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Abstract: This article documents some of the known constructions for secret shar
ing schemes. It includes a discussion of the mathematical structures which have been 
used to model secret sharing schemes, the establishment of secret sharing schemes 
which do not require the existence of a trusted authority to administer them, varia
tions which can be incorporated into these schemes to increase their flexibility and 
the detection of cheaters. 

1 Introduction and Preliminaries 

There are many situations in which it is desirable to restrict access to classified infor
mation, or to initiate some action only when certain conditions are met. Examples 
of such situations are easily found in banking or financial institutions, the military 
or communication networks which receive encrypted messages. The controlled action 
can be governed through a secret key and a key management system. This article 
looks at key management systems which are known as secret sharing schemes. Secret 
sharing schemes came into prominence in 1979 when two papers, one by Blakley [8] 
and one by Shamir [42] I were published. 

A secret sharing scheme (SSS) is a method whereby n pieces of information called 
shares or shadows are assigned to a secret key K in such a way that 

1. the secret key can be reconstructed from certain authorised groups of shares, 
and 

2. the secret key cannot be reconstructed from unauthorised groups of shares. 

A secret sharing scheme is said to be perfect if Item 2 above can be strengthened as 
follows: 
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2: an unauthorised group of shares cannot be used to gain any information about 
the secret key. 

The recipients of the shares are said to be the participants in the scheme. An autho
rised group of participants is a group whose shares can be used to reconstruct the 
secret. Let the set of participants be where IPI = n, and let be a subset of the 
power set 21'. The set r is said to be an access structure or concurrence scheme if the 
elements of r are precisely the authorised groups of participants. The subsets in rare 
termed the authorised subsets. In this paper it will be required that given any partic
ipant, say Pi.) there exists an unauthorised group of participants who can reconstruct 
the secret once the share of Pi is added to their own. That each participant is a 
necessary part of some reconstruction process. Schemes which satisfy this property 
have been termed connected by Brickell and Davenport [13]. The SSSs discussed in 
this paper all have the property that the are selected from a finite set, denoted by 
lC. A discussion of schemes based on an infinite set of keys can be found in [21]. The 
key space lC is made public knowledge and a secret key, K, is chosen from lC. Once 
K is chosen, then a finite set of shares S is chosen and distributed to the participants 
in accordance with the scheme. 

Let B and C be arbitrary subsets of P. An access structure is said to be mono
tone if whenever B ~ C and B E r, then cr. All access structures discussed 
iIi this paper are monotone. Non-monotone access structures have been discussed 
by Beutelspacher in [7]. A set B r is said to be a minimal authorised sub
set if, for all A C B, A f'J. r. The set of all minimal authorised subsets, r o, of 
r is said to be the basis of r. It is now possible to define r in terms of the clo
sure of ro; that is, r = cl(ro) = {A ~ P I B ~ where B Era}. The rank 
of an access structure is defined to be the maximum cardinality of the minimal 
authorised subset. For a specific example of these concepts, let the set of partic
ipants P be {PI, P21 P41 Ps} and let the access structure be r = {{PI, Pa) P4 }, 

{PI, Pa,P41 P2 }, {PI) Pa) P41 Ps}, P21 P4 , Ps}, {P2 ,Pa, P4 ,PS}, P}.Then the mini
mal authorised subsets are {PI, Pa, P4 }, {PI, P21 Ps} and {P2 , and these 
form the basis roo The rank is four. This access structure is certainly monotone. 

Karnin, Greene and Hellman [30] showed that if one chooses the secret to be 
a number K E Zq and the shares to be numbers Si, i = 1, ... , n, such that 
:Ei=l Si = K(mod q), then one has a SSS in which the n participants can jointly 
determine the secret. This scheme exhibits a high degree of security as r = {P} and 
the only way the key can be reconstructed is by combining the information held by all 
the participants. If n - 1 participants collaborate each of the possible keys is equally 
likely to be the secret. However, this also means that if one of the participants is in
capacitated the key cannot be recovered. Shamir [42] and Blakley [8] addressed this 
problem in 1979 and constructed SSSs in which any t out of the n participants can 
combine their shares and recover the secret. The access structure of such a scheme 
consists of any set of t or more participants. An access structure, r is defined to be a 
threshold access structure if r = {A ~ 'P IIAI 2:: t} and a secret sharing scheme with 
such an access structure is said to be an t-out-of-n threshold scheme. The parameter 
t is often referred to as the threshold of the scheme. Such schemes can withstand 
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security breaches of up to t -1 participants and the secret can still be recovered given 
that up to n t pieces of information are lost. 

In a perfect threshold scheme the information content of each share must be at least 
as much as that of the information content of the secret. To see this one begins by 
assuming that the information content of some share, 5i, held by participant Pi, is less 
than that of the secret K. In a perfect t-out-of-n threshold scheme the probability 
of t - 1 participants, distinct from Pi, collaborating and guessing K is the same as 
the probability of an outsider guessing K. However, if the t 1 participants knew 5i 

they could recover the secret. The probability of their guessing Si is greater than the 
probability of their guessing K, a contradiction. (A proof for general SSSs is similar.) 

In 1989 Brickell [12] defined the information rate of a SSS. The definition presented 
below is taken from Stinson [52]. Let lC be the key space, and so any secret key K 
may be represented by a bit string of length 10g21lCl. Similarly, if Si denotes the 
set of possible shares associated with participant Pi, then the share distributed to 
participant Pi can be represented by a bit string of length log2lSil. The information 
rate for participant Pi is the ratio 

Pi 
log21lCi 
log2ISi!' 

The information rate of the SSS is denoted by p, where 

p=min{Pi 11 ~i ~n}. 
The average information rate is denoted by p, where 

_ IPllog21lCi 
p= n I' I:i =l 10g2 lSi 

In a perfect SSS P ~ P ~ 1. Therefore the case where P = P = 1 is the best possible 
information rate and such SSSs are said to be ideal. 

Many authors have extended the ideas of Blakley and Shamir, and a variety of dif
ferent constructions for SSSs have been developed. These constructions are discussed 
in Sections 2 and 3. A discussion of schemes which do not require a trusted authority 
to administer them is given in Section 4. Sections 5 and 6 deal with systems in which 
the participants are either partitioned into classes or are members of a hierarchical 
structure. In most key managemen.t systems one must allow for participants who 
disclose or fraudulently use their shares. Methods for dealing with such situations 
are discussed in Sections 7, 8 and 9. 

Many of the known constructions are similar in nature and instead of listing all 
methods the reader will be given the general flavour of the ideas and other references 

. mentioned. 

2 Threshold Schemes 

This section documents some of the known constructions for threshold schemes. 
Throughout this section it will be assumed that a trusted authority is available to 
select the secret key.and to distribute the shares. 



2.1 Geometric configurations 

Blakley's original construction, [8], is based on geometric configurations. Since 1979 
geometries have figured prominently in the construction of SSSs. See, for example, 
[6], [15], [38], [44], [45], [46], [47], [49] and [51]. Simmons [47] gives a 
particularly thorough survey of constructions based on geometries. Therefore, only 
one small example of a threshold scheme constructed from a projective 4-space will be 
presented here, followed by a brief description of a general construction. (The reader 
will find a full discussion of the properties of geometric configurations in [55].) 

Take a projective geometry PC( 4, q). The key space is taken to be a plane ?f in 
PC( 4, q). The protocol for a 3-out-of-n threshold scheme is as follows: 

Protocol: 

QII A point p, in ?f is chosen as the secret key. 

.. The share space is taken to be a set of points in a plane ?f1 chosen such that 
?fl and ?f have a unique point of intersection, p. This set of points must satisfy 
the properties that no three are collinear and no two lie on a line with p. These 
points are distributed to the participants as shares . 

