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Abstract

In this paper, we study four subfamilies of Motzkin paths. Two of
these subfamilies are well-established in the literature and are known as
Motzkin paths with air pockets of the first kind and Motzkin paths with
air pockets of the second kind. The remaining two subfamilies extend
the concept of non-decreasing paths to the first two families mentioned
earlier. Within these four subfamilies, we define two distinct types of
subpaths, namely symmetric peaks and asymmetric peaks. Our anal-
ysis focuses on understanding the distribution of these symmetric and
asymmetric peaks across these subfamilies of paths.

To facilitate this analysis, we present trivariate generating functions.
These functions take into consideration parameters such as path length
and the numbers of symmetric and asymmetric peaks. These generating
functions allow us to calculate, for instance, the total number of sym-
metric and asymmetric peaks for paths of specific lengths. Furthermore,
we conduct an asymptotic analysis of the relationship between these two
quantities.

ISSN: 2202-3518 ©The author(s). Released under the CC BY-ND 4.0 International License



J.-L. BARIL ET AL. /AUSTRALAS. J. COMBIN. 89 (2) (2024), 323–343 324

1 Introduction

A Motzkin path is a lattice path in Z
2
≥0 that starts at the origin, ends on the x-axis,

and consists of steps U = (1, 1), H = (1, 0), and Dk = (1,−k) for any k ≥ 1. A
Motzkin path with air pockets of the first kind (MAP1) is a Motzkin path where
two consecutive down-steps cannot be adjacent. Similarly, a Motzkin path with air

pockets of the second kind (MAP2) is a Motzkin path where every step H or Dk is
immediately followed by an up-step. We denote the sets of all MAP1 and MAP2
as M1 and M2, respectively. These two path families were originally introduced by
Baril and Barry (see, for example, [6]).

A valley is a subpath of the form DkU , HU , or DkH. A subpath in the form of
UkDk is called a symmetric peak if it cannot be extended to a subpath in the form of
Uk+1Dk. An asymmetric peak is a subpath of the form U ℓDk whether either ℓ > k,
or ℓ < k and the subpath cannot be extended to a subpath of the form U ℓDk. We
use sp(P ) (and ap(P )) to denote the number of symmetric (and asymmetric) peaks
in the path P .

Figure 1: Symmetric and asymmetric peaks of a MAP1.

A path of the form of MAP1 or of the form of MAP2 is called non-decreasing if
the sequence of ordinates of valleys DkU , DkH, HU (considered from left to right)
is non-decreasing.

It is worth noting that MAPs without horizontal steps are referred to as Dyck

paths with air pockets. This term was introduced in a recent paper by Baril et al. [4].
As mentioned in their work, these paths also correspond to a stack evolution with
(partial) reset operations, where consecutive resets are not allowed (refer to [14] for
more details). Recently, Prodinger [16] used the kernel method to study the partial
Dyck paths with air pockets.

In a separate study by Baril et al. [3], the authors explored the prevalence of
symmetric and asymmetric peaks in these paths and provided asymptotic approxi-
mations for their occurrences.

Furthermore, in a related work [5], these paths were further generalized by al-
lowing them to extend below the x-axis, leading to the concept of grand Dyck paths

with air pockets. The paper presents enumerative results for these paths, consider-
ing parameters such as path length and restrictions on the minimum and maximum
ordinates reached.

It is worth mentioning that MAP1 is enumerated by the sequence A114465 in
Sloane’s On-line Encyclopedia of Integer Sequences [17], while MAP2 corresponds
to the sequence of Motzkin numbers (as seen in A001006). These sequences were

http://oeis.org/A114465
http://oeis.org/A001006
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originally derived using generating functions. However, in our paper, we employ
recurrence relations to achieve the same counting results.

In this paper, we center our focus on analyzing the distribution of symmetric
and asymmetric peaks within various classes of Motzkin paths with air pockets,
encompassing those of both the first and second kinds, including non-decreasing
paths. To accomplish this, we present trivariate generating functions that account
for the path’s length, the count of symmetric peaks, and the number of asymmetric
peaks.

Through the utilization of these generating functions, we are able to determine,
for instance, the cumulative count of sp(P ) (as well as ap(P )) for paths of specific
lengths. Additionally, we delve into an asymptotic analysis to explore the relationship
between these two quantities.

For the sake of simplicity, we adopt the abbreviation ‘g.f.’ to represent ‘generating
function’.

The concept of symmetric and asymmetric peaks was first introduced by Asakly
in 2018 in the context of words [1]. Since then, several related studies have been pub-
lished on this subject. For instance, Flórez and Ramı́rez [12] explored the concept of
symmetric and asymmetric peaks for Dyck paths. The concept was further extended
to non-decreasing Dyck paths by Elizalde et al. [9] and Flórez et al. [11], to Motzkin
paths by Flórez and Ramı́rez [10], and to partial Dyck paths by Sun et al. [18].
Mansour et al. introduced this concept for integer compositions [15]. Elizalde also
contributed other significant findings on Dyck paths [8]. In some of these papers,
the authors referred to these objects as ‘symmetric pyramids’ instead of ‘symmetric
peaks’.

2 Symmetric and asymmetric peaks in MAP1

In this section, our research is focused on Motzkin paths with air pockets of the first
kind, denoted as M1. We introduce a trivariate generating function that depends on
three key parameters: path length, the count of symmetric peaks, and the number of
asymmetric peaks. As a corollary to this power series, we derive both a generating
function and a closed-form expression for the total number of symmetric peaks.
Additionally, we conduct an asymptotic analysis to explore the ratio of the number
of symmetric peaks to the total number of peaks for paths of specific lengths. The
same analysis is performed for asymmetric peaks. Towards the conclusion of this
section, we present a recursive relation for counting the number of paths in M1 with
a given length.

