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Abstract

Let (X,B) be a λ-fold (K2 × K3)-design of order n. From each B in
B, we retain one 6-cycle subgraph, and delete the remaining edges. If
the deleted 3|B| edges can be rearranged into further 6-cycles, then we
get a λ-fold 6-cycle system. This is called a metamorphosis of a λ-fold
(K2 ×K3)-design of order n into a λ-fold 6-cycle system. In this paper
we determine the necessary and sufficient conditions for the existence of
such a metamorphosis.

1 Introduction

Let λ be a positive integer, G and H be simple graphs, and let λH denote the graph
H with its edges replicated λ times. A λ-fold G-design of λH is a pair (X,B) where
X is the vertex set of H and B is a collection of isomorphic copies of G, called blocks,
which partitions the edge set of λH. If H is a complete graph Kn, we refer to such
a λ-fold G-design as one of order n. Also we use the more common term 6-cycle
system for a G-design where G is a 6-cycle.

Let (X,B) be a λ-fold G1-design of λH, and G2 be a subgraph of G1. From each
B in B, we retain one copy of G2, which is put in C, and delete the remaining edges.
If the deleted edges of B can be rearranged into further copies of G2, which are put
in D, then we get a λ-fold G2-design of λH, which is (X, C ∪ D). This is called a
metamorphosis of a λ-fold G1-design of λH into a λ-fold G2-design of λH and is
denoted by (G1 > G2)-Mλ(H). If λ = 1, we simply write (G1 > G2)-M(H). If H is
a complete graph Kn, we use the notation (G1 > G2)-Mλ(n) for (G1 > G2)-Mλ(H).

The first paper on metamorphosis for graph designs was by Lindner and Street
[13] in 2000. Afterwards, considerable work has been done on the problem and its
variations. See [1, 3, 5, 7, 9, 10, 11, 12, 14, 16] for instance. In particular, results
were given for the case (G1, G2) = (K3,3, C6) in [4], and for the case (G1, G2) =
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(Θ(1, 3, 3), C6) in [2]. Howerver, for the case (G1, G2) = (K2 ×K3, C6), it is still an
open problem, which we will study in this paper.

Let Kr and Kc be complete graphs with vertex sets V (Kr) and V (Kc), respec-
tively. The Cartesian product Kr×Kc is a graph whose vertex set is V (Kr)×V (Kc),
where two vertices (x1, y1) and (x2, y2) are adjacent if and only if x1 = x2 or y1 = y2.
So the graph K2×K3 is a 3-regular simple graph with 6 vertices as shown in Figure 1.
We use the notation

a b c
d e f

for this graph. Clearly the graph K2 ×K3 contains a 6-cycle as a subgraph.

a

c
b

d

f
e

Figure 1: K2 ×K3.

In this paper we will investigate the existence of a λ-fold (K2 × K3)-design of
order n with a metamorphosis into a λ-fold 6-cycle system of the same order. We
will prove the following theorem.

Theorem 1.1. There exists a (K2 × K3 > C6)-Mλ(n) if and only if λ(n − 1) ≡
0 (mod 6) and λn(n− 1) ≡ 0 (mod 36).

2 Preliminaries

We start with the necessary conditions. It is easily calculated that the necessary
conditions for the existence of a λ-fold (K2 ×K3)-design of order n are λ(n − 1) ≡
0 (mod 3) and λn(n−1) ≡ 0 (mod 18), and those of a λ-fold 6-cycle system of order n
are λ(n−1) ≡ 0 (mod 2) and λn(n−1) ≡ 0 (mod 12). For the possible existence of a
λ-fold (K2×K3)-design of order n with a metamorphosis into a λ-fold 6-cycle system
of the same order, we require the intersection of these conditions. So the necessary
conditions for the existence of a (K2 ×K3 > C6)-Mλ(n) are λ(n − 1) ≡ 0 (mod 6)
and λn(n− 1) ≡ 0 (mod 36) which we divide into six cases as follows:

λ (mod 18) order n

1, 5, 7, 11, 13, 17 1 (mod 36)

2, 4, 8, 10, 14, 16 1 (mod 9)

3, 15 1, 9 (mod 12)

6, 12 0, 1 (mod 3)

9 1 (mod 4)

0 any n ≥ 6
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In the recursive constructions we need the concepts of group divisible design and
holey design.