• When any three participants come together, they can determine ?f1, find its 
point of intersection with ?f 1 and recover the secret. 

To see that the above scheme is perfect, ?f is fixed and it is assumed that there is 
an unauthorised collusion of two participants. The shares of these two participants 
define a line L which is skew to ?f. Let q be an arbitrary point in ?f. There is a unique 
plane generated by q and L. Denote it by ?fa. Assume that this plane intersects ?f 
in the line L 1 . The lines L1 and L both belong to the projective plane ?fa and so 
must intersect in a point. But this would imply that Land ?f intersect in a point, a 
contradiction. Thus ?f and ?fa must intersect in the single point q. Since q was chosen 
arbitrarily, for each point of?f there is a unique plane containing that point and the 
points held by the two participants. Hence each of the points of ?f is equally likely to 
be the secret. Thus the scheme is perfect. 

This construction can be generalised as follows. (Note that this particular presen
tation is taken from Brickell and Stinson [14].) Let V be a t-dimensional vector space 
over G F( q), where q is some large prime power. The cosets of the subspaces of V form 
an affine geometry AG(t, q) of dimension t over GF(q). The trusted authority selects 
a line L in V to be the key space. He then selects a (t - 1 )-dimensional subspace H 
which meets L in a point. He selects a point p on the line L to be the secret key and 
constructs the hyperplane Hp = H + p. Now he selects points Si (1 ::; i ::; n) from 
Hp such that the set of points {p} U {Si 11 ::; i ::; n} are in general position; that is, 
no j of the points in the set {p} U {Si I 1 ::; i ::; n} lie on a fiat of dimension j - 2, if 
j ::; t. For i = 1, ... ,n, participant Pi is given the point Si as his share. When a set 
of t or more participants come together they can uniquely determine the hyperplane 
Hp and so obtain the secret key p by calculating Hp n L = p. However if a subset 
of t' « t) participants collaborate their shares generate a fiat F of dimension t' - 1. 
For any point p' on L there is a hyperplane HI containing F and p'. Hence they have 
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no information as to the point p. Thus the scheme is a perfect t-out-of-n threshold 
scheme. It should be pointed out that when the shares are chosen one must check 
that they are in general position. However I if care is taken when choosing the points 
then this checking can be avoided. 

Simmons [47] and others take the general view that the key space is a subspace lid 
of dimension m and the shares are chosen from a subspace Vi which intersects lid at a 
point, the secret key. If both Vd and Vi are contained in the space V of dimension v, 
then Vi can be chosen such that its dimension is v - m. Therefore it is not the case 
that all perfect schemes arising from geometric constructions are ideal. 

2.2 Polynomial interpolation 

Shamir's original threshold scheme, given in [42], is based on polynomial interpolation 
of t points in a 2-dimensional plane. Let f( x) be a polynomial of degree at most t - 1 
over the field GF(q). Assume that, for j (1 ~ j ~ t) distinct elements Xj of GF(q), 
the values of f( x;) are known. Hence a system of t linearly independent equations 

t-I 

f(x;) = I: aix/, 
i=O 

in t unknowns, ao, ... , at-I, can be obtained. Lagrange interpolation, (see [25]), 
can now be used to determine uniquely the t unknowns. So the polynomial can be 
recovered from the t points. Shamir used this property of polynomial interpolation 
to construct a t-out-of-n threshold scheme. 

For simplicity, take GF[q] to be Zq, for some large prime q, and let this set be the 
key space. In Shamir's scheme a secret key K is chosen from and then a polynomial 
f( x) of degree t 1 with constant coefficient K is also chosen. The participants are 
labeled PI)"" Pnl where n ~ q 1. For i = 1, ... , n, participant Pi. is given the value 
f( i) as his share. When any t participants come together they can use their shares 
to recover f( x) and hence K. 

Assume that t -1 participants wish to collaborate and try to guess the secret. The 
t 1 participants generate a set of t - 1 equations in t unknowns. These equations 
have as their solution a set of q polynomials 

t-l 

f(x) = ao + I:aixi , 
i=l 

where ao ranges over all the elements of Zq. Hence each of the possible keys is equally 
likely and the scheme is perfect. 

From an implementation view point, the generation of the shares simply involves 
evaluating the polynomial at the n points and then using fast algorithms the key can 
be recovered in time O( t log2 t). 

A number of authors have generalised this approach. See for example, Dawson, 
Mahmoodian and Rahilly [23], Jackson and Martin [29] and McEliece and Sarwate, 
[36}. Dawson, Mahmoodian and Rahilly base their construction on orthogonal ar
rays, Jackson and Martin on transversal designs and McEliece and Sarwate on Reed
Solomon codes. Further constructions may also be found in [30], [31], and [33]. 



2.3 The Chinese Remainder Theorem 

Asmuth and Bloom [1] have developed a t-out-of-n threshold scheme from the 
Chinese Remainder Theorem. They achieve this as follows. A set of integers 
{q,mllm2)'" ,mn }, where ml < m2 < ... < m n , is chosen subject to the follow
ing conditions. . 

.. gcd( q, mi) = 1, for all i = 1, ... , n 

.. gcd(mi,mj) = 1, for i =I j where i,j = 1, ... ,n 

The first two condi tions imply that the integers in the set {q} U {mj I j = 1, ... n} 
are pairwise relatively prime. The last condition implies that the product of the t 
smallest integers from the set {mj I j 1, .. . n} is greater than the product of q with 
the t - 1 largest integers from the set {mj I j = 1, ... n}. From this one can deduce 
that if M ml m2 ... mt, then M / q is greater than the product of any set of t - 1 
integers from {mj I j = 1, ... n}. 

The set Zq is taken to be the key space and a key K E Zq is chosen. The par
ticipants are labeled PI)"" Pn . Let A be an integer such that 0 ::; A < M/q. The 
trusted authority sets Ko = K + Aq. Note that 0 ::; Ko < M. Then, for i = 1, ... ,n, 
the trusted authority calculates the share Si = Ko (mod mi) and distributes this to 
participant Pi,. When any t participants collaborate they can pool their t shares, 
Sj(I),'" Sj(t) , and then, by the Chinese Remainder Theorem, Ko is known modulo 
Ml = mj{l)' .. mj(t). Because Ml ~ M this uniquely determines K o, and so K is 
computed by taking K = Ko - Aq. 

On the other hand suppose that only t - 1 shares are known. Then, using the 
Chinese Remainder Theorem once again, one can compute K2 (mod M 2) where M2 = 
mj(I)'" mj(t-l)' Since M > qM2 and gcd(M2' q) = 1, the collection of numbers 
Ui == K2 (mod M 2) and Ui ::; M covers all congruence classes modulo q. Thus there is 
no useful information available without t shares. However, the scheme is not perfect. 
To see this note that M - M2 is not necessarily divisible by q. Hence the number of 
u/s covering a particular integer modulo q varies, and so some values are more likely 
to be congruent to K2 modulo q than others. Asmuth and Bloom also describe an 
efficient algorithm recovering the key K. This algorithm requires only O( t) time. 

A similar approach is taken by Mignotte in [37] and an example of this construction 
can be found in Denning [25] on page 183. 

