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Abstract

It is observed that the reciprocal of the Poincaré series (or growth series)
of a finite rank Coxeter system with respect to its Coxeter generators
is a specialization of the Hilbert series, in fine grading, of the face ring
(or Stanley-Reisner ring) of the barycentric subdivision of the nerve, in
which the indeterminate attached to each finite rank standard parabolic
subgroup is specialized to a corresponding signed monomial determined
by the subgroup’s rank and longest element. This result is part of a close
correspondence (described in detail in this note but not conceptually
explained) between certain properties of reciprocals of Poincaré series
of Coxeter groups and properties of Hilbert series of face rings of order
complexes of lower Eulerian posets. In both settings, some new formulae
(or novel reformulations of old formulae) are given which are analogous
to well-known formulae in the other setting.

Introduction

Let (W,S) be a Coxeter system of finite rank |S| (standard references are [2, 3, 7, 9]).
Denote the standard length function of (W,S) as l : W → N. The Poincaré series
(or growth series) of (W,S) is the formal power series PW :=

∑
w∈W tl(w) in Z[[t]]. It

has been extensively studied because of its significant applications in or to invariant
theory, Lie groups, algebra, representation theory, combinatorics etc. (see [5] for a
recent paper which surveys the main known facts and some of the applications).

It is well known that PW is rational (i.e. it is the power series expansion at 0 of
some rational function). This follows directly from a formula

1

PW (t)
=

∑

J∈N

ǫJ
PWJ

(t−1)

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



M.J. DYER/AUSTRALAS. J. COMBIN. 90 (2) (2024), 168–186 169

of Steinberg from [17], where WJ := 〈 J 〉 is the standard parabolic subgroup gener-
ated by J ⊆S, ǫJ := (−1)|J | and N := { J ⊆S | |WJ | < ∞}. As is also well known,
the polynomial PWJ

for J in N is given by a formula (due to Solomon [13]) involving
degrees of the basic invariants of WJ . Rationality of PW (and of Poincaré series of
other subsets of W ) can now also be established using finite state automata arising
in the study of an automatic structure on W ([4]).

The main purpose of this note is to record some analogies and relations between
reciprocals of Poincaré series of Coxeter groups and standard generating functions at-
tached to simplicial complexes (especially, order complexes of lower Eulerian posets).
Steinberg’s formula implies the following explicit formula for PW :

1

PW

=
∑

n∈N

∑

∅=J0 ( ···( Jn∈N

ǫJ1 · · · ǫJnt
m(J1)+···+m(Jn)

(1− ǫJ1t
m(J1)) · · · (1− ǫJnt

m(Jn))
(∗)

where for J in N , w(J) is the longest element of WJ and m(J) := l(w(J)).

Although this formula is not particularly efficacious for computation of PW in
examples (cf. [2] for some computationally more convenient formulae), it does suggest
some interesting structural features of these Poincaré series in general, as follows.
For each subset J of S, let xJ be an indeterminate. The right-hand side of (∗) is
obtained by specializing each xJ with J ∈ N \{∅} to ǫJt

m(J) in the left-hand side of
the identity

∑

n∈N

∑

∅=J0 ( ···( Jn∈N

xJ1 · · · xJn

(1− xJ1) · · · (1− xJn)
=

∑

n∈N

∑

∅=J0 ( J1 ⊆ ··· ⊆ Jn∈N

xJ1 · · · xJn .

The right-hand side of the identity may be regarded as a generating function for
multichains in the (inclusion-ordered) poset N \{∅}. In other terms, N is the set
of simplexes of an abstract simplicial complex on vertex set S, called the nerve of
(W,S), and the last generating function is the Hilbert series, in fine grading, of the
face ring (or Stanley-Reisner ring, see [14]) of the barycentric subdivision of the
nerve (i.e. the order complex of N \{0}). In this note, it is observed that many of
the known general facts about reciprocals of Poincaré series of Coxeter groups are
specializations of identities involving such multivariate rational functions attached
to simplicial complexes.

We now discuss some previously known results related to formula (∗). An ele-
mentary fact [14, Ch II, Theorem 7.1] on fine Hilbert series of face rings of simplicial
complexes, applied to the barycentric subdivision of the closed simplex on vertex set
S, gives the following identity:

∑

n∈N

∑

∅=J0 ( ···( Jn ⊆S

xJ1 · · · xJn

(1− xJ1) · · · (1− xJn)

=
∑

n∈N

∑

∅=J0 ( ···( Jn=S

(−1)nǫS
(1− xJ1) · · · (1− xJn)

.
(†)

Although (∗) itself does not seem to appear in previous literature, specializing
(†) by xJ 7→ 0 for J ⊆S with J 6∈ N and xJ 7→ ǫJt

m(J) for J ∈ N gives an
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alternative (“dual”) form of (∗) which is in [18], at least for crystallographic W . This
dual form follows directly from a well-known algorithm for computing PW which is
(mostly) implicit already in [3] and is described completely explicitly in [9]. We also
mention that in the case of right-angled Coxeter groups, [7, Proposition 17.4.2] gives
a formula for 1

PW
in terms of the h-polynomial of N , and [8] gives a formula for PW

as a specialization of a multivariate rational function (which also specializes to the
growth series of W for “automatic” generators (w(J))J∈N \{∅}) which is attached to
N ; for (A1)

n, the function is 1 +
∑

∅6=J ⊆S zJ with specialization zJ 7→ tm(J).

Section 1 of this note recalls basic properties of (reciprocals of) Poincaré series of
Coxeter groups and then proves (∗) and its dual form. Section 2 recalls some rudimen-
tary properties of simplicial complexes and posets and then shows that the properties
listed in Section 1, such as Steinberg’s formula, are specializations of (known or easily
proved) general facts about Hilbert series of face rings of order complexes of lower
Eulerian posets. We state also some other formulae which specialize to apparently
new formulae for 1

PW
: notably, we give determinantal formulae (consequences of [15])

for the rational function in (†) and for its numerator, and observe that the coefficient
of each (necessarily squarefree) monomial occurring in the numerator is the reduced
Euler characteristic of the corresponding order complex (up to sign). We remark
that the results of this note are very elementary, and the exposition has been kept as
simple and self-contained as possible. In particular, no essential use is made of face
rings or of topological or homological aspects of the theory of simplicial complexes.