Let K be a set of positive integers. A group divisible design (GDD) of index λ is a
triple (X,G,A) where X is a set of v points, G is a partition of X into subsets (called
groups), and A is a collection of subsets (called blocks) of X, such that any pair of
distinct points from X occurs either in some group or in exactly λ blocks, but not
both. A (K,λ)-GDD is a GDD with index λ and block sizes from K. If K = {k},
we simply write k for K. Also if λ = 1, we simply write k-GDD for (k, 1)-GDD.
The group type (or type) of the GDD is the multiset {|G| : G ∈ G}. We also use
“exponential” notation for group types: the group type of gu1

1 gu2

2 · · · gus

s means there
are ui groups of size gi for 1 ≤ i ≤ s. We quote the following results for later use.

Lemma 2.1. [8] The necessary and sufficient conditions for the existence of a (3, λ)-
GDD of type gu are (1) u ≥ 3, (2) λg(u − 1) ≡ 0 (mod 2), (3) λg2u(u − 1) ≡
0 (mod 6).

Lemma 2.2. [6, 15] The necessary and sufficient conditions for the existence of a
(3, λ)-GDD of type guw1 are (1) if g > 0, then u ≥ 3, or u = 2 and w = g, or u = 1
and w = 0, or u = 0, (2) w ≤ g(u− 1) or gu = 0, (3) λ(g(u− 1) + w) ≡ 0 (mod 2)
or gu = 0, (4) λgu ≡ 0 (mod 2) or w = 0, (5) λ(1

2
g2u(u− 1) + guw) ≡ 0 (mod 3).

Let H = {H1, H2, . . . , Ht} be a partition of a finite set X into subsets (called
holes), where |Hi| = hi for 1 ≤ i ≤ t. Let Kh1,h2,...,ht

be the complete t-partite
graph on X with the i-th part on Hi. A λ-fold holey G-design (G-HD) is a triple
(X,H,B) such that (X,B) is a λ-fold G-design of λKh1,h2,...,ht

. The hole type (or
type) of the λ-fold G-HD is the multiset {h1, h2, . . . , ht}. We also use “exponential”
notation to describe hole types: the hole type gu1

1 gu2

2 · · · gus

s denotes ui occurrences
of gi for 1 ≤ i ≤ s. A (G1 > G2)-Mλ(Kh1,h2,...,ht

) is also denoted by (G1 > G2)-
Mλ({h1, h2, . . . , ht}) or by (G1 > G2)-Mλ(g

u1

1 gu2

2 · · · gus

s ).

Construction 2.3. (Weighting) Let (X,G,A) be a (K,λ1)-GDD, and w : X 7→ Z+∪
{0} be a weight function. For each block A ∈ A, suppose that there is a (G1 > G2)-
Mλ2

({w(x) : x ∈ A}). Then there exists a (G1 > G2)-Mλ1λ2
({Σx∈Gw(x) : G ∈ G}).

Proof. For every x ∈ X, let S(x) be a set of w(x) “copies” of x. For any Y ⊆ X,
let S(Y ) = ∪x∈Y S(x). For each block A ∈ A, construct a λ2-fold G1-HD of type
{|S(x)| : x ∈ A}, which is (S(A), {S(x) : x ∈ A},BA), with a metamorphosis into a
λ2-fold G2-HD, which is (S(A), {S(x) : x ∈ A}, CA ∪ DA), where CA is a collection of
the retained copies of G2, and DA is a collection of the rearranged copies of G2. Then
it is readily checked that (S(X), {S(G) : G ∈ G},∪A∈ABA) is a λ1λ2-fold G1-HD of
type {Σx∈Gw(x) : G ∈ G}, with a metamorphosis into a λ1λ2-fold G2-HD, which is
(S(X), {S(G) : G ∈ G}, (∪A∈ACA) ∪ (∪A∈ADA)).