2.4 Block designs 

Another structure used in the construction of threshold schemes is that of a block 
design. Let V be a finite set of v elements and B a family of k-subsets of V. The 
elements of B are sets of size k, termed blocks. If each t element subset of V occurs in 
A blocks of B, then B constitutes a t-design with param~ter set t-(v, k, A). A Steiner 
system is a t-design with A = 1, and is usually denoted by Set, k, v). 
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There are two known constructions using t-designs. In the first construction, 
Beutelspacher and Vedder [6] and Beutelspacher [5], take a S(t, k, 'Ii) Steiner system 
and construct a t-out-of-n threshold scheme, where n ~ k, as follows. The blocks 
of the design are ordered 1 through b and this ordering is made public knowledge. A 
number K E {I, ... , b} is chosen as the key. The block corresponding to this number 
is selected and the elements of this block are distributed to the participants as shares. 
When t participants come together their shares determine a unique block. This block 
has been assigned the number K. So, they may recover the key. However, the scheme 
is not perfect. If t - 1 participants come together, there are (v - t + 1) j (k - t + 1) 
blocks which contain their shares. Hence the probability of their guessing the secret 
is (k t + l)j(v - t + 1), whereas the probability of an outsider guessing the secret 

is lIb, where b = ( n I ( ; ). 
Stinson and Vanstone [50] have shown that it is possible to construct perfect 

threshold schemes from Steiner systems. (See also [19], [40] and [53].) In some 
cases it is possible to partition a S( t, k, v) Steiner system into m = (v - t + 1) j (k 
t + 1) disjoint S( t 1, k, v) Steiner systems. This partition has the property that 
any t-subset of V occurs in precisely one design of the partition. In addition, each 
(t - I)-subset occurs in a block of every design of the partition, since each design is 
a S(t - I, k, v). An example of a S(3, 3, 9) Steiner system which has been partitioned 
into seven S(2, 3, 9) Steiner systems is in Table 2.4.1. 

In order to construct a perfect t-out-of-n threshold scheme, a partition of a 
S(t, k, v) Steiner system into m = (v - t + l)j(k t + 1), S(t -1, k, v) Steiner systems 
is taken. The set {I, ... ,m} is taken to be the key space and each S(t-l, k,v) Steiner 
system is assigned a value i, for i = 1, ... I m. The key space and the assignment is 
made public knowledge. The protocol for a t-out-of-k threshold scheme is as follows. 

Protocol: 
• A number K E {I, ... ,m} is chosen to be the secret key . 

.. The S( t 1, k, v) Steiner system corresponding to K is located and a block of 
that design is chosen. The elements of this block are distributed as shares. 

.. When any t participants come together, they pool their shares and locate the 
unique block, of the S( t, k, v) Steiner system, containing their shares. This 
block belongs to a unique Steiner system with parameters S(t - 1, k,v), and 
this system corresponds to one of the values 1, ... 1 m. The secret key K is the 
number i E {I, ... 1 m} corresponding to the appropriate S (t - 1) V I k). 

Consider an unauthorised set of t - 1 participants collaborating. They hold t - 1 
shares. Each of the Steiner systems with parameters S(t - 1, k,v) contains a unique 
block on these shares. Hence the probability of the t - 1 participants guessing the 
secret is the same as an outsider, 11m. Therefore the scheme is perfect. 

As an example one may take the partition given in Table 2.4.1 and construct a 
3-out-of-3 threshold scheme as follows. Here, the S(3, 3, 9) is partitioned into m = 7 
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Steiner systems with parameters 8(2,3,9), and these are assigned the values 1,0' . , 7, 
respectively. 

81 S2 S3 84 S5 S6 81 

123 124 125 126 127 128 129 
149 139 137 138 135 136 134 
1 5 7 158 148 147 146 145 156 
1 6 8 167 1 6 9 59 189 179 1 78 
247 236 234 39 238 237 235 
258 257 268 245 249 246 248 
269 289 279 278 256 259 267 
348 345 356 346 347 349 368 
359 378 389 357 369 358 379 
367 468 459 489 458 478 457 
456 479 467 568 579 567 469 
789 569 578 679 678 689 589 

TABLE 2.4.1 

Table 2.4.1 together with the key space {I, .. , 7} is made public knowledge. A 
number is chosen at random from the set {I, ... , 7} and taken to be the secret key. 
Assume it is 4. A block is chosen from S4, say the block {2, 7, 8}. The elements 
of this block are distributed to the three participants as shares. When the three 
participants corne together, they can locate the unique block containing their shares. 
This block belongs to precisely one Steiner system with parameters S(2, 3, 9), namely 
S4. Therefore, the secret key is K = 4. It is easy to see that this scheme is perfect 
since the shares held by any two participants belong to a block in each of the Steiner 
systems with parameters S(2, 3, 9). 

The general scheme presented here is not ideal as the shares are selected from a 
set of size v and the key space is of order IKI = (v - t + l)j(k - t + 1). However, if 
one uses this construction to develop an anonymous threshold scheme, (see Stinson 
[53] for a definition), then it can be shown that the number of keys is optimal in this 
modeL In addition the structure of Steiner systems places severe restrictions on the 
possible parameters for the associated access structure. Finally, the scheme is difficult 
to implement, when t 2: 3, as there are not many known examples of partitionable 
Steiner systems. 

Dawson, Mahmoodian and Rahilly [23] have a similar construction based on a 
partition of an orthogonal array. The advantages of this scheme are that it is ideal, 
the parameter set is more flexible and there are many more known examples. In fact 
this construction turns out to be a generalisation of Shamir's scheme and has been 
mentioned briefly in Section 2.2. 
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3 Secret Sharing Schemes For General Access 
Structures 

In a general SSS the access structure is not restricted to a set of t or more participants. 
Instead, it is a collection of authorised subsets of participants. In 1987 Ito, Saito and 
Nishizeki [28] generalised Shamir's construction and designed a SSS which realises 
any given access structure. Basically, they take a polynomial Y = f( x), of degree 
t I, and take the secret to be f(O). The polynomial is evaluated at m points 
(Xl) Yl), ." 1 Ym) and these points are taken to be the set S. Each participant 
Pi) for i 1, " .. ,n, is assigned a set of shares c S. A group of participants can 
recover the secret if the union of their sets covers at least t points of S. Ito, Saito and 
Nishizeki termed their scheme a multiple assignment scheme and formalised these 
ideas as follows: The key space is taken to be GF(q), where q is a prime power. 

Protocol: 
.. Two integers t and m are chosen such that t m < q and a secret key K is 

chosen from GF(q) . 

.. Elementsal, ... ,at_1 E GF(q)andat_1 E GF(q)\{O} are randomly chosen, and 
taken as the coefficients of the polynomial f(x) = K + alX +a2x2 + .. . +at_lxt-1. 

GIl Distinct elements Xl, ••• , Xm are chosen from GF(q) \ {O} and Yi = f(Xi) is 
calculated . 

.. Let S {(XI,Yl), ... ,(xm,Ym)} and label the participants P1, ... ,Pn. For 
i 1, ... , n, sets Di C S are chosen and participant Pi is assigned Di as his 
share . 

.. The key can be recovered when a set A = {Pi(l),'" Pi(j)} of participants come 
together such that I UPiEA Dil ;:::: t. 

The assignment of the shares is taken to be the function 9 : P -+ 2s such that 
g(Pi,) Di and this assignment scheme has the access structure 

r = {Q c P II UPEQ g(P)1 ;:::: t}. 