As suggested above, the Poincaré series PW of a Coxeter system (W,S) has close
connections to many interesting objects naturally associated to W ; for instance,
for crystallographic (respectively, arbitrary) W , PW gives the non-trivial factor in
the Hilbert-Poincaré series of the T -equivariant cohomology ring of an associated
flag variety for a Kac-Moody group (respectively, its algebraic analogue, the dual
nil Hecke ring; see [11]). As another example, the values of the rational function
1

PW
at a positive real number is the Euler characteristic for the correspondingly

weighted L2-cohomology theory of the Davis complex of W (see [7]). There are
many situations where (positive) Hilbert-Poincaré series are inverse to one another
up to systematic change of some signs; for instance, this occurs for Koszul dual
algebras (see [1]), although the nature of the sign changes here is different. Finally,
the class of simplicial complexes arising as nerves of finite rank Coxeter systems is
very extensive; this is an important fact in [7], where it is observed that it includes the
barycentric subdivisions of all finite polytopal complexes. For such reasons, it would
be desirable to have a more structural explanation for the correspondence of results
between Sections 1 and 2 than the one through generating function manipulations
in this note.
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1 Reciprocals of Poincaré series of Coxeter groups

1.1

Let (W,S) be a Coxeter system of finite rank |S| (see [2, 3, 7, 9] as general references
for basic properties of Coxeter groups used in this note). Let l : W → N be the
standard length function of (W,S).

Let Z[t] and Z[[t]] denote respectively the polynomial ring and formal power
series ring over Z in the indeterminate t. Let Q(t) and Q((t)) = (Q[[t]])[t−1] be their
respective fields of fractions. We regard Z[t], Z[[t]] and Q(t) as subrings of Q((t)),
and say that a formal power series in the intersection Q(t) ∩ Z[[t]] is rational. Let
τ : Q(t) → Q(t) be the field automorphism given by f(t) 7→ f(1

t
).

For w ∈ W define Xw := tl(w) in Z[[t]] (in particular, X1W = 1Z[t]). (The whole
development also applies to certain multivariate Poincaré series as considered in [12],
in which the Xw are certain monomials of total degree l(w) in a set of variables in
bijection with the set of conjugacy classes of reflections; our notation is intended to
make the corresponding generalization of the results here obvious for readers familiar
with such length functions, but we do not give details.)

For any subset Z of W , define its Poincaré series (or growth series) PZ in Z[[t]]
to be the formal power series

PZ :=
∑

w∈Z

Xw =
∑

w∈Z

tl(w). (1)

If 1 ∈ Z, then PZ has constant term 1 and is invertible in Z[[t]].

The analogy between the results in this section and those in Section 2 would be
highlighted if all formulae we give involving PZ with 1 ∈ Z were written instead in
terms of P−1

Z , but we do not do that if the resulting formula looks less natural here.

1.2

For J ⊆S, let WJ denote the standard parabolic subgroup WJ = 〈 J 〉 generated by J .
Write ǫJ := (−1)|J |. Let

W J = {w ∈ W | l(wx) = l(w) + l(x) for all x ∈ WJ } (2)

be the set of shortest left coset representatives for WJ in W . Define the set

N := { J ⊆S | |WJ | < ∞}, (3)

called the nerve of (W,S), and partially order N by inclusion. For J ∈ N , let w(J)
denote the longest element of WJ and set xJ := ǫJXw(J). We set xJ := 0 for J ⊆S
such that J 6∈ N . Also, for J in N , let

µ(J,∞) := −
∑

K∈N
K ⊇ J

ǫJǫK (4)
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(the integers µ(J,∞) are certain values of the Möbius function for a poset N∪̇{∞}
obtained by adjoining a maximum element ∞ to N ; see Section 2).

The theorem below collects some of the main formal facts on Poincaré series
of Coxeter groups which apply “uniformly” across all (finite and infinite, crystallo-
graphic and non-crystallographic) types. Certain well-known and interesting formu-
lae for the Poincaré series in terms of exponents for finite Coxeter groups ([13]) or
root heights for finite and affine Weyl groups ([12]) are therefore not listed.

Theorem 1.1. (a) If J ⊆S, then PW = PWJPWJ
.

(b) If J is in N , then PWJ
= ǫJxwJ

τ(PWJ
).

(c) In general, ∑

J ⊆S

ǫJ
PWJ

= xS

ǫS
PW

.

(d) One has
1

PW

=
∑

J∈N

ǫJ
τ(PWJ

)
.

(e) One has
1

PW

= −
∑

J∈N

µ(J,∞)

PWJ

.

(f) PW is rational, and 1
τ(PW )

lies in Z[[t]] with constant term −µ(∅,∞).

(g) Suppose there is an integer N such µ(J,∞) = (−1)NǫJ for all J in N . Then
τ(PW ) = (−1)N+1PW .

Proof. The first results are in [3] and [9], while [2], [7] and [5] contain developments
proving many of the facts listed. Specifically, see [3, Ch IV, §1, Ex 26] for (a), (b)
and (c), [9, 5.12] for (a) and (c), [2, 7.1] for (a)–(c) and (e), and [7, Ch 17] for (a)–(g)
(note that the results in [7] are proved where possible for the multivariate Poincaré
series from [12] and notation there conflicts with that in this note). We provide
below sketches of proofs and more references for some of these results.

(a) This holds since each element w of W can be uniquely written in the form
w = xy with x ∈ W J and y ∈ WJ and l(xy) = l(x) + l(y).

(b) This holds since the map x 7→ xw(J) is a bijection WJ → WJ satisfying
l(xw(J)) = l(wJ)− l(x).

