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Abstract

For a non-decreasing sequence of integers (a1, a2, . . . , ak), a graph G is
(a1, a2, . . . , ak)-packing colorable if V (G) can be partitioned into k sub-
sets V1, V2, . . . , Vk such that the distance between any two distinct vertices
x, y ∈ Vi is at least ai + 1, 1 ≤ i ≤ k. Our paper studies the pack-
ing coloring of subcubic graphs. Gastineau and Togni [Discrete Math.

339 (2016), 2461–2470] asked whether every subcubic graph except the
Petersen graph is (1, 1, 2, 3)-packing colorable. An i-saturated subcubic
graph G, 0 ≤ i ≤ 3, is a subcubic graph such that each vertex of degree
3 in G has at most i neighbors of degree 3. We prove here that every
2-saturated subcubic graph is (1, 1, 2, 3)-packing colorable.

1 Introduction

All graphs considered here are simple, having no loops or multiple edges. For a graph
G, the set of vertices of G is denoted by V (G) and its set of edges by E(G). For a
vertex x in G, we denote by N(x) the set of neighbors of x and by d(x) the number
of its neighbors. We denote by ∆(G) the maximum degree of vertices in G and by
δ(G) the minimum degree. Let H ⊆ V (G), we denote by G[H] the subgraph induced
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by H. For a path P = x1 . . . xn, we call x1 and xn the ends of P , while each other
vertex is called an interior vertex. A path P in a graph G is said to be maximal if P
is not a proper subpath of any other path in G. The length of a shortest path in G

joining two vertices x and y is the distance between x and y in G and it is denoted
by dist(x, y).

A graph G is said to be subcubic if ∆(G) ≤ 3. Let G be a subcubic graph. A
vertex x in G is said to be an i-vertex if d(x) = i, 2 ≤ i ≤ 3. A 3-vertex x in G is said
to be a heavy vertex if all its neighbors are 3-vertices and it is said to be i-saturated,
0 ≤ i ≤ 2, if N(x) contains i 3-vertices. In [12], the authors classified the subcubic
graphs into four classes:

• A subcubic graph G is said to be 0-saturated if any two 3-vertices in G are not
adjacent. This type is also called 3-irregular subcubic graph in [8, 16].

• A subcubic graph G is said to be 1-saturated if every 3-vertex in G is adjacent
to at most one 3-vertex.

• A subcubic graph G is said to be 2-saturated if every 3-vertex in G is adjacent
to at most two 3-vertices.

• A subcubic graph G is said to be 3-saturated if G contains at least one heavy
vertex.

For the class of 3-saturated subcubic graphs, the authors in [12] consider, for 0 ≤ i ≤
3, the subclass of (3, i)-saturated subcubics graphs, which consists of the 3-saturated
subcubic graphs such that every heavy vertex is adjacent to at most i heavy vertices.

If (a1, a2, . . . , ak) is a non-decreasing sequence of positive integers, then a graph G

is said to be (a1, a2, . . . , ak)-packing colorable if V (G) can be partitioned into k sub-
sets V1, V2, . . . , Vk such that for every two distinct vertices x and y in Vi, dist(x, y) > ai
for 1 ≤ i ≤ k. The smallest k such that G is (1, 2, . . . , k)-packing colorable is called
the packing chromatic number of G and is denoted by χρ(G). This parameter was
introduced by Goddard et al. [7] under the name of broadcast chromatic number.

For a graph G, S(G) denotes the graph obtained from G by replacing each edge
with a path of length two. Many papers [2, 4, 5, 6, 8, 9, 14] were dedicated to finding
a bound of χρ(G) and χρ(S(G)) for a subcubic graph G. Balogh, Kostochka and
Liu [1] and Brešar and Ferme [3] independently proved that the packing chromatic
number is not bounded on the class of subcubic graphs. Gastineau and Togni [8]
asked whether χρ(S(G)) ≤ 5. Then Brešar, Klavžar, Rall, and Wash [6] conjectured
that χp(S(G)) ≤ 5 for every subcubic graph G. Gastineau and Togni [8] proved
that in order for a subcubic graph G to have χp(S(G)) ≤ 5 it is enough for G to be
(1, 1, 2, 2)-packing colorable. In a recent (not yet published) paper [11], Liu, Zhang
and Zhang proved that every subcubic graph is (1, 1, 2, 2, 3)-packing colorable, hence
that χρ(S(G)) ≤ 6. Yang and Wu [16] proved that every 3-irregular subcubic graph is
(1, 1, 3)-packing colorable, and then a simpler proof for the same result was presented
in [13]. Moreover, Brešar, et al. [6] proved that if G is a generalized prism of a cycle,



