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Abstract

Let P be a set of n green and n− k red points in C2. A line determined
by i green and j red points such that i + j ≥ 2 and |i − j|≤ r is called
r-equichromatic. We establish lower bounds for 1-equichromatic and 2-
equichromatic lines. In particular, we show that if at most 2n − k − 2
points of P are collinear, then the number of 1-equichromatic lines passing
through at most six points is at least 1

4
(6n − k(k + 3)), and if at most

2
3
(2n− k) points of P are collinear, then the number of 2-equichromatic

lines passing through at most four points is at least 1
6
(10n− k(k + 5)).

1 Introduction

In this paper we study sets of n green points and n − k red points in the complex
plane. Let P be such a set. A line containing two or more points of P is said to
be determined by P . A line determined by at least one green and one red point is
called bichromatic. Otherwise, it is called monochromatic. A line determined by i

green and j red points such that i + j ≥ 2 and |i − j|≤ r is called r-equichromatic.
Note that every 1-equichromatic line is a bichromatic line.

In [8], Purdy and Smith studied lower bounds on the number of bichromatic
lines and on the number of 1-equichromatic lines in C2 and R2. For brevity, we will
mention only the results on 1-equichromatic lines and we refer interested readers to
[7, 8] for some other results.

Theorem 1 (Purdy and Smith [8]) Let P be a set of n green and n−k red points in

R2 such that the points of P are not all collinear. Let t be the total number of lines

determined by P . Then the number of 1-equichromatic lines is at least 1
4
(t + 2n +

3− k(k + 1)).
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Theorem 2 (Purdy and Smith [8]) Let P be a set of n green and n−k red points in

R2 such that the points of P are not all collinear. Then the number of 1-equichromatic

lines determined by at most four points is at least 1
4
(2n+ 6− k(k + 1)).

Theorem 3 (Purdy and Smith [8]) Let P be a set of n green and n − k red points

in C2 such that no 2n − k − 2 points of P are collinear. Then the number of 1-
equichromatic lines determined by at most five points is at least 1

4
(6n− k(k + 3)).

Theorem 4 (Purdy and Smith [8]) Let P be a set of n green and n−k red points in

R2 such that the points of P are not all collinear. Let t be the total number of lines

determined by P . Then the number of 1-equichromatic lines determined by at most

six points is at least 1
12
(t+ 6n+ 15− 3k(k + 1)).

Purdy and Smith [8] asked whether one can prove a tight lower bound on the
number of 1-equichromatic or bichromatic lines determined by at most four points in
C2. This question motivated the current study. Unfortunately, the closest we have
come is 2-equichromatic lines. Table 2 in Purdy and Smith [8] contains the summary
of their results on 1-equichromatic lower bounds. In that table there is a lower bound
for the number of 1-equichromatic lines determined by at most six points in C2, but
there is no result in their paper justifying this claim. So, we prove a lower bound for
the number of 1-equichromatic lines determined by at most six points in C2. Our
lower bound is the same as the one claimed by Purdy and Smith [8] .

2 Incidence Inequalities

The main ingredients used by Purdy and Smith [8] and which also will be used in
the present paper, are incidence inequalities. We list some well-known incidence
inequalities. Let tk denote the number of lines that pass through exactly k points.

Theorem 5 (Melchior’s Inequality [4]) Let S be a set of n non-collinear points in

the plane. Then

∑

k≥2

(3− k)tk ≥ 3. (1)

The proof for (1) uses Euler’s polyhedral formula. In [6], Langer proved this
inequality by working with pairs (P2

C, αD) where P2
C is the complex projective plane

with a Q-effective (boundary) divisor D such that (P2
C, αD) is log canonical and

effective.

Theorem 6 (Langer’s Inequality [6]) Let S be a set of n points in P2
C, with at most

2
3
n points collinear. Then

∑

k≥2

ktk ≥
n(n+ 3)

3
.
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Theorem 7 (Hirzebruch’s Inequality [2]) Let S be a set of n points in P2
C, with at

most n− 2 points collinear. Then

t2 + t3 ≥ n+
∑

k≥5

(k − 4)tk. (2)

Theorem 8 (Hirzebruch’s Inequality [3]) Let S be a set of n points in P2
C, with at

most n− 3 points collinear. Then

t2 +
3

4
t3 ≥ n+

∑

k≥5

(2k − 9)tk. (3)

Hirzebruch’s inequalities do not follow from Euler’s formula as one would suspect.
Instead, Hirzebruch’s inequalities were derived from the Bogomolov–Miyaoka–Yau
inequality, a deep result in algebraic geometry, and it is true for arrangements of
points in the complex plane.

Bojanowski [1] and Pokora [5] used Langer’s work [6] to prove the following
theorem.