(c) The proof is essentially the same as in the special case of finite W , which is
from [13]. To sketch it, set D(w) := { s ∈ S | l(ws) < l(w) } for w in W . By (a),

∑

J ⊆S

ǫJPW

PWJ

=
∑

J ⊆S

ǫJPWJ =
∑

J ⊆S

∑

w∈WJ

ǫJXw =
∑

w∈W

( ∑

J ⊆S\D(w)

ǫJ

)
Xw
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where the inner sum is zero unless D(w) = S (i.e. unless W is finite and w = w(S)),
when it is 1. The result now follows (recall xS := 0 if S 6∈ N i.e if W is infinite).

(d) For finite W , the result is equivalent to that of (c), by (b). It was proved
in general in Steinberg [17]. One uses the fact that D(w) is in N for all w, with
D(w) = ∅ if and only if w = 1. By (a) and (b),

∑

J∈N

ǫJPW

τ(PWJ
)
=

∑

J∈N

ǫJPWJXw(J) =
∑

J∈N

∑

w∈W
D(w)⊇ J

ǫJXw =
∑

w∈W
J ⊆D(w)

ǫJXw = 1

where the second equality uses the fact (which follows easily from standard properties
of W J and w(J)) that W Jw(J) = {w ∈ W | D(w)⊇ J }.

(e) This was proved in [6] (see also [2, Proposition 7.1.7]). It may be proved by
writing 1

τ(PWJ
)
=

∑
K ⊆ J

ǫK
PWK

on the right in (d) (where this formula is proved by

applying τ to (d) for WJ instead of W ) and reversing the order of summation.

(f) Rationality of PW and the fact that 1
τ(PW )

is in Z[[t]] (with integer constant

term) are in [3, Ch IV, §1, Ex 26(g)]; they are both clear from (d). The value of
the constant term is from [6]; it may be proved by applying τ in (e) (or (d)) and
examining the constant term.

(g) This is also from [6], where the hypothesis is expressed more geometrically in
terms of the notion of “Euler spheres” (see also [7]). It may be proved by applying
τ in (d) and comparing with (e).

Now we state and prove the main result of this section.

Theorem 1.2. (a) One has

1

PW

=
∑

n∈N

∑

∅=J0 ( ···( Jn=S

(−1)nǫS
(1− xJ1) · · · (1− xJn)

where xJ = 0 for J ⊆S with J 6∈ N .

(b) One has
1

PW

=
∑

n∈N

∑

∅=J0 ( J1 ( ···( Jn∈N

xJ1 · · · xJn

(1− xJ1) · · · (1− xJn)
.

Proof. Before giving the proof, we remark that the results as formulated use standard
conventions (which we impose also in Section 2) that empty sums have value 0 and
empty products have value 1. In particular, the inner sum in (a) is empty if n = 0
and S 6= ∅ and has one term, the empty product, if n = 0 and S = ∅, while for
n = 0, the inner sum in (b) has one term, the empty product.

(a) We prove that

1

PWK

=
∑

n∈N

∑

∅=J0 ( ···( Jn=K

(−1)nǫK
(1− xJ1) · · · (1− xJn)

(5)
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for all K ⊆S by induction on |K|. The result holds if K = ∅. Assume K 6= ∅.
Applying Theorem 1.1(c) to WK instead of W and solving for PWK

gives

1

PWK

=
−ǫK

1− xK

∑

J (K

ǫJ
PWJ

.

Then (a) follows immediately by applying the induction hypothesis to each term in
the sum on the right.

(b) Suppose in (a) that K is in N . Then all the terms xJi (with i 6= 0) appearing
in (5) are invertible in Q(t), so multiplying that equation by ǫK and applying τ shows
that

ǫK
τ(PWK

)
=

∑

n∈N

∑

∅=J0 ( ···( Jn=K

xJ1 · · · xJn

(1− xJ1) · · · (1− xJn)

since −1
1−x−1

J

= xJ

1−xJ
. Substituting into 1

PW
=

∑
K∈N

ǫK
τ(PWK

)
(from Theorem 1.1(d))

proves (b).

Remark. As noted in the introduction, (a) and its proof appear for crystallographic
W in [18, Section 7, (second) Proposition 3], while most of the argument for (a) is
implicit in [3, Ch IV, §1, Ex 26(g)] and the whole argument for (a) (although not the
formula there) is completely explicit in [9, Proof of Proposition 5.12(b)]. I do not
know of any occurrence of (b) in the literature. Equivalence of (a) and (b) follows
from the rational function identity (†) in the introduction.

2 Rational generating functions attached to order complexes

2.1

Recall that an abstract simplicial complex on a (finite) vertex set V is, by definition,
a collection Σ of subsets of V , called simplexes of Σ, such that {v} ∈ Σ for all v
in V , and σ⊆ τ ∈ Σ implies that σ is in Σ. (See [16] and [14] as general references
for this section.) An abstract simplicial complex which is important in the study of
Coxeter groups is the nerve of a Coxeter system (W,S), which has vertex set S and
N = { J ⊆S | |WJ | < ∞} as its set of simplexes.

2.2

Fix an abstract simplicial complex Σ on the finite vertex set V . A subcomplex of Σ is
a subset Σ′ of Σ such that σ⊆ τ ∈ Σ implies that σ is in Σ; it is an abstract simplicial
complex on vertex set ∪σ∈Σ σ. The link in Σ of a subset σ of V is the subcomplex
lk(σ) = lkΣ(σ) := { τ ∈ Σ | σ ∩ τ = ∅, σ ∪ τ ∈ Σ }. Note the link is non-empty if and
only of σ is a simplex of Σ. For a simplex σ in Σ, the corresponding closed simplex
is the subcomplex σ = {τ | τ ⊆ σ}.
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A simplex σ (of Σ) which is of cardinality d is said to be of dimension dim(σ) =
d− 1 = |σ| − 1. The dimension of a non-empty simplicial complex is the maximum
of the dimensions of the simplexes it contains.

The reduced Euler characteristic of Σ is defined to be the integer

χ̃(Σ) :=
∑

σ∈Σ

(−1)dim(σ).

