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Abstract

We introduce a new method for decomposing the edge set of a graph, and
use it to replace the regularity lemma of Szemerédi in some graph em-
bedding problems. In particular, we prove a conditional triangle removal
lemma, and also consider tree packing questions. An algorithmic version
is also given.

1 Introduction

The Szemerédi regularity lemma is among the most powerful tools in graph theory.
The lemma was published in 1978 [30], although a weaker version had already been
used earlier by Szemerédi to prove the Erdős-Turán conjecture [14, 29]. Since then the
lemma and its ramifications have found several applications in graph and hypergraph
theory, number theory, algebra, geometry, and computer science.

We consider only simple graphs in this paper, i.e., no loops, no multiple edges.
Given a graph G = (V,E) and a number ε ∈ (0, 1), the regularity lemma asserts
that V can be partitioned into k ≤ N(ε) subsets V1 ∪ . . . ∪ Vk and another set V0 =
V −(∪iVi) such that G[Vi, Vj ] is ε-regular (roughly speaking, this means approximate
randomness; we will define this notion in the next section) for every 1 ≤ i 6= j ≤ k,
except at most εk2 pairs of indices, |V0| ≤ εn and |Vi| = (n − |V0|)/k for every
1 ≤ i ≤ k.

In Szemerédi’s original proof of the regularity lemma, the threshold N(ε) for
the number of parts is a tower of twos of height O(ε−5). As Gowers proved in [21],
this tower-type bound is unavoidable in general. More precisely, there are graphs
for which N(ε) has to be at least a tower of twos of height Ω(ε−1/16). Conlon and
Fox [5] further improved the lower bound to Ω(ε−1). This shows the major drawback
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of the regularity lemma: in order to get meaningful results, one has to work with
enormously large graphs, thereby ruling out practical applications of the lemma. We
remark that if the number of edges between vertex sets A and B is o(|A| · |B|), then
the (A,B)-pair is ε-regular by definition, unless ε is very small compared to |A| and
|B|. Hence, the lemma is useful only when the density of the graph is essentially
bounded from below by a positive constant.

In order to avoid these disadvantages, several alternatives for substituting the
regularity lemma have been discovered, e.g., the weak regularity lemma of Frieze
and Kannan [18], or the cylindrical regularity lemma by Eaton and Rödl [12, 13], see
also in [1] by Alon, Duke, Leffmann, Rödl and Yuster. Gowers proved the existence
of large quasirandom subgraphs in dense bipartite graphs [22], a somewhat similar
one was given by the author [8]. There are also versions for dense subgraphs of
random graphs or C4-free graphs [7], for graphs with bounded VC-dimension [2, 26]
or for graphs with low threshold-rank [19]. This list is long, but still far from being
complete. However, none of the above results have the full strength of the original
regularity lemma.

In this paper our goal is to present a method which in some cases may be used
to replace the regularity lemma, even for graphs with vanishing densities. Besides,
the number of vertices in the graph is allowed to be just “reasonably” large. In the
decomposition of this paper one does not partition the vertex set of the graph as in
the Szemerédi regularity lemma, rather the edge set. The basic building blocks of
the decomposition are pseudorandom subgraphs, so called lower-regular or regular
pairs. The most important difference between this method and the many versions
of the regularity lemma is that the pseudorandom subgraphs in the decomposition
of the present paper are edge-disjoint, but their vertex sets may intersect. These
intersections make the use of the edge decomposition method more difficult, but it
still can replace the regularity lemma in some cases. We will demonstrate this via
some examples. Still, it seems that one cannot use this technique for such diverse
problems as the regularity lemma.

Eaton and Rödl [12, 13] proved a so-called cylindrical regularity lemma (an algo-
rithmic version was given in [1] by Alon, Duke, Leffmann, Rödl and Yuster) which
for the special case of bipartite graphs gives a similar, though somewhat more re-
strictive, decomposition to the one presented in this paper. However, our bounds
are stronger, due to the different approach, based on the results of Peng, Rödl and
Ruciński [27]1. This turns out to be important for graphs having vanishing densities.
We will discuss the cylindrical regularity lemma together with the necessary notions
in Section 3.1.

