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Abstract

The notion of 12-representable graphs was introduced as a variant of
a well-known class of word-representable graphs. Recently, these graphs
were shown to be equivalent to the complements of simple-triangle graphs.
This indicates that a 12-representant of a graph (i.e., a word representing
the graph) can be obtained in polynomial time if it exists. However, the
obtained 12-representant is not necessarily optimal (i.e., shortest possi-
ble). This paper proposes an O(n2)-time algorithm to generate a shortest
12-representant of a labeled graph if it is 12-representable, where n is the
number of vertices of the graph.

1 Introduction

The theory of word-representable graphs is an active research area and provides an
interesting way to connect the study of graphs with words. A graph G is word-

representable if there is a word w over the alphabet V (G) such that two letters x and
y are adjacent in G if and only if a word xyxy · · · or a word yxyx · · · remains after
removing all other letters from w. Such a word w is called a word-representant of G.
The notion of word-representable graphs was introduced by Kitaev and Pyatkin [9]
based on the study of the Perkins semigroup in [10]. Motivated by their relevance
to various fields, such as algebra, graph theory, computer science, combinatorics
on words, and scheduling [4, 8], word-representable graphs have been extensively
investigated; see [6, 8] for comprehensive surveys on this topic. One of the results
relevant to this paper is the NP-hardness of the recognition; see Theorem 39 of [6]
or Theorem 4.2.15 of [8].

Jones et al. [5] introduced the notion of u-representable graphs as a generalization
of word-representable graphs. In this context, word-representable graphs are called
11-representable graphs. Kitaev [7] showed that only two graph classes are nontrivial
in the theory of u-representable graphs: 11-representable graphs and 12-representable
graphs. This paper focuses on 12-representable graphs.
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Let [n] = {1, 2, . . . , n} for a positive integer n. A labeled graph G whose labels
are drawn from [n] is 12-representable if there is a word w over [n] such that each
letter of [n] appears at least once in w and two vertices i and j with i < j are
adjacent in G if and only if no i occurs before j in w. In this situation, w is said
to 12-represent the graph G and w is called a 12-representant of G. For example,
the graph G1 in Figure 1(a) is 12-representable by the word w = 8753532847616421.
An unlabeled graph G is 12-representable if there is a labeling of G which results a
12-representable labeled graph.
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1 12 2 3 34 4 5 56 6 7 78 8
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12 2 34 4 56 7 78

(c)

Figure 1: (a) A 12-representable graph G1. (b) A model of the complement G1 of
G1. (c) Another model of G1. The vertices are labeled based on the points on L1.
The word w = 8753532847616421 obtained from the model in Figure 1(b) is a
12-representant of G1. We can obtain another 12-representant w′ = 35278471246
from the model in Figure 1(c). As mentioned in Example 3.5, three vertices 2,
4, and 7 are bad in G1; hence, w

′ is a shortest 12-representant of G1.

Jones et al. [5] showed that the class of 12-representable graphs is a proper sub-
class of comparability graphs and a proper superclass of co-interval graphs and
permutation graphs. They also provided a forbidden subgraph characterization
of 12-representable trees and a necessary condition for 12-representability, which
turned out to be sufficient (Theorem 2.6). Chen and Kitaev [1] investigated the
12-representability of a subclass of grid graphs and presented its characterization.

The class of 12-representable graphs is equivalent to the complements of simple-
triangle graphs [15]. This equivalence can be depicted as follows. Let L1 and L2 be
two horizontal lines in the plane with L1 above L2. A point on L1 and an interval
on L2 define a triangle between L1 and L2. A graph is a simple-triangle graph [2]
if there is a triangle Tv for each vertex v of G such that two vertices u and v are
adjacent if and only if Tu intersects Tv. The set {Tv : v ∈ V (G)} of triangles
is called a model or representation of G; we use the term model in this paper to
avoid confusion. For example, Figure 1(b) is a model of the complement G1 of the
graph G1 in Figure 1(a). Indeed, two vertices of G1 are adjacent if and only if the
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corresponding triangles do not intersect. Given a model of a simple-triangle graph,
we can obtain a 12-representant of its complement by labeling each triangle based
on the point on L1 from left to right and reading the labels of endpoints on L2 from

