y_6, x_3, y_{12}, y_{13}, x_1, y_{10}\}$ induces a copy of $T_{9,2}$, which again contradicts the assumption that G is $T_{9,2}$ -free (see Figure 19). This concludes the discussion for Case 1. \Box **Case 2:** $|V(H)| < 2.75 \cdot 10^{35}$ for every component H of $G[N_{\geq 2}(w)]$.

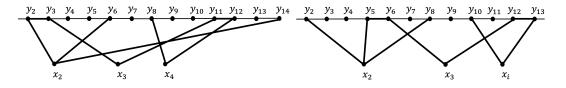


Figure 19: $T_{9,2}$ in Case 1.

Let H_1, \ldots, H_p be the components of $G[N_{\geq 2}(w)]$. Since $|N_{\geq 2}(w)| \geq 2|N(w)| \geq 1.1 \cdot 10^{36}$ by (5.1), we have $p \geq 5$. For each $x \in N(w)$, define a subset g(x) of $\{1, \ldots, p\}$ by $g(x) = \{\alpha \in \{1, \ldots, p\} \mid N(x) \cap V(H_\alpha) \neq \emptyset\}$. Since $N(N(w)) \supseteq N_2(w)$, we have $\bigcup_{x \in N(w)} g(x) = \{1, \ldots, p\}$.

Claim 6.16 If $x, x' \in N(w)$, then $g(x) \subseteq g(x')$ or $g(x') \subseteq g(x)$ or $g(x) \cap g(x') = \emptyset$.

Proof. Suppose that $g(x) - g(x') \neq \emptyset$, $g(x') - g(x) \neq \emptyset$ and $g(x) \cap g(x') \neq \emptyset$, and take $\alpha \in g(x) - g(x')$, $\beta \in g(x') - g(x)$ and $\gamma \in g(x) \cap g(x')$. Take $y \in N(x) \cap V(H_{\gamma})$ and $y' \in N(x') \cap V(H_{\gamma})$ so that $\operatorname{dist}_{H_{\gamma}}(y, y')$ is as small as possible, and let $y_1 \dots y_r$ $(y_1 = y, y_r = y')$ be a shortest y - y' path in H_{γ} . We have $r \geq 2$ by (5.1). Take $u \in N(x) \cap V(H_{\alpha})$. Since $\delta(H_{\alpha}) \geq 2$, we can take $u', u'' \in N(u) \cap V(H_{\alpha})$ so that $u' \neq u''$. Take $v \in N(x') \cap V(H_{\beta})$. Since $\delta(H_{\beta}) \geq 2$, we can take $v', v'' \in$ $V(H_{\beta}) - \{v\}$ so that $vv', v'v'' \in E(G)$ (see Figure 20). By the minimality of r, we have $x, x' \notin N(\{y_2, \dots, y_{r-1}\})$. By (5.1), $x \notin N(\{y', v\})$ and $x' \notin N(\{y, u\})$. Since $\beta \notin g(x)$ and $\alpha \notin g(x')$, we also get $x \notin N(\{v', v''\})$ and $x' \notin N(\{u', u''\})$. Since Gis $\{C_3, C_4\}$ -free, it follows that $\{u', u, u'', x, y_1, \dots, y_r, x', v, v', v''\}$ induces a copy of $S_{r+7}(\{2\}, \emptyset)$ (see the second paragraph of Section 1 for the definition of $S_n(I, J)$). Since $T_{9,2} = S_9(\{2\}, \emptyset)$ is an induced subgraph of $S_{r+7}(\{2\}, \emptyset)$, this contradicts the assumption that G is $T_{9,2}$ -free.

Set $A = \{x \in N(w) \mid g(x) = \{1, \dots, p\}\}$. We distinguish three subcases according as $|A| \leq 1, |A| = 2$, or $|A| \geq 3$. Subcase 2-1: $|A| \leq 1$.