Given abstract simplicial complexes Σi for i = 1, . . . , n on disjoint vertex sets
V1, . . . , Vn their join is the abstract simplicial complex Σ1 ∗ · · · ∗ Σn on vertex set
∪̇
n

i=1Vi, with the subsets of the form ∪̇iσi, where each σi is a simplex of Σi, as
simplexes. Since |∪̇

n

i=1σi| − 1 = n− 1 +
∑n

i=1(|σi| − 1), one has

χ̃(Σ1 ∗ · · · ∗ Σn) = (−1)n−1 χ̃(Σ1) · · · χ̃(Σn). (6)

2.3

Attach to each vertex v in V an indeterminate yv. Define the polynomial ring R :=
Z[(yv)v∈V ] and formal power series ring R̂ = Z[[(yv)v∈V ]]. The field of fractions R̃ of

R̂ contains the field of rational functions R0 = Q((yv)v∈V ) (i.e. the field of fractions

of R) as a subring. We also regard R⊆ R̂⊆ R̃ as subrings.

There is an automorphism φ0 of R0 given by yv 7→ xv := yv
1+yv

for v in V ,
with inverse given by yv 7→ yv

1−yv
for all v. The map yv 7→ xv for v in V also

extends to a (continuous) automorphism of R̂ given by f((yv)v∈V ) 7→ f((xv)v∈V )
(where the right-hand side is the result of formally substituting the formal power
series xv =

∑
n∈N(−1)nyn+1

v for the variable yv, for all v, in the formal power series

f = f((yv)v∈V ). This automorphism of R̂ extends to an automorphism φ of R̃ which
restricts to φ0 on R0 (but does not map R into itself if V 6= ∅).

One has yv = φ−1(xv) = xv

1−xv
=

∑
n∈N x

n+1
v and xv =

∑
n∈N(−1)nyn+1

v . From

above, one may when convenient regard R̂ as the formal power series ring R̂ =
Z[[(xv)v∈V ]], R̃ as its field of fractions, and R0 as the function field R0 = Q((xv)v∈V )
of indeterminates xv for v in V .

There is also a ring automorphism of R determined by yv 7→ −yv − 1 for all v
in V . Denote its extension to an automorphism of the field R0 as θ (it does not

extend naturally to R̂ in general). One readily checks that θ is determined by the
conditions θ(xv) = x−1

v for all v in V ; also, θ2 = IdR0
.

2.4

For any subset σ = {v1, . . . , vn} of V , where the vi are distinct, define a corresponding
monomial Yσ := yv1 · · · yvn in R. In particular, one has Y∅ = 1R. For any subset Γ
of the power set of V define F (Γ) :=

∑
σ∈Γ Yσ. Note that both F (Γ) and θ(F (Γ))

are in the polynomial ring R, although they will usually be regarded as elements of
R̃ ∩R0, i.e. as rational formal power series, in the indeterminates (xv)v∈V .
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In particular, F (Γ) is defined for any simplicial complex with vertex set contained

in V , and, as an element of the formal power series ring R̂, it has constant term 1
(and hence is invertible in R̂ and R0) if Γ is non-empty. It is easy to see that if Γ1

and Γ2 are complexes on disjoint vertex sets contained in V , then

F (Γ1 ∗ Γ2) = F (Γ1) ∗ F (Γ2). (7)

If σ above is a simplex of a simplicial complex Σ, one has

θ(F ({σ}) = (−1)n(yv1 + 1) · · · (yvn + 1) = (−1)n
∑

τ ⊆σ

Yτ = (−1)dim(σ)+1F (σ)

and hence θ(F (Σ)) =
∑

σ∈Σ(−1)dim(σ)+1F (σ). In terms of the monomial basis,

θ(F (Σ)) =
∑

σ∈Σ

∑

τ ⊆σ

(−1)|σ|Yτ =
∑

τ∈Σ

(∑

σ∈Σ
σ⊇ τ

(−1)|σ \ τ |−1

)
(−1)|τ |−1Yτ .

In the inner right sum, σ \ τ runs over lk(τ) and |σ \ τ | − 1 = dim(σ \ τ). Hence

θ(F (Σ)) =
∑

τ∈Σ

(−1)dim(τ) χ̃(lkΣ(τ))Yτ . (8)

Applying θ again gives the expression F (Σ) = −
∑

τ∈Σ χ̃(lkΣ(τ))F (τ) for F (Σ) in

terms of closed simplexes. Interpreting (8) as an equation in R̂ = Z[[(xv)v∈V ]] shows
(see the proof of [14, Ch II,Theorem 1.4]) that it is equivalent to [14, Ch II, Theorem
7.1] on the Hilbert series in fine grading of the face ring of Σ, although we shall not
use this fact (the proof here is essentially the same as in loc. cit., except expressed
in terms of variables (yv) instead of (xv)).

Our concern here is the following consequence of (8): if Σ is non-empty, then

θ(F (Σ)) = ±F (Σ) ⇐⇒ θ(F (Σ)) = (−1)dim(Σ)+1F (Σ)

⇐⇒ χ̃(lkΣ(τ)) = (−1)dim(Σ)−dim(τ)−1 for all τ in Σ.
(9)

Indeed, θ(F (Σ)) = ǫF (Σ) with ǫ in {±1} if and only if (−1)dim(τ) χ̃(lkΣ(τ)) = ǫ for all
simplexes τ of Σ, and then one must have ǫ = (−1)dim(Σ)+1 by taking τ of maximal
dimension in Σ (since then dim(τ) = dim(Σ), lk(τ) = {∅} and χ̃(lk(τ)) = −1).
The final condition in 9 may be phrased in terms of Euler spheres (cf. the proof of
Theorem 1.1(g) for a reference to the definition).