right to left. For example, a 12-representant w = 8753532847616421 of G1 can be
obtained from the model in Figure 1(b). On the other hand, we can construct a
model of a simple-triangle graph from a 12-representant of its complement since the
complement admits a 12-representant in which each letter appears at most twice
(Theorem 2.1).

It is worth mentioning that a simple-triangle graph admits several models,
and different models can yield different 12-representants. For instance, Figure 1(c) il-
lustrates another model of G1, which provides another 12-representant w′ =
35278471246 of G1. In addition, triangles can be degenerated to lines as in the
model of Figure 1(c), which correspond to letters appearing only once in the 12-
representant.

Since simple-triangle graphs can be recognized in O(nm) time [14], the equiv-
alence indicates that 12-representable graphs can be recognized in O(n(m̄ + n))
time [15], where n, m and m̄ are the number of vertices, edges and non-edges of the
given graph, respectively. Moreover, a 12-representant of a graph can be obtained in
the same time bound if it exists.

It should be noted that the situation is somewhat different for labeled graphs, i.e.,
when the labeling is given. It is possible that some labeling of a graph admits a 12-
representant whereas another does not (Theorem 2.6). Finding valid labeling takes
O(n(m̄+n)) time, but when a valid labeling is given, we can obtain a 12-representant
in O(n2) time (Theorem 2.7).

The 12-representants obtained by the method of [15] are of length 2n, and improv-
ing the upper bound on the length remains open [15]. This is the subject the paper
deals with. The problem can also be viewed as how many triangles in the model
could be degenerated to lines. The paper proposes an O(n2)-time algorithm to com-
pute a shortest 12-representant1 of the given labeled graph if it is 12-representable. In
particular, we show an algorithm to transform a 12-representant w of a labeled graph
G to a shortest 12-representant w′ of G. The algorithm is presented in Section 3.
Section 2 introduces some definitions, notations and results used in this paper. Sec-
tion 4 discusses the unlabeled case and poses an open question. Notably, computing
a word-representant is NP-hard regardless of the labeling since the recognition is
NP-hard [6, 8] and, unlike 12-representable graphs, the labeling is not important for
word-representable graphs.

2 Preliminaries

Graphs. All graphs in this paper are finite, simple, and undirected. We use uv to
denote the edge joining two vertices u and v. For a graph G, we use V (G) and E(G)
to denote the vertex set and the edge set of G, respectively. We usually denote the

1As will be noted in Remark 3.8, the shortest 12-representants are not necessarily unique, even
for labeled graphs.
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number of vertices by n. The complement of a graph G is the graph G such that
V (G) = V (G) and uv ∈ E(G) if and only if uv /∈ E(G) for any two vertices u, v
of G. For a graph G, a graph H is an induced subgraph of G if V (H) ⊆ V (G) and
uv ∈ V (H) if and only if uv ∈ V (G) for all u, v ∈ V (H).

A labeled graph of a graph G is obtained from G by assigning an integer (label)
to each vertex. A labeling of G is an assignment of labels to the vertices of G. All
labels are assumed to be distinct and drawn from [n] = {1, 2, . . . , n}. For a labeled
graph, we usually denote its vertices by their labels. Unless stated otherwise, graphs
are assumed to be unlabeled.

Trivial upper and lower bounds. By definition, every 12-representant contains
at least one copy of each letter. Hence, n is a lower bound for the length of 12-
representants. The following theorem yields the upper bound.

Theorem 2.1 ([5]). For a 12-representable graph, there is a 12-representant in which

each letter occurs at most twice.