They proved that any monotone access structure can be realised using the above 
techniques. It is also clear that the resulting scheme is perfect. The proof of this 
result follows that given in Section 2.2. These ideas were taken up by Benaloh and 
Leichter in [3]. They gave a simpler and more efficient method for developing a 
SSS for any monotone access structure. Essentially, a key K is chosen and for each 
set B of the access structure, IBI values S1, ... ,SIBI are selected such that the sum 
S1 + ... + SIBI = K. If at some stage it is possible to combine sets in the access 
structure to form a ti-out-of-ni threshold scheme, then an intermediate value Si can 
be divided into ni shares any ti of which will recover Si. In this manner, Benaloh and 
Leichter reduced the number of shares to be held by anyone participant. However, 
they also point out that it is not always possible to construct a scheme in which each 
participant receives only one share. This fact can be established by considering the 



access structure with basis fo ;:= {{PI, Pal, {Pa, P3 }, {P31 P4}}. Consequently, they 
showed that an ideal scheme does not exist for the access structure with basis roo 

To help study general access structures Benaloh and Leichter [3] also introduced 
terminology which can be used to give a concise method for representing a monotone 
access structure. This terminology was later adapted by Brickell and Stinson [15]' 
Stinson [51] and Simmons, Jackson and Martin [48]. An in depth discussion of this 
terminology can be found in [51]. Briefly, each participant Pi is assigned a variable 
Xi and the access structure is by a formula of the form 

v ( 1\ Xi) , 
BEl' :CiEB 

where the xi's take a true or false value. The value of the formula is true if and only if 
the set of variables which are true correspond to a subset of P which is in the access 
structure. The formula is termed a monotone formula or a monotone circuit. For 
example, an access structure with basis {{PI, Pal, {Pa, P4 }} can be represented 
by the monotone formula (Xl /\ X2) V (Xa /\ X3/\ X4)' 

Quite a deal of research has been conducted into methods which can be used to 
realise general monotone access structures. Some of these methods are discussed in 
detail below, other constructions can be found in [22] and [34]. 

3.1 

Since geometric constructions have been discussed by a number of authors (see for 
example Simmons [47], [45] and [46]) only one small example will be given here. 
Consider the access structure with basis ro = {{PI, Pa}, {PI, {P31 P4 }}. 

Take the key space to be the set of points in a subspace Vd of an affine space. A 
point p is taken to be the secret key. The shares are taken from a plane 1r which 
intersects the subspace in the unique point p. Participants PI and receive points 
on a line which is in 1r and contains p. Participant P3 receives a line in 1r which does 
not contain p and P4 a point in 1r and not on the lines already chosen. It is easy to 
see that together and Pa can recover a line which intersects the subspace at p and 

together with anyone of the other three participants can recover the plane 1r and 
hence the unique point p. 

Simmons, Jackson and Martin [48] discussed the realisation of SSSs, based on 
geometric configurations, for general access structures. In this paper, they point 
out that even very access structures may require fairly complicated geometric 
configurations for their realisation. However, they present an algorithm for achieving 
this. They then apply these techniques and use geometric constructions to realise 
SSSs for all possible access structures on four or fewer participants. 

3.2 Vector spaces 

Constructions using vector spaces are closely related to those based on geometry. 
One such construction, taken from Brickell [12], is given here. Let r be an access 
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structure. Let V be a vector space of all d-tuples over G F( q), where q is some prime 
power and d 2:: 2. The key space is taken to be GF(q). Note that below· is the. 
inner product of GF(q). The protocol for a general SSS based on access structure r· 
is given below. 

Protocol: 
• A secret key KEG F ( q) is chosen, and a vector a = (al a2 ... ad) is chosen in 

such a way that K = a . (1 O ... 0) . 

.. The share space is taken to be GF(q). The participants are labeled PI)"" Pn1 

and participant Pi is assigned a vector Vi. For i = 1, ... 1 n, the vectors, Vi, are 
chosen in such a way that (1 O ... 0) belongs to the span of the set {Vi I Pi E A} 
if and only if A E r. For i = 1, ... , n, the share distributed to participant Pi is 
the value Si = a . Vi. 

• An authorised group of participant can recover the secret key K by taking the 
summation LilPiEA WiSi, where each Wi E GF(q). (Note that the values Wi can 
be precomputed and stored.) 

To prove that an authorised group can recover the secret, one proceeds as follows. 
Recall that the shares are chosen in such a way that (1 O ... 0) belongs to the span of 
the set {Vi I Pi. E A} if and only if A E r. Therefore, 

(1 0 ... 0) = WiVi. 

Now, a is also chosen so that a· (1 O .. 0) = K. Hence 

K = a· L WiVi = L Wi a· Vi· 

ilPiEA ilPiEA 

The shares Si are chosen so that Si = a· Vi. Therefore 

K = L WiSi· 

ilPiEA 

It can be shown that this scheme is perfect. For a proof of this see Brickell's original 
paper or Stinson [51]. It is easy to see that this scheme is also ideal. 

Benaloh and Leichter [3] showed that there exist monotone sets r, which cannot be 
the access structure of an ideal SSS. ( See also Wallis [58].) Therefore this construc
tion cannot be used to realise SSSs for all possible access structures. Also it should 
be noted that in general there is no known efficient algorithm for finding vectors Vi 

which satisfy th~ given conditions. 
A similar construction is given by Bertilsson and Ingemarsson in [4]. 

3.3 Matroids 

Matroids have played a significant role in the realisation of general access structures. 
A matroid M is a pair (V, I), where V is a non-empty finite set and I is a non

empty collection of subsets of V, called independent sets, which satisfy the following 
properties: 
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L any subset of an independent set is independent; 

2. if X and Yare independent sets with IYI > lXI, then there is an element e 
contained in Y, but not X, such that X U {e} is an independent set. 

1£ M = (V 1 I) is a matroid defined as above, then a subset of V is said to be a 
dependent set if it is not independent 0 A minimal dependent set is called circuito 
Let x, y, z be distinct elements of Vo A matroid is said to be connected if, whenever 
there are circuits, C1 containing x and y and C'}, containing y and z, then there exists 
a circuit C3 containing x and z. Let F be a field and Fci. be a d-dimensional vector 
space over F. A matroid M = (V 1 I) is said to be representable over F if there 
exists a dependence preserving mapping 9 : V -t Fd 1 such that a subset A ~ V is a 
dependent set of the matroid M if and only if g(A) is linearly dependent. For more 
details on matroids see Welsh [57]. 

Brickell and Davenport [13] were able to show that matroids provide a partial 
classification of ideal SSSs. To prove this they introduced the following terminology. 
Let 0 be an ideal SSS with a connected monotone access structure ro Let D denote 
the trusted authority who is administering the scheme. Define X = {D} UP. The 
trusted authority is taken to be a participant and it is assumed that he is assigned 
the key as his share. Given a set Y E X the notation Y \ {y} ==? Y indicates that 
the shares held by the participants of Y \ {y} can be used to uniquely determine the 
share held by participant y. For any SSS 0 let D(O) be the set 

D(n) = {A ~ P I 3y E A s.t. (A \ {y} =* y)}. 

Brickell and Davenport's partial classification is as follows. 

THEOREM 3.1 Let 0 be a connected ideal SSS. Then the sets D(n) are the de
pendent sets of a connected matroid. 

THEOREM 3.2 Let M= (V,T) be a connected matroid representable over a 
field. Let Vo E V. Then there exists a connected ideal SSS n such that K = VOl 

X = V and where D(n) are the dependent sets of M. 

Jackson and Martin [29J have extended these two results and established the unique
ness of the matroid in Theorem 3.1 and the access structure associated with the SSS 
in Theorem 3.2. 

Using these results Beimel and Chor [2] introduced the idea of appropriate ma
troids. Let r be an access structure on a set of n participants {PI, ... 1 Pn } and let 
M = (V,I), where V = {O, 1, ... ,n}, be a connected matroid. The matroid M is 
said to be appropriate for the access structure r if 

r =.cl( {C \ {OJ 10 E C and C is a minimal dependent set of M}). 