Consider the generating function with the parameters of length, symmetric peaks,
and asymmetric peaks:

Msp,ap(x, y, z) =
∑

P∈M1

x|P |ysp(P )zap(P ).

We establish the following theorem:
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Theorem 2.1 The generating function Msp,ap(x, y, z) for the number of MAP1 with

respect to length, number of symmetric peaks, and number of asymmetric peaks is

given by:

2(1− x)

1− x− x2y − x3(y − 2z) +
√

(1− x− x2y − x3(y − 2z))2 − α

,

where α := α(x, y, z) = 4x(1− x− x2(y − z))(1− 2x+ x2(2− y + z)− x3).

Proof. We denote the generating function as M := Msp,ap(x, y, z). Now, let us
consider various cases. Except for Case (1) where the paths start with H, we deal
with paths UADkB where the first return to ground occurs just after Dk for some
k ≥ 1. We consider seven cases (2)− (8) grouped into three types of paths: Case (2)
deal with paths where UADk is a symmetric peak; Cases (3), (4), and (5) deal with
paths where A starts with a symmetric peak; and Cases (6), (7), and (8) deal with
the other paths.

Case (1). If the path, denoted as P , is of the form HQ, where Q is another MAP1,
then the generating function for this case is simply xM .

Case (2). If the path P is of the form UaDaQ (where a ≥ 1), and Q is a MAP1 (see
Figure 2, left-hand side), then the generating function for this case is x2

1−x
yM .

Case (3). When P is of the form P = UUaDaQU bDb+1R (with a, b ≥ 1) and both
Q and R are MAP1 (see Figure 2, right-hand side), the generating function
becomes

x
x2

1− x
zM

x2

1− x
zM =

x5

(1− x)2
z2M2.

(2): P = UaDaQ (3): P = UUaDaQU bDb+1R

Figure 2: Decomposition of cases (2) and (3).

Case (4). If the path P takes the form of UUaDaQ̄R (with a ≥ 1) and both Q and R

are MAP1, with Q ending in a down-step and not concluding with a symmetric
peak, and Q̄ being an adjusted version of Q after increasing the size of its last
down-step by one, the generating function is

x
x2

1− x
zBM,

where B := B(x, y, z) represents the generating function for nonempty MAP1
paths that do not end with a symmetric peak nor with a horizontal step. Con-
sidering the complement, we easily obtain B = M − 1− x2

1−x
yM − xM .
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Case (5). If the path P is of the form UUaDaQHDR (with a ≥ 1) and both Q and
R are MAP1 (see Figure 3 left-hand side), the generating function takes the
shape of

x
x2

1− x
zx2M2.

Case (6). When P has the form of UQUaDa+1R (with a ≥ 1) and both Q and R are
MAP1, with Q not starting with a symmetric peak (see Figure 3, right-hand
side), the generating function becomes

xMB′ x2

1− x
z,

where B′ := B′(x, y, z) denotes the generating function for nonempty MAP1
paths that do not start with a symmetric peak. Considering the complement,
we have B′ = M − 1− x2

1−x
yM .

(5): P = UUaDaQHDR (6): P = UQUaDa+1R

Figure 3: Decomposition of cases (5) and (6).

Case (7). If the path P takes the form of UQ̄R, where both Q and R are MAP1,
with Q being nonempty, ending with a down-step, not starting or ending with
a symmetric peak, and Q̄ being an adjusted version of Q, after increasing the
size of its last down-step by one, see Figure 4. So, the generating function
for this case given by xCM , where C := C(x, y, z) represents the generating
function for nonempty MAP1 that end with a down-step and do not start or
end with a symmetric peak. Considering the complement, we deduce C =
B′ − x2y

1−x
B′ − x(B′ + 1).

Case (8). In the final case, if the path P is of the form UQHDR where both Q and
R are MAP1, and Q does not start with a symmetric peak, see Figure 4, the
generating function becomes x3(B′ + 1)M .

(7): P = UQ̄R (8): P = UQHDR

Figure 4: Decomposition of cases (7) and (8).
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Summing up these cases, we derive the following functional equation:

M = 1 + xM +
x2

1− x
yM +

x5

(1− x)2
z2M2 +

x3

1− x
zM(M − 1− x2

1− x
yM − xM)

+
x5z

1− x
M2 +

x3z

1− x
MB′ + xM

(

B′ − x2y

1− x
B′ − x(B′ + 1)

)

+ x3(B′ + 1)M,

which leads to the desired result. �

The first terms of the Taylor expansion of M are as follows:

1 + x+ (1 + y)x2 + (3y + 2)x3 + (y2 + 6y + z + 5)x4

+ (5y2 + z2 + 12y + 6z + 12)x5 +O(x6).

In Figure 5, the MAP1 of length 4 are displayed, with their corresponding weights
highlighted in boldface in the previous expansion.

x
4
y x

4
x
4
y x

4
z x

4
x
4

x
4
y
2

x
4
y x

4
y x

4
x
4
y x

4
y

x
4

Figure 5: The MAP1 of length 4 and their contribution in Msp,ap(x, y, z).

Corollary 2.2 The generating function for the number of MAP1 that avoid sym-

metric and asymmetric peaks is given by:

M(x, 0, 0) =
2

1 +
√
1− 4x+ 4x2 − 4x3

.

