
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 90(2) (2024), Pages 187–198

On the number of generators of groups acting

arc-transitively on graphs

Marco Barbieri

Dipartimento di Matematica “Felice Casorati”

University of Pavia

Via Ferrata 5, 27100 Pavia, Italy

marco.barbieri07@universitadipavia.it

Pablo Spiga

Dipartimento di Matematica e Applicazioni

University of Milano-Bicocca

Via Cozzi 55, 20125 Milano, Italy

pablo.spiga@unimib.it

Abstract

Given a connected finite graph Γ and a group G acting transitively on
the vertices of Γ, we prove that the number of vertices of Γ and the order
of G are bounded above by a function depending only on the valency of Γ
and on the exponent of G. We also prove that the number of generators
of a group G acting transitively on the arcs of a locally finite graph Γ
cannot be bounded by a function of the valency alone.

1 Introduction

A vertex-transitive graph is a pair (Γ, G) where Γ is a locally finite connected graph
and G is a subgroup of Aut(Γ) whose action on the vertex-set of Γ is transitive. In
this note, we assume that, for every vertex α of Γ, the order of the vertex-stabilizerGα

is finite. The local group of (Γ, G) is the permutation group that a vertex-stabilizer
Gα induces on the neighbourhood Γ(α) of the fixed vertex α. In particular, the
degree of the local group of (Γ, G) coincides with the valency of Γ. We say that a
vertex-transitive graph (Γ, G) is arc-transitive if the local group of the pair (Γ, G) is
transitive. As the name suggests, this property is equivalent to the transitivity of
the action of G on the arc-set of Γ.

We say that a transitive permutation group L is graph-restrictive if, for every arc-
transitive graph (Γ, G) whose local group is permutation isomorphic to L, the order
of the vertex-stabilizers is bounded from above by a constant c(L) depending only

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



M. BARBIERI AND P. SPIGA/AUSTRALAS. J. COMBIN. 90 (2) (2024), 187–198 188

on the group L. With this terminology, the famous Weiss Conjecture (posed in [10])
states that primitive groups are graph-restrictive. We refer to [6] for an extensive
study of this notion.

Let (Γ, G) be an arc-transitive graph of valency d whose local group L is graph-
restrictive. We choose a vertex α, and we consider a subgroup H of G generated by
d distinct automorphisms, each one sending α to one of its d neighbours. A routine
connectedness argument (see the proof of Theorem 6 for details) shows that H is
transitive on the vertices of Γ. Therefore, by Frattini’s Argument, G = GαH. Recall
that d(G) denotes the minimal cardinality of a set of generators of G. We obtain
that

d(G) ≤ |Gα|+ d ≤ c(L) + d

elements are sufficient to generate G. It follows that we can bound the minimal
number of generators of G by a function of the valency of Γ alone. Indeed, let us
define the function f : N → N by

f(d) = d+max{c(L) | L graph-restrictive of degree d}.

Then, for every arc-transitive graph (Γ, G) of valency d whose local action is graph-
restrictive,

d(G) ≤ f(d).

More surprisingly, for every arc-transitive graph (Γ, G) of valency at most 4, the
minimal number of generators of G is bounded by a constant regardless of the local
group. The result is trivial for d ∈ {1, 2}. For d ∈ {3, 4}, some deeper concepts enter
the picture. For every arc-transitive graph (Γ, G), there is a universal cover of the
form (Td, Gα ∗Gαβ

G{α,β}), where α and β are two adjacent vertices of Γ, and Td is the
infinite tree of valency d. For every amalgamated product appearing in the universal
cover for valency 3 and 4, an explicit presentation has been produced: see [2, 3, 5].
In Section 2, we will prove the following result.

Lemma 1. Let (Γ, G) be an arc-transitive graph of valency d ∈ {3, 4}. Then

d(G) ≤ 3,

and this bound is sharp.

One could dare to conjecture that there exists a function f : N → N that takes
the valency of the graph Γ as input, and returns an upper bound for d(G). The main
contribution of this note is proving that such a function cannot exist.

Theorem 2. There exists no function f : N → N such that, for every arc-transitive

graph (Γ, G) of valency d,
d(G) ≤ f(d).

Remark 3. To prove the veracity of Theorem 2, we will exhibit an infinite family F
of pairs (Γh, Gh) such that the valency of the graphs is a constant (at least 8), while
d(Gh) grows linearly with the exponent of the group. We would like to remark that,
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although the philosophies of the constructions are profoundly different, the graphs
Γh carry an outstanding similarity with those built in [4, 9, 7] to prove that, for
some imprimitive local groups of degree 6, the order of the vertex-stabilizers grows
exponentially with the number of vertices of the graph.