In other words, the minimal sets of the access structure r correspond to the minimal 
dependent sets containing the element 0 of the matroid. They then went on· to define 
universally ideal access structures and gave a characterisation of these structures. Let 



K be the key space, and Si the share space for participant Pi. A SSS is defined to be 
m-ideal if IKI = 151 1 = ... = ISnl = m, and an access structure r is m-ideal if there 
exists an m-ideal SSS that realises r. An access structure r is universally ideal if for 
every positive integer m the access structure r is m-ideal. 

Beimel and Chor showed that an access structure r is 2-ideal if and only if there is 
a matroid which is representable over G F(2) and is appropriate for r. Similarly, they 
showed that an access structure r is 3-ideal if and only if there is a matroid which 
is representable over GF(3) and is appropriate for r. They then used the fact that a 
matroid M is representable over GF(2) and GF(3) if and only if M is representable 
over any field, to show that if an access structure r is 2-ideal and 3-ideal then for 
every q such that q is a power of a prime, r is q-ideal. This then led to their main 
result: 

THEOREM 3.3 An access structure r is universally ideal if and only ifr is 2-ideal 
and 3-ideal. 

The connection between non-perfect SSSs and matroids has been studied by Kuro
sawa, Okada and Sakano [32]' and Seymour [41] has proved that a certain class of 
matroids (Vamos matroids) cannot be the associated matroid of an ideal SSS. 

3.4 Graphs 

A number of authors have used graphs as a way of representing access structures 
of rank two. The earliest reference to these ideas is Brickell and Davenport [13]. 
Let G = (V, E) be a connected undirected graph. Each participant is assigned a 
vertex of G and any two participants can compute the key, if their corresponding 
vertices are joined by an edge in G. So the access structure consists of the closure of 
a connected graph. For example, the a.ccess structure defined by the basis set ra = 
{{PI, P2}, {P21 P3 }, {P3l P4 }} can be represented by the graph given on the left in 
Figure 3.4.1 and the access structure with basis ro = {{PI, P2 }, {PI, P3 }, {P21 P3 }, 

{P31 P4 }} can be represented by the graph given on the right in Figure 3.4.1. 

FIGURE 3.4.1 

The following result is taken from [13]' and can also be found in [15] and [51]. 
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THEOREM 3.4 Suppose G (V, E) is a connected graph. Then there is an ideal 
SSS realising the access structure r( G) if and only if G is a complete multipartite 
graph. 

Blundo, De Santis, Stinson and Vaccaro [10] showed that if G is not a complete 
multipartite graph, then any SSS for G must have an information rate p less than or 
equal to 2/3. 

Brickell and Stinson [15] proved the following about the information rate of such 
SSSs. 

THEOREM 3.5 Suppose G(V, is a graph in which the maximum degree of any 
vertex d. Then there is a SSS, where the key space is of size q} for some prime 
q than or equal to 2, which realises the access structure r( G) associated with 
the graph, and with information rate p = 1/(f~1 + 1). 

Recently, Stinson [54] improved on this result and showed that there exists a SSS 
satisfying the above conditions and with information rate p 2: 2/(d + 1). 

Brickell and Stinson [15] consider all possible graphs on at most four vertices and 
show that they all admit ideal 888s with the exception of two. The two exceptions are 
given in Figure and are dealt with in detail in a paper Capocelli, De 8antis, 
Gargano and Vaccaro [16]. The optimal information rate and the average information 
rate has been determined for all access structures on at most four participants, for 
details of these results see [10], [15], [16] and [51]. The information rate and 
the average information rate has been determined for all graph access structures on at 
most five participants, for details of these results see [10], [52] and [54]. Blundo, De 
Santis, Gargano and Vaccaro [11] have exhibited a class of graphs for which upper 
bounds on the optimal information rate can be shown to become arbitrarily close 
to 1/2 and upper bounds on the average information rate can be shown to become 
arbitrarily close to 2/3. 

Many of the proofs of these results in this section use what is known as a decompo
sition construction. This method of construction is discussed in the next subsection. 

3.5 Decomposition Construction 

Recursive constructions have been used to construct SSSs. These constructions take 
a basis r 0 and decompose it into access structures for which there exist ideal schemes. 
These ideal schemes are then used as the building blocks for SSS on roo This method of 
construction was used by Brickell and Stinson [15]. Then Blundo, De Santis, Stinson 
and Vaccaro [10] extended Brickell and Stinson's construction and recently Stinson 
[51] generalised the construction further. The general construction is presented below. 

Let r be an access structure with basis roo Let JC be a specified key space. An ideal 
decomposition of ro consists of a set {r1 ) ... ) r m} such that the following properties 
are satisfied: 
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3. for 1 ::; k ::; m, there exists an ideal scheme with key space JC, on the subset of 
participants Pk = UBEr/eB, for the access structure having basis rk. 

Stinson points out that in most cases a decomposition can be found such that the 
set {rll ... , r m} partitions roo 

Stinson formalises the distribution of shares to participants in a SSS as a dis
tribution rule. A distribution rule is a function f from participants to shares, and 
represents a possible distribution of shares to the participants. 

The decomposition construction for a SSS on an access structure r with basis ro 
is given as follows. Let the key space be JCE. Assume that, for 1 ::; j ::; I, 

is an ideal decomposition of f o. Note that by the definition of an ideal decomposition 
it follows that, for 1 ::; j ::; I and 1 ::; k ::; mj, there exists an ideal scheme on the 
subset of participants 

Pj,le = UBErj,/eB 

for the access structure with basis r j,k- Let Fit~ denote the set of distribution rules 
for the corresponding ideal scheme with secret key K j • A key (Kl' . .. K l ) is selected 
from J(l. Then, for 1 ::; j ::; I, 1 ::; k ::; mj, a distribution rule p,le E Fit: is chosen 
and this rule is used to distribute the shares to the participants in Pj,le' 

To calculate the information rate of the scheme with basis ro one must determine 
the number of shares distributed to participant Pi,. For each participant Pi and for 
1 ::; j ::; I, the number of shares given to Pi for the schemes with distribution rules 
Fj,k, 1 ::; k ::; mj, is 

So in total participant Pi is given 

I 

~ = :L:1{k I Pi E Pj,le} I 
i=l 

shares. 
These calculations may now used to prove the following result. 

THEOREM 3.6 Let r be an access structure having basis roo For 1 < J < l, 
suppose 

{r i,l, ... I r j,m; } 

is an ideal decomposition of r 0 where P j,le denotes the participant set for the access 
structure r j,k. Define 

l 

R = max{L:': I{k: Pi E Pj,kl ; 1 ::; i ::; n}. 
j=l 

Then p*(r) 2:: II R, where p* denotes the maximum possible information rate for a 
given access structure. 
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Stinson [51] illustrates this construction with the following example. Let r be an 
access structure with basis ro = {{PI, Pa}, {P21 P3}, {P3, P4 }}. (See Figure 3.4.1 for 
a graphical representation of this access structure.) Take 1 = 2, JC = GF(q) for any 
prime power q, and define the two ideal decompositions to be: 

rl,l {{PI, Pa}} 

r l ,2 {{Pa, Pa}, {P31 P4}} 

ra,l {{PI) P2 }, {P21 P3 }} 

r 2 ,a {{P3 ,P4 }}. 

Then RI R4 2 and Ra = R3 = 3. Hence R 3 and p = 2/3. 