Claim 6.17 We have $\cup_{x \in N(w) - A} g(x) = \{1, \dots, p\}.$

Proof. Suppose that $\bigcup_{x \in N(w) - A} g(x) \neq \{1, \ldots, p\}$. Since $\bigcup_{x \in N(w)} g(x) = \{1, \ldots, p\}$, this implies |A| = 1. Take $\alpha \in \{1, \ldots, p\} - (\bigcup_{x \in N(w) - A} g(x))$. By the definition of $g(x), N(V(H_{\alpha})) \cap N(w) = A$. Consequently H_{α} is a component of G - A, which contradicts the assumption that G is 3-connected. \Box

Let $I_1, \ldots, I_q \subseteq \{1, \ldots, p\}$ be the maximal sets among g(x) $(x \in N(w) - A)$.

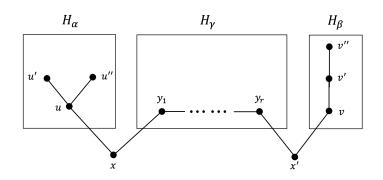


Figure 20: $S_{r+7}(\{2\}, \emptyset)$ in Claim 6.16.

By Claim 6.17, $I_1 \cup \ldots \cup I_q = \{1, \ldots, p\}$. By the definition of $A, q \ge 2$. Set $B = \bigcup_{\alpha \in I_1} V(H_\alpha)$. Since $q \ge 2, B \ne N_{\ge 2}(w)$. By Claim 6.16 and the maximality of $I_1, g(x) \subseteq I_1$ for all $x \in (N(B) \cap N(w)) - A$ which, by the definition of g(x), implies that $N((N(B) \cap N(w)) - A) \cap N_2(w) \subseteq B$. Therefore $G[B \cup ((N(B) \cap N(w)) - A)]$ is a component of $G - (A \cup \{w\})$, which contradicts the assumption that G is 3-connected. Subcase 2-2: |A| = 2.

Write $A = \{x, x'\}$. Since G is 3-connected, H_1 is not a component of $G - \{x, x'\}$. Hence $N(N(w) - \{x, x'\}) \cap V(H_1) \neq \emptyset$. Take $u \in N(\{x, x'\}) \cap V(H_1)$ and $u' \in V(\{x, x'\}) \cap V(H_1)$ $N(N(w) - \{x, x'\}) \cap V(H_1)$ so that $\operatorname{dist}_{H_1}(u, u')$ is as small as possible. By the symmetry of x and x', we may assume that $N(u) \cap N(w) = \{x\}$. Write $N(u') \cap$ $N(w) = \{x''\}$. Then $x'' \notin A$. Let u_1, \ldots, u_s $(u_1 = u, u_s = u')$ be a shortest u - u' path in H_1 ($s \ge 2$). From the minimality of s, it follows that $x, x', x'' \notin N(\{u_2, \ldots, u_{s-1}\})$. Take $u'' \in (N(x'') \cap N_2(w)) - \{u'\}$. Then $u'' \notin \{u_1, \ldots, u_s\}$. Since G is $\{C_3, C_4\}$ -free, the minimality of s implies that $u'' \notin N(\{u_1, \ldots, u_s\})$. Let α be the index with $u'' \in$ $V(H_{\alpha})$ (it is possible that $\alpha = 1$). Since $x'' \notin A$, there exists β with $\beta \notin g(x'')$. Take $y' \in N(x') \cap V(H_{\beta})$ and $y \in N(x) \cap V(H_{\beta})$ so that $\operatorname{dist}_{H_{\beta}}(y', y)$ is as small as possible, and let $y_1 \ldots y_r (y_1 = y', y_r = y)$ be a shortest y' - y path in $H_\beta(r \ge 2)$. Recall that $p \geq 5$. Take $\gamma, \gamma' \in \{1, \ldots, p\} - \{1, \alpha, \beta\}$ with $\gamma \neq \gamma'$, and take $v \in N(x') \cap V(H_{\gamma})$ and $v' \in N(x') \cap V(H_{\gamma'})$ (see Figure 21). Since $\beta \notin g(x''), x'' \notin N(\{y_2, \ldots, y_{r-1}\})$. By the minimality of r, we have $x', x \notin N(\{y_2, \ldots, y_{r-1}\})$. Consequently it follows from (5.1) that $\{v, x', v', y_1, \dots, y_r, x, u_1, \dots, u_s, x'', u''\}$ induces a copy of $S_{r+s+5}(\{2\}, \emptyset)$, which contradicts the assumption that G is $T_{9,2}$ -free.