Construction 2.4. (Filling in Holes) Suppose there exists a (G1 > G2)-Mλ({h1, h2,
. . . , ht}), and let ε = 0, 1. For 1 ≤ i ≤ t, suppose there exists a (G1 > G2)-Mλ(hi+ε).
Then there exists a (G1 > G2)-Mλ(n), where n =

∑t
i=1 hi + ε.
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Proof. Let H = {H1, H2, . . . , Ht} be a partition of X, where |Hi| = hi for 1 ≤ i ≤ t.
Let Y be a set of cardinality ε such that X ∩ Y = ∅.

Suppose (X,H,B) is a λ-fold G1-HD of type {h1, h2, . . . , ht}, with a metamorpho-
sis into a λ-fold G2-HD, which is (X,H, C∪D), where C is a collection of the retained
copies of G2, and D is a collection of the rearranged copies of G2. For 1 ≤ i ≤ t, con-
struct a λ-fold G1-design of order hi+ ε, which is (Hi∪Y,Bi), with a metamorphosis
into a λ-foldG2-design, which is (Hi∪Y, Ci∪Di), where Ci is a collection of the retained
copies of G2, and Di is a collection of the rearranged copies of G2. Then it is easily
checked that (X ∪ Y,B ∪ (∪t

i=1Bi)) is a λ-fold G1-design of order n, with a metamor-
phosis into a λ-fold G2-design, which is (X ∪ Y, C ∪ (∪t

i=1Ci) ∪ D ∪ (∪t
i=1Di)).

The following construction shows how to increase λ without altering any of the
other parameters; its proof is straightforward.

Construction 2.5. Suppose there exists a (G1 > G2)-Mλ1
(H) and a (G1 > G2)-

Mλ2
(H). Then there exists a (G1 > G2)-Mλ1+λ2

(H).

3 Direct Constructions

In this section, we will construct some designs of small orders for future use. These
designs are obtained by computer searches.

Usually it is difficult to find all the blocks of a design directly. A technique of
“+a (mod n)” is used, meaning that we try to find a subset S ⊆ B and an element
a ∈ Zn such that {B+ka : B ∈ S, 0 ≤ k ≤ n/a− 1} = B. The blocks of S are called
base blocks.

In some cases, we use multipliers or partial multipliers so that the required base
blocks can be found in a shorter time. We say that m ∈ Z∗

n is a multiplier of the
design, if for each base block B, there exists some g ∈ Zn such that m ·B+g is also a
base block. We say that m ∈ Z∗

n is a partial multiplier of the design, if for each base
block B ∈ T , where T is a subset of all the base blocks, there exists some g ∈ Zn

such that m ·B + g is also a base block.

Since in this paper we only consider the metamorphosis of λ-fold (K2 × K3)-
designs into 6-cycle systems, we abbreviate the notation (K2 ×K3 > C6)-Mλ(H) as
Mλ(H).

Let (X,B) be a λ-fold (K2 × K3)-design with a metamorphosis into a 6-cycle

system (X, C∪D). For each block B =
a b c
d e f

in B, in the direct constructions we

will always retain the 6-cycle (a, d, f, e, b, c), which is put in C, and delete the edges
ab, de, cf . So it is not necessary to list C explicitly. We put the rearranged 6-cycles
in D.

Lemma 3.1. For n = 37, 73, there exists an M(n).

Proof. Let X = Zn. The required blocks B and D are obtained by developing the
following base K2 ×K3 blocks and base 6-cycles +1 (mod n), respectively.
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n = 37 :
0 3 1
4 18 9

· 2i, i = 0, 9;

(0, 3, 11, 22, 32, 18).

n = 73 :
0 3 1
4 65 10

· 5i, i = 0, 9, 18, 27;

(0, 3, 20, 29, 59, 47) · 5i, i = 0, 18.