The outline of the paper is as follows. In Section 2 we review the necessary
notation, notions, and results for our decompositions. Section 3 includes our main
decomposition theorems. In Section 4 we prove a conditional triangle removal lemma
for graphs having relatively few C ′

5s. Finally, in Section 5 we prove an algorithmic

1In an earlier version of this paper [9] we used the graph functional method of Komlós, which
already gave stronger bounds, but it turned out that in general the results of [27] are slightly better.
See the remark after Theorem 2.2.
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version of our main theorem, and apply it for approximating an NP-complete problem
in relatively dense graphs.

We made no attempts to optimize on the constants in the paper, and will not
be concerned with floor signs and divisibility in the proofs. This makes the nota-
tion simpler, easier to follow. Throughout the paper log x will denote the natural
logarithm of x, and exp(f) = ef for any expression f.

2 Notation, definitions, main tools

Given a graph G = (V,E) we use the notation v(G) = |V | and e(G) = |E|. For
disjoint subsets X, Y ⊂ V, we let G[X, Y ] denote the bipartite subgraph of G with
parts X and Y that contains all the edges of G with one endpoint in X and the
other endpoint in Y . For every vertex v ∈ V, the neighborhood of v is denoted by
N(v), and the degree of v is denoted by deg(v) = |N(v)|. Given a set S ⊂ V, we let
N(v, S) = N(v) ∩ S and deg(v, S) = |N(v, S)|.

The density of G is defined to be dG = e(G) ·
(

v(G)
2

)−1
. The bipartite density of

bipartite subgraphs of G with parts A and B is defined to be dG(A,B) = e(G[A,B])
|A|·|B|

.
Sometimes the subscript may be omitted when there is no confusion. Similarly, when
a graph in question is bipartite, density will mean bipartite density.

Definition 2.1. Let 0 < ε, δ < 1 be real numbers. We say that a bipartite graph
H = (A,B;E) is an (ε, δ)-lower-regular pair, if

dH(X, Y ) ≥ δ

whenever X ⊆ A and Y ⊆ B such that |X| ≥ ε|A| and |Y | ≥ ε|B|. We call H an
(ε, δ)-super-lower-regular pair, if in addition every v ∈ A has at least δ|B| neighbors
and every u ∈ B has at least δ|A| neighbors.

Let B denote the class of balanced bipartite graphs, that is, bipartite graphs
having equal-sized parts, and for a positive integer m let Bm denote the class of
balanced bipartite graphs having m vertices in both parts.

Peng, Rödl and Ruciński proved the theorem below in [27] which plays a crucial
role in the first decomposition result of the present paper.

Theorem 2.2. Let 0 < ε, d < 1 be two numbers, and assume that G ∈ Bn is a graph
with density d. Then G contains an (ε, d/2)-lower-regular pair H ∈ Bm with

m ≥ 1

2
d12/εn.

As it is also proved in [27], Theorem 2.2 is essentially tight; in the above lower
bound for m the term d12/ε cannot be replaced by dc/ε if c < 1/2000. Let us remark
that a slightly weaker bound of m ≥ d3(log 1/ε)/εn was proved by Komlós [24, 25] using
the graph functional method.

We also need another notion, already mentioned in the introduction.
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Definition 2.3. Let 0 < ε, δ < 1 be real numbers. We say that a bipartite graph
H = (A,B;E) is an ε-regular pair, if

|dH(A,B)− dH(X, Y )| ≤ ε

whenever X ⊆ A and Y ⊆ B such that |X| ≥ ε|A| and |Y | ≥ ε|B|. We call H an
(ε, δ)-super-regular pair, if in addition every v ∈ A has at least δ|B| neighbors and
every u ∈ B has at least δ|A| neighbors.

Note the difference between ε-lower-regularity and ε-regularity: in the latter we
have about the same density of every sufficiently large bipartite subgraph.

For our second decomposition theorem we need another result from [27].

Theorem 2.4. Let 0 < ε, d < 1. Then every bipartite graph G ∈ Bn with dG = d
contains an ε-regular pair H ∈ Bm with density not smaller than (1− ε/3)d and

m ≥ d50/ε
2 n

2
.

The lemma below shows that every lower-regular pair contains a slightly smaller
super-lower-regular pair, and similarly, every regular pair contains a slightly smaller
super-regular pair.

Lemma 2.5. Let 0 < ε < 1/2 and F ∈ Bm.

(i) Assume that 0 < δ < 1 and F is an (ε, δ)-lower-regular pair with density dF .
Then there exists H ⊂ F, H ∈ Bm′ such that H is a (2ε, δ − ε)-super-lower-
regular with m′ ≥ (1− ε)m; moreover, e(H) ≥ (1− 3ε)e(F ).