4 Democratic Schemes 

In many situations it is unlikely that there will be an administrator who is trusted 
by all parties and is capable of and a SSS. Thus there is a 
real need to design a democratic scheme, in which the jointly determine 
the secret key. To achieve this the each select a secret partial key, and 
these are fed into some initialisation mechanism which determines the secret key. To 
avoid confusion this secret key will be termed the master key. Each partial key must 
playa vital role in determining the master key. When the master key is required an 
authorised group of participants must input pieces of information and these are used 
to determine first the partial keys and ultimately the master key. In the schemes 
discussed in the first three sections of this paper the secret has been determined 
by a trusted authority who administers the scheme. In a democratic scheme the 
master key is determined by the inputs of the participants. 

Ingemarsson and Simmons [27] were the first to discuss democratic schemes and 
proposed a number of methods for implementing the above ideas. One simple method 
suggested by Ingemarsson and Simmons is to have each participant select a num
ber and then the master key is taken to be the sum of these numbers. Alterna
tively, if there are n participants, each participant might select a hyperplane in an 
n-dimensional finite space and the master key is taken to be the intersection of these 
hyperplanes. A full discussion of these ideas can be found in [27]. Ingemarsson and 
Simmons also gave the following example of a 2-out-of-3 democratic scheme based on 
a projective 3-space PG(3, q). Label the participants PI, Pa and P3 • Take a PG(3, q). 

Protocol: 
.. For i 1,2,3, participant Pi chooses a plane ?ri, in PG(3, q), as his partial key. 

~ The planes are fed into an initialisation mechanism and their intersection taken. 
Let the intersection be p. Then p is taken to be the master key. 

~ Participant Pi chooses two distinct lines Li and Li in ?ri. Note that these 
lines should not intersect at p. He then distributes a line to each of the other 

52 



participants as a share in his partial key. This distribution rule is summarised in 
Table 4.1. Here the entry in the cell (Pi, Pj ) represents the share that participant 
Pi distributes to participant Pi' 

PI 7fl Ll L' 1 

P2 L2 7f2 L' 2 

PI L3 L' 3 7f3 

TABLE 4.1 

• When any two participants come together they hold their own planes and two 
lines in the plane of the third participant. Therefore, they can determine the 
third plane, take the intersection of the three and recover the point p. 

Ingemarsson and Simmons also proposed a more general democratic scheme based 
on Maximum Distance Separable codes. Dawson and Donovan [24] have given an 
analogous construction based on Shamir's scheme. This section is concluded with a 
discussion of this construction. The key space is taken to be Zql for some large prime 
q. The participants are labeled PI to Pn1 where n :s; q - 1. A t-out-of-n democratic 
scheme is presented below. 

Protocol: 

... Each participant Pi selects a partial key Ki and a polynomial fie x) of degree 
t - 1 with constant coefficient K i . 

• The master key K is determined by an initialisation process. For example, this 
initialisation process could involve taking K = (:Ei=l Ki) (mod q). 

4& For i = 1, ... , n, each participant Pi derives n 1 shares by evaluating Ji,(j) , 
for j = 1, ... ) nand j =1= i. 

• Participant Pi distributes the share J;,(j) to participant Pj. (Note that at this 
step participant Pi holds his own partial key K j and n - 1 shares of the form 
Ji,(j) for i = 1, ... ,n and i =1= j.) 

... When it is necessary to recover the secret, t or more participants combine their 
shares. In doing so they derive the n polynomials Ji ( x ), for i = 1, ... ,n, and 
hence the n constant coefficients Ki,. Now they can recover the key K. 

One can see that in a democratic scheme the risk of a security breach is no more 
than that of an autocratic scheme (one administered by a trusted authority). 

5 Multilevel or Hierarchical Sche:mes 

A multilevel or hierarchical access structure has been defined as one in which the 
participants are partitioned into levels li, for i = 1, ... , R and the access structure 
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consists of those subsets which contain at least r participants all of level at most lr. 
A multilevel or hierarchical scheme is one which realises a multilevel access structure. 

Shamir [42] addresses this situation in his original paper. He suggests that par
ticipants at a lower level be given more shares. (Such schemes have been termed 
intrinsic.) However, this increases the size of the shares and thus the information 
rate of the scheme is low. In an extrinsic scheme the participants' differing capabil
ities when reconstructing the secret are a function of the relationship between the 
shares and not a function of the information content of the shares. 

Simmons [45] gives the following example of a multilevel scheme which is extrinsic. 
Take a projective space PG( 4, q). The key space is the set of points on a line L in 
PG(4, q). The protocol for a multilevel scheme is as follows. 

Protocol: 
• A point p on the line L is chosen to be the secret key K. 

• The participants are divided into two levels, denoted by l2 and la. 

• A line L 2 , which intersects L at p, is chosen. The points, distinct from p, are 
distributed one to each of the participants in level 12 • 

• A plane 1I"a which contains L21 but not L, is chosen. The points in 1I"a \ L2, no 
two of which are collinear with a point on L 2 , are distributed one to each of the 
participants in level la. 

• When any two participants from 12 come together they can determine L2 and 
hence the point of intersection with L. When any three participants from la 
come together they can determine 11"3 and hence the point of intersection with 
L. If one participant from level l2 and two participants from 13 come together 
they can determine 11"3 and hence its intersection with L. Thus the secret key 
K can be determined. 

It is easy to see that any pair of participants at level three can replace the share of 
any participant at level two. 

Brickell [12] uses the vector space construction given in Section 3.2 to construct 
an ideal multilevel scheme. The protocol for the scheme is the same except that, for 
i = 1, ... ,n, participant Pi is assigned a level Li and this level is used to choose the 
vector Vi. For each participant Pi an element Xi E G F( q) is chosen and the vector Vi 

is taken to be the IR-dimensional vector 

(1 2 L.-1 0 0) , Xi, Xi' ..• j Xi j, ••• , • 

(It should be noted that if h = 1 and Pi is a participant with Li = 1, the Vi = el = 
(1,0 ... ,0).) Then set 

j-l 

13(x) = I: alexic 
k=O 

and distribute Si = iL.( Xi) to participant Pi as his share. 
Brickell goes on to give two general theorems (stated below) on the existence of 

SSSs which realise these multilevel access structures, as well as methods for picking 
the Xi which are necessary in the construction of the schemes. 
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THEOREM 5.7 Let r be a multilevel access structure with levels h < ... < lR. 
Let NT denote the number of participants of level IT and let n be the total number of 

participants. If q > (lR - 1) ( IR ~ 1 ), then there is an ideal secret sharing scheme 

for rover GF(q). 

THEOREM 5.8 Let r be a multilevel access structure with levels 1 = 10 < 11 < 
... < lR. Let NT denote the number of participants of level IT and let n be the total 
number of participants. Let q be a prime satisfying q > N,. + 1 for 1 :S r ~ R. Let 
f3 = RI~. Then there is an ideal SSS fOT rover G F( q{:J) which can be constructed in 
time polynomial in (N1' ... , N R, q). 

Brickell also notes that from an implementation point of view the method of construc
tion used in the first theorem requires the checking of possibly exponentially many 
matrices to verify that they are nonsingular. However, this problem is overcome if 
one uses the construction given in the second theorem. 

Other references which deal with the construction of multilevel schemes are [5], 
[6], [12], [31], [22], [24] and [45]. 