Lemma 3.2. For n = 10, 19, there exists an M2(n).

Proof. Let X = Zn. For n = 10, B is obtained by developing the following base
K2 × K3 block +1 (mod n), and D is obtained by developing the following base
6-cycle +2 (mod n). For n = 19, B and D are obtained by developing the following
base K2 ×K3 blocks and base 6-cycle +1 (mod n), respectively.

n = 10 :
0 1 2
3 5 8

;

(0, 1, 3, 7, 8, 2).

n = 19 :
0 2 1
3 8 5

,
0 10 4
8 1 15

;

(0, 2, 6, 11, 1, 8).

Lemma 3.3. For n = 9, 13, 21, there exists an M3(n).

Proof. Let X = Zn. For n = 9, 21, B and D are obtained by developing the following
base K2 ×K3 blocks and base 6-cycles +3 (mod n), respectively. For n = 13, B and
D are obtained by developing the following base K2 × K3 blocks and base 6-cycle
+1 (mod n), respectively.

n = 9 :
0 1 2
3 4 5

,
0 1 3
2 4 6

,
0 4 8
5 6 1

,
0 5 8
4 1 2

;

(0, 1, 4, 2, 5, 8), (0, 1, 6, 2, 4, 3).

n = 13 :
0 1 2
3 4 6

,
0 2 7
5 9 1

;

(0, 1, 3, 2, 8, 4).

n = 21 :
0 1 2
3 4 5

,
0 1 2
3 6 10

,
0 4 6
5 1 10

,
0 5 6
7 1 11

,

0 6 13
8 1 10

,
0 8 9
10 1 17

,
0 9 19
10 2 4

,
0 9 20
11 1 14

,

0 11 17
13 15 8

,
0 14 16
17 2 5

;

(0, 1, 3, 4, 7, 6), (0, 3, 7, 1, 5, 8), (0, 4, 10, 1, 8, 14),
(0, 5, 11, 1, 14, 9), (0, 8, 17, 7, 20, 9).
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Lemma 3.4. For n = 6, 7, 12, 15, 16, 22, there exists an M6(n).

Proof. For n = 6, 12, 15, let X = Zn−1 ∪{∞}. If n = 6, 12, B and D are obtained by
developing the following base K2 ×K3 blocks and base 6-cycles +1 (mod (n − 1)),
respectively. If n = 15, B is obtained by developing the following base K2 × K3

blocks +1 (mod (n−1)), and D is obtained by developing the following base 6-cycles
+2 (mod (n− 1)).

n = 6 :
0 1 2
3 4 ∞

(repeated twice);

(0, 1, 2, 3, 4,∞).

n = 12 :
0 1 2
3 4 ∞

(repeated twice),
0 2 4
3 6 10

,
0 2 6
5 7 1

;

(0, 1, 2, 3, 4,∞), (0, 2, 4, 1, 7, 5).

n = 15 :
0 1 2
3 4 ∞

(repeated twice),

0 2 4
3 5 9

,
0 2 7
6 10 1

,
0 4 10
7 11 2

;

(0, 1, 2, 3, 5,∞) (repeated twice),
(0, 2, 1, 3, 7, 8), (0, 2, 6, 8, 4, 10), (0, 5, 1, 7, 3, 9).