(ii) Let us assume now that F is an ε-regular pair with density dF ≥ ε. Then
there exists H ⊂ F, H ∈ Bm′ such that H is a (2ε, dF − ε)-super-regular with
m′ ≥ (1− ε)m.

Proof: We first prove (i). Let A and B denote the vertex parts of F . Let X ⊂ A
and Y ⊂ B denote the sets of those vertices which have degree smaller than δm in
the opposite part. By definition of (ε, δ)-lower-regularity, we have |X|, |Y | ≤ εm.
Without loss of generality we may assume that |X| ≥ |Y |.

Denote the vertices of B by {v1, . . . , vm}, and assume that deg(v1) ≤ deg(v2) ≤
· · · ≤ deg(vm). Then we must have deg(vεm) ≤ dFm/(1− ε), or otherwise B had at
least (1−ε)m such vertices which have degree larger than dFm/(1−ε), which is clearly
a contradiction. Using the fact that |Y | ≤ |X| ≤ εm, we have Y ⊆ {v1, . . . , v|X|}
and deg(v|X|) ≤ dFm/(1− ε) < 2dFm.

We discard the vertices of X from A and the vertices v1, . . . , v|X| from B. Call
the remaining subgraph H. It is easy to see that H ∈ Bm′ is a (2ε, δ − ε)-super-
lower-regular pair with m′ ≥ (1− ε)m.
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Now we prove the lower bound for e(H). Observe that δ ≤ dF by definition of
lower-regularity. Hence, the total number of edges that were incident to vertices of
X ∪ Y in F is less than

δm|X|+ 2dFm|X| ≤ 3εdFm
2 = 3εe(F ),

implying that e(H) ≥ (1− 3ε)e(F ).

Since one can prove (ii) very similarly, we leave the details for the reader. �

3 Decomposition theorems

We are ready to present the first decomposition theorem.

Theorem 3.1. Let G = (V,E) be a balanced bipartite graph on 2n vertices with
density dG, and let 0 < d < 1 and 0 < ε < 1/2 such that n > exp(12 log(1/d)/ε).
Then there exist natural numbers m = m(ε, d) and K = K(ε, d) such that the fol-
lowing holds: E(G) can be written as the edge-disjoint union of bipartite graphs
H1, . . . , HK ∈ B, and another, exceptional graph H0, such that for every i ≥ 1, Hi is
an (ε, δi)-lower-regular pair with mi ≥ m vertices in both parts, and δi ≥ d/2, while
H0 has density less than d. Furthermore,

m ≥ 1

2
d12/εn and K ≤ 8

dG
d

· d−24/ε.

Proof: For finding the decomposition of G we apply Theorem 2.2 repeatedly. In the
first step, we check whether dG ≥ d. If not, we let H0 = G, and stop. Otherwise, let
H1 be a balanced (ε, δ1)-lower-regular pair which is provided by Theorem 2.2; here
δ1 = dG/2. Let G1 = (V,E1) be the subgraph of G which we obtain by deleting the
edges of H1 from G; that is, E1 = E(G)− E(H1).

In general, let us assume that we have found the first i lower-regular pairs
H1, H2, . . . , Hi. Let Gi = (V,Ei), where Ei = E(Gi−1) − E(Hi). We check whether
dGi

≥ d. If not, then we let H0 = Gi, and stop. Otherwise we use Theorem 2.2 for
finding Hi+1.

Next we consider the bounds for m and K. Note that the function f(d) =
d12/εn/2 is monotone increasing. When finding the decomposition, we always apply
Theorem 2.2 for graphs which have density at least d. Hence mi ≥ f(d) = d12/εn/2
for every 1 ≤ i ≤ K. For the upper bound for K, notice that e(Hi) ≥ dm2/2 for
every i ≥ 1. Hence

K ≤ 2
dGn

2

dm2
≤ 8

dG
d

· d−24/ε,

as desired. �

For easier reference we formulate another version of the above decomposition
theorem, which follows easily from the first one. In the theorem below we decompose
the graph into super-lower-regular pairs, which we obtain from lower-regular pairs
by applying Lemma 2.5.