M. MORTADA AND O. TOGNI /AUSTRALAS. J. COMBIN. 90 (2) (2024), 155–167 157

then G is (1, 1, 2, 2)-packing colorable if and only if G is not the Petersen graph. Liu,
Liu, Rolek and Yu [10] proved that subcubic graphs with maximum average degree
less than 30

11
are (1, 1, 2, 2)-packing colorable. Moreover, Tarhini and Togni [15] proved

that every cubic Halin graph is (1, 1, 2, 3)-packing colorable. Finally, Mortada and
Togni [12] recently proved that every 1-saturated subcubic graph is (1, 1, 2)-packing
colorable and every (3, 0)-saturated subcubic graph is (1, 1, 2, 2)-packing colorable.

The technique used to prove our latest result [12] seems powerful as it allows us
to prove that every 2-saturated subcubic graph is (1, 1, 2, 3)-packing colorable. The
technique is based on considering an independent set in a 2-saturated subcubic graph
G that maximizes, among all independent sets, a linear combination of the number of
3-vertices with two neighbors of degree 3, the number of 3-vertices with one neighbor
of degree 3, the number of 3-vertices with no neighbor of degree 3, and the number of
2-vertices. Considering such an independent set allows us to determine the distance
between a sufficient number of vertices in G, leading at the end to the desired packing
coloring of G.

2 Every 2-saturated subcubic graph is (1, 1, 2, 3)-packing col-

orable

Theorem 2.1. Every 2-saturated subcubic graph is (1, 1, 2, 3)-packing colorable.

Proof. On the contrary, suppose that G is a counterexample with the minimum
order n. Clearly, G is connected. First, δ(G) ≥ 2, since otherwise, let u be a vertex
of degree 1 and let G′ = G−u. By the minimality of G, G′ has a (1, 1, 2, 3)-coloring.
Either 1a or 1b is not the color of the unique neighbor of u in G′, then give this color
to u, and so we obtain a (1, 1, 2, 3)-coloring of G, a contradiction.

Our plan is to partition the set of vertices of G into four subsets on which two
of them are independent, any two vertices in the third are at distance at least three
while the distance is at least four between any two vertices in the fourth subset. The
existence of such a partition proves that G is (1, 1, 2, 3)-packing colorable, which is
a contradiction. To reach this partition, we will first consider a special independent
set that will lead to determining the distance between specific vertices in G.

Note that if H is a subgraph of G or a subset of V (G) and if x is a vertex in H,
by saying x is an i-vertex, we mean that x is an i-vertex in G, 2 ≤ i ≤ 3. That is,
maybe x does not have i neighbors in H but has them in G. Consequently, when we
say x is i-saturated, we mean that x is i-saturated in G. Moreover, by saying u is an
i-neighbor of v, we mean that u is a neighbor of v and u is an i-vertex, 2 ≤ i ≤ 3.

Let T be an independent set in G, and for 0 ≤ i ≤ 2, let Xi(T ) be the set
of 3-vertices in T such that each of these vertices is i-saturated. Let Y (T ) be the
set of 2-vertices in T . The set V (G) \ T will be denoted by T . Let us define
φ(T ) = |X2(T )| + 0.9|X1(T )| + 0.6|X0(T )| + 0.4|Y (T )|. The coefficients have been
chosen to describe how important a vertex is for the independent set (e.g., a vertex
in X1(T ) is more important than two vertices in Y (T ) and a vertex in X2 is less
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important than two vertices in X0). An independent set T is said to be a maximum

weighted independent set if φ(T ) ≥ φ(K) for every independent set K. Let S be a
maximum weighted independent set.