6 Multipart or Compartmented Schemes 

In a multipart or compartmented scheme the participants are divided into several 
compartments and the shares distributed to the participants in such a way that the 
secret can be recovered only when at least the prescribed number of participants from 
each compartment concur. If a quorum is not reached in anyone compartment, then 
the key cannot be reconstructed. Formally, Brickell [12] defines the access structure 
of a compartmented scheme as follows. Let the sets of participants C1 , • •• 1 Cu par
tition P and determine integers ti 2: 1, for i = 1, ... I u. The access structure of a 
compartmented scheme is made up of the sets 0 E 21' which satisfy the following 
properties, 

1. IC n Oil 2: ti, for i = 1, ... ,u, and 

2. ICI 2: t. 

In the paper [45] Simmons looks at the construction of compartmented schemes 
from geometric configurations. The following example of a. perfect 2-out-of-3 com
partmented scheme is taken from that paper. This construction relies on the existence 
of a projective space PG( 4, q), and the fact that any pair of skew lines in PG( 4, q) 
will span a unique 3-dimensional subspace. An arbitrary line L in the PG( 4, q) is 
taken to be the key space. The classes of participants are labeled Ot, C2 and 0 3 • The 
protocol for a compartmented scheme consisting of three groups is given below. 

Protocol: 

• A point, p, on the line L is chosen to be the secret key K. 
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.. A subspace V of PG( 4, q) is chosen such that V intersects L at the point p. A 
line w on P and in V is chosen. Three lines L1 , L2 and L3 are chosen in V such 
that they are pairwise skew and each, respectively, intersects w in the points PI) 
Pa and P3- The points PI, Pa and P3 must all be distinct from p . 

.. For i = 1,2,3, the points on Lil distinct from Pi, are distributed to the partici
pants in class Cj, as their shares. 

.. When any two participants from class Ci come together they can determine the 
line Li . 

.. When any two classes come together, and obtain a quorum within each class, 
they determine a pair of skew lines which can be used to generate V. Having 
obtained V, its intersection with L is taken and K = P recovered. 

The proof that the scheme is perfect may be found in [45] and it is easy to see that 
this scheme is ideaL 

Brickell proves that for any compartmented access structure r, as defined above, 
there exists a Q, such that for q > Q, there exists an ideal SSS for rover G F( q). 
More precisely Brickell gives the following theorem. 

THEOREM 6.9 Let r be a compartmented access stmcture. If q > ( : ), then 

there is an ideal SSS for rover G FC q). 

However, Brickell also points out that in general no efficient method for implementing 
this scheme has been found. In the special case where t is equal to the sum of the ti's 
Brickell suggests that, for i = 1, ... ,u, one randomly picks Si so that the secret key 
K is equal to the sum of the Si. Now for each i = 1, ... , u, a threshold scheme with 
threshold ti is used to distribute the shares in Si to the participants of Ci.. 

Simmons [45],[47], Brickell [12] and Dawson and Donovan [24] have also listed a 
number of different methods for constructing compartmented schemes. 

7 Prepositioned Schemes 

Simmons [46] has also introduced a class of SSSs known as prepositioned schemes. In 
a prepositioned scheme a trusted authority selects a secret key K and an additional 
piece of information which can be used to indicate the key. As usual he selects 
n shares in the key K, but this time the shares have the property that when an 
authorised group of participants pool their shares they require the additional piece of 
information before they can uniquely determine the key. The shares are distributed 
when the scheme is set up, however the additional piece of information is withheld 
until it is necessary to activate the scheme. Using this method one may also deactivate 
the scheme. This is achieved by changing the secret and determining a new piece of 
information which indicates the new secret. Once this is done the new secret cannot 
be recovered until the additional information is once again communicated. 
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Simmons [46] points out that one relatively easy way of achieving a prepositioned 
scheme is to select a DES (Data Encryption Standard) key and use it to encode the 
secret key. The shares are assigned to the DES key as normal and the participants may 
recover it at any time. When a cipher is received the DES key is used to decrypt it and 
the plaintext is the secret key which can be used to initiate the appropriate action. 
However, this scheme is not unconditionally secure. To achieve an unconditionally 
secure scheme one might select a one-time pad of the same length as the key K and 
exclusive-or it with K to obtain Ko = K e x. Shares in Ko may be distributed 
and Ko recovered at any time. When K is required x is broadcast and Ko e x is 
taken. Alternatively, a scheme may be set up in which the key space is a line Land 
the share space is a line L' which intersects L at the secret key p, for some point p. 
In a prepositioned scheme one would withhold the information about the key space. 
Dawson and Donovan [24] use a similar idea to construct prepositioned schemes based 
on Shamir's system. Their idea is to choose a polynomial f( x) and the key to be the 
value f(xo), for some Xo. The share given to participant Pi is, as usual, f(i). Any 
t of the participants may use their shares to recover the polynomial. However, the 
participants cannot recover the secret until the value of Xo is communicated. 

8 Cheaters 

McEliece and Sarwate [36] were the first authors to address the problem of a par
ticipant cheating. It is conceivable that a participant who enters a false share may 
prevent the recovery of the secret by the other participants but gain enough informa
tion to recover the secret himself. Tompa and Woll [56] point out just how easily this 
can be achieved. They assume that a SSS based on Shamir's original construction 
has been implemented. Let K denote the secret key and f( x) denote the polynomial 
with constant coefficient K. Then each participant Pi) for i = 1, ... , n, holds the 
share f( i). If participant Pj wants to cheat, then he can do so by determining a poly
nomial g( x) of degree at most t - 1 which satisfies the initial conditions g( 0) = -1 
and g( i) 0, for all i =I j. Such a polynomial can be determined by Lagrange inter
polation. When t participants, including participant Pj, concur, participant Pj enters 
the false share f(j) + g(j) instead of f(j). The system of t linear equations, obtained 
from these t shares, will have the polynomial f( x) + g( x) as a solution and return the 
constant coefficient K - 1 as the secret key. The remaining t - 1 participants may 
not even know that this is an incorrect value. However, participant Pj does and can 
in fact recover the secret key for himself. Simmons [44] suggests that this problem 
may be overcome by determining an additional share to be used to validate the secret 
key. Other authors have taken a different approach and shown that the mathematical 
structure of some models can be used to detect cheaters. 

McEliece and Sarwate [36] propose a scheme which uses the error correcting ca
pabilities of Reed Solomon codes. 

Tompa and Woll [56] suggest an adaptation of Shamir's original scheme. In their 
proposal the trusted authority selects a number Xi forparticipant Pi and uses this to 
calculate the share f(xi,). Now if a group of t - 1 participants wants to deceive the 
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tth participant Pi they must determine a polynomial which has constant coefficient 
K' distinct from K and which agrees with the value f(x;,) at Xi. The security of their 
scheme relies on the fact that there is only a very small probability of such a fraud 
succeeding. This approach will detect that someone has cheated, but will not expose 
the cheater. For a further discussion of the techniques suggested by Tompa and Woll 
one may refer to [17]. 

Karnin, Greene and Hellman [30] suggest that the problem of cheaters can be 
overcome by the use of a one way function. When the scheme is first set up and the 
key determined, a one way function may be used to encrypt the key. This epcrypted 
version is placed in a public register. Once the secret is recovered the one way 
function can be used once again to validate the secret. This method will detect a 
fraud, but will not detect who is the fraudulent party. To overcome this it has been 
suggested that the trusted authority also applies the one way function to the shares 
and places these in the public register. Now if a fraud is detected each share can 
be verified. However, this scheme is not unconditionally secure as it depends on 
a one-way function. Simmons [44] discusses a similar approach and suggests that 
the private pieces of information be partitioned into two parts, the first being the 
share· and the second being a piece of information which can be used to check the 
consistency with the other inputs. An in depth analysis of these ideas can be found 
in [44]. 