2.5

We now specialize to the case of order complexes of finite posets. For any poset
Ω and any x ≤ y in Ω, we let [x, y] = [x, y]Ω = { z ∈ Ω | x ≤ z ≤ y } and
(x, y)Ω = { z ∈ Ω | x < z < y } denote the corresponding closed and open interval,
respectively. It is frequently convenient to adjoin to Ω a maximum element, which
we denote as ∞ = ∞Ω, and a minimal element, which we denote as −∞ = −∞Ω, to
form a new poset Ω̂ = Ω ∪̇ {−∞,∞} such that Ω has the order induced as subposet

of Ω̂, −∞ < ∞ and (−∞,∞)Ω̂ = Ω. An order ideal of Ω is a subset Λ of Ω, given
the induced order from Ω, such that x ≤ y in Ω and y in Λ imply that x is in Λ.
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2.6

Fix a finite poset Ω. Recall that a chain of Ω is a subset of Ω which is totally ordered
in the induced order from Ω. A chain {v1, . . . , vn} with v1 < · · · < vn is said to have
length n− 1 and, if n > 0, it is said to be a chain from v1 to vn. The order complex
∆(Ω) of Ω is defined to be the abstract simplicial complex with vertex set Ω and
with the chains of Ω as simplexes. One says a chain is a maximal chain of Ω if it
is inclusion-maximal as a simplex of ∆(Ω) i.e. if it is not properly contained in any
other chain of Ω.

We take V := Ω in 2.3–2.4, so F (∆) is a rational power series in (xv)v∈V for any
complex with vertices in V . From the definitions, one has

F (∆(Ω)) =
∑

n∈N

∑

v1<···<vn

yv1 · · · yvn =
∑

n∈N

∑

v1<···<vn

xv1 · · · xvn

(1− xv1) · · · (1− xvn)

=
∑

n∈N

∑

v1<···<vn
k1,...,kn∈N>0

xk1
v1
· · · xkn

vn
=

∑

n∈N

∑

v1≤···≤vn

xv1 · · · xvn

(10)

where the vi run over vertices of ∆(Ω) (i.e. elements of Ω). Note that this formula
shows that F (∆(Ω)) may be regarded as a generating function for the set of chains
v1 < · · · < vn in Ω (when expressed in terms of the elements yv of R for v in Ω) or as
a generating function for the set of multichains v1 ≤ · · · ≤ vn in Ω (when expressed

in terms of the elements xv of R̂).

2.7

Write F ′(∆(Ω)) = F (∆(Ω))
∏

v∈Ω(1− xv), so that F (∆(Ω)) = F ′(∆(Ω))∏
v∈Ω(1−xv)

. It is

clear from (10) that F ′ ∈ Z[(xv)v∈V ] is a polynomial with integral coefficients in
the indeterminates xv, and we shall now determine them explicitly using a known
determinantal formula from [15] for F (∆(Ω)) as an element of Z[(yv)v∈Ω].

Let A = AΩ be the Ω× Ω matrix with entries in R0 given by

Av,v′ =

{
1, if v 6≤ v′

0, if v ≤ v′
(11)

for all v, v′ ∈ Ω. Let D (respectively, D′) be the Ω × Ω diagonal matrix over R0

with entries given by Dv,v′ = δv,v′yv (respectively, D′
v,v′ = δv,v′xv) where δ denotes

the Kronecker delta. Finally, let I = IdΩ denote the Ω× Ω identity matrix over R0.

Theorem 2.1. (a) F (∆(Ω)) = Det(I +D(I + A)).

(b) Set B := (I−D′)(I+D(I+A)). Then B = I+D′A and F ′(∆(Ω)) = Det(B).

(c) F ′(∆(Ω)) =
∑

Λ⊆Ω(−1)|Λ|+1 χ̃(∆(Λ))xΛ where xΛ :=
∏

v∈Λ xv.
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Proof. (a) This is stated, with a sketch of a proof, in [16, Ch 3, Exercise 22]. A more
general result appears in [15], and is itself a special case of [10, Lemma 3.12]. We
sketch a proof following [16]. Let z be an indeterminate over R0. It will suffice to
show that

Det(I + zD(I + A)) =
∑

σ∈∆(Ω)

z|σ|Yσ (12)

in R0[z]. This is shown using the fact that for any Ω×Ω matrix M over R0, one has
Det(I + zM) =

∑
σ⊆Ω z|σ| Det(M [σ]) where M [σ] is the σ × σ-principal submatrix

of M (i.e. (M [σ])v,v′ = Mv,v′ for v, v
′ ∈ σ) and by convention, the ∅ × ∅ matrix has

determinant 1. Using this with M = D(I + A) shows that

Det(I + zD(I + A)) =
∑

σ⊆Ω

z|σ| Det(D[σ]) Det((I + A)[σ]).

Now Det(D[σ]) =
∏

v∈σ yv = Yσ and A[σ] = Aσ where σ is regarded as poset in the
induced order, so it suffices to show that

Det(I + A) =

{
1, if σ ∈ ∆(Ω) i.e. σ is a chain in Ω

0, otherwise.
(13)

Choose v1, . . . , vn in Ω recursively so that vi is the maximum element of the poset
Ω \ {v1, . . . , vi−1}, and n ∈ N is maximal subject to this. If n = |Ω| then Ω is a
chain vn < · · · < v1. In this case, (I + A)vi,vj is equal to 1 if i ≤ j and 0 otherwise,
so det(I + A) = 1. Otherwise, one has n < |Ω| and Ω \ {v1, . . . , vn} has at least
two maximal elements, say v′ and v′′. One has (I + A)v′,vi = (I + A)v′′,vi = 0 for
i = 1, . . . , n and (I+A)v′,v = (I+A)v′′,v = 1 for all v ∈ Ω \ {v1, . . . , vn}. In this case,
Ω is not a chain and the v′-th and v′′-th rows of I +A are equal, so det(I +A) = 0.

(b) Since (1 − xv)yv = (1 − xv)
xv

1−xv
= xv, one has (I − D′)D = D′ and so

(I − D′)(I + D) = I. Hence B = (I − D′)((I + D) + DA)) = I + D′A. Since
det(I −D′) =

∏
v∈Ω(1−xv), one has det(B) =

(∏
v∈Ω(1−xv)

)
F (∆(Ω)) = F ′(∆(Ω))

by (a) and the definitions.