The Taylor expansion of this generating function yields:

1 + x+ x2 + 2x3 + 5x4 + 12x5 + 29x6 + 73x7 + 190x8 + 505x9 +O(x10).

Remarkably, the coefficients in this sequence correspond to A152171 in [17], which
counts Dyck paths of semi-length n without peaks at height 2 (mod 3) and valleys
at height 1 (mod 3).

http://oeis.org/A152171
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From the formulas provided in A152171 and A025265, we can determine the
number of MAP1 of length n that avoid symmetric and asymmetric peaks. Hence,
we obtain the expression:

n
∑

ℓ=0

ℓ
∑

k=0

n−ℓ
∑

i=0

k+1
∑

j=0

Ck

(

j

ℓ− k − j

)(

k + 1

j

)(

n− ℓ− i

i

)

(−1)−ℓ+k+i,

where Ck represents the kth Catalan number.

Corollary 2.3 The generating function for the number of MAP1 that avoid sym-

metric peaks is given by:

M(x, 0, 1) =
2(1− x)

1− x+ 2x3 +
√

(1− x)(1− 5x+ 8x2 − 12x3 + 8x4 − 8x5)
.

The Taylor expansion of this generating function is as follows:

1 + x+ x2 + 2x3 + 6x4 + 19x5 + 58x6 + 173x7 + 519x8 + 1585x9 +O(x10).

It is worth noting that this sequence of coefficients does not appear in [17].

Corollary 2.4 The generating function for the number of MAP1 that avoid asym-

metric peaks is given by:

M(x, 1, 0) =
2(1− x)

1− x− x2 − x3 +
√

(1− x)(1− 5x+ 6x2 − 2x3 + x4 + 3x5)
.

The Taylor expansion of this generating function is as follows:

1 + x+ 2x2 + 5x3 + 12x4 + 29x5 + 73x6 + 190x7 + 508x8 + 1391x9 +O(x10).

This sequence of coefficients does not appear in [17].

To find the total number of symmetric peaks and asymmetric peaks in all MAP1,
we calculate ∂y(M(x, y, 1))|y=1 and ∂z(M(x, 1, z))|z=1. This yields two generating
functions that we formally state in the following two corollaries.

Corollary 2.5 The g.f. for the total number of symmetric peaks in all MAP1 is

given by:
2x2(1− 3x+ x2 − 3x3 + (1 + x)

√
β)

(1− x)
√
β(1− x2 +

√
β)2

,

where β = 1− 4x+2x2 − 4x3 + x4. An asymptotic expression for the n-th coefficient

is given by:

(2 +
√
3)n

3
√

2(12 + 7
√
3)πn

.

http://oeis.org/A152171
http://oeis.org/A025265
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The Taylor expansion of this generating function is

x2 + 3x3 + 8x4 + 22x5 + 64x6 + 196x7 + 625x8 + 2053x9 +O(x10).

It is important to note that this sequence of coefficients is not found in [17].

Corollary 2.6 The g.f. for the total number of asymmetric peaks in all MAP1 is

4x3(1− x+ 2x2 +
√
β)

(1− x)
√
β(1− x2 +

√
β)2

,

where β = 1− 4x+2x2 − 4x3 + x4. An asymptotic expression for the n-th coefficient

is given by:

(2 +
√
3)n(−17 + 10

√
3)

6
√

2(−12 + 7
√
3)πn

.

The Taylor expansion of this generating function is

x4 + 8x5 + 38x6 + 154x7 + 590x8 + 2204x9 +O(x10).

It is important to note that this sequence of coefficients is not found in [17].

Let p1(n) represent the total number of peaks in all MAP1 of length n. From
Corollaries 2.5 and 2.6 we can approximate p1(n) as follows:

p1(n) ∼
(2 +

√
3)n

(

2
√

(−12 + 7
√
3)π − (17− 10

√
3)
√

(12 + 7
√
3)π

)

6
√
6nπ

.

Now, let s1(n) and t1(n) denote the numbers of symmetric and asymmetric peaks,
respectively, in all MAP1 of length n. We can derive the following asymptotic ratios.

Corollary 2.7 The asymptotic for the ratio between the number of symmetric peaks

and the number of all peaks in all MAP1 is

lim
n→∞

s1(n)

p1(n)
=

2
√

(−12 + 7
√
3)π

2
√

(−12 + 7
√
3)π − (17− 10

√
3)
√

(12 + 7
√
3)π

∼ 0.309401077.

The asymptotic for the ratio between the number of asymmetric peaks and the number

of all peaks in all MAP1 is

lim
n→∞

t1(n)

p1(n)
=

(−17 + 10
√
3)
√

(12 + 7
√
3)π

2
√

(−12 + 7
√
3)π + (−17 + 10

√
3)
√

(12 + 7
√
3)π

∼ 0.690598923.

The asymptotic for the ratio between the numbers of asymmetric and symmetric peaks

in all MAP1 is

lim
n→∞

t1(n)

s1(n)
=

1

2
+
√
3 ∼ 2.232050808.
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We denote the set of paths of length n in M1 as M1
n, and we use m1(n) to

represent the cardinality of M1
n. Additionally, let Bn ⊆ M1

n denote the subset of
paths that do not have valleys at ground level and do not contain sub-paths of the
form H at ground level. Essentially, these are MAP1s without sub-paths of the form
H and DkU that touch the x-axis, where k ≥ 1. It is worth to note that B2 = {UD1}
and B3 = {U2D1, UHD1}.