Hence, we have the following proposition.

Proposition 2.2. The length of a shortest 12-representant of a graph is at least n
and at most 2n, where n is the number of vertices of the graph.

The following theorem can also be used to obtain the lower bound.

Theorem 2.3 ([5]). A graph is 12-representable by a permutation if and only if it

is a permutation graph.

Corollary 2.4. If a graph is not a permutation graph, then the length of its 12-
representant is at least n+ 1, where n is the number of vertices of the graph.

For example, applying Corollary 2.4 to the graph G1 in Figure 1(a), we obtain
the lower bound.

Example 2.5. We can see that the graph G1 in Figure 1(a) is not a permuta-
tion graph as follows. The graph obtained from G1 by removing the vertex 6 is
isomorphic to the graph Γ12[8] in [3, 11]. Thus, G1 is not the complement of a com-
parability graph. Since any permutation graph is the complement of a comparability
graph [12], the graph G1 is not a permutation graph. Therefore, the length of every
12-representant of G1 is at least 9.

Labeling and recognition. Labeling is important when dealing with 12-repres-
entable graphs. The following theorem indicates that not all labelings of a 12-
representable graph are 12-representable.

Theorem 2.6 ([15]). A labeled graph G is 12-representable if and only if G contains

no induced subgraph H such that red(H) is equal to one of I3, J4, or Q4 in Figure 2,

where red(H) denotes the reduced form of H, i.e., the labeled graph obtained by

relabeling H so that the i-th smallest label is replaced by i.
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Figure 2: The labeled graphs (a) I3, (b) J4, and (c) Q4.

It should be noted that the necessity in Theorem 2.6 was first presented by Jones
et al. [5]. We call a labeling valid if its resulting graph does not contain an induced
subgraph isomorphic to I3, J4, or Q4 in the reduced form.

As mentioned in the introduction, 12-representable graphs are exactly the com-
plements of simple-triangle graphs [15]. It follows that 12-representable graphs can
be recognized in O(n(m̄+n)) time, where m̄ is the number of non-edges of the given
graph. However, when a valid labeling is given, we can obtain its 12-representant in
O(n2) time.

Theorem 2.7 ([15]). From a valid labeling of a 12-representable graph G, a 12-
representant of G can be obtained in O(n2) time without relabeling of G.

In more detail, given a valid labeling of a 12-representable graph G, we can
obtain a model of its complement G in O(n2) time using the algorithm in [13]. A 12-
representant of G can be obtained from the model described in the introduction, and
it will contain at most two occurrences of each letter. Hence, we have the following
theorem.

Theorem 2.8. Given a graph with valid labeling, its 12-representant in which each

letter occurs at most twice can be obtained in O(n2) time.

Remark 2.9. In [13], the author showed that, given a labeled graph G, a model of
its complement G can be constructed in O(n2) time, provided that the labeling of G
is valid. However, the case where the labeling of G is not valid (i.e., the labeled graph
G is not 12-representable) was not discussed. The question of whether a given labeled
graph can be checked to be non-12-representable in O(n2) time remains unresolved.

3 Algorithm

We first improve the lower bound for the length of 12-representants.

Definition 3.1. Let G be a labeled graph. We refer to a vertex b of G as a bad

vertex if there exist two vertices a and c with a < b < c such that ab, bc /∈ E(G) and
ac ∈ E(G). We call a vertex good if it is not a bad vertex.

Proposition 3.2. Let G be a 12-representable labeled graph. Each bad vertex must

occur twice in every 12-representant of G.

Proof. Let w be a 12-representant of G, and let a, b, and c be three vertices with
a < b < c such that ab, bc /∈ E(G) and ac ∈ E(G). Since ac ∈ E(G), every copy of
c occurs before the first occurrence of a in w. Then, ab, bc /∈ E(G) implies that b
occurs after some a and before some c in w.
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Proposition 3.2 leads to the following lower bound.

