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The hypergraphs whose chromatic number is ~ 2 
("bicolorable" hypergraphs) were introduced by E.W. Miller 
[13] under the name of "set-systems with Property B". This 
concept appears in Number Theory (see [5], [10]). It is also 
useful for some problems in positional games and Operations 
Research (see [3], [4], [7]); different results have been found 
under the form of inequalities involving the sizes of the edges, 
the number of vertices, etc ... ( see [6], [11], [12]). 

A non-bicolorable hypergraph which becomes bicolorable 
when any of its edges is removed is called "edge-critical", and 
several of its properties can be found in the literature ([2], [4], 
[14]). In this paper, instead of edge-critical hypergraphs, we 
study the vertex-critical hypergraphs; the applications are 
more numerous, and it seems that somewhat stronger results 
could imply the famous "four-color theorem". 

I Vertex-critical hypergraphs and the four-color problem 

Let H = (E1> E2, ... , Ern) be a hypergraph which is simple (i.e. Ei:2 Ej 
implies i = j ). Denote by X = {x b X2,"" xn } its vertex-set, and for 

A ~ X, denote by HI A the partial hypergraph HI A = ( E / EEH , E ~ A) 
(this family can be empty). We denote also by H-H(Xi) the hypergraph 
obtained from H by removing all the edges which contain the vertex xi (and 

all the vertices which become of degree 0 ). 
Let X(H) denote the chromatic number of H, i.e. the least number of 

colors needed to color the vertices so that no edge is monochromatic (except, 
of course, the edges of cardinality one, or "loops"). The hypergraph H is 
edge-critical (with respect to the non-bicolorability) if X(H) > 2 and 
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H-E is bicolorable for every EEH. A hypergraph H is vertex-critical if 

X(H) > 2 and' H-H(x) is bicolorable for every vertex x. 
Clearly, every hypergraph which is not bicolorable has a partial 

hypergraph which is edge-critical, and every edge-critical hypergraph is 
also vertex-critical. Furthermore, every which is not bicolorable 
contains a set A of vertices such that the hypergraph HI A is vertex-critical. 

Some classical examples of edge-critical hypergraphs are: the finite 

projective plane with 7 points, the complete r-uniform hypergraph ~r-l of 

order 2r-1, the Lovasz hypergraph Lr , the complement of L3, etc ... (see 

[2], Chap.2). Seymour [14] has characterized the edge-critical hypergraphs 
having as many vertices as edges (by association with strongly connected 
directed graphs without even circuits). 

Number Theory provides several examples of vertex-critical 
hypergraphs which are not edge-critical: Consider the "triangle 

T 
hypergraph" Kn ~ that is the hypergraph whose vertices are the edges of 

the complete graph Kn and whose edges are the triangles of Since the 
T 

Ramsey number R(3,3) is 6, we have X(K6 ) = 3 and ) = 2. The 

hypergraph K~ is vertex-critical: if the vertices of K6 are a,b,c,d,e,f, and 

if the edge af is removed. the other can be colored with two colors 
without producing a monochromatic triangle ( for with blue: ab, 
bc , hf ,ae, ed; ef, cd; with red: ac, ad, bd, be, ce, cf, df). Nevertheless, it 

is easy to check that the hypergraph K~ is not edge-critical. 

The well known theorem of van der Waerden ("If the natural numbers 
are split into lYvo classes, then for every k at least one class contains an 
arithmetic progression of k terms, fl) can be as follows: If Ak 
is a finite set of integers such that in every bicoloring of at least one 
color class contains an arithmetic progression of k terms, and if is 

minimal, then the arithmetic progressions of k terms define a vertex-critical 
hypergraph (which is not necessarly edge-critical). 
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It is well known that every planar graph is four-colorable (K. Appel 
and W. Haken, 1979) but the proof involves too many hours of computer 
time to be checked directly by mathematical reasoning. The concept of 
vertex-critical hypergraph suggest a new approach, based on the results of 
the following sections and on the specific properties of the odd cycles in a 
planar graph. 

For a simple graph G, let H(G) denote the hypergraph on V(G) whose 
edges are the minimal odd cycles of G; these cycles are elementary and 
chordless. The hypergraph H(G) is simple. We have: 

PROPOSITION. .4 graph G is four-colorable if and only if the 
hypergraph H(G) is bicolarable., 

If H(G) admits a bicoloring (A,B), then the subgraphs G A and GB 

have no odd cycles, and consequently, they admit respectively a bicoloring 
(A 1, A2) and a bicoloring (B 1, B2). Clearly, (A 1, A2, B 1, B2 ) is a four-

coloring for G, and G is four-colorable. 
The converse is obvious. 

COROLLARY. A, graph G which is not four-colorable contains a 
subgraph GA such that the hypergraph H(GA) is vertex-critical. 

This follows from the equality: H(GA) = H(G) fA. 