Lemma 2.8 For n ≥ 4, |Bn| = m1(n− 1)−m1(n− 2) +m1(n− 3).

Proof. The set M1
n can be partitioned into three disjoint sets: An, Bn, and Cn. In

An we include all paths where the last step Da satisfies a ≥ 1. Bn comprises all
paths of the form PHH, where P ∈ M1

n−2. Finally, Cn = M1
n \ (An ∪Bn).

By adding an initial north-east step and replacing the last South-East step of length a

(Da-step) with a step Da+1 in all paths in An, we obtain a set WA ⊂ Bn+1. Similarly,
by adding an initial north-east step and replacing the last horizontal step H with a
step D1 in all paths in Bn, we obtain a set WB ⊂ Bn+1.

Notably, WA ∪ WB = Bn+1. Consequently, no path in Cn gives rise to a path in
Bn+1. This construction establishes the bijection between Bn+1 and M1

n \ S where
S is the subset of paths from M1

n that end with precisely one H step, which induces
|Bn| = m1(n− 1)−m1(n− 2) +m1(n− 3). �

Theorem 2.9 For n > 3, we have

m1(n) = 3m1(n−3)+2m1(n−1)+
n−1
∑

k=4

(

m1(k−1)−m1(k−2)+m1(k−3)
)

m1(n−k),

anchored with the initial values m1(1) = 1, m1(2) = 2, and m1(3) = 5.

Proof. Consider a path P ∈ M1
n. Such a path P can be decomposed into one of

the following forms: HRn−1 or QkRn−k, where Qk ∈ Bk and Rn−k ∈ M1
n−k, for

2 ≤ k < n, and if k = n, we consider R0 as the empty path.

It is evident that all paths of the form HRn−1 are enumerated by m1(n− 1). Since
|B2| = 1 and |B3| = 2, it follows that all paths of the form Q2Rn−2 and Q3Rn−3 are
enumerated by m1(n− 2) and 2m1(n− 3), respectively.

By Lemma 2.8, paths of the form QnR0 are enumerated by m1(n− 1)−m1(n− 2)+
m1(n − 3). Furthermore, by Lemma 2.8 paths of the form QkRn−k, for a fixed k,
4 ≤ k ≤ n− 1, are counted as

(

m1(k − 1)−m1(k − 2) +m1(k − 3)
)

m1(n− k).

By varying k within the set {4, . . . , n− 1}, we obtain the desired result. �

The first eleven values of the sequence m1(n) for n = 1, . . . , 11 are as follows:

1, 2, 5, 13, 36, 105, 317, 982, 3105, 9981, 32520.
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3 Symmetric and asymmetric peaks in MAP2

In this section, our research is focused on Motzkin paths with air pockets of the
second kind, denoted as M2. It is worth recalling that in P ∈ M2, two consecutive
down-steps cannot occur, and any horizontal-step and down-step (except the last of
the path) are immediately followed by an up-step.

We introduce a trivariate generating function that depends on three key param-
eters: path length, the count of symmetric peaks, and the number of asymmetric
peaks. As a corollary to this power series, we derive a generating function for the
total number of paths avoiding symmetric peaks, with coefficients corresponding to
the Fibonacci numbers. Additionally, we conduct an asymptotic analysis to explore
the ratio of the number of symmetric peaks to the total number of peaks for paths of
specific lengths. The same analysis is performed for asymmetric peaks. Towards the
conclusion of this section, we present a recursive relation for counting the number of
paths in M2 with a given length.

Consider the generating function with the parameters of length, symmetric peaks,
and asymmetric peaks:

M ′
sp,ap(x, y, z) =

∑

P∈M2

x|P |ysp(P )zap(P ).

For brevity, we set M ′ := M ′
sp,ap(x, y, z).

Theorem 3.1 The generating function M ′
sp,ap(x, y, z) for the number of MAP2s with

respect to length, number of symmetric peaks, and number of asymmetric peaks is as

follows:

(1− x)2
(

1− x2y − x3(1 + y − 2z)−
√

(1− x)γ
)

2x(1− x− x2y + x2z)(1− x2 − x2y + x2z)
,

where γ := γ(x, y, z) is the polynomial:

1− 3x+ x2(1− 2y)− x4(1− y2)− x5(1 + y − 2z)2 + x3(3 + 4y − 4z).

Proof. We consider a MAP2s which can be categorized into three groups: H, HQ,
or Q, where Q is non-empty and starts with U . Now, let S be the set of non-empty
MAP2 that start with U , and we denote S := S(x, y, z) as its trivariate generating
function. Clearly, we have:

M ′ = 1 + x+ (1 + x)S.

Let us determine the generating function S for P , where P is a path in S. We
distinguish several cases according to the first return decomposition UADkB of P .
We consider five cases (1)− (5) grouped into three types of paths: Case (1) deal with
paths where UADk is a symmetric peak; Cases (2) and (3) deal with paths where A
starts with a symmetric peak; and Cases (4) and (5) deal with the other paths.
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Case (1). When P = UaDaQ and a ≥ 1, where Q can be either empty or belong to

S, the generating function for these paths is x2y

1−x
(S+1). (See Figure 2 (left-hand

side).)

Case (2). When P = UUaDaQU bDb+1R and a, b ≥ 1, where Q and R are possibly
empty or belong to S, see Figure 2 (right-hand side), the generating function
for these paths is

x
x2

1− x
z(S + 1)

x2

1− x
z(S + 1) =

x5

(1− x)2
z2(S + 1)2.