Lemma 3.3. Let G be a labeled graph. The length of every 12-representant of G
is at least n + b, where n and b are the number of vertices and bad vertices of G,

respectively.

In the rest of this section, we show that the length of shortest 12-representants
of a labeled graph is exactly n + b. Suppose that we are given a 12-representable
graph G and its 12-representant w. By Theorem 2.1, we can assume that each letter
occurs at most twice in w. Proposition 3.2 states that all bad vertices occur twice in
w. If the length of w is larger than n+ b, then some good vertices occur twice in w.
Therefore, we propose an algorithm to transform w to another 12-representant of G
in which no good vertices occur twice.

The following is a key observation.

Proposition 3.4. Let G be a labeled graph with a 12-representant w. Suppose that

a letter i occurs twice in w.

(a) Let j be a letter just after the first occurrence of i, i.e., w = W1ijW2iW3, where

W1, W2, and W3 are subwords of w. If j < i then the word w′ = W1jiW2iW3

is a 12-representant of G.

(b) Let j be a letter just before the second occurrence of i, i.e., w = W1iW2jiW3,

where W1, W2, and W3 are subwords of w. If j > i then the word w′ =
W1iW2ijW3 is a 12-representant of G.

(c) If two occurrences of i are consecutive in w, we can remove one occurrence. In

other words, if w = W1iiW2, where W1 and W2 are subwords of w, then the

word w′ = W1iW2 is a 12-representant of G.

Proof. (a) Since j occurs before the second occurrence of i in w, we have ij /∈ E(G).
The letter j still occurs before i in w′, and hence, w′ is a 12-representant of G. (b)
This can be proved similarly to (a). (c) Trivial.

Proposition 3.4 leads to Algorithm 1, which generates a 12-representant in which
no good vertices occur twice. The algorithm works under the assumption that each
letter occurs at most twice in the input. The case where some letters occur more
than twice will be discussed in Remark 3.9.

Before proving the correctness of Algorithm 1, we see how the algorithm works.

Example 3.5. Recall that the word w = 8753532847616421 is a 12-representant
of the graph G1 in Figure 1(a). Applying Algorithm 1 to w, we obtain the 12-
representant w′ = 35278471246. The operation is illustrated in Figure 3. Since three
vertices 2, 4, and 7 are bad in G1, the word w′ is the shortest.

Now, we prove the correctness of Algorithm 1.

Theorem 3.6. Algorithm 1 computes a shortest 12-representant of the labeled graph

12-represented by the input.
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8 7 5 3 5 3 2 8 4 7 6 1 6 4 2 1wi = 8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7 5 3 5 3 2 8 4 7 6 1 6 4 2 1wi = 7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 5 3 2 7 8 4 7 6 1 6 4 2 1wi = 6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 3 5 3 2 7 8 4 7 1 6 4 2 1wi = 5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 5 3 2 7 8 4 7 1 6 4 2 1wi = 4