If G is a planar graph, the hypergraph H(G) has many specific 
topological properties, and some of them should imply that H(G) is not 
vertex-critical. On the other hand, it would be interesting to complete the 
statement of Sterboul's Conjecture so that this statement imply direcly the 
four-color theorem. 

2 Deeply bicolorable hypergraphs 

Let x and y be two vertices of the hypergraph H = (E 1, E2, ... ,Em). 

We say that x is dependent on y, and we write x -> y, if every edge 
containing x contains also y. A vertex of degree 0 or 1 is always a 
depende,nt vertex. 
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THEOREM 1. Let H be a hypergraph and let A be the set oj 
dependent vertices; if H/X-A is bicolorable, then every bicoloring oj 
H/X-A can be extended to a bicoioring oj H. 

Assume that H I X-A has already been colored with two colors, say 
red and blue, so that no edge E ~ X-A is monochromatic; we shall assign 
one of the two colors to each uncolored vertex so that no edge of H is 
monochromatic. 

The directed graph G on X defined by the arcs (x,y) such that x->y 
is transitive, and consequently each terminal component is either a singleton 
{y} with Y f/=.A or a symmetric complete subgraph with all its vertices in 
A. By a famous theorem of Konig, a transitive graph has a kernel, which is 
obtained by picking up one vertex in each terminal strong1y connected 
component. Let S be a kernel of G. Color arbitrarly with blue each 
vertex in S which has not yet been colored. Then assign to each vertex 
x EA-S a color different from the color of one of its successors in S. 
Thus, every edge which meets A is bichromatic', since every edge 
which does not meet A is also bichromatic, a bicoloring of H has been 
obtained. 

Q.E.D. 

COROLLARY 1. A vertex-critical hypergraph H contains no 
dependent vertices. 

If the set of dependent vertices is a non-empty set A, then H/X-A is 
bicolorable (or empty), and by the theorem 1, H is also bicolorable. A 
contradiction. 

COROLLARY 2. The hypergraph H oj the maximal cliques in a 
triangulated (chordal) graph G is bicoiorable. 

Let G be a minimal triangulated graph such that the associated 
hypergraph H is not bicolorable. Since G is triangulated, there exists a 
vertex which belongs to only one maximal clique, and this vertex is 
necessarly a dependent vertex for H. Hence, by the corollary 1, H is not 
vertex-critical. This contradicts the minimality of G. 
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A eye leaf the hypergraph H is an alternating sequence 
(xl, EI, x2, E2, x3,· .. , Ek, xk+I ) such that k ~ 2, all the edges Ei 
are distinct, all the vertices Xj are distinct (except xk + I = X I ) 1 

and Ei;;J {Xi, Xi+l} for i = 1,2, ... ,k. Fournier and Las Vergnas 

proved in [8] that if every odd cycle has three edges with a non-empty 
intersection, then the hypergraph is hieolorable. To understand the exact 
scope of this result, consider a hypergraph H such that one of the 
(induced) subhypergraphs obtained from H by removing successively a 
remaining dependent vertex is bicolorable. From the results above, we see 
that H is bicolorable, and we shall call it a deeply bieolorable hypergraph. 
By analogy with the theorem of Kirchhoff about bicolorable graphs, we 
state the theorem as follows: 

THEOREM 2. A hypergraph H and all its partial hypergraphs are 
deeply bieolorable if and only if every odd cycle of H has three edges with 
a non-empty intersection. 

Proof: 10 Let x and y be two vertices of a hypergraph H whose 
odd cycles have the property; it suffices to show that if x is a vertex 
dependent on y, the subhypergraph HI obtained by removing x is also 
bicolorable. 

For i~m, put Ei'=Ei-{x}, and let 0'= (xl,El',X2, ... , Ek',xl) 
be an odd cycle of H', If x->yand y $. El, E2, ... , Ek, then x $. El, E2, 
... ,Ek; so Ei' = Ei. Then a' is also an odd cycle for H which has three 

edges, say Ep, Eq, Er, with a non-empy intersection, or: 
Ep' n Eq' n Er' ¢ 0 (1) 

Now if x E Ep n Eq n Er , then y E Ep' n Eq' n Er', so we have 
also (1). 

In all cases, the cycle a' has three edges with a non-empty intersection, 
and from the theorem of Fournier and Las Vergnas, H' is bicolorable. 
Hence, H is deeply bicolorable. 

2° Assume now that H has an odd cycle (J = (Xr.EI, X2, ... ,Eb Xl) 

without three edges having a non-empty intersection; we may assume that 
its length k is minimum, and we shall show first that that any two non-
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consecutive edges oj the cycle are disjoint (which is trivial for ks3, so 
we assume k>3). 