Clearly, by the maximality of φ(S), each vertex in S has a neighbor in S. Thus,
any interior vertex of a path in G[S] is a 3-vertex. Moreover, we have the following
observation:

Remark 2.1. If u is a 3-vertex in S such that u has a 3-neighbor in S, then u has

a 3-neighbor in S. Indeed, suppose to the contrary that u has no 3-neighbor in S;

then S ′ = (S \N(u))∪ {u} is an independent set with φ(S ′) ≥ φ(S) + 0.1 since each

neighbor of u in S is in Y (S) while u ∈ X2(S
′) ∪X1(S

′), a contradiction.

Thus, since G is 2-saturated, we can deduce that a path in G[S], where all of its
vertices are 3-vertices, is of length at most one. Moreover, since each 2-vertex in S

has a neighbor in S, G[S] contains neither a cycle nor a path where all vertices are
2-vertices and of length greater than one. Consequently, one can easily notice that
there are only seven types of maximal paths in G[S] (see Figure 1):

• A maximal path of length zero, and this type will be denoted by P0.

• A maximal path of length one and its vertices are 2-vertices, and this type will
be denoted by P1.

• A maximal path of length one and its vertices are a 2-vertex and a 3-vertex,
and this type will be denoted by P2.

• A maximal path of length one and its vertices are 3-vertices, and this type will
be denoted by P3.

• A maximal path of length two on which its ends are 2-vertices, and this type
will be denoted by P4.

• A maximal path of length two on which its ends are a 2-vertex and a 3-vertex,
and this type will be denoted by P5.

• A maximal path of length three on which its ends are 2-vertices, and this type
will be denoted by P6.

S

S

P0 P1 P2 P3 P4 P5 P6

Figure 1: The different types of maximal paths in G[S].

The coloring procedure will be to color the vertices of S by a color 1a, and as much as
possible, vertices of S by a color 1b in such a way that there will remain one uncolored
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vertex for each maximal path of type P1 to P5 and two for paths of type P6. We
are going to use colors 2 and 3 for these vertices. However, we will also recolor some
of the vertices of S in order to have more flexibility to complete the coloring of the
vertices of S and then we will also use the color 1a in coloring particular vertices
of S.

Remark 2.2. Any two vertices in S not on the same maximal path in G[S] are not

adjacent. In addition, an interior vertex of any maximal path in G[S] is a 3-vertex.

For a maximum weighted independent set T , we denote by θ(T ) the number of max-
imal paths of type P3 in G[T ]. We will assume our maximum weighted independent
set S was chosen such that θ(S) ≤ θ(T ) for every maximum weighted independent
set T .

A 2-vertex in S is said to be a bad 2-vertex if it is a vertex of any maximal path
of type different from P0 in G[S]. A 3-vertex in S is said to be a bad 3-vertex if it
is a vertex on a maximal path in G[S] except those that are on a maximal path of
type P0, those that are on a maximal path of type P2, and those that are ends of a
maximal path of type P5. A bad 3-vertex is said to be a weak bad vertex if it is on
a path of type P3, mid bad vertex if it is an interior vertex on a path of type P4 or
P5, and rough bad vertex if it is on a path of type P6. We remark that if x is a weak
bad vertex, then x has a unique neighbor in G[S] and this neighbor is a 3-vertex,
and if x is a mid bad vertex or rough bad vertex then x has two neighbors in G[S].
For abbreviation, when we say bad vertex, we mean that the vertex is either a bad
2-vertex or a bad 3-vertex.

A vertex x ∈ S is said to be a father of a vertex y ∈ S if x and y are adjacent.
Two non-adjacent vertices u and v in S are said to be siblings if they have a common
father. In this case, we say u is a sibling of v. Moreover, we say u is a bad sibling of
v if u is a bad vertex.

Since each sibling of a vertex u is at distance less than three from u, we found it
is important to count the number of bad siblings of each bad vertex. We have the
following result:

Claim 2.1.1. 1. Each rough bad vertex and mid bad vertex has no bad sibling.

2. Each bad 2-vertex has at most one bad sibling.

3. Each weak bad vertex has at most one bad sibling.

4. Let u be a 3-vertex in S such that u is an end of a maximal path of type P5.

Then u is not a sibling of v whenever v is a rough bad vertex or a mid bad

vertex. Besides, u is not a sibling of v, whenever v is a bad 2-vertex having a

bad sibling.