Case (3). When P = UUaDaQ̄R and a ≥ 1, where Q and R are in S, R can be
empty, Q does not end with a symmetric peak, and Q̄ is obtained from Q by
increasing the size of the last down-step by one, the generating function for
these paths is

x
x2

1− x
zV (S + 1),

where V := V (x, y, z) is the generating function for the paths in S that do
not end with a symmetric peak. Using the complement, it is clear that V =
S − (S + 1) x2y

1−x
.

Case (4). When P = UQUaDa+1R and a ≥ 1, where Q,R are some MAP2, Q does
not start with a symmetric peak, see Figure 3 (right-hand side). the contribution
is

xV ′ x2

1− x
z(S + 1).

Here, V ′ := V ′(x, y, z) is the generating function for paths in S that do not
start with a symmetric peak (as in case (3)), plus the g.f. for MAP2 starting
with H, that is V ′ = V + x(S + 1).

Case (5). When P = UQ̄R, where Q and R are some MAP2, with R in S and Q

does not start or end with symmetric peaks, Q different from H, Q̄ is obtained
from Q by increasing the size of the last down-step by one, see Figure 4 (left-
hand side), the contribution is xW (S+1), where W := W (x, y, z) is the g.f. for
paths in S that do not start or end with a symmetric peak, and different from
H. Clearly, we have W = V ′ − x− V ′ x2y

1−x
.

Summarizing all these cases, we obtain the following functional equation:

S =
x2y

1− x
(S + 1) +

x5

(1− x)2
z2(S + 1)2 +

x3

1− x
zV (S + 1)

+ V ′ x3

1− x
z(S + 1) + xW (S + 1).

This functional equation leads to the desired result. �
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The Taylor expansion of this generating function is

1 + x+ x2y + 2x3y + (y2 + 2y + z)x4 + (3y2 + z2 + 2y + 3z)x5

+ (y3 + 5y2 + 3yz + 4z2 + 2y + 6z)x6 +O(x7).

In Figure 6, the MAP2 of length 4 are displayed, with their corresponding weights
highlighted in boldface in the previous expansion.

x
4
y x

4
z x

4
y
2

x
4
y

Figure 6: The MAP2 of length 4 and their contribution in M ′
sp,ap(x, y, z).

Corollary 3.2 The generating function for the number MAP2 avoiding symmetric

peaks is given by:

M ′(x, 0, 1) =
(1− x2)(1 + x3 −

√
1− 4x+ 4x2 − 2x3 + x6)

2x(1− x+ x2)
.

The Taylor expansion is 1 + x + x4 + 4x5 + 10x6 + 23x7 + 54x8 + 131x9 + O(x10),
where the sequence of coefficients does not appear in [17].

Corollary 3.3 The generating function for the number MAP2 avoiding asymmetric

peaks is given by:

M ′(x, 1, 0) =
1− x2

1− x− x2
.

The Taylor expansion is 1+x+x2+2x3+3x4+5x5+8x6+13x7+21x8+34x9+O(x10),
where the sequence of coefficients corresponds to the Fibonacci sequence A212804
in [17].

By calculating ∂y(M
′(x, y, 1))|y=1 and ∂z(M

′(x, 1, z))|z=1 we obtain the following
corollaries.

Corollary 3.4 The g.f. for the total number of symmetric peaks in all MAP2 is

x(−1 + 3x+ 2x2 +
√
1− 2x− 3x2)

2(1− x)
√
1− 2x− 3x2

,

and an asymptotic for the n-th coefficient is

√
3 3n

36
√
πn

.

http://oeis.org/A212804
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The Taylor expansion is x2+2x3+4x4+8x5+18x6+43x7+109x8+286x9+O(x10),
where the sequence of coefficients does not appear in [17].

Corollary 3.5 The generating function for the total number of symmetric peaks in

all MAP2 is given by:

x(2− 3x− 3x2 − (2− x)
√
1− 2x− 3x2

2(1− x)
√
1− 2x− 3x2)

,

and an asymptotic for the n-th coefficient is

√
3 3n

12
√
πn

.

The Taylor expansion is x4 +5x5 +17x6 +53x7 +158x8 +464x9 +O(x10), where the
sequence of coefficients does not appear in [17].

Let p2(n) be the number of peaks in all MAP2 on length n. From Corollaries 3.4
and 3.5 we can deduce that:

p2(n) ∼
3n−1

√
3nπ

.

Now, let us define s2(n) and t2(n) as the number of symmetric peaks and asym-
metric peaks, respectively, in all MAP2s of length n.

Corollary 3.6 The asymptotic for the ratio between the number of symmetric peaks

and the number of all peaks in all MAP2 is

lim
n→∞

s2(n)

p2(n)
=

1

4
.

The asymptotic for the ratio between the number of asymmetric peaks and the number

of all peaks in all MAP2 is

lim
n→∞

t2(n)

p2(n)
=

3

4
.

The asymptotic for the ratio between the numbers of asymmetric and symmetric peaks

in all MAP2 is 3.

Corollary 3.7 The generating function for the total number of peaks in all MAP2

is given by:

z(1 + z −
√
1− 2z − 3z2)

2
√
1− 2z − 3z2

and an asymptotic for the n-th coefficient is

√
3 3n

9
√
πn

.
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The Taylor expansion is z2 + 2z3 + 5z4 + 13z6 + 96z7 + 267z8 + 750z9 + O(x10),
where the sequence of coefficients corresponds to A005773 in [17], which also counts
the directed animals of size n (see [7] for instance).