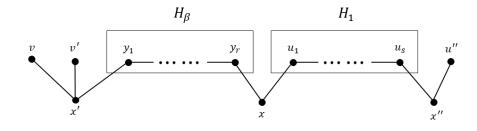


Figure 21: $S_{r+s+5}(\{2\}, \emptyset)$ in Subcase 2-2.

Subcase 2-3: $|A| \ge 3$.

Take $x, x', x'' \in A$ with $x \neq x' \neq x'' \neq x$. Choose $y' \in N(x') \cap V(H_1)$ and $y \in N(x) \cap V(H_1)$ so that $\operatorname{dist}_{H_1}(y', y)$ is as small as possible, and let $y_1 \ldots y_r$ $(y_1 = y', y_r = y)$ be a shortest y' - y path in H_1 $(r \geq 2)$. Then $x', x \notin N(\{y_2, \ldots, y_{r-1}\})$. Choose $z \in N(x) \cap V(H_2)$ and $z' \in N(x'') \cap V(H_2)$ so that $\operatorname{dist}_{H_2}(z, z')$ is as small as possible, and let $z_1 \ldots z_s$ $(z_1 = z, z_s = z')$ be a shortest z - z' path in H_2 $(s \geq 2)$. Then $x, x'' \notin N(\{z_2, \ldots, z_{s-1}\})$. We assume that we have labeled x, x' and x'' so that r + s is as small as possible. If $x'' \in N(\{y_2, \ldots, y_{r-1}\})$, say $x'' \in N(y_i)$, then replacing $x, x'', y_1 \ldots y_r$ and $z_1 \ldots z_s$ by $x'', x, y_1 \ldots y_i$ and $z_s \ldots z_1$, respectively, we get a contradiction to the minimality of r + s. Thus $x'' \notin N(\{y_2, \ldots, y_{r-1}\})$. Similarly $x' \notin N(\{z_2, \ldots, z_{s-1}\})$. Therefore $N(\{y_2, \ldots, y_{r-1}, z_2, \ldots, z_{s-1}\}) \cap \{x, x', x''\} = \emptyset$. Take $u \in N(x'') \cap V(H_3)$, $v \in N(x') \cap V(H_4)$ and $v' \in N(x') \cap V(H_5)$ (see Figure 22). It now follows from (5.1) that $\{v, x', v', y_1, \ldots, y_r, x, z_1, \ldots, z_s, x'', u\}$ induces a copy of $S_{r+s+5}(\{2\}, \emptyset)$. This contradicts the assumption that G is $T_{9,2}$ -free.

This concludes the discussion for Case 2, and completes the proof of Proposition 1.6.

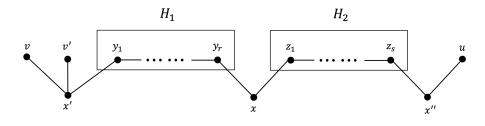


Figure 22: $S_{r+s+5}(\{2\}, \emptyset)$ in Subcase 2-3.

7 Proof of Proposition 1.7

In this section, we prove Proposition 1.7. Suppose that G is T_8 -free and $\Delta(G) \ge 1221$. By Claims 3.3 and 4.3,

$$|M_4^w(u)| \le 5$$
 and $|M_5^w(u)| \le |M_4^w(u) \cup M_5^w(u)| \le 60$ for every $u \in N_{\ge 2}(w)$. (7.1)

Claim 7.1 Let $a_5a_4a_3a_2a'_3$ be a path in $G[N_{\geq 2}(w)]$ with $a_2 \in N_2(w)$, and write $N(a_2) \cap N(w) = \{a_1\}$. Then $\{a_5a'_3, a_5a_1\} \cap E(G) \neq \emptyset$.