We also observe that, in our construction, G is not the automorphism group of Γ.
This prompts the following question.

Problem 4. Is there a function f : N → N such that, if Γ is a connected arc-transitive
graph of valency d, then

d (Aut(Γ)) ≤ f(d)?

Moreover, for our current and limited knowledge of arc-transitive graphs (Γ, G),
having d(G) bounded appears to be quite common. Therefore, we ask the following.

Problem 5. Which assumptions on the arc-transitive graph (Γ, G) are needed to
bound d(G) with a function of the valency (or the local group)?

To conclude, we give a bound on the order of the group G appearing in a vertex-
transitive graph (Γ, G) depending on the valency d and the exponent of G. We
underline that the exponent of G is not a local feature of the graph. For instance,
if Γ is a cycle of odd length, then the local group is isomorphic to C2, while the
exponent of Aut(Γ) is twice the length of the cycle. (We denote the vertex-set of Γ
by the symbol V Γ.)

Theorem 6. There exists a function B : N × N → N such that, for every vertex-

transitive graph (Γ, G) where the valency of Γ is d, and that the exponent of G is e,

|V Γ| ≤ B(d, e) and |G| ≤ B(d, e)! .

Finally, we point out that the function B appearing in Theorem 6 is the solution
of the Burnside Restricted Problem (see [11, 12]). We also remark that the bound
on the number of vertices is sharp. Indeed, let G be the largest finite group with
d(G) = d and exponent e, and let S be a generating set of cardinality d. Then
Cay(G,S) has precisely B(d, e) vertices.

2 Proof of Lemma 1

The bulk of the proof of Lemma 1 relies on the following observation.

Lemma 7. Let (Γ, G) be an arc-transitive d-valent graph, and let α ∈ V Γ be a vertex.

Then

d(G) ≤ d(Gα) + 1.

Note that this bound is not sharp in general.
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Proof. Let {α, β} be an edge of Γ and let x ∈ G{α,β} \ Gαβ be an edge-flip, that is,
an automorphism satisfying αx = β and βx = α. (Examples of such elements are the
generators y in the presentations of [3] and the generators a in [5]). We define two
subgroups of G as

H := 〈Gα, x〉 and K := 〈Gα, Gβ〉.

It is well known that K defines either one or two orbits on V Γ, and, if they are
distinct, α and β lie in distinct K-orbits. As x swaps α and β, we have that K ≤ H,
and that H is transitive on V Γ. Since Gα ≤ H, by Frattini’s Argument, G = H. In
particular, by construction of H,

d(G) = d(H) ≤ d(Gα) + 1.

Let us assume that (Γ, G) is an arc-transitive graph of valency 3. The five possible
amalgam types for this case have been collected in [3]. We observe that the possibility
for a vertex-stabilizer are

Gα ∈ {1, C3, Sym(3), D6, Sym(4), Sym(4)× C2}.

It is easy to check that all these groups are 2-generated. Hence, Lemma 7 concludes
the proof in this case.

We turn to the scenario where the valency of Γ is 4. We need to consider three
cases.

First, we suppose that the local group is dihedral. There are infinitely many
amalgams whose local group is isomorphic toD4, and these amalgams are classified in
[2]. Using the notation from [2], we deduce thatGα∗Gαβ

G{α,β} admits a generating set
of the form {x, a0, a1, . . . , an−1, y}, with n ≥ 2. (Note that {x, a0, a1, . . . , a⌈(n−1)/2⌉}
is a minimal generating set for Gα, thus we cannot apply Lemma 7.) We also recall,
from [2], that

axi = an−1−i for every 0 ≤ i ≤ n− 1,

ayi = an−i for every 1 ≤ i ≤ n− 1.

We compute, for every 0 ≤ i ≤ n− 2,

axyi = ayn−1−i = an−n+i+1 = ai+1.

It follows that {x, a0, y} is a generating set for Gα ∗Gαβ
G{α,β}, and hence d(G) ≤ 3.