We use M2
n to denote the set of paths of length n in M2, and we use m2(n) to

denote the cardinality of M2
n. Let S2

n ⊆ M2
n to represent all paths starting with

a U step. Define B2
n := M2

n \ {HQn−1|Qn−1 ∈ Sn−1}. We use s(n) to denote the
cardinality of Sn.

Theorem 3.8 For n ≥ 3, we have

m2(n) = s(n− 2) + s(n− 1) +m2(n− 1) +
n−3
∑

k=2

m2(k)s(n− k − 1),

where m2(2) = 1, s(2) = 1, and s(n) = m2(n)− s(n− 1).

Proof. Let us consider a path P ∈ M2
n. Such a path P can be decomposed into one

of the following forms: HQn−1, UD1Qn−2, UMn−1, or UMkQn−(k+1), where Qi ∈ Si,
and Mi is obtained from a path in M2

i by increasing the size of the last down-step
by one.

From definition of Bn, we can deduce that s(i) = m2(i) − s(i − 1). Therefore, from
the decomposition, we can see that all paths of the form HQn−1 and UD1Qn−2 are
counted by s(n−1) and s(n−2), respectively. Paths of the form UMn−1 are counted
by m2(n− 1).

For a fixed k, 2 ≤ k ≤ n − 3, once again from the decomposition, we have that all
paths of the form UMkQn−(k+1) are counted by m2(k)s(n− k− 1). So, by varying k

in the set {2, . . . , n − 3}, and adding s(n − 1), s(n − 2), and m2(n − 1), we obtain
the desired result. �

The first eleven values of the sequence m2(n) for n = 2, . . . , 12 are as follows:

1, 2, 4, 9, 21, 51, 127, 323, 835, 2188, 5798.

This sequence is related to the Motzkin numbers, see A001006.

4 The non-decreasing MAPS

In this section we introduce the concept of non-decreasing Motzkin paths with air
pockets of both kinds. The concept of non-decreasing path was first introduced by
Barcucci et al. [2] in the context of the classical Dyck paths. Recently, Flórez and
Ramı́rez [13] studied this concept for Motzkin paths.

We present a trivariate generating function that depends on three parameters:
path length, the number of symmetric peaks, and the number of asymmetric peaks.
We then count the number of non-decreasing paths in the form of MAP1 and MAP2,
and provide a table with a similar structure to those counted in the previous sections.

http://oeis.org/A005773
http://oeis.org/A001006
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4.1 Symmetric and asymmetric peaks in non-decreasing MAP1

In this section, we focus our attention to the set NM1 of non-decreasing MAP1.
These are MAP1 in which the sequence of valley ordinates, specifically DkU , DkH

for k ≥ 1, and HU , forms a non-decreasing pattern when read from left to right.

Theorem 4.3 provides the generating function

Nsp,ap(x, y, z) =
∑

P∈NM1

x|P |ysp(P )zap(P ).

For brevity, we will refer to this generating function as N . To facilitate our analysis,
we will begin by introducing some essential lemmas.

This lemma explores non-decreasing MAP1, with all its valleys positioned at
ground level.

Lemma 4.1 Let V := Vsp,ap(x, y, z) denote the generating function for the number

of non-decreasing MAP1 having all its valleys at ordinate 0, with respect to the path’s

length and the number of symmetric and asymmetric peaks. The generating function

is given by:

V =
(1− x)2

1− 3x+ (3− y)x2 − (2− y)x3
.

It is important to note that non-decreasing MAP1 with valleys at ground level do
not contain any asymmetric peaks. Consequently, the variable z does not appear in
the expression for V .

Proof. To establish the generating function for non-decreasing MAP1 with all its
valleys at ground level (or equivalently on the x-axis), we consider non-empty non-
decreasing paths of the form Ha0R1H

a1 · · ·RkH
ak . Here, k ≥ 0, ai ≥ 0 for 0 ≤ i ≤ k,

andRi can either be a symmetric peak UaDa or a truncated symmetric peak UaHbDa,
where UaHbDa, a, b ≥ 1, for 1 ≤ i ≤ k. Therefore, the generating function V comes
from the decomposition of paths into a run of initial H steps, followed by a sequence
of subpaths of the form UkDkH

ℓ or UkHmDkH
ℓ:

V =
1

1− x
· 1

1− 1
1−x

· ( x2y

1−x
+ x3

(1−x)2
)
.

This completes the proof. �

Lemma 4.2 The g.f. B := Bsp,ap(x, y, z) for the number of non-decreasing MAP1

ending with a down-step, that do not end end with a symmetric peak, with respect to

the length and the numbers of symmetric and asymmetric peaks satisfies

B = N − 1− xV − x2yV

1− x
,

where V is given in the previous lemma.
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Proof. By reasoning with the complement, a non-decreasing MAP1 ending with a
down-step, that does not end with a symmetric peak, is a non-decreasing MAP1
different from (i) the empty path, (ii) QH, and (iii) QUaDa, where Q has all of its
valleys at ordinate 0. Summarizing all these cases, we deduce functional equation.

�

Theorem 4.3 The g.f. Nsp,ap(x, y, z) for the number of non-decreasing MAP1 with

respect to length, number of symmetric peaks, and number of asymmetric peaks is
P (x,y,z)
Q(x,y,z)

, where P (x, y, z) is

1− 6x−x2(−14+ y)−x3(17− 4y+ z)−x4(−11+6y− 4z)+x5(−2+4y− 5z+ z2)

− x6(1− 3z + 2z2)− x7(−1 + 2y − z2)− x8(−y + z),

and Q(x, y, z) is

(1−3x−x2(−3+y)+x3(−2+y))(1−4x−x2(−5+y)−x4(y−z)−x3(3−2y+z)).