Proof. Set $X = \{a_2, \ldots, a_5, a'_3\}$. We have $X - N(X) = \emptyset$. Suppose that $\{a_5a'_3, a_5a_1\}$ ∩ $E(G) = \emptyset$. Then $E(G[X \cup \{a_1\}]) = \{a_5a_4, a_4a_3, a_3a_2, a_2a_1, a_2a'_3\}$. Let Y_2 be as in Lemma 5.1. By Lemma 5.3 (i) and (7.1), $|Y_2| \leq 5 \cdot 5 < |N(w)|$. Take $b_1 \in$ $N(w) - Y_2$, and take $b_2, b'_2 \in N(b_1) \cap N_{\geq 2}(w)$ with $b_2 \neq b'_2$ (see Figure 23). We have $E(G[\{a_1, w, b_1, b_2, b'_2\}]) = \{a_1w, wb_1, b_1b_2, b_1b'_2\}$. Since $E_G(X, \{w, b_1, b_2, b'_2\}) =$ \emptyset by Lemma 5.1 (i), it follows that $X \cup \{a_1, w, b_1, b_2, b'_2\}$ induces a copy of T_8 , a contradiction. □

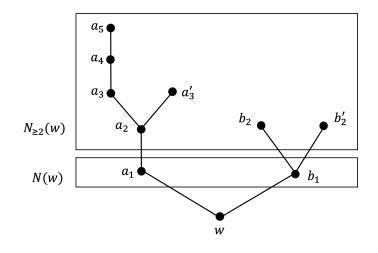


Figure 23: T_8 in Claim 7.1.

Claim 7.2 We have $N_{\geq 3}(w) = \emptyset$, and $G[N_2(w)]$ is 2-regular.

Proof. Recall that $\delta(G[N_{\geq 2}(w)]) \geq 2$. By way of contradiction, suppose that $N_{\geq 3}(w) \neq \emptyset$ or $\Delta(G[N_2(w)]) \geq 3$. If $N_{\geq 3}(w) \neq \emptyset$, then take $a_3 \in N_3(w)$; if $\Delta(G[N_2(w)]) \geq 3$, then take $a_3 \in N_2(w)$ so that $|N(a_3) \cap N_2(w)| \geq 3$. Then we can take $a_2, a_4, a'_4 \in N(a_3) \cap N_{\geq 2}(w)$ so that $a_2 \in N_2(w)$. Write $N(a_2) \cap N(w) = \{a_1\}$. Set $X = \{a_2, a_3, a_4, a'_4\}$. We have $X - N(X) = \emptyset$ and $E(G[X \cup \{a_1\}]) = \{a_4a_3, a'_4a_3, a_3a_2, a_2a_1\}$. Let Z_1, Z_3 be as in Lemma 5.1. By Lemma 5.3 (ii), (iii) and $(7.1), |Z_1| \leq 4 \cdot 60 = 240$ and $|Z_3| \leq 244 \cdot 5 < |N(w)|$. Take $b_1 \in N(w) - Z_3$ and $b_2 \in N(b_1) \cap N_{\geq 2}(w)$. Since $|N(b_2) \cap N_{\geq 2}(w)| \geq 2$, we can take $b_3 \in N(b_2) \cap N_{\geq 2}(w)$ so that $a_1b_3 \notin E(G)$. Then $E(G[\{a_1, w, b_1, b_2, b_3\}]) = \{a_1w, wb_1, b_1b_2, b_2b_3\}$. By Lemma 5.1 (ii), $E_G(X, \{w, b_1, b_2, b_3\}) = \emptyset$. By (5.1), $|N(X \cup \{b_2, b_3\}) \cap N(w)| \leq 6 < |N(w)|$. Take $c \in N(w) - (N(X \cup \{b_2, b_3\}) \cap N(w))$ (see Figure 24). It now follows that $X \cup \{a_1, w, b_1, b_2, b_3, c\}$ induces a copy of T_8 , a contradiction. □

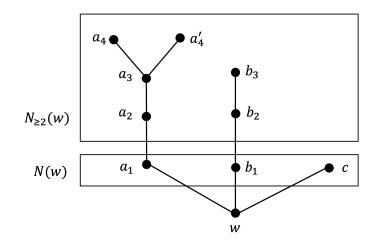


Figure 24: T_8 in Claim 7.2.

Let H_1, \ldots, H_p be the components of $G[N_2(w)]$. By Claim 7.2, each H_α is a cycle.

Claim 7.3 Let $\alpha \in \{1, \ldots, p\}$, and suppose that $|V(H_{\alpha})| \neq 5$. Then $|V(H_{\alpha})| \equiv 0 \pmod{3}$, $|N(V(H_{\alpha})) \cap N(w)| = 3$, and we can write $H_{\alpha} = y_1 y_2 \cdots y_{3m} y_1$ and $N(V(H_{\alpha})) \cap N(w) = \{x_1, x_2, x_3\}$ so that for each $k \in \{1, 2, 3\}$, $N(y_j) \cap N_2(w) = \{x_k\}$ for every j with $j \equiv k \pmod{3}$.