1 2 3 4 5 6 7 8 9 10 11 12 13

3 5 3 2 7 8 4 7 1 6 4 2 1wi = 3

1 2 3 4 5 6 7 8 9 10 11 12 13

3 5 3 2 7 8 4 7 1 6 4 2 1wi = 2

1 2 3 4 5 6 7 8 9 10 11 12 13

3 5 3 2 7 8 4 7 1 6 4 2 1wi = 1

1 2 3 4 5 6 7 8 9 10 11 12 13

3 5 3 2 7 8 4 7 1 6 4 2 1wj = 1
1 2 3 4 5 6 7 8 9 10 11 12 13

3 5 3 2 7 8 4 7 1 6 4 2wj = 2
1 2 3 4 5 6 7 8 9 10 11 12

3 5 3 2 7 8 4 7 1 2 6 4wj = 3
1 2 3 4 5 6 7 8 9 10 11 12

3 5 2 7 8 4 7 1 2 6 4wj = 4
1 2 3 4 5 6 7 8 9 10 11

3 5 2 7 8 4 7 1 2 4 6wj = 7
1 2 3 4 5 6 7 8 9 10 11

Figure 3: The operation of Algorithm 1 on the word w = 8753532847616421.
Each letter is stored in the box whose position appears above. In each iteration,
the letter in the shaded box moves, and the arrow denotes the move. The first
eight lines illustrate the loops in lines 1–7 while the remaining lines illustrate
those in lines 8–14. We omitted the cases j = 5, 6, and 8 because these letters
do not appear twice in w at the time.
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Algorithm 1: Computing a shortest 12-representant of a labeled graph

Input: A 12-representant w = w1w2 . . . wℓ of a labeled graph G.
Output: A shortest 12-representant of G.

// We assume that each letter occurs at most twice in w.
1 for i← n downto 1 do
2 if i occurs twice in w then
3 Set p to the position of the first occurrence of i in w;
4 while wp > wp+1 do swap wp and wp+1; p← p+ 1;
5 if wp = wp+1 then remove wp from w;

6 end

7 end
8 for j ← 1 to n do
9 if j occurs twice in w then

10 Set q to the position of the second occurrence of j in w;
11 while wq < wq−1 do swap wq and wq−1; q ← q − 1;
12 if wq = wq−1 then remove wq from w;

13 end

14 end
15 return w.

Proof. Let G and w denote the graph and the input, respectively. Proposition 3.4
ensures that the output is still a 12-representant of G. By Proposition 3.2, bad
vertices occur twice in any 12-representant. Hence, it suffices to prove that no good
vertices occur twice in the output.

Let j be a good vertex of G. Suppose to the contrary that j occurs twice in w at
the end of the jth loop in lines 8–14.

Claim 1. Let i be a letter with i ≥ j appearing twice in w at the end of the jth loop
in lines 8–14. If p is the first position of i, then wp < wp+1.

Proof of Claim 1. According to Algorithm 1, we can see wp′ < wp′+1 at the end of
the (n− i+1)th loop in lines 1–7, where p′ is the first position of i at the time. After
the (n− i+1)th loop, only letters smaller than i move forward. Hence, wp′′ < wp′′+1

at the beginning of the first loop in lines 8–14, where p′′ is the first position of i at
the time. Before the end of the jth loop in lines 8–14, only letters smaller than or
equal to i move backward. Thus, the claim holds.

Claim 2. Let k be a letter with k ≤ j appearing twice in w at the end of the jth
loop in lines 8–14. If q is the second position of k, then wq > wq−1.

Proof of Claim 2. According to Algorithm 1, we can see wq′ > wq′−1 at the end of
the kth loop in lines 8–14, where q′ is the second position of k at the time. After the
kth loop, only letters larger than k move backward. Thus, the claim holds.
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Let p and q be the first and second positions of j, respectively, at the end of
the jth loop in lines 8–14. We have wp+1 > wp from Claim 1 and wq−1 < wq from
Claim 2. Let i1 = wp+1 and k1 = wq−1, i.e., w = W1ji1W2k1jW3, where W1, W2,
and W3 are subwords of w. We have k1 < j < i1 and k1j, ji1 /∈ E(G). Since j is
a good vertex, k1i1 /∈ E(G). Hence, some k1 occurs before some i1 in w. It follows
that another i1 occurs after wp+1 or another k1 occurs before wq−1.

Suppose that i1 occurs after wp+1. Claim 1 indicates wp+2 > wp+1. Let i2 = wp+2,
i.e., w = W1ji1i2W4k1jW3, where W4 is a subword of w. We have k1 < j < i2 and
k1j, ji2 /∈ E(G). Since j is a good vertex, k1i2 /∈ E(G). Hence, some k1 occurs before
some i2 in w. It follows that another i2 occurs after wp+2 or another k1 occurs before
wq−1.