For n = 7, 16, 22, let X = Zn. If n = 7, B and D are obtained by developing
the following base K2 × K3 blocks and base 6-cycle +1 (mod n), respectively. If
n = 16, 22, B is obtained by developing the following baseK2×K3 blocks +1 (mod n),
and D is obtained by developing the following base 6-cycles +2 (mod n).

n = 7 :
0 1 2
3 4 5

,
0 1 3
2 4 5

;

(0, 1, 2, 4, 5, 3).

n = 16 :
0 1 2
3 4 5

,
0 1 2
3 5 7

,
0 2 5
3 8 12

,
0 9 4
7 1 11

,
0 6 12
8 14 3

;

(0, 1, 2, 3, 4, 5), (0, 2, 1, 3, 5, 10), (0, 2, 5, 8, 1, 6),
(0, 5, 11, 4, 13, 6), (0, 7, 1, 8, 15, 9).

n = 22 :
0 1 2
3 4 5

,
0 1 2
3 5 7

,
0 2 5
3 7 11

,
0 4 8
5 10 17

,

0 5 13
9 15 1

,
0 6 13
10 17 1

,
0 7 16
11 18 4

;

(0, 1, 2, 3, 4, 5), (0, 2, 1, 3, 5, 9), (0, 2, 5, 1, 4, 10), (0, 4, 8, 1, 6, 12),
(0, 5, 10, 1, 6, 12), (0, 5, 11, 1, 13, 7), (0, 7, 13, 1, 8, 15).

Lemma 3.5. For n = 17, 29, there exists an M9(n).

Proof. Let X = Zn. The required blocks B and D are obtained by developing the
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following base K2 ×K3 blocks and base 6-cycles +1 (mod n), respectively.

n = 17 :
0 1 2
3 7 12

· 2i,
0 1 3
4 13 10

· 2i, i = 0, 1, 2, 3;

(0, 1, 2, 6, 14, 7) · 2i, i = 0, 1, 2, 3.

n = 29 :
0 1 4
5 7 26

· 4i,
0 1 4
2 20 25

· 4i, i = 0, 1, 2, 3, 4, 5, 6;

(0, 1, 2, 4, 15, 7) · 4i, i = 0, 1, 2, 3, 4, 5, 6.

Lemma 3.6. For n = 8, 11, 14, 20, 23, there exists an M18(n).

Proof. For n = 8, 14, 20, let X = Zn−1 ∪ {∞}. The required blocks B and D
are obtained by developing the following base K2 × K3 blocks and base 6-cycles
+1 (mod (n− 1)), respectively.

n = 8 :
0 1 2
3 5 ∞

(repeated 6 times),
0 1 2
3 4 5

,
0 1 3
2 4 5

;

(0, 1, 2, 4, 6,∞) (repeated 3 times), (0, 1, 2, 4, 5, 3).

n = 14 :
0 1 4
2 7 ∞

(repeated 6 times),

0 1 2
3 5 11

· 5i, i = 0, 1 (repeated 4 times);

(0, 1, 2, 7, 12,∞) (repeated 3 times),
(0, 1, 3, 2, 6, 4) · 5i, i = 0, 1 (repeated twice).

n = 20 :
0 1 3
11 5 ∞

· 2i, i = 0, 3, 6 (repeated twice),

0 1 3
4 10 15

· 2j, j = 0, 1 (repeated 7 times);

(0, 1, 2, 8, 14,∞) · 2i, i = 0, 3, 6,
(0, 1, 3, 8, 14, 7) (repeated 7 times).

For n = 11, 23, let X = Zn. The required blocks B and D are obtained by devel-
oping the following base K2×K3 blocks and base 6-cycles +1 (mod n), respectively.

n = 11 :
0 1 2
3 5 10

· 2i, i = 0, 2, 4, 6, 8 (repeated twice);

(0, 1, 2, 4, 6, 3) · 2i, i = 0, 2, 4, 6, 8.

n = 23 :
0 1 3
4 19 10

· 5i, i = 0, 2, 4, . . . , 20 (repeated twice);

(0, 1, 2, 9, 16, 8) · 5i, i = 0, 2, 4, . . . , 20.

Lemma 3.7. For (λ, h, u) ∈ {(1, 6, 3), (2, 3, 3), (3, 2, 3)}, there exists an Mλ(h
u).
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Proof. For (λ, h, u) = (1, 6, 3), let X = Z18, H = {{0, 3, 6, 9, 12, 15} + i : i = 0, 1, 2}.
The required blocks B and D are obtained by developing the following base K2×K3

blocks and base 6-cycles +6 (mod 18), respectively.