Otherwise, we have, say, El n Ei :f:. 0 for some i with 3s i s k-l. 
Let a E Eln Ei. Clearly, a:f:. xl, x2, .. " xk, and (J can be 

decomposed into two cycles : 
0' = (a, EI, x2, ., xi, Ei, a) 

o"=(a. Ei, xi+b q+b"" Ek, xl, El, a). 
Their lengths being respectively i s k-I and k-i+2:s k-I, and one of 

them being odd, this contradicts the minimality of the cycle o. 
The cycle 0 defines by its edges a partial hypergraph H' of H; 

after removing successively each remaining dependent vertex, H' becomes 
a graph C2 p+ 1 (chordless cycle of length 2p+l odd), which is not 

bicolorable. So, one partial hypergraph of H is not deeply bicolorable. 
Q.E.D. 

3 Other properties of vertex-critical hypergraphs 
Let H be a vertex- critical hypergraph, and let A be its incidence 

matrix, with m columns (representing the edges Ei) and n rows 
(representing the vertices Xj). The following property has been proved by 

Seymour [14] for edge-critical hypergraphs. 

THEOREM 3. Let H be a vertex-critical hypergraph with n vertices 
and m edges. Then m ~ n, and at least one of the n x n subdeterminants 

oj the incidence matrix A is:f:. O. 
Assume that the theorem is false. Then there exists a n-dimensional 

vector y = ( YI,Y2, ... , Yn) :f:. 0 such that A *y = O. The vertex-set of 

H is the union of X+ = {Xj I jsn; Yj >0 }, X- = { Xj I jsn ; Yi < ° } 
and XO = {Xj I jsn ; Yj =O}. Since y:f:. 0, we have X+:f:. 0, X-:f:. 0 ; 
we have also X0:f:. 0, because otherwise H would admit a bicoloring 
(X+, X-); which contradicts that H is vertex-critical. 

Since X0:f:. X, the partial hypergraph H/Xo admits a bicoloring 
(y ,Z), and each edge of H meets both X+ U Y and X- U Z; so X(H)s2. 
A contradiction. 

The following properties are consequences of a result due to Fournier 
and Las Vergnas for edge-critical hypergraphs. 
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THEOREM 4. Let H be a vertex-critical hypergraph on X, and let 
Xo E X. Then there exists an odd cycle (X], E]. x2, E2, x3, ... ,Ek, X] ) 

such that : 
(1) 

(2) 
x2 = Xo ; 

Ei n Ej =" if Ei and Ej are two non-consecutive 

edges .. 
(3) Ej n E2={Xo}. 

The theorem l' in [8] asserts that in an edge-critical hypergraph H' 
with EoE H' and Xo E Eo, there is an odd cycle (Xl, E], .. , xl) satisfying 
0), (2), (3) with E1 = Eo * Clearly, a vertex-critical hypergraph H on X 

contains an edge-critical hypergraph H' with the same vertex-set X; 
if Xo E X, and if we take for Eo any edge of HI which contains Xo and 

apply to H' the theorem 1', we get the statement of the theorem 4. 

THEOREM 5. Let H be a vertex-critical hypergraph; there exists an 
odd cycle (x], Ej, ... , Ek, Xj) such that: 

(1 ') I Ep n Eq n Er I = 0 ( p<q<r~k) ; 
(2') lEi n Ei+11=1 (i=I,2, ... ,k-I); 
(3') lEI n Ek I ~ I . 

This result was proved in [8] only for edge-critical hypergraphs, but 
the extension is obvious. 

COROLLARY. Let H be a hypergraph having no two intersecting 
edges of siz.e ~ 4) and no odd cycle (X]. E]. x2 •... ,E/v X]) satisfying: 

(i) I Ei n Ej I = 0 if Ej and Ej are two non-

( i i) I Ei n Ei + 11 = 1 
(iii) lEI n Ek I ~ 1 . 

Then H is bicolorable. 

consecutive edges; 
(i= 1,2, ... ,k-l) i 

Proof: Suppose that such a hypergraph H is not bicolorable. Let H' 

be a partial hypergraph of H which is vertex-critical. From Theorem 5, 
H' contains an odd cycle a = (xI, E1, .. ·, Ek , xl ) satisfying (1'),(2'),(3'), 

and we may assume that the cycle a is of minimal length k. Since 0 

217 



cannot satisfy (i), (ii) and (iii), the cycle a has two non-consecutive edges 
which meet, say, E1 and Ei, with 3 :::; i :::; k-l. Let a E E1 n Ei. 
From (1') wehave a;t. x1,X2, .. ,xk.If lE11:::;3 thenE1={a,x1,x2} 
and therefore E1 n Ei = {a}; if IE11;:.:: 4, then IEil s 3, which implies 
that Ei= {a, xi, xi+ I}, and therefore E 1 n = {a}. As in the proof of 

the theorem 2, we see that this vertex a separates the cycle a into two 
smaller cycles, and one of them is odd. This contradicts the minimality of 
the cycle a. 

This result is related to a conjecture posed by Sterboul [15] in 1973: 
A hypergraph with no odd cycle satisfying 0), (ii), (iii) is bicalarable. In 
order to imply the four color theorem) we would rather suggest that if 
every odd cycle satisfying (i), (ii) and (iii) is well covered in some sense, 
the hypergraph is bicolorable. 
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