(c) It suffices to show that

Det(I + zD′A) =
∑

Λ⊆Ω

(−1)|Λ|+1z|Λ| χ̃(∆(Λ))xΛ. (14)

As in (a), the left-hand side is

∑

Λ⊆Ω

z|Λ| Det(D′[Λ])Det(A[Λ]) =
∑

Λ⊆Ω

z|Λ|xΛ Det(A[Λ])

and it suffices to show that Det(A[Λ]) = (−1)|Λ|+1 χ̃(∆(Λ)). Since A[Λ] = AΛ, we
may assume Λ = Ω. But specializing z 7→ −1 and yv 7→ 1 for all v in V in the
identity (12) shows that (−1)|Ω| Det(A) = Det(−A) =

∑
σ∈∆(Ω)(−1)|σ| = − χ̃(∆(Ω))

as required. There is also a simple direct proof of (c) from (10) which we leave to
the interested reader.
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2.8

We now recall some salient properties of the Möbius function µ = µΩ of the finite
poset Ω. Recall that the Möbius function may be regarded as the unique function
µ : { (x, y) ∈ Ω× Ω | x ≤ y } → Z such that the following conditions hold:

(i) µ(x, x) = 1 for all x in Ω.

(ii)
∑

y∈[x,z] µ(x, y) = 0 if x < z in Ω.

(iii)
∑

y∈[x,z] µ(y, z) = 0 if x < z in Ω.

(iv) µ(x, y) = χ̃(∆((x, y)Ω) if x < y in Ω.

It is well known and easily seen (see [16]) that µ is uniquely determined by (i) together
with any one of the other three conditions (ii)–(iv) above.

Let σ = {v1, . . . , vn} be any simplex of ∆(Ω), where n is in N and v1 < · · · < vn
in Ω. Set v0 := −∞ and vn+1 := ∞. One sees at once that

lk∆(Ω)(σ) = ∆((v0, v1)Ω) ∗∆((v1, v2)Ω) ∗ · · · ∗∆((vn, vn+1)Ω) (15)

and hence, by (6), one has

χ̃(lk∆(Ω)(σ)) = (−1)dim(σ)+1

n+1∏

i=1

µ(vi−1, vi). (16)

By (9), θ(F (∆(Ω))) = (−1)dim(∆(Ω))+1F (∆(Ω)) holds if and only if one has∏n+1
i=1 µ(vi−1, vi) = (−1)dim(∆(Ω)) for all n in N and v1 < · · · < vn in Ω, where

v0 := −∞ and vn+1 := ∞.

2.9

A (finite) poset Λ is said to be lower Eulerian if it has the following properties:

(i) It has a minimum element m = mΛ, and for any x in Λ, all maximal chains
from m to x (i.e. the maximal chains of [m,x]) have the same length r(x).

(ii) For any x ≤ y in Λ, one has µ(x, y) = (−1)r(y)−r(x).

The function r : Λ → N is called the rank function of Λ. One says that Λ is Eulerian
if it is a lower Eulerian poset with a maximum element M = MΛ. Note that in any
lower Eulerian poset Λ, and for any x ≤ y in Λ, any maximal chain from x to y has
length r(y)− r(x) and [x, y] is an Eulerian poset (in the induced order from Λ).

For example, it is well known and easily seen that any finite Boolean interval
(i.e. a poset isomorphic to the inclusion-ordered power set P(X) of a finite set X) is
an Eulerian poset. It follows that for any non-empty finite simplicial complex, with
vertex set V , the poset of its simplexes, ordered by inclusion, is lower Eulerian. In
fact, it is an order ideal in the (Eulerian) poset P(V ).
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2.10

For the rest of this section, Ω′ denotes a lower Eulerian poset with minimal element
m := mΩ′ . From 2.12 onwards, it will also be assumed that Ω′ is an order ideal
in a specified Eulerian poset Ω̃. Set Ω := Ω′ \ {m} and identify Ω̂ = Ω ∪̇ {−∞,∞}
with the poset Ω′∪̇{∞} (obtained by adjoining a maximum element ∞ to Ω′) by

identifying −∞ = m. For v in Ω′, let r(v) denote the maximal length of a chain in Ω̂

from m to v, and set ǫv := (−1)r(v). For any v in Ω̂, write Ω<v := {x ∈ Ω | x < v }
and Ω≤v := {x ∈ Ω | x ≤ v }. The construction of 2.3–2.4 will be applied to various
(order) complexes Σ on vertex sets contained in V := Ω, regarding the resulting

elements F (Σ) as rational power series in R̂ = R[[(xv)v∈Ω]]. Also set xm := 1
R̂
for

convenience in certain formulae below.

Theorem 2.2 below states analogs in the context here of several of the main results
from Section 1 (see 2.11). The equality of the rational functions F∞ in 2.2(a) and
F (∆(Ω≤v)) in 2.2(f) in the case v is a maximal element of Ω generalizes the identity
(†) of the introduction. These identities (and more generally, [14, Theorem 7.1]) have
many interesting (known) specializations, which it would be too much of a digression
to list here.

Summation indices vi below run over Ω′ unless otherwise indicated. For conve-
nience, Table 1 provides a dictionary of notational correspondences between §1 and
§2; some of the notation it lists is introduced in the following subsections.

Section Section
§1 §2 §1 §2

N Ω′ (PW )−1 F∞ := F (∆(Ω))
N ′ = N \{∅} Ω = Ω′ \ {m} ((PWJ

)−1)J∈N (F (∆(Ω≤v)))v∈Ω′

∅ ∈ N m = mΩ′ ∈ Ω′ ((1− xJ)P
−1
WJ

)J∈N ′ (F (∆(Ω<v)))v∈Ω
N∪̇{∞} Ω̂ = Ω′∪̇{∞} P(S) Ω̃

(µ(J,∞))J∈N (µ(v,∞))v∈Ω′ S ∈ P(S) M = MΩ̃ ∈ Ω̃

Z[t], Z[[t]], Q(t) R, R̂, R0 (xJ = 0)J∈P(S) \N (xv = 0)
v∈Ω̃ \Ω′

τ θ (|J |)J∈P(S) (r(v))
v∈Ω̃

(ǫJ)J∈N (ǫv)v∈Ω′ (ǫJ)J∈P(S) (ǫv)v∈Ω̃
(xJ)J∈N (xv)v∈Ω′ ((PWJ

)−1)J∈P(S) (Fq)q∈Ω̃
x∅ = 1 xm = 1 ((PWJ )−1)J∈P(S) (F q)

q∈Ω̃

Table 1: Table of correspondence of notations between §1 and §2. Correspondences
involving Ω̃ require additional assumptions as in 2.12. Note Fq := F (∆(Ω≤q)) and

F q := (Fq)
−1F∞ for q ∈ Ω̃.