Now, we assume that the local group is not dihedral and that G is s-arc-transitive,
for some s ≥ 1. Without loss of generality, replacing s if necessary, we may also
assume that G is not (s + 1)-arc-transitive. If s = 1, then every vertex-stabilizer
is isomorphic either to C4 or to C2 × C2. If s ≥ 2, then the amalgams have been
classified in [5]. If s = 1, or if s ≥ 2 and

Gα ∈ {Alt(4), Sym(4), C3 × Alt(4), Sym(3)× Sym(4)},

then Gα is 2-generated. In all cases under consideration, by Lemma 7, d(G) ≤ 3, as
desired.
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To conclude, there are precisely four amalgams of index (4, 2) left. To complete
the proof for the upper bound, it is enough to manipulate their explicit presentations
in [5] to identify a generating set of cardinality 3. There are two amalgams with
Gα isomorphic to C3 ⋊ Sym(3). In the first case, {x, t, ac} is a generating set for
Gα ∗Gαβ

G{α,β} in view of

a = acdcd−1c = acacacac−1ac = (ac)3(ac)t(ac),

c = a(ac), y = xt, d = ca.

In the second case, we find that {x, c, a} generates Gα ∗Gαβ
G{α,β} as

t = a2, y = xt, d = ca.

For the 4-arc-transitive case, we find that {t, c, a} is a generating set for Gα∗Gαβ
G{α,β}

in view of

d = (ct)−1, e = da,

x = (et)−4, y = xa.

Meanwhile, for the 7-arc-transitive amalgams, Gα ∗Gαβ
G{α,β} can be generated by

{h, p, a}, because

k = h−2, v = kak−1, q = (pa)−1,

r = qqh, s = (ra)−1,

t = (sh)−1pq−1r−1s−1, u = (ta)−1.

We have thus proved that a minimal generating set for G contains at most three
elements. To prove that this bound is sharp it is sufficient to inspect the census of
arc-transitive graphs of valency 3 and 4 (see [1, 8]): in doing so, we discover that
most graphs have 3-generated automorphism groups. This completes the proof of
Lemma 1.

3 Proof of Theorem 2

Let h be a positive integer, and let p be a prime. We set

H := Cph × Cph = 〈a, b | ap
h

= bp
h

= [a, b] = 1〉.

Let us consider the group algebra Fp[H] over the finite field with p elements. We
define recursively the following chain of Fp[H]-modules:

γ0 := Fp[H], and, for any i ≥ 1,

γi := [γi−1, H] = 〈v − vh | v ∈ γi−1, h ∈ H〉Fp
.

Recall that the natural basis for the group algebra Fp[H] is
(

aibj | i, j ∈
{

0, 1, . . . , ph − 1
})

.
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For all x, y ∈
{

0, 1, . . . , ph − 1
}

, we write exy = (a− 1)x(b − 1)y ∈ Fp[H]. We claim
that

B =
(

exy | x, y ∈
{

0, 1, . . . , ph − 1
})

is also a basis. As B and the natural basis have the same cardinality, to prove
the claim we show that every element of the natural basis can be written as linear
combinations of the elements of B. First we prove, by induction on i, that

ai =
i
∑

x=0

λxex0 . (1)

Observe that 1 = e00 = a0 is an element of the natural basis and of B. We can write

ai = (a− 1)pi(a) + 1,

where pi is a polynomial in one variable with coefficients in Fp and degree i− 1. By
inductive hypothesis, for some suitable coefficients,

pi(a) =
i−1
∑

x=0

µxex0.

Hence,

ai = (a− 1)pi(a) + 1 =
i−1
∑

x=0

µxe(x+1)0 + e00 ,

which proves Equation (1). Repeating the same argument for bj, we can show that

bj =

j
∑

y=0

λye0y .

Therefore, for some suitable coefficients,

aibj =

(

i
∑

x=0

λxex0

)(

j
∑

y=0

λye0y

)

=
i−1
∑

x=0

j−1
∑

y=0

λxλyexy,

which completes the proof of the claim.

For convenience, we set exph = ephy = 0, for every x, y ∈
{

0, 1, . . . , ph − 1
}

.
Observe that

exy · a = (a− 1)x(b− 1)y · a

= (a− 1)x(1 + a− 1)(b− 1)y

= (a− 1)x(b− 1)y + (a− 1)x+1(b− 1)y

= exy + e(x+1)y,
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and

exy · b = (a− 1)x(b− 1)y · b

= (a− 1)x(b− 1)y(1 + b− 1)

= (a− 1)x(b− 1)y + (a− 1)x(b− 1)y+1

= exy + ex(y+1).

By a direct computation, we get that

γi = 〈exy | x+ y ≥ i〉Fp
, and

γi/γi+1 = 〈exy + γi+1 | x+ y = i〉Fp
.

Indeed, the formula holds for γ0 = Fp[H], and by induction on i,

γi = 〈exy · a− exy, exy · b− exy | x+ y ≥ i− 1〉Fp

= 〈e(x+1)y, ex(y+1) | x+ y + 1 ≥ i〉Fp
.