Proof. 1. Let u be a rough bad vertex or a mid bad vertex. Note that u has only one
neighbor in S since it has two neighbors in S. Let x be the father of u. Then x is a
3-vertex since otherwise S ′ = (S\{x})∪{u} is an independent set with φ(S ′) > φ(S),
a contradiction. Suppose to the contrary that u has a bad sibling v. In what follows,
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we will consider the set S ′ = (S \ N(v)) ∪ {u, v}. Clearly, v is neither a rough bad
vertex nor a mid bad vertex, since otherwise both u and v have a unique neighbor
in S, which is x, and so φ(S ′) > φ(S), a contradiction. Suppose first that u is on a
maximal path of type P5 or P6, which implies that u is 2-saturated. Clearly, if v has
a neighbor in S, distinct from x, then v is a weak bad vertex and this neighbor is
a 2-vertex since v already has two 3-neighbors: x and its neighbor on the maximal
path to which v belongs in G[S]. In this case, x, u and v are 2-saturated, and then
φ(S ′) = φ(S) + 0.6, a contradiction. On the other hand, if v is a 2-vertex, then x

is either 1- or 2-saturated and in either case, φ(S ′) ≥ φ(S) + 0.4, a contradiction.
Finally, suppose that u is on a path of type P4, which implies that u is 1-saturated.
As before, if v is a 3-vertex, then its neighbor in S which is distinct from x is a
2-vertex. In this case, x and v are 2-saturated and then we get φ(S ′) = φ(S) + 0.5.
On the other hand, if v is a 2-vertex, then regardless whether x is 1- or 2-saturated,
we have φ(S ′) ≥ φ(S) + 0.3.

2. Let u be a bad 2-vertex and suppose that u has two bad siblings v and w.
By (1), v (w, respectively) is either a bad 2-vertex or a weak bad vertex. Since u

has only one neighbor in S, then u, v and w have a common father in S, say x. In
what follows, we will consider the set S ′ = (S \ (N(v) ∪ N(w))) ∪ {u, v, w}. Note
that if v is a weak bad vertex, then the neighbor of v in S, which is distinct from
x, is a 2-neighbor since v already has two 3-neighbors: x and its 3-neighbor on the
maximal path to which v belongs in G[S]. We have the same situation for w. First
of all, if both v and w are bad 2-vertices, then x ∈ X0(S) and so φ(S ′) = φ(S) + 0.6,
a contradiction. For the case when v is a weak bad vertex and w is a bad 2-vertex,
we have x ∈ X1(S) while v ∈ X2(S

′) and so φ(S ′) = φ(S) + 0.5, a contradiction.
For the case when both v and w are weak bad vertices, we have x ∈ X2(S) while
v, w ∈ X2(S

′), and so φ(S ′) = φ(S) + 0.6, a contradiction.

3. Let u be a weak bad vertex and suppose that u has two bad siblings, v and
w. By (1), each of v and w can be either a bad 2-vertex or a weak bad vertex only.
First, we will study the case when u, v and w have a common father, say x. Then,
in this case, v and w are both weak bad vertices by (2). Consequently, x is a heavy
vertex, a contradiction.

For the other case, let x be the common father of u and v and y be that of u

and w. In what follows, we will consider the independent set S ′ = (S \ (N(v) ∪
N(w))) ∪ {u, v, w}. Since u is a weak bad vertex and G is 2-saturated, then exactly
one of x and y is a 2-vertex and the other a 3-vertex by Remark 2.1. Without loss
of generality, assume that y is the 3-vertex. If v and w are both bad 2-vertices, then
φ(S ′) ≥ φ(S) + 0.4, a contradiction. If v and w are weak bad vertices, then, by
Remark 2.1, v and w are 2-saturated from which it follows that φ(S ′) ≥ φ(S) + 0.2,
a contradiction. Hence, we only need to consider the case that exactly one of v

and w is a bad 2-vertex and the other a weak bad vertex. If w is the weak bad
vertex, then the other neighbor of w in S, other than y, is a 2-vertex and we have
φ(S ′) ≥ φ(S) + 0.6, a contradiction. On the other hand, if w is a bad 2-vertex and v