0 2 1
4 3 5

,
0 7 5
14 3 10

,
0 13 8
11 3 1

,
0 17 10
16 3 8

;

(0, 2, 4, 3, 11, 7), (0, 13, 2, 9, 4, 17).

For (λ, h, u) = (2, 3, 3), let X = Z9, H = {{0, 3, 6}+ i : i = 0, 1, 2}. The required
blocks B and D are obtained by developing the following base K2 ×K3 blocks and
base 6-cycle +3 (mod 9), respectively.

0 2 1
4 3 5

,
0 7 5
4 2 6

;

(0, 1, 5, 6, 4, 2).

For (λ, h, u) = (3, 2, 3), let X = Z6, H = {{0, 3}+ i : i = 0, 1, 2}. The required
blocks B and D are listed as follows.

B :
0 1 2
4 5 3

,
0 1 5
2 3 4

,
0 2 4
5 1 3

,
0 4 5
1 2 3

;

D : (0, 1, 2, 3, 5, 4), (0, 1, 5, 4, 3, 2).

4 Proof of Theorem 1.1

We now complete the proof of Theorem 1.1 by solving the cases λ = 1, 2, 3, 6, 9, 18.

Lemma 4.1. For n ≡ 1 (mod 36), there exists an M(n).

Proof. For n = 37, 73, see Lemma 3.1.

For n ≥ 109, a 3-GDD of type 6u (u ≥ 3) exists by Lemma 2.1. Give every point
of the GDD weight 6 and apply Construction 2.3 with an M(63) from Lemma 3.7
to obtain an M(36u). Then apply Construction 2.4 with an M(37) to get an M(n),
where n = 36u+ 1, u ≥ 3.

Lemma 4.2. For n ≡ 1 (mod 9), there exists an M2(n).

Proof. For n = 10, 19, see Lemma 3.2. For n = 37, apply Construction 2.5 with two
copies of an M(37).

For n ≡ 10 (mod 18) and n ≥ 28, a 3-GDD of type 3u exists by Lemma 2.1,
where u ≡ 1 (mod 2), u ≥ 3. Give every point of the GDD weight 3 and apply
Construction 2.3 with an M2(3

3) from Lemma 3.7 to obtain an M2(9
u). Then apply

Construction 2.4 with an M2(10) to get the desired M2(n).

For n ≡ 1 (mod 18) and n ≥ 55, give every point of a 3-GDD of type 6u (u ≥ 3)
weight 3 and apply Construction 2.3 with an M2(3

3) to obtain an M2(18
u). Then

apply Construction 2.4 with an M2(19) to get the desired design.
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Lemma 4.3. For n ≡ 1, 9 (mod 12), there exists an M3(n).

Proof. For n = 9, 13, 21, see Lemma 3.3.

For n = 25, 33, a 3-GDD of type 4u (u = 3, 4) exists by Lemma 2.1. Give every
point of the GDD weight 2 and apply Construction 2.3 with an M3(2

3) from Lemma
3.7 to obtain an M3(8

u). Then apply Construction 2.4 with an M3(9) to get the
desired designs.

For n ≡ 1 (mod 12) and n ≥ 37, give every point of a 3-GDD of type 6u (u ≥ 3)
weight 2 and apply Construction 2.3 with an M3(2

3) to obtain an M3(12
u). Then

apply Construction 2.4 with an M3(13) to get the desired M3(n).

For n ≡ 9 (mod 12) and n ≥ 45, a 3-GDD of type 6u41 (u ≥ 3) exists by Lemma
2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with an
M3(2

3) to get an M3(12
u81). Then apply Construction 2.4 with an M3(13) and an

M3(9) to get the desired design.

Lemma 4.4. For n ≡ 0, 1 (mod 3), there exists an M6(n).