Proof. Let P be a non-decreasing MAP1 (NMAP1 for short). Except for the first
case where P starts with H, we distinguish several cases according to the first return
decomposition UADkB of P . We consider eight cases (2)–(9) grouped into four types
of paths: Case (2) deals with paths where UADk is a symmetric peak; Case (3) deals
with paths where A starts with H; Cases (4), (5) and (6) deal with paths where A

starts with a symmetric peak; and Cases (7), (8) and (9) deal with the other paths.

Case (1). If P = HQ where Q also is a NMAP1, then the g.f. for this case is xN .

Case (2). If P = UaDaQ for a ≥ 1 and Q a NMAP1, then the g.f. is x2y

1−x
N .

Case (3). If P = UaHbDaQ, for a, b ≥ 1 and Q a non-empty NMAP1, then the
g.f. is x3

(1−x)2
N .

Case (4). If P = UUaDaQU bDb+1, for a, b ≥ 1 and Q a NMAP1 having all its
valleys on the x-axis, then the g.f. is

x3z

1− x
V

x2z

1− x
,

where V := V (x, y, z) is given in Lemma 4.1.

Case (5). If P = UUaDaQHD for a ≥ 1, Q having all its valleys at ordinate 0, then
the g.f. is x5z

1−x
V.

Case (6). If P = UUaDaQ̄ for a ≥ 1, Q a non-empty NMAP1 ending with a down-
step and that does not end with a symmetric peak, and Q̄ is obtained from Q

by increasing by one the size of the last down step, then the g.f. is

x3z

1− x
B,

where B := B(x, y, z) is the g.f. of Lemma 4.2.



J.-L. BARIL ET AL. /AUSTRALAS. J. COMBIN. 89 (2) (2024), 323–343 339

Case (7). If P = UQUaDa+1 for a ≥ 1, Q a non-empty NMAP1 that does not start
with a symmetric peak, and having all its valleys on the x-axis, then the g.f. is

(

V − 1− x2y

1− x
V

)

x3z

1− x
.

Case (8). If P = UQ̄, where Q does not start with a symmetric peak, ends with a
down step but does not end with a symmetric peak, and Q̄ is obtained from Q

by increasing the last down-step, then the g.f. is

x

(

B − x2yB

1− x
− x3

(1− x)2

)

,

where B satisfies Lemma 4.2. Indeed, B− x2yB

1−x
corresponds to the paths Q that

do not start with a symmetric peak, ending with a down step, but not end with
a symmetric peak, and we must substract x3

(1−x)2
in order to eliminate paths of

the form UaHbDa, a, b ≥ 1.

Case (9). If P = UQHD where Q does not start with a symmetric peak and having
all its valleys at ordinate 0, and different from Ha, a ≥ 1, then the g.f. is

x3

(

V − 1− x2yV

1− x
− x

1− x

)

.

Summarizing all these cases and using the the previous lemmas, we obtain the result.
�

The Taylor expansion of this generating function is

1+x+(y+1)x2+(2+3y)x3+(y2+6y+z+5)x4+(5y2+z2+12y+5z+12)x5+O(x6)

Corollary 4.4 The g.f. for the number of non-decreasing MAP1 is

N(x, 1, 1) =
1− 6x+ 13x2 − 14x3 + 9x4 − 2x5

(1− 3x+ 2x2 − x3)(1− 4x+ 4x2 − 2x3)
.

The Taylor expansion of this generating function is

1 + x+ 2x2 + 5x3 + 13x4 + 35x5 + 96x6 + 265x7 + 734x8 + 2040x9 +O(x10),

where the sequence does not appear in [17].

We can adapt the same proofs used in the previous sections to non-decreasing
MAPs of both kinds. Therefore, we will only provide in Table 1 a summary of the
results without including the proofs.

Notice that the sequences associated to the statistics given in Table 1 do not
appear in [17].

Corollary 4.5 An asymptotic for the ratio between the numbers of asymmetric and

symmetric peaks in non-decreasing MAP1 is

(√
33 + 7

) (

26 + 6
√
33
)

1

3 − 2
√
33−

(

26 + 6
√
33
)

2

3 + 2

3
(

26 + 6
√
33
)

2

3

∼ 0.5436890133.
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Statistic population Generating function

Non-decreasing MAP1
avoiding symmetric
peaks

N(x, 0, 1) = 1−5x+8x2−5x3+2x4+x5−x6

(1−2x)(1−3x+x2)(1−x+x2)

Non-decreasing MAP1
avoiding asymmetric
peaks

N(x, 1, 0) = 1−6x+13x2−13x3+5x4+2x5−x6−x7+x8

(1−3x+2x2−x3)(1−4x+4x2−x3−x4)

Non-decreasing MAP1
avoiding symmetric
and asymmetric peaks

N(x, 0, 0) = (1−3x+2x2−x3)(1−3x+3x2−x3−x4)
(1−2x)(1−x+x2)(1−4x+5x2−3x3)

Symmetric peaks in all
non-decreasing MAP1

(1−x)x2(1−x+x2)(1−9x+31x2−52x3+48x4−32x5+22x6−16x7+8x8−2x9)
(1−3x+2x2−x3)2(1−4x+4x2−2x3)2

Asymmetric peaks
in all non-decreasing
MAP1

(1−x)x4(1−3x−x2+8x3−10x4+6x5−2x6)
(1−3x+2x2−x3)(1−4x+4x2−2x3)2

Table 1: Some statistics for non-decreasing MAP1.