Theorem 2.2. (a) One has

F∞ := F (∆(Ω)) =
∑

n∈N

∑

m=v0<···<vn

xv1 · · · xvn

(1− xv1) · · · (1− xvn)
.
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(b) If Ω̂ is Eulerian, then θ(F∞) = (−1)dim(∆(Ω))+1F∞.

(c) For any v in Ω, one has θ(F (∆(Ω<v))) = −ǫvF (∆(Ω<v)).

(d) If v is in Ω, then F (∆(Ω<v)) = (1− xv)F (∆(Ω≤v)).

(e) For all v in Ω′, one has θ(F (∆(Ω≤v))) = ǫvxvF (∆(Ω≤v)).

(f) If v is in Ω′, then

F (∆(Ω≤v)) =
∑

n∈N

∑

m=v0<···<vn=v

(−1)nǫv
(1− xv1) · · · (1− xvn)

.

(g) F∞ =
∑

v∈Ω′ ǫvθ(F (∆(Ω≤v))).

(h) F∞ = −
∑

v∈Ω′ µΩ̂(v,∞)F (∆(Ω≤v)).

Proof. (a) This is part of (10) in the special case here.

(b) This follows from the last paragraph of 2.8. One needs only to note that for
v0, . . . , vn+1 as there, one has

n+1∏

i=1

µ(vi−1, vi) =
n+1∏

i=1

(−1)r(vi)−r(vi−1) = (−1)r(vn+1)−r(v0) = (−1)r(∞)−r(m)

= (−1)r(∞) = (−1)r(∞)−2 = (−1)dim(∆(Ω))).

(c) This may be proved by applying (b) with Ω̂ replaced by the Eulerian poset
[m, v] = Ω≤v ∪ {m} (with the maximum element v playing the role of ∞), noting
dim(∆(Ω<v)) = r(v)− 2.

(d) One way to prove this is to note that ∆(Ω≤v) is the cone on vertex v over

∆(Ω<v) (i.e. it is the join of ∆(Ω<v) and the closed simplex {v}) and use (7). Alter-
natively, note that the subsum on the right from the formula in (a) (taking Ω = Ω≤v)
with vn < v is F (∆(Ω<v)) and that with vn = v is xvn

1−xvn
F (∆(Ω<v)).

(e) Both sides are 1 if v = m. If v 6= m, the result follows from (c)–(d) since
θ(xv) = x−1

v .

(f) If v = m, both sides are equal to 1. Otherwise, one has

F (∆(Ω(≤ v))) =
1

1− xv

F (∆(Ω<v)) =
−ǫv

1− xv

θ(F (∆(Ω<v)))

=
−ǫv

1− xv

∑

n∈N

∑

m=v0<···<vn<v

x−1
v1

· · · x−1
vn

(1− x−1
v1
) · · · (1− x−1

vn
)

=
∑

n∈N

∑

m=v0<···<vn<v

(−1)n+1ǫv
(1− xv1) · · · (1− xvn)(1− xv)
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using (d), (c) and (a) for the first, second and third equality respectively. The final
expression is equal to the right-hand side of the equation in (f), because the inner
sum there is zero if n = 0 since v 6= m.

(g) By (f), the right-hand side of (g) is equal to

∑

v∈Ω′

∑

n∈N

∑

m=v0<···<vn=v

(−1)n

(1− x−1
v1
) · · · (1− x−1

vn
)

=
∑

n∈N

∑

v=v0<···<vn

xv1 · · · xvn

(1− xv1) · · · (1− xvn)

and the desired equality follows by (a).

(h) This is proved by the computation

F∞ =
∑

v∈Ω′

ǫvθ(F (∆(Ω≤v))) =
∑

v∈Ω′

( ∑

v′′∈Ω′

v′′≥v

∑

v′∈Ω′

v≤v′≤v′′

µ(v′, v′′)

)
ǫvθ(F (∆(Ω≤v)))

=
∑

v′∈Ω′

( ∑

v′′∈Ω′

v′′≥v′

µ(v′, v′′)

)(∑

v∈Ω′

v≤v′

ǫvθ(F (∆(Ω≤v)))

)

=
∑

v′∈Ω′

−µ(v′,∞)F (∆(Ω≤v′))

in which the first equality holds by (g), the second is from 2.8(iii), the third follows
by change of order of summation and the last equality follows from 2.8(ii) and (g)
(applied to Ω≤v′ instead of Ω).

2.11

According to Table 1, Theorem 2.2(a) is an analog of Theorem 1.2(b), and Theo-
rem 2.2(f) is an analog of (5) for K in N . Theorem 2.2(e) (respectively, (g), (h))
corresponds to Theorem 1.1(b) (respectively, (d), (e)). For the rest of this section,
we discuss the remaining “missing” analogs of results from Sections 1 and 2. Parts
(a)–(b) of the next result give analogs of Theorem 1.1(f)–(g).

Corollary 2.3. (a) The constant term of the formal power series expansion of
θ(F∞) in R = Z[[(xv)v∈V ]] is − χ̃(∆(Ω)) = −µΩ̂(m,∞).

(b) If there is an integer N such that µ(v,∞) = (−1)Nǫv for all v in Ω′, then
θ(F∞) = (−1)N+1F∞.

Proof. (a) Since θ
xvi

1−xvi

= 1
xvi

−1
, Theorem 2.2(a) implies

θ(F∞) =
∑

n∈N

∑

m=v0<···<vn

1

(xv1 − 1) · · · (xvn − 1)
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where the right-hand side is in R̂ and, using 2.8(iv), has constant term

∑

n∈N

∑

m=v0<···<vn

(−1)n =
∑

σ∈∆(Ω)

(−1)dim(σ)+1 = − χ̃(∆(Ω)) = −µ(m,∞).