Recall that, for any Fp[H]-module V , we denote by dH(V ) the minimal number
of generators of V as an Fp[H]-module. Since, by construction, γi/γi+1 is a trivial
section of Fp[H], we have that

dH (γi/γi+1) = dimFp
(γi/γi+1) =











i+ 1 if 0 ≤ i ≤ ph − 1

2ph − i− 1 if ph ≤ i ≤ 2(ph − 1)

0 if 2ph − 1 ≤ i.

(2)

We use this to compute the number of generators of γph ⋊H. Indeed, we claim that

d
(

γph−1 ⋊H
)

= ph + 2 . (3)

First, we recall that, as γph−1 ⋊H is a p-group,

d
(

γph−1 ⋊H
)

= dimFp

(

γph−1 ⋊H

Φ(γph−1 ⋊H)

)

,

where Φ(γph−1 ⋊H) is the Frattini subgroup of γph−1 ⋊H. Second, we note that

Φ(γph−1 ⋊H) = [γph−1 ⋊H, γph−1 ⋊H](γph−1 ⋊H)p.

Since H is abelian, using standard commutator computations, we have

[γph−1 ⋊H, γph−1 ⋊H] = γph .

Moreover,
(γph−1 ⋊H)p ≥ Hp.

This shows that
Φ(γph−1 ⋊H) ≥ γph ⋊Hp.
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It is now time to recall that H acts trivially on the section γph−1/γph : this fact implies
that the quotient

γph−1 ⋊H

γph ⋊Hp

is abelian of exponent p. Therefore,

Φ(γph−1 ⋊H) = γph ⋊Hp,

and Equation (3) immediately follows from Equation (2).

After these preliminary considerations, we embark on the construction of the
graph Γh. The group H acts regularly on the vertex-set of the Cayley graph defined
by

∆ := Cay(H, {a, a−1, b, b−1}).

Recall that, for any two graphs Γ,∆, the wreath product of Γ by ∆, denoted
by Γwr∆, is the graph having vertex-set V Γ × V∆, where (γ1, δ1) and (γ2, δ2) are
adjacent if either δ1 = δ2 and {γ1, γ2} is an edge of Γ, or {δ1, δ2} is an edge of ∆.
We define Γh as the wreath product of the empty graph on p vertices, pK1, by the
Cayley graph ∆, that is,

Γh := pK1 wr∆.

Note that, unless p = 2 and h = 1, ∆ has valency 4, hence Γh has valency 4p.

Observe that, as abstract groups, CpwrH and Fp[H] ⋊ H are isomorphic. It
follows that γph−1 ⋊ H is identified with a subgroup of CpwrH, which in turn is a
subgroup of Aut(Γh). Moreover, V Γh can be partitioned as

X := {V (pK1)× {δ} | δ ∈ V∆} .

Note thatX is γph−1-invariant, because the latter embeds in the base group of CpwrH.
As γph−1 is a nontrivial p-group, it must induce a transitive action on at least one
part of X, while H permutes regularly the elements of X. It follows that γph−1 ⋊H
is transitive on the vertices of Γh, thus (Γh, γph−1 ⋊H) is a vertex-transitive graph.
On the other hand, since γph−1 ⋊H preserves the lifting of the labels {a, a−1, b, b−1}
from the Cayley graph ∆, this action is not arc-transitive. In particular, the local
group of (Γh, γph−1 ⋊H) is intransitive with four distinct orbits.

To achieve the desired arc-transitivity, we extend the group H with some outer
automorphisms. We consider the automorphisms ϕ and ψ of H defined on the
generators by

ϕ : a 7→ b, b 7→ a, and ψ : a 7→ a−1, b 7→ b−1.

Observe that ϕ and ψ are commuting involutions, thus 〈ϕ, ψ〉 is isomorphic to the
Klein group. We extend the multiplication on Fp[H] by putting, for every ε, δ ∈ Z2,

(

∑

h∈H

λhh

)

·
(

ϕεψδ
)

=
∑

h∈H

λhh
ϕεψδ

.
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With this operation, Fp[H] is an Fp[H ⋊ 〈ϕ, ψ〉]-module. Our putative subgroup of
Aut(Γh) is

Gh := γph−1 ⋊ (H ⋊ 〈ϕ, ψ〉).

Note that

Fp[H]⋊H ≥ Fp[H] = γ0 ≥ γ1 ≥ · · · ≥ γ2(ph−1) ≥ γ2ph−1 = 1

is the central lower series of Fp[H]⋊H, and hence, for all indices i, γi is a characteristic
subgroup of Fp[H]⋊H. It follows that γi is an Fp[H⋊ 〈ϕ, ψ〉]-submodule, and hence
Gh is well-defined.