Proof. Since G is $\{C_3, C_4\}$ -free, $|V(H_\alpha)| \ge 6$. Take $u_1 \in V(H_\alpha)$, and write $N(u_1) \cap V(H_\alpha) = \{u_0, u_2\}, (N(u_2) \cap V(H_\alpha)) - \{u_1\} = \{u_3\}$ and $(N(u_3) \cap V(H_\alpha)) - \{u_2\} = \{u_4\}$. Also write $N(u_1) \cap N(w) = \{x\}$. Suppose that $u_4x \notin E(G)$. Since H_α is a cycle with $|V(H_\alpha)| \ge 6, u_4u_0 \notin E(G)$. Hence we get a contradiction by applying Claim 7.1 to $u_4u_3u_2u_1u_0$. Thus $u_4x \in E(G)$. Since u_1 is arbitrary, this implies the desired conclusion.

For each $\alpha \in \{1, \ldots, p\}$, if $|V(H_{\alpha})| = 5$, then $|N(V(H_{\alpha})) \cap N(w)| = 5$ by (5.1) and, if $|V(H_{\alpha})| \neq 5$, then $|N(V(H_{\alpha})) \cap N(w)| = 3$ by Claim 7.3. Hence $p \geq |N(w)|/5 \geq 5$. For each $x \in N(w)$, set $g(x) = \{\alpha \in \{1, \ldots, p\} \mid N(x) \cap V(H_{\alpha}) \neq \emptyset\}$. We have $\bigcup_{x \in N(w)} g(x) = \{1, \ldots, p\}$.

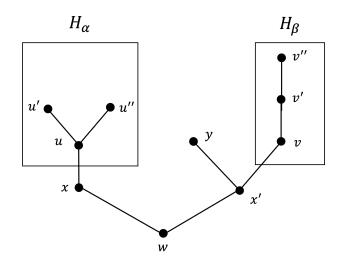


Figure 25: T_8 in Claim 7.4.

Claim 7.4 If $x, x' \in N(w)$, then $g(x) \subseteq g(x')$ or $g(x') \subseteq g(x)$ or $g(x) \cap g(x') = \emptyset$.

Proof. Suppose that $g(x) - g(x') \neq \emptyset$, $g(x') - g(x) \neq \emptyset$ and $g(x) \cap g(x') \neq \emptyset$, and take $\alpha \in g(x) - g(x')$, $\beta \in g(x') - g(x)$ and $\gamma \in g(x) \cap g(x')$. Take $y \in N(x') \cap V(H_{\gamma})$. Take $u \in N(x) \cap V(H_{\alpha})$, and write $N(u) \cap V(H_{\alpha}) = \{u', u''\}$. Take $v \in N(x') \cap V(H_{\beta})$ and $v' \in N(v) \cap V(H_{\beta})$, and write $(N(v') \cap V(H_{\beta})) - \{v\} = \{v''\}$ (see Figure 25). By the choice of α and $\beta, x \notin N(\{v', v''\})$ and $x' \notin N(\{u', u''\})$. Since G is $\{C_3, C_4\}$ -free, it now follows from (5.1) that $\{u', u, u'', x, w, x', y, v, v', v''\}$ induces a copy of T_8 , a contradiction.

Set $A = \{x \in N(w) \mid g(x) = \{1, ..., p\}\}$. If $|A| \le 1$, then, in view of Claim 7.4,

we get a contradiction by arguing in Subcase 2-1 in Section 6. Thus $|A| \ge 2$. Take $x, x' \in A$ with $x \ne x'$. Suppose that there exists an index $\alpha_0 \in \{1, \ldots, p\}$ for which we can take $y_0 \in N(x) \cap V(H_{\alpha_0})$ and $y'_0 \in N(x') \cap V(H_{\alpha_0})$ so that $y_0 y'_0 \in E(G)$. We may assume that $\alpha_0 = 1$. Take $y \in N(x') \cap V(H_2)$. Since G is $\{C_3, C_4\}$ -free, one of the two neighbors of y in H_2 , say y', satisfies $N(y') \cap \{x, x'\} = \emptyset$. Write $N(y') \cap N(w) = \{x''\}$. Take $v \in N(x') \cap V(H_3), u \in N(x) \cap V(H_4)$ and $u' \in N(x) \cap V(H_5)$ (see Figure 26). By (5.1), $\{u, x'', u', y_0, y'_0, x', v, y, y', x''\}$ induces a copy of T_8 , a contradiction.