(b) This follows by applying θ to 2.2(g) and comparing with 2.2(h).

2.12

Assume henceforward that Ω′ is an order ideal of an Eulerian poset Ω̃. For q in Ω̃,
let Ω≤q := { p ∈ Ω | p ≤ q } and Ω<q := { p ∈ Ω | p < q }, extending the notation

introduced previously for q in Ω′. The rank function of Ω̃ extends the rank function
r of Ω′ and will still be denoted as r. Let ǫq = (−1)r(q) for q in Ω̃ (which extends

the definition of ǫp for p in Ω′). Since Ω̃ is Eulerian, one has µΩ̃(x, y) = ǫxǫy for

x ≤ y in Ω̃. Let M := MΩ̃ denote the maximum element of Ω̃. For q in Ω̃, define

Fq := F (∆(Ω≤q)) and F q :=
F∞

Fq
. Set xv := 0 for all v ∈ Ω̃ \Ω′. This explains the

notations involving Ω̃ in Table 1. These additional entries in the table are consistent
with the others where they overlap; in particular, the two entries corresponding to

1
PWJ

for J ∈ N are the same. Note also that FM = F∞ since Ω≤M = Ω.

One obtains from above an analog (FqF
q = F∞ for q ∈ Ω̃) of Theorem 1.1(a)

just by definition of F q; it is not clear if there is an independent description of F q

which would make this equation a theorem instead. Analogs of Theorem 1.2(a) and
Theorem 1.1(c) are given by parts (a) and (b) of the following result.

Theorem 2.4. (a) One has

F∞ =
∑

n∈N

∑

m=v0<···<vn=M

(−1)nǫM
(1− xv1) · · · (1− xvn)

where the vi range over Ω̃ and xv := 0 for v ∈ Ω̃ \Ω.

(b) One has
∑

q∈Ω̃

ǫqFq =

{
ǫMxMF∞, if M ∈ Ω′ i.e. Ω′ = Ω̃

0, otherwise.

Proof. (a) Set Λ := Ω̃ \ {m} and Λ′ := Ω̃. Applying Theorem 2.2(a),(f) to Λ instead
of Ω gives identities

F (∆(Λ)) =
∑

n∈N

∑

m=v0<···<vn

xv1 · · · xvn

(1− xv1) · · · (1− xvn)

and

F (∆(Λ≤M)) =
∑

n∈N

∑

m=v0<···<vn=M

(−1)nǫM
(1− xv1) · · · (1− xvn)
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where (xv)v∈Λ are indeterminates and the vi range over Λ′. Since Λ≤M = Λ, one has
F (∆(Λ)) = F (∆(Λ≤M)). Now substitute xv = 0 for all v ∈ Λ \Ω′ in these identities.
By Theorem 2.2(a) applied to Ω, F (∆(Λ)) specializes to F∞ under this substitution,
while F (∆(Λ≤M)) obviously specializes to the right-hand side of the identity in (a)
which is to be proved. The result follows.

(b) By Theorem 2.2(g) (applied to the posets Ω≤q for q ∈ Ω̃ instead of Ω) the
left-hand side is

L :=
∑

q∈Ω̃

ǫqF (∆(Ω≤q)) =
∑

q∈Ω̃

ǫq
∑

v∈Ω′

v≤q

ǫvθ(F (∆(Ω≤v)))

=
∑

v∈Ω′

( ∑

q∈Ω̃
M≥q≥v

µΩ̃(v, q)

)
θ(F (∆(Ω≤v))).

The inner sum over q is zero unless M = v ∈ Ω′, in which case it is 1. Hence if M
is not in Ω′, then L = 0, and the “otherwise” case is proved. Assume now that M
is in Ω′. This obviously is equivalent to Ω′ = Ω̃ and implies Ω = Ω≤M . In this case,
one has L = θ(F (∆(Ω≤M))) = ǫMxMF∞ by Theorem 2.2(e), as required.

2.13

All the results on Poincaré series of PW in Section 1 may now be deduced from
Theorem 1.2(b) by specialization of results of this section. To be explicit, given
the finite rank Coxeter system (W,S), we take Ω′ := N (the nerve of (W,S) as in

Section 1) and Ω̃ = P(S) (the power set of S, as Eulerian poset) with N as order
ideal. One considers the specialization given by xJ 7→ (−1)|J |Xw(J), where Xw(J) is
as in Section 1, for J ∈ N . Table 2 then indicates how the rational functions F∞, Fq,
F q etc. specialize to rational functions naturally associated to (W,S). We observe
that specialization of Theorem 2.1 leads to some other apparently new formulae for
PW , but shall not list them explicitly.

2.14

For completeness, we conclude this paper by discussing the translation of Theo-
rem 2.2(c)–(d) back to the setting of Section 1. Theorem 2.2(c) suggests the entry
in Table 1 according to which 1−xJ

PWJ

for J ∈ N \{∅} corresponds to F (∆(Ω<v)) for

v ∈ Ω. Theorem 2.2(d) then corresponds to the statement in the setting of Sec-

tion 1 that for such J , one has
1−x−1

J

τ(PWJ
)
= −ǫJ

1−xJ

PWJ

, which is readily checked from

Theorem 1.1(b).

Note that this last correspondence does not extend as stated to one for J ∈ N
and v ∈ Ω′, since 1−x∅

PW∅

= 0, which is not the relevant specialization (namely, 1) of

F (∆(Ω<m)) = F ({∅}) = 1. This may be fixed by setting Ω′
<v := {x ∈ Ω′ | x < v }

for v ∈ Ω′ and using lk∆(Ω′
<v)

({m}) instead of ∆(Ω<v) from 2.2 on (note they differ
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only for v = m); then Theorem 2.2(c)–(d) hold for all v ∈ Ω′. Using also ∆(Ω) =
lk∆(Ω′)({m}) and ∆(Ω≤v) = lk∆(Ω′

≤v
)({m}) for v ∈ Ω′, where Ω′

≤v := {x ∈ Ω′ | x ≤

v }, permits a more natural formulation of the results in terms of the lower Eulerian
poset Ω′ than in terms of its subposet Ω, as we have given in this note.
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