First, we give a lower bound on d(Gh), then we prove that (Γh, Gh) is an arc-
transitive graph.

Let S be a generating set for Gh. The set S ∪ {ϕ, ψ} also generates Gh. By
multiplying each element of S by a (possibly trivial) element of 〈ϕ, ψ〉, we can produce
a new generating set for Gh of the form T ∪ {ϕ, ψ} where T is a subset of γph−1 ⋊H.
We claim that

U := T 〈ϕ,ψ〉 ⊆ γph−1 ⋊H

is a generating set for γph−1 ⋊ H. For every g ∈ γph−1 ⋊ H, g can be written as a
word in T ∪ {ϕ, ψ}. Whenever ϕ appears in this word, we can move it to the right
end of the word by conjugating by ϕ all the generators from its initial position to the
end of the string. The same procedure can be applied to ψ. Once we have completed
these operations, we find that g can be expressed as the product of two words: one
in U and the other in {ϕ, ψ}. As g ∈ γph−1 ⋊ H, the latter word must be trivial.
This proves that we can express g as a word in U , and hence U generates γph−1 ⋊H.
By construction, since |〈ϕ, ψ〉| = 4,

|U | ≤ 4|T | = 4|S|.

Hence, by choosing |S| to be minimal,

1

4
d(γph−1 ⋊H) ≤

1

4
|U | ≤ d(Gh).

Therefore, using Equation (3),

d(Gh) ≥
ph

4
.

Let us go back to the Cayley graph ∆. Observe that 〈ϕ, ψ〉 is transitive on the
connection set {a, a−1, b, b−1} of ∆. This implies that H ⋊ 〈ϕ, ψ〉 is an arc-transitive
subgroup of Aut(∆). Therefore,

Gh ≤ Cpwr(H ⋊ 〈ϕ, ψ〉) ≤ Aut(Γh).

Moreover, the local group of (Γh, Gh) transitively permutes the four orbits defined
by the local group of (Γh, γph−1 ⋊ H). Hence, the pair (Γh, Gh) is an arc-transitive
graph.
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To wrap up, for a fixed prime p, the family

Fp := {(Γh, Gh) | h ≥ 2}

contains only graphs of valency 4p; meanwhile

lim
h→+∞

d(Gh) ≥ lim
h→+∞

ph

4
= +∞.

This family is a counterexample to the existence of a function f that, for every arc-
transitive graph (Γ, G) of valency d, bounds d(G) in terms of d alone. Hence the
proof of Theorem 2 is complete.

4 Proof of Theorem 6

Let (Γ, G) be a vertex-transitive graph, and recall that d is the valency of Γ. We
choose a vertex α of Γ, and, for any of its neighbours β, we consider an automorphism
gβ ∈ G such that

αgβ = β.

Recall that these elements exist by transitivity of G on V Γ. Hence, we can define
the subgroup of G

H := 〈gβ | β ∈ Γ(α)〉.

Now, we will present the connectedness argument mentioned in the introduction
to prove that H is transitive on the vertex-set of Γ. Aiming for a contradiction,
suppose that H is not transitive on V Γ. We choose a vertex γ at minimal distance
from α which is not contained in the H-orbit of α. As Γ is connected, we can choose
a vertex δ adjacent to γ such that

dΓ(α, δ) + 1 = dΓ(α, γ).

By our choice of γ, there is an element h ∈ H such that αh = δ. Observe that

X :=
{

h−1gβh | β ∈ Γ(α)
}

is a subset of H with the property that the image of δ under X is the neighbourhood
of δ. In particular, hX contains an automorphism of H mapping α to γ. Thus, γ
belongs to the H-orbit of α, a contradiction.

Let B(d, e) be the function solving the Burnside Restricted Problem for a finite
group with d generators and exponent e. The existence of this function for all the
choices of d and e was proved by Zel’manov in [11, 12]. Observe that, as H is a
subgroup of G, and as the exponent of G is e, the exponent of H divides e. Thus,
we find that the order of H is bounded from above by B(d, e). Moreover, since H is
transitive on the vertex-set of Γ,

|V Γ| ≤ |H| ≤ B(d, e).
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This proves the first part of Theorem 6.

To complete the proof, it is enough to observe that G can be embedded into
Sym(V Γ), which in turn embeds into Sym(B(d, e)). Therefore,

|G| ≤ B(d, e)!,

as desired.
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