In [14] Brickell and Stinson extend these ideas. They suggest that when a partici
pant is given his initial share he is also given a piece of information which he can use 
to check each of the shares tendered by the other participants. Consider for a moment 
a simple 2-out-of-n threshold scheme where the key space is a line L in AG(2, q) and 
the share space a line L' which intersects L at the key p. Let participant Pi. hold 
point Pi.. For j I, ... ,n and j f= i, participant Pi. is also required to hold a series 
of n - 1 parallel lines Li,j, where the line Li,j passes through the share pj held by 
participant Pj. At the point of reconstruction of the secret, participant Pi may check 
that the share tendered by participant Pj is on the line Li,j' If participant Pj wants 
to cheat he must choose a point on each of the lines, Li,j for 1 ::; i ::; n where i f= j, 
held by the other participants. It can be shown that the probability of participant 
Pj doing this is 1/(q - 1). Brickell and Stinson extend these ideas to a t-out-of-n 

threshold scheme, where t ~ 3. Here the shares are concealed in hyperplanes and the 
controller distributes to participant Pi) n - 1 parallel hyperplanes together with his 
share. Brickell and Stinson also discuss how one may deal with a trusted authority 
who cheats by distributing false shares. Details of this construction are given in [14]. 

Alternatively, one can use the techniques for verifiable secret sharing schemes to 
detect cheaters. Chor, Goldwasser, Micali and Awerbuch [20] define a verifiable secret 
sharing scheme to be a secret sharing scheme in which the participants can verify that 
they received a valid share in the secret key without having any idea of what the secret 
is. Verifiable secret sharing schemes are particularly useful in distributed computing 
where there is a need for protocols for secure multiparty computations, for example 
procedures such as secret biding, "uninfluenced" voting and distributed coin flipping. 
The reader is also referred to a paper by Rabin and Ben-Or [39] for more information 
on verifiable secret sharing schemes. 
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Other methods for detecting cheaters have been given in [1] and [34]. 

9 Disenrollment 

If one of the participants in a SSS should disclose his share and broadcast it publicly, 
then obviously the security of the scheme is diminished. Blakley, Blakley, Chan and 
Massey [9] discuss the possibility of disenrolling that participant and maintaining 
security at its original level. This is achieved by changing the secret and publicly 
broadcasting additional information which can be used together with the shares of 
the remaining participants to determine new shares. The distribution of additional 
information by a public broadcast overcomes the problems and costs associated with 
reissuing new shares over a secure channel. Formally, let Ko, K l , ... , KL denote a 
set of L + 1 secrets. Let 81, ... ,8n denote the shares distributed to the participants 
such that any t of them may use these shares to reconstruct the secret Ko. For 
i = 1, ... , L, assume without loss of generality that share 8i is to be neutralised 
at the ith disenrollment and Bi is the public broadcast at step i. A t-out-of-n 
threshold scheme is said to have L-fold dis enrollment capability if given the collection 
of variables (Ko, K l , ... , K L , 81, ... , 8 n ) Bl , ... ) BL ), then for each i = 0, ... , L 

1. the key Ki can be recovered from any set of t shares selected from the set 
{8i+!, ... ,8n } provided that they have the information B 1, ... 1 Bil and 

2. the secret cannot be recovered from the information 8t, ... , 8i, B l , ... , Bi to-
gether with any set of t - 1 or less shares selected from the set {8i+l' ... , 8n }. 

Using the entropy or "uncertainty" function H(X), (see Shannon [43]), Blakley, 
Blakley, Chan and Massey give lower bound on the number of bits required to encode 
a share and show that this grows linearly with the number of possible disenrollments 
L. If (Ko, ... , KL , 81, ... ) 8 n ) B l ) ... , BL ) is a perfect t-out-of-n threshold scheme 
with L-fold disenrollment capability and H(Ki,) = m, for i = 1, ... , L, then 

H ( 8 i) ~ (L + l)m V j = 1, ... , n. 

Blakley, Blakley, Chan and Massey present two methods for achieving such a 
scheme. The first of these is given below and is a private communication from Brickell 
and Stinson. The second scheme is based on geometric configurations. 

Let (K, 81, ... , 8 n ) be a perfect t-out-of-n threshold scheme, where K represents 
the secret key chosen from IC and 8i represents a share. Then a t-out-of-n threshold 
scheme with L-fold disenrollment capability (Ko, ... I K L ) 8-11' •• ) 8n , BlI"" B L ) can 
be constructed from (K, 81, ... 18n ) as follows: 

• A set of secret keys {Ki I i = 0, ... I L} is chosen from IC . 

• For i = 1, .... , n, Si is taken to be the share Si =(8;') ~,l, ... , Rt,L) where each 
Rt,i is a random binary string of length m. 



• When a share st. is invalidated, a new key Ki is chosen and associated with it are 
the new shadows {s~+1"" s~} that are formed as specified by the original t
out-of-n threshold scheme. The public message Bi which is broadcast through 
a public channel consists of the union of the Rj,i. with the s~. So Bi is 

Participant Pj has been given Rt.,i. originally and therefore can recover s~. 

They also show that the t-out-of-n perfect threshold scheme with L-fold dis enroll
ment capability constructed above achieves the lower bound H(sj) = (L + l)m, for 
j 1, ... ,no 

Dawson and Donovan [24] use these techniques to construct a scheme with dis
enrollment capability based on Shamir's system. This construction will be described 
below. Assume that it is necessary to set up a t-out-of-n threshold scheme with 
L-fold disenrollment capabilities. Initially, a trusted authority selects L + 1 secrets 
Ko, K1 , ... , KL from the set Zq as well as selecting L + 1 polynomials !i(X) of degree 
t 1, for i = 0, ... , L, where Ki is the constant coefficient of !i( x). The trusted 
authority generates n shares for each of the L + 1 secrets. Participant P/s share of 
secret Ki is Sj;', where !i(j) = Sji. Numbers Tji, for j = 1, ... ,n and i = 1, ... 1 L, are 
selected at random from Zq. The number Tji is combined with the share Sji modulo q 

to form sjii that is, sjt: = Sjt. + Tji (mod q). In this manner, the number Tji is used to 
mask the share Sji. Initially, the trusted authority sends, over a secure channel, the 
L + 1 shares SjO and sj.:, for i = 1, .... , L, to participant Pj. This process is repeated 
for each participant. In the first instance any t participants can use their shares, of 
the form SjO, and derive the secret K o . However, if one of the participants reveals his 
shares (assume for simplicity of notation that it is the first participant) the trusted 
authority can disenroll this person. This is achieved by the following procedure. The 
trusted authority changes the key to K1 and broadcasts, on an open channel, the 
numbers Tjb for j = 2, ... , n. Participant Pj, can use the number Tj1 to unmask sj1 

and recover the share Sj1 to secret K 1 . Hence any t of the remaining n - 1 partici
pants can combine their shares and derive K 1 • However, without knowledge of T11, 

the disenrolled participant is not able to derive share 0511. Hence, this person can no 
longer participate in the scheme. This procedure can be repeated and L participants 
can be disenrolled, assuming that n - L ~ t. 

It should be noted that as well as disenrollment, the above scheme provides a 
method whereby a trusted authority can establish a new secret at any time. The key 
can be changed and the information, required to change the shares, broadcast on an 
insecure channel. Schemes with this regeneration property have been termed l-span 
general SSSs, and an alternative method for their construction is given by Harn and 
Lin in [26]. Chaum devotes the paper [18] to a similar process. It should also be 
noted that Simmons' prepositioned schemes also have this capability. 



10 Conclusion 

Shamir's and Blakley's original papers have generated much interest, from both a 
theoretic and applied point of view. Since 1979 many papers have appeared on the 
topic. These papers come under the broad headings of: 1) mathematical structures 
used to model SSSs; 2) adaptations which can be used to meet many of the needs of 
the real world community; 3) maintaining the flexibility and security of a SSS; 4) the 
study of the information rate of a SSS. An overview of these topics has been pres.ented 
in this paper. 
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