is a weak bad vertex, then the neighbor of v in S other than x, call it z, is a 3-vertex
by Remark 2.1. If z or y is not 2-saturated, then we have φ(S ′) ≥ φ(S) + 0.1, a
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contradiction. Therefore, we may assume that both y and z are 2-saturated, and
then we get φ(S ′) = φ(S) but θ(S ′) < θ(S), a contradiction. In fact, the maximal
path to which u (v, respectively) belongs in G[S] is of type P3, while the maximal
path to which z belongs in G[S ′] is not of type P3 since z has two neighbors in S ′

and this implies that θ(S ′) ≤ θ(S)− 1.

4. Note that u has a unique neighbor in S which is a 3-vertex and on the path of
type P5 to which u belongs. Suppose that u is a sibling of a bad vertex v and let x be
the common father of u and v. If v is a rough bad vertex or a mid bad vertex, then x

is a 3-vertex as proved in (1). Consequently, the neighbor of u, other than x, in S is a
2-vertex and so S ′ = (S\N(u))∪{u, v} is an independent set with φ(S ′) = φ(S)+0.6
if v is 2-saturated and φ(S ′) = φ(S) + 0.5 if v is 1-saturated, a contradiction. If v
is a bad 2-vertex having a bad sibling, say w, then x is a common father of u, v
and w and so x is a 3-vertex. Consequently, a neighbor of u in S, other than x, is a
2-vertex.Similarly, if w is a weak bad vertex, then a neighbor of w in S, other than
x, is a 2-vertex. Hence, S ′ = (S \ N(u) ∪ N(w)) ∪ {u, v, w} is an independent set
with φ(S ′) = φ(S) + 0.6 if w is a weak bad vertex and φ(S ′) = φ(S) + 0.5 if w is a
bad 2-vertex, a contradiction.

Let B be a subset of bad vertices of S such that:

1. Each vertex in B is either a bad 2-vertex on a maximal path of type P1 or P2,
or a weak bad vertex.

2. For each maximal path P in G[S] of type P1, P2 or P3, we have |P ∩ B| = 1.

We define BS to be a subset of B such that each vertex in BS has a sibling in B, and
so each vertex in B \BS has no sibling in B. Note that by Claim 2.1.1 (2) and (3),
a vertex in S can be adjacent to at most two vertices in BS. A bad father in S is a
common father of two vertices in BS. A bad father is said to be bad 2-father if it is a
father of two bad 2-vertices in BS, a bad 3-father if it is a father of two bad 3-vertices
in BS and a bad mixed father if it is a father of a bad 2-vertex and a bad 3-vertex in
BS. See Figure 2 for an illustration of the sets B and BS and of bad fathers.

We remark that any bad 3-father is a 2-vertex. Indeed, let x be a bad 3-father and let
u and v be the two bad 3-vertices with father x. Suppose that x is a 3-vertex; then,
since G is 2-saturated, the neighbor of u (v, respectively) in S which is distinct from
x is a 2-vertex. Consequently, S ′ = (S \ (N(u) ∪N(v))) ∪ {u, v}, is an independent
set with φ(S ′) = φ(S)+0.2, a contradiction. Here is the last step before defining the
partition of V (G):

Claim 2.1.2. We have dist(x, y) > 2 whenever x and y satisfy one of the following:

1. Both x and y are in B \BS.

2. Both x and y are bad 2-fathers.

3. Both x and y are 3-vertices in BS such that x is not a sibling of y.

4. Both x and y are mid bad vertices or rough bad vertices that are not on the

same maximal path.
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S

S

B

BS

bmf

2 3

3

b2f

2 2

b3f

3 3

3 3

2 3

Figure 2: The content of sets B and BS , and associated bad fathers in S, where
numbers inside vertices are their degrees and bmf stands for bad mixed father, b3f
for bad 3-father, and b2f for bad 2-father.

Proof. 1. By the definition of B, x and y are not adjacent. Also, by the definition
of BS, x and y have no common father. Thus, dist(x, y) > 2.