4.2 Symmetric and asymmetric peaks in non-decreasing MAP2

Finally, we focus on the set NM2 of non-decreasing Dyck paths with air pockets of
second kind. The following theorem provides the generating function

N ′
sp,ap(x, y, z) =

∑

P∈NM2

x|P |ysp(P )zap(P ).

For short, we set N ′ := N ′
sp,ap(x, y, z).

Theorem 4.6 The g.f. N ′
sp,ap(x, y, z) for the number of non-decreasing MAP2 with

respect to the numbers of symmetric and asymmetric peaks is

(1 + x)(1− 3x+ 2x2 + x3 − x4 − x2y + 2x3y − x4y − x3z + 2x4z − x5z + x5z2)

(1− x− x2y)(1− 2x+ x3 − x2y + x3y − x3z)
.

Proof. We set N ′ = N ′
sp,ap(x, y, z). Any nonempty non-decreasing MAP2 (NMAP2

for short) is either H, HQ, or Q, where Q is non-empty and Q starts with U .

Now, let S be the set of non-empty NMAP2 that starts with U , and S := S(x, y, z)
its associated generating function. Obviously, we have N ′ = 1 + x + (1 + x)S. We
distinguish several cases according to the beginning and the end of A in the first
return decomposition UADkB of P .

Case (1). If P = UaDaQ, a ≥ 1, where Q is either empty or Q ∈ S, the g.f. for

these paths is x2y

1−x
(S + 1).
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Case (2). If P = UUaDaQU bDb+1, a, b ≥ 1, where Q is either empty or Q ∈ S with
all its valleys on the x-axis, then the g.f. is

x
x2

1− x
zW

x2

1− x
z =

x5

(1− x)2
z2W,

where W := W (x, y, z) is the g.f. for NMAP2 in S ∪ {ǫ} having valleys on the

x-axis, i.e., W is the solution of W = 1 + x2y

1−x
W .

Case (3). If P = UHQUaDa+1, a ≥ 1, where Q is either empty or Q ∈ S having all
its valleys on the x-axis, then the g.f. is x4z

1−x
W .

Case (4). If P = UUaDaQ̄, a ≥ 1, where Q ∈ S, Q ends with an asymmetric peak,
and Q̄ is obtained from Q after increasing by one the size of the last down-step,
then the g.f. is

x
x2z

1− x
z(S − (W − 1)).

Case (5). If P = UHQ̄, where Q ∈ S, Q ends with an asymmetric peak, and Q̄ is
obtained from Q after increasing by one the size of the last down-step, then the
g.f. is

x2(S −W + 1).

Case (6). If P = UQ̄, where Q is a NMAP2 in S, Q starts and ends with an
asymmetric peak, Q̄ is obtained from Q by increasing by one the last down-
step, then the contribution is

x

(

S −W + 1− x2y

1− x
(S −W + 1)

)

.

Summarizing all these cases, we obtain the following functional equation.

S =
x2y

1− x
(S + 1) +

x5z2W

(1− x)2
+

x4zW

1− x
+

x3z

1− x
(S −W + 1)

+ x2(S −W + 1) + x(S −W + 1)

(

1− x2

1− x

)

,

which induces the result for S, and thus for N ′. �

The first terms of the Taylor expansion of N ′ are

1 + x+ yx2 + 2yx3 + (2y + y2 + z)x4 + (2y + 3y2 + 3z + z2)x5

+ (2y + 5y2 + y3 + 6z + 2yz + 4z2)x6

+ (2y + 7y2 + 4y3 + 11z + 8yz + 11z2 + 2yz2)x7 +O(x8).

Corollary 4.7 The g.f. for the number of non-decreasing MAP2 is

N ′(x, 1, 1) =
(1 + x)(1− 2x)

1− 2x− x2 + x3
.
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The first terms of the Taylor expansion are

1 + x+ x2 + 2x3 + 4x4 + 9x5 + 20x6 + 45x7 + 101x8 + 227x9 +O(x10),

where the sequence of coefficients corresponds to the sequence A052534 in [17].

In Table 2 we summarized the results for the MAP2.

Statistic population Generating function

Non-decreasing MAP2 avoid-
ing symmetric peaks

N ′(x, 0, 1) = (1+x)(1−3x+2x2+x4)
(1−x)(1−2x)

Non-decreasing MAP2 avoid-
ing asymmetric peaks

N ′(x, 1, 0) = 1−x2

1−x−x2 , Fibonacci sequence

Symmetric peaks in all non-
decreasing MAP2

x2(1+x)(1−4x+3x2+3x3−x4−x5)
(1−x−x2)(1−2x−x2+x3)2

Asymmetric peaks in all non-
decreasing MAP2

x4(1+x)(1−x−3x2+x3+x4)
(1−x−x2)(1−2x−x2+x3)2

Table 2: Some statistics for non-decreasing MAP2.

Corollary 4.8 An asymptotic for the ratio between the numbers of asymmetric and

symmetric peaks in NMAP2 is

a2 (a4 + a3 − 3a2 − a+ 1)

−a5 − a4 + 3a3 + 3a2 − 4a+ 1
∼ 0.8019374457,

where

a =
1

3
−

√
7 sin

(

arctan(3
√
3)

3
+ π

6

)

3
+

√
3
√
7 cos

(

arctan(3
√
3)

3
+ π

6

)

3
∼ 0.4450418680.
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