Theorem 9 (Bojanowski–Pokora Inequality) Let S be a set of n points in P2
C, with

at most 2
3
n points collinear. Then

t2 +
3

4
t3 ≥ n+

∑

k≥5

(
1

4
k2 − k)tk. (4)

Note that (4) is equivalent to

∑

k≥2

(4k − k2)tk ≥ 4n. (5)

Remark 1 One should note that these inequalities (except (1)) were originally
proved for an arrangement of lines in the complex projective plane such that tk
is the number of intersection points where exactly k lines of the arrangement are
incident.

Remark 2 Purdy and Smith [8] proved Theorems 1, 2 and 4 using Melchior’s in-
equality (1) and proved Theorem 3 using Hirzebruch’s inequality (3).

3 Lower Bounds for Lines in C2

The identities below can be found in [7, 8] and will be used in this section. Let ti,j
be the number of lines determined by P with exactly i green points and j red points,
where we always assume i+ j ≥ 2. Assume that the number of green points is n and
the number of red points is n. Then the number of bichromatic point pairs is

∑

i,j≥0
i+j≥2

ijti,j = n2
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and the number of monochromatic point pairs is

∑

i,j≥0
i+j≥2

[(

i

2

)

+

(

j

2

)]

ti,j = 2

(

n

2

)

= n2 − n.

In general, if we assume that the number of green points is n and the number of
red points is n− k, then the above identities become

∑

i,j≥0
i+j≥2

ijti,j = n(n− k) = n2 − nk (6)

and
∑

i,j≥0
i+j≥2

[(

i

2

)

+

(

j

2

)]

ti,j =

(

n

2

)

+

(

n− k

2

)

= n2 − n− nk +
k2 + k

2
. (7)

We subtract (6) from (7) and then split the summation to get the following
identity:

∑

i,j≥0
i+j≥2

(i+ j)ti,j =
∑

i,j≥0
i+j≥2

(i− j)2ti,j + 2n− (k2 + k). (8)

3.1 A Lower Bound for 1-Equichromatic lines through at most six points

As stated before, we are not able to find the claimed result of Purdy and Smith [8]
on 1-equichromatic lines through at most six points in C2. Below we will prove the
result.

Theorem 10 Let P be a set of n green and n − k red points in C2 such that at

most 2n− k− 2 points of P are collinear. Then the number of 1-equichromatic lines

passing through at most six points is at least 1
4
(6n− k(k + 3)).

Proof. First, we express (2) as

−(t0,2+t2,0)−t1,1−(t0,3+t3,0)−(t1,2+t2,1)+
∑

i,j≥0
i+j≥5

((i+ j)− 4) ti,j ≤ −(2n−k). (9)

We subtract (6) from (7) and unwind the first few terms of the summation to get

(10)

(t0,2 + t2,0)− t1,1 + 3(t0,3 + t3,0)− (t1,2 + t2,1) + 6(t0,4 + t4,0)

− 2t2,2 +

∑

i,j≥0
i+j≥5

[(

i

2

)

+

(

j

2

)

− ij

]

ti,j = −n+
k2 + k

2
.
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Adding (9) and (10) produces

(11)

−2t1,1 + 2(t0,3 + t3,0)− 2(t1,2 + t2,1) + 6(t0,4 + t4,0)

− 2t2,2 +

∑

i,j≥0
i+j≥5

[(

i

2

)

+

(

j

2

)

− ij

]

ti,j

+
∑

i,j≥0
i+j≥5

((i+ j)− 4) ti,j ≤ −(2n− k)− n+
k2 + k

2
.

Let αi,j be the coefficient corresponding to ti,j produced by the left-hand side of the
inequality above. One can check that the only negative coefficients are α1,1 = α1,2 =
α2,1 = α2,2 = −2, and α2,3 = α3,2 = α3,3 = −1. Thus

−2(t1,1 + t1,2 + t2,1 + t2,2 + t2,3 + t3,2 + t3,3) ≤
−6n+ k(k + 3)

2
.

The result follows immediately. 2

3.2 A Lower Bound for 2-Equichromatic lines through at most four

points

We now consider 2-equichromatic lines through at most four points. To begin with,
we write (5) within our context and add that to (8) to obtain

∑

i,j≥0
i+j≥2

(

5(i+ j)− (i− j)2 − (i+ j)2
)

ti,j ≥ 10n− k(k + 5).
(12)

Let αi,j be the coefficient corresponding to ti,j in (12). One can check that the
only positive coefficients are α0,2 = α2,0 = 2, α1,1 = 6, α1,2 = α2,1 = 5, and α2,2 = 4,
and therefore,

6(t0,2 + t2,0 + t1,1 + t1,2 + t2,1 + t2,2) ≥ 10n− k(k + 5).

This gives us the following:

Theorem 11 Let P be a set of n green and n − k red points in C2 such that at

most 2
3
(2n− k) points of P are collinear. Then the number of 2-equichromatic lines

passing through at most four points is at least 1
6
(10n− k(k + 5)).
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