On the other hand, suppose that k1 occurs before wq−1. Claim 2 indicates wq−2 <
wq−1. Let k2 = wq−2, i.e., w = W1ji1W5k2k1jW3, where W5 is a subword of w. We
have k2 < j < i1 and k2j, ji1 /∈ E(G). Since j is a good vertex, k2i1 /∈ E(G). Hence,
some k2 occurs before some i1 in w. It follows that another i1 occurs after wp+1 or
another k2 occurs before wq−2.

Continuing in this way, we obtain an infinite sequence wp < wp+1 < wp+2 < · · ·
or wq > wq−1 > wq−2 > · · · , which is a contradiction.

From Theorem 3.6, we have the main theorem.

Theorem 3.7. The length of a shortest 12-representant of a labeled graph is n + b,
where n and b are the number of vertices and bad vertices of the graph, respectively.

A shortest 12-representant of a labeled graph can be obtained in O(n2) time if it is

12-representable.

Proof. The proof of Theorem 3.6 indicates the first statement. Theorem 2.8 states
that a 12-representant of a labeled graph in which each letter occurs at most twice
can be obtained in O(n2) time if it exists. It is obvious that Algorithm 1 takes O(n2)
time. Thus, the second statement holds.

Remark 3.8. The idea behind Algorithm 1 is to apply the operations in Propo-
sition 3.4 to shorten the given word 12-representing the graph. Different ways of
applying these operations may result in different shortest 12-representants. To illus-
trate this, consider the word w = 8753532847616421 used in Example 3.5, which is a
12-representant of the graph G1 in Figure 1(a). Applying the procedure in lines 3–5
of Algorithm 1 only when i = 8, 6, and 5, and in lines 10–12 only when j = 1 and
3, we obtain the word w′′ = 73528471642, which is a 12-representant of G1 different
from w′ in Example 3.5.

Remark 3.9. As mentioned before, we assume the input to Algorithm 1 contains at
most two occurrences of each letter. This does not lose generality because when some
letters occur more than twice, we can remove occurrences of the letters except for
the first and last occurrences, which results in a 12-representant of the same graph;
see Theorem 8 of [5]. It should be noted that the procedure takes O(ℓ) time, where
ℓ is the length of the input, and therefore, the time complexity is no longer O(n2) if
ℓ = ω(n2) (i.e., ℓ is asymptotically strictly larger than n2).
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4 Concluding remarks

This paper proposes an O(n2)-time algorithm to transform a 12-representant w of
a labeled graph G to a shortest 12-representant w′ of G, where n is the number of
vertices of G. This indicates that shortest 12-representants of labeled graphs can be
obtained in O(n2) time if it exists. The natural next step is to study the unlabeled
case, i.e., the problem of finding a shortest 12-representant of the given unlabeled
graph.

4
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6

8

2
5

1

3

Figure 4: Another labeling G2 of the graph G1 in Figure 1(a). As shown in
Theorem 2.18 of [1], the word w = 351748246 is a 12-representant of G2.

For 12-representability, labeling matters from the existential point of view (Theo-
rem 2.6). The labeling also matters to find a shortest 12-representant of an unlabeled
graph. In other words, the shortest 12-representant of some labeling of a graph G
can be shorter than that of another labeling of G. For example, as shown in Ex-
ample 3.5, the shortest 12-representant of the graph G1 in Figure 1(a) is of length
11 = n + 3. However, if we relabel G1 as G2 in Figure 4, then we obtain a 12-
representant w = 351748246 of length 9 = n + 1, as shown in Theorem 2.18 of [1];
only the vertex 4 is bad in G2. We can see from Example 2.5 that w is a shortest
12-representant of the unlabeled graph. Therefore, we conclude this paper by posing
the following open question.

Problem 4.1. Given an unlabeled graph G, can we compute a valid labeling of G
minimizing the number of bad vertices in polynomial time?
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