2. Let x and y be two bad 2-fathers. Let x1 and x2 (y1 and y2, respectively) be the
bad neighbors of x (y, respectively). By Claim 2.1.1 (2), x and y have no common bad
neighbor. We still need to prove that x and y have no common neighbor. Suppose
that x and y have a common neighbor, say u. y Claim 2.1.1 (2), u is not a bad
vertex. Clearly, x and y are 3-vertices and x and y are not in X2(S). Note that if u
has a neighbor in S, distinct from x and y, then it is a 2-vertex. We will study now
two cases according to the neighbors of u in S. If N(u)∩ {x1, x2, y1, y2} = φ, we get
S ′ = (S\N(u))∪(N(x)∪N(y)) is an independent set with φ(S ′) = φ(S)+0.8 if u is a
2-vertex and φ(S ′) = φ(S)+0.4 otherwise, a contradiction. We need now to consider
the case that N(u) ∩ {x1, x2, y1, y2} 6= φ. Since u is not a bad and u has a neighbor
in {x1, x2, y1, y2}, then u is a vertex on a path of type P2 and its unique neighbor in
S is one of the vertices in {x1, x2, y1, y2}. Without loss of generality, suppose x1 is
a neighbor of u, we get S ′ = (S \N(u)) ∪ ({x2} ∪N(y)) is an independent set with
φ(S ′) = φ(S) + 0.4, a contradiction. Consequently, dist(x, y) > 2.

3. By the definition of x, y, B and BS, and by Claim 2.1.1 (3), x and y are neither
adjacent nor having a common neighbor and so dist(x, y) > 2.

4. By Claim 2.1.1 (1), x and y are not siblings, and since they are not on the
same maximal path, then we reach the desired result.

Claim 2.1.3. We have dist(x, y) > 3 whenever x and y satisfy one of the following:

1. Both x and y are weak bad vertices in BS but x is not a sibling of y and the

sibling of each of them in BS is also a 3-vertex.

2. Both x and y are rough bad vertices such that x and y are not on the same

maximal path.

3. Both x and y are bad mixed fathers.
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Proof. 1. By the definition of B and by Claim 2.1.2 (3), dist(x, y) > 2. Let x′ be
the bad 3-father of x and y′ be that of y. We proved before that any bad 3-father
is a 2-vertex, and so both x′ and y′ are 2-vertices. Then, x′ (y′, respectively) cannot
have a common neighbor with y (x, respectively). Let x′′ (y′′, respectively) be the
neighbor in S of x (resp y) distinct from x′ (y′, respectively). We must prove that
x′′ (y′′, respectively) can’t have a common neighbor with y (x, respectively). By
Remark 2.1, x′′ and y′′ are both 3-vertices. Suppose to the contrary that x′′ and y

have a common neighbor, say u. Then, clearly, u is the bad neighbor of y in S. As y
is a weak bad vertex, then u is a 3-vertex. Note that u has at most one 3-neighbor in
S. We get S ′ = (S\(N(x)∪N(u)))∪{x, u}, is an independent set with φ(S ′) > φ(S),
a contradiction. Similarly, we can prove y′′ and x have no common neighbor. Hence,
dist(x, y) > 3.

2. By Claim 2.1.1 (1), each of x and y cannot have a bad sibling and since both
neighbors of x (y, respectively) in S are bad, then dist(x, y) > 3.

3. Let x1 and x2 be the bad neighbors of x in BS and let y1 and y2 be that of
y. Suppose x1 (y1, respectively) is a weak bad 3-vertex, and x2 (y2, respectively) is
a bad 2-vertex. By definition of x and y and by Claim 2.1.1 (2) and (3), we have
{x1, x2}∩{y1, y2} = ∅. Besides, x (y, respectively) has no common neighbor with any
of the bad neighbors of y (x, respectively). In fact, suppose x has a common neighbor
with a bad neighbor of y, say u, then, by Claim 2.1.1 (2) and (3), u is not a bad vertex
and so u is a 3-vertex on a path of type P2 whose other end is y2. We will consider now
the independent set S ′ = (S\(N(x1)∪N(u)))∪{x1, x2, u}. If u is 1-saturated, we get
φ(S ′) = φ(S)+0.5, a contradiction. If u is 2-saturated, let z be the neighbor of u in S