Proof. For n = 6, 7, 12, 15, 16, 22, see Lemma 3.4. For n = 9, 10, 13, 19, 21, apply
Construction 2.5 with copies of an M3(9), an M2(10), an M3(13), an M2(19) an
M3(21), respectively.

For n ≡ 0, 1 (mod 6) and n ≥ 18, a (3, 2)-GDD of type 3u (u ≥ 3) exists by
Lemma 2.1. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M6(6
u). Then apply Construction 2.4 with an M6(6) and an

M6(7), respectively, to get an M6(n), where n = 6u+ ε, u ≥ 3, ε = 0, 1.

For n ≡ 3 (mod 6) and n ≥ 27, a (3, 2)-GDD of type 3u41 (u ≥ 3) exists by
Lemma 2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M6(6
u81). Then apply Construction 2.4 with an M6(7) and

an M6(9) to get the desired M6(n).

For n ≡ 4 (mod 6) and n ≥ 28, a (3, 2)-GDD of type 3u51 (u ≥ 3) exists by
Lemma 2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M6(6
u101). Then apply Construction 2.4 with an M6(6) and

an M6(10) to get the desired design.

Lemma 4.5. For n ≡ 1 (mod 4), there exists an M9(n).

Proof. For n = 17, 29, see Lemma 3.5.

For n ≡ 1, 9 (mod 12), apply Construction 2.5 with three copies of an M3(n).

For n = 41, a (3, 3)-GDD of type 4381 exists by Lemma 2.2. Give every point
of the GDD weight 2 and apply Construction 2.3 with an M3(2

3) to obtain an
M9(8

3161). Then apply Construction 2.4 with an M9(9) and an M9(17) to get the
desired design.

For n ≡ 5 (mod 12) and n ≥ 53, a (3, 3)-GDD of type 6u81 (u ≥ 3) exists by
Lemma 2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M9(12
u161). Then apply Construction 2.4 with an M9(13)

and an M9(17) to get the desired M9(n).
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Lemma 4.6. For any n ≥ 6, there exists an M18(n).

Proof. For n = 8, 11, 14, 20, 23, see Lemma 3.6. For n = 17, apply Construction 2.5
with two copies of an M9(17).

For n ≡ 0, 1 (mod 3), apply Construction 2.5 with three copies of an M6(n).

For n ≡ 2 (mod 6) and n ≥ 26, a (3, 6)-GDD of type 3u41 (u ≥ 3) exists by
Lemma 2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M18(6
u81). Then apply Construction 2.4 with an M18(6) and

an M18(8) to get the desired design.

For n ≡ 5 (mod 6) and n ≥ 29, a (3, 6)-GDD of type 3u51 (u ≥ 3) exists by
Lemma 2.2. Give every point of the GDD weight 2 and apply Construction 2.3 with
an M3(2

3) to obtain an M18(6
u101). Then apply Construction 2.4 with an M18(7)

and an M18(11) to get the desired M18(n).

Combining Construction 2.5 and Lemmas 4.1–4.6, we complete the proof of The-
orem 1.1.
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[11] S. Küçükçifçi, E. Ş. Yazıcı and C.C. Lindner, The full metamorphosis of λ-fold
block designs with block size four into λ-fold 4-cycle systems, Ars Combin. 104
(2012), 81–96.

[12] C.C. Lindner, M. Meszka and A. Rosa, Triple metamorphosis of twofold triple
systems, Discrete Math. 313(19) (2013), 1872–1883.

[13] C.C. Lindner and A.P. Street, The metamorphosis of λ-fold block designs with
block size four into λ-fold 4-cycle systems, Bull. Inst. Combin. Appl. 28 (2000),
7–18.

[14] C.C. Lindner and A. Tripodi, The metamorphosis of K4\e designs into maxi-
mum packings of Kn with 4-cycles, Ars Combin. 75 (2005), 333–349.

[15] J. Wang and L. Yin, A class of group divisible designs with block three and
index λ, Australas. J. Combin. 46 (2010), 51–66.
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