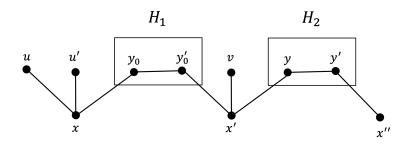


Figure 26: T_8 in the paragraph following the proof of Claim 7.4.

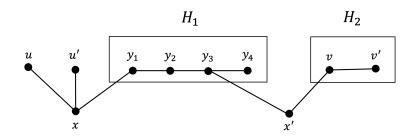


Figure 27: T_8 yielding the final contradiction.

Consequently for each $\alpha \in \{1, \ldots, p\}$, $yy' \notin E(G)$ for every $y \in N(x) \cap V(H_{\alpha})$ and every $y' \in N(x') \cap V(H_{\alpha})$. In view of Claim 7.3, thus means that $|V(H_{\alpha})| = 5$ for every α . Since G is $\{C_3, C_4\}$ -free, it follows that $|N(x) \cap V(H_{\alpha})| = |N(x') \cap V(H_{\alpha})| =$ 1 for every α . Write $H_1 = y_1 y_2 y_3 y_4 y_5 y_1$ so that $N(x) \cap V(H_1) = \{y_1\}$ and $N(x') \cap$ $V(H_1) = \{y_3\}$. Take $v \in N(x') \cap V(H_2)$ and $v' \in N(v) \cap V(H_2)$. Since $yv \notin E(G)$ for every $y \in N(x) \cap V(H_2)$, we see that $xv' \notin E(G)$. Finally take $u \in N(x) \cap V(H_3)$ and $u' \in N(x) \cap V(H_4)$ (see Figure 27). Since $|N(x) \cap V(H_1)| = |N(x') \cap V(H_1)| =$ $|N(x') \cap V(H_2)| = 1$, it follows from (5.1) that $\{u, x, u', y_1, y_2, y_3, y_4, x, v, v'\}$ induces a copy of T_8 , which contradicts the assumption that G is T_8 -free.

This completes the proof of Proposition 1.7.

Acknowledgements

The author would like to thank the referees for pointing out a gap in arguments in the original version in Case 2-2 of the proof of Proposition 1.6.

References

- R. Diestel, "Graph Theory" (5th edition), Graduate Texts in Mathematics 173, Springer, Berlin (2017).
- [2] Y. Egawa, J. Fujisawa, M. Furuya, M. D. Plummer and A. Saito, Forbidden triples generating a finite set of 3-connected graphs, *Electron. J. Combin.* 22 (2015), #P3.13.
- [3] Y. Egawa and M. Furuya, Forbidden subgraphs generating a finite set of graphs with minimum degree three and large girth, preprint, arXiv:2404.10996.
- [4] Y. Egawa and M. Furuya, Forbidden triples containing a complete graph and a complete bipartite graph of small order, *Graphs Combin.* **30** (2014), 1149–1162.
- [5] Y. Egawa, J. Nishyama, H. Onozawa and T. Yamamura, Forbidden trees generating a finite set of 3-connected graphs with girth at least five, *Sci. Math. Japan* 86 (2023), 93–119.
- [6] Y. Egawa and Z. Zhao, Forbidden triples involving the complete bipartite graph with partite sets having cardinalities two and three, Ars Combin. 154 (2021), 159–195.
- [7] J. Fujisawa, M. D. Plummer and A. Saito, Forbidden subgraphs generating a finite set, *Discrete Math.* **313** (2013), 1835–1842.
- [8] M. Furuya and Y. Okubo, Forbidden quadruplets generating a finite set of 2connected graphs, *Discrete Math.* 338 (2015), 1277–1283.
- [9] P. Turán, On the theory of graphs, *Colleg. Math.* **3** (1954), 19–30.

(Received 27 Mar 2023; revised 28 Aug 2024, 8 Oct 2024)