other than x. As u is 2-saturated then z is a 3-vertex. Now, if z is not 2-saturated, we
get φ(S ′) ≥ φ(S) + 0.1, a contradiction. Else, we get φ(S ′) = φ(S) but θ(S ′) < θ(S)
since x1 is on a path of type P3 in G[S] but x is an isolated vertex in G[S ′] and z has
two neighbors in G[S ′], a contradiction. In the same way, we can show that y has no
common neighbor with any of the bad neighbors of x. We need to prove now that
x and y have no common neighbor. Remark that if x (y, respectively) has a third
neighbor, then this neighbor is not bad. Suppose x and y have a common neighbor,
say u. Then both x and y are 3-vertices, and if u or any of the bad neighbors of x and
y has a neighbor in S distinct from both x and y, then this neighbor is a 2-vertex.
However, we get S ′ = (S \ (N(u)∪N(x1)∪N(x2)∪N(y1)∪N(y2)))∪ (N(x)∪N(y))
is an independent set with φ(S ′) = φ(S) + 0.6 despite whether u is a 2-vertex or
3-vertex, a contradiction. Consequently, dist(x, y) > 3.

Now, we are ready to define the sets V1, V2, V3 and V4 such that V1, V2, V3 and V4

form a partition of V (G) satisfying the desired properties.

We will start with V1 that contains:

1. each vertex in B \BS;

2. each mid bad vertex;

3. each bad 2-father;

4. one and only one rough bad vertex from each maximal path P of type P6;
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5. each weak bad vertex in BS whose sibling in BS is a 2-vertex;

6. exactly one of the vertices x and y, whenever x and y are two weak bad vertices
in BS with x is a sibling of y.

On the other hand, V2 contains:

1. each bad mixed father;

2. each rough bad vertex which is not in V1;

3. each weak bad vertex in BS which is not in V1.

Finally, V3 contains every vertex in S but not in V1 ∪ V2, and every bad 2-vertex in
BS. At last, V4 contains every remaining vertex, i.e. every vertex in S which is not
in V1 ∪ V2 ∪ V3.

S

S

B
BS2 3

3

2 2 3 3

3 3

2 3 3

2

3

2

3

2 2

3

2 3

2

3

V1 V2 V3 V4

Figure 3: Partition of the vertices corresponding with a (1, 1, 2, 3)-packing coloring
(numbers inside vertices represent their degrees).

Note that V3 is an independent set. Actually, by definition of B, each two bad
2-vertices in BS are not adjacent. Moreover, any other two vertices in S ∩V3 are not
adjacent. Besides, any bad 2-father and bad mixed father is not in V3.

As well, V4 is an independent set. In fact, if x and y are two vertices in V4, then
either x and y are not on the same maximal path or x and y are ends of a maximal
path of type P4, P5 or P6. Consequently, x and y are not adjacent.

Concerning V1 and V2, we have the following two results:

Claim 2.1.4. The distance between any two vertices in V1 is at least three.

Proof. Let x and y be two vertices in V1. By Claim 2.1.2, dist(x, y) > 2 whenever
x and y are of the same nature. Suppose that x and y are not of the same nature.
If x is a mid bad vertex and y is a rough bad vertex, then the result follows from
Claim 2.1.2 (4). We are left with the following cases:

1. x is a vertex in B \BS.

Using the fact that x is a bad vertex that has no sibling in B and using
Claim 2.1.1, we get dist(x, y) > 2 for any y.
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2. x is a mid bad vertex or a rough bad vertex but y is not a vertex in B \BS.

If y is a bad 2-father, then, by Claim 2.1.1 (1) and (4), y is neither adjacent to
x nor to any neighbor of x in S and so dist(x, y) > 2. For the case when y is a
weak bad vertex in BS, the result follows from Claim 2.1.1 (1).

3. x is a weak bad 3-vertex and y is a 2-father.

Since x is a weak bad vertex and y is a bad 2-father, then x and y are not
adjacent, and x and y have no common neighbor by Claim 2.1.1 (2).

Claim 2.1.5. The distance between any two vertices in V2 is at least four.

Proof. First, note that the sibling of each weak bad vertex in V2 is a weak bad vertex
in BS \V2. Let x and y be two vertices in V2. If x and y are of the same nature, then
the result follows from Claim 2.1.3. Thus, we need to prove the result when x and y

are not of the same nature:

1. x is a rough bad vertex.

If y is a bad mixed father, then by Claim 2.1.1, y cannot be a father of x nor of
any of the bad neighbors of x. Let x′ be the father of x and let y1 and y2 be the
bad neighbors of y such that y1 is a 3-vertex and y2 is a 2-vertex. By Claim 2.1.1
(1), x′ cannot be a father of y1 (y2, respectively). We need to prove that x′ and y

have no common neighbor. Suppose to the contrary that x′ and y have a common
neighbor, say u. By Claim 2.1.1 (1), u is not any of the bad neighbors of y and so y

is a 3-vertex and the neighbor of y1 in S, distinct from y, is a 2-vertex. Moreover, we
have seen before that x′ is a 3-vertex, and so if u has a neighbor in S distinct from
x′ and y then this neighbor is a 2-vertex. Despite whether x′ is 1- or 2-saturated,
we get φ(S ′) ≥ φ(S) + 0.5 if u is a 2-vertex and φ(S ′) = φ(S) + 0.6 otherwise, where
S ′ = (S \ (N(u)∪N(y1)))∪ {x, u, y1, y2} is an independent set, a contradiction. For
the remaining case, that is if y is a weak bad vertex, then by Claim 2.1.1 (1) and
(3), x is not a sibling of y, and the father of x (y, respectively) cannot be a father
of the bad neighbor of y (x, respectively). Accordingly, for both cases of y, we have
dist(x, y) > 3.

2. x is a weak bad vertex.

We need to prove the result only when y is a bad mixed father. By definition of
x and y and by Claim 2.1.1, y cannot be a father of x and y cannot be a father of
the sibling of x. Moreover, by Claim 2.1.1 (2) and (3), y cannot be a father of the
bad neighbor of x. Let x′ be a father of x. We need to prove that x′ and y have
no common neighbor. If x′ is the bad 3-father of x, then, by a previous remark, x′

is a 2-vertex, and so the result follows. Otherwise, x′ is a 3-vertex by Remark 2.1.
Suppose that x′ and y have a common neighbor, say u. Clearly, u is not a bad vertex
by Claim 2.1.1 (3). Let y1 and y2 be the bad neighbors of y such that y1 is a 3-vertex
and let z be the neighbor of y1 other than y. Then, z is a 2-vertex. Besides, if u has
a neighbor in S distinct from x′ and y, then this neighbor is a 2-vertex. Moreover,
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if u is a 2-vertex, then y is 1-saturated while we already have y1 is 2-saturated. Let
S ′ = (S \ (N(u)∪N(x)∪N(y1))∪ ({x} ∪N(y)), then S ′ is an independent set with
φ(S ′) ≥ φ(S)+0.1 if u is a 2-vertex and φ(S ′) ≥ φ(S)+0.2 otherwise, a contradiction.
Consequently, dist(x, y) > 3.

Color the vertices of V1 by 2, that of V2 by 3, that of V3 by 1a and finally the vertices
of V4 by 1b and so we obtain a (1, 1, 2, 3)-packing coloring of G, a contradiction.

3 Concluding Remarks

The result of Theorem 2.1 is tight in some sense since there are 2-saturated subcubic
graphs that are not (1, 1, 3, 3)-colorable. Figure 4 presents such a graph. This graph
is of diameter 3, and in each of the three triangles, (at most) two vertices can be
given a 1-color. Hence, the remaining three vertices cannot be colored with the two
colors 3. However, this graph is (1, 1, 2, 4)-colorable. Moreover, we could not find a
non (1, 1, 2, 4)-colorable 2-saturated subcubic graph. Thus, we propose the following
problems.

1a 1b

1a

1b1a

1b

2

4

2

Figure 4: An example of a 2-saturated non (1, 1, 3, 3)-colorable subcubic graph.
As can be seen, this graph is (1, 1, 2, 4)-colorable.

Open problem 1: Is every 2-saturated subcubic graph (1, 1, 2, 4)-packing colorable?

Open problem 2: Is every 2-saturated subcubic graph (1, 24)-packing colorable?
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