B. CSABA/AUSTRALAS. J. COMBIN. 89 (2) (2024), 249–267 254

Theorem 3.2. Let G = (V,E) be a balanced bipartite graph on 2n vertices with
density dG, and let 0 < d < 1 and 0 < ε ≤ d/3 such that n > exp(24 log(1/d)/ε).
Then there exist natural numbers m = m(ε, d) and K = K(ε, d) such that the fol-
lowing holds: E(G) can be written as the edge-disjoint union of bipartite graphs
H1, . . . , HK ∈ B, and another exceptional graph H0, such that for every i ≥ 1, Hi is
an (ε, δi)-super-lower-regular with mi ≥ m vertices in both parts, and δi ≥ d/3, while
H0 has density less than 2d. Furthermore,

m ≥ 1

3
d24/εn and K ≤ 8

dG
d

· d−48/ε.

Proof: First we apply Theorem 3.1 to G with parameters ε0 = ε/2 and d. We
obtain the lower-regular pairs H ′

1, . . . , H
′
K and the exceptional subgraph H ′

0, where
H ′

i is an (ε0, δ
′
i)-lower-regular pair with mi vertices in both parts for i ≥ 1, and H ′

0

has density at most d. Next we apply Lemma 2.5 for every H ′
i (i ≥ 1) in order

to turn it to the super-lower-regular Hi. We obtain an (ε, δi)-super-lower-regular
pair, where, using the fact that that ε0 ≤ d/6 and δ′i ≥ d/2, we obtain δi ≥ d/3.
We discarded at most ε0mi < mi/6 vertices from both parts of Hi; this explains
the bound for m. Moreover, by Lemma 2.5 we have e(Hi) ≥ (1 − 3ε0)e(H

′
i). Since

∑

i e(H
′
i) ≤ e(G), the total number of edges lost, when turning the lower-regular

pairs into super-lower-regular, is at most 3ε0e(G) = 3ε0dGn
2 < dn2; here we used

dG ≤ 1 and ε0 ≤ d/6. This implies that at the end H0 has density less than 2d. It
is clear that the number K of pairs in the decomposition does not change. �

Instead of iteratively applying Theorem 2.2 as in the above theorems, one can
also apply the same iterative scheme with Theorem 2.4 to obtain ε-regular pairs
rather than ε-lower-regular.

Theorem 3.3. Let G = (V,E) be a balanced bipartite graph on 2n vertices with
density dG, and let 0 < d < 1 and 0 < ε < 1/2 such that n > exp(50 log(1/d)/ε2).
Then there exist natural numbers m = m(ε, d) and K = K(ε, d) such that the fol-
lowing holds: E(G) can be written as the edge-disjoint union of bipartite graphs
H1, . . . , HK ∈ B, and another, exceptional, graph H0, such that for every i ≥ 1, Hi

is an ε-regular pair with mi ≥ m vertices in both parts and density di ≥ (1− ε/3)d,
while H0 has density less than d. Furthermore,

m ≥ 1

2
d50/ε

2

n and K ≤ 8
dG
d

· d−100/ε2 .

Proof: For finding the decomposition of G we apply Theorem 2.4 repeatedly, and
similarly to the previous decompositions, we finally arrive at the ε-regular pairs
H1, H2, . . . , HK , and the exceptional subgraph H0, the latter having density at
most d.

We obtain the bound for m from Theorem 2.4, with d plugged in for the density
of the graph. For the upper bound for K, notice that e(Hi) ≥ dm2/2 for every i ≥ 1.
Hence

K ≤ 2
dGn

2

dm2
≤ 8

dG
d

· d−100/ε2 ,

which was desired. �
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3.1 Comparison with the cylindrical regularity lemma

In this subsection we compare the bounds of the so called cylindrical regularity
theorems for the case of bipartite graphs in [1, 12, 13] with the bounds in our de-
composition theorems.

Let k ≥ 2 be an integer, and V1, . . . , Vk be n-element sets. A cylinder of V1 ×
V2 × · · · × Vk is of the form W1 ×W2 × · · · ×Wk, Wi ⊆ Vi for i = 1, 2, . . . , k. Let G
be a k-partite graph with parts V1, . . . , Vk. Given an ε > 0 we say that the cylinder
W1 × · · · ×Wk is ε-regular if the subgraph of G induced on the set ∪1≤i≤kWi is such
that all

(

k
2

)

of the pairs (Wi,Wj), 1 ≤ i < j ≤ k, are ε-regular.

The cylindrical regularity lemma is as follows.

Lemma 3.4. Let G be a k-partite graph with parts V1, . . . , Vk such that |V1| = · · · =
|Vk| = N . Then for every ε > 0 there exists a partition P of V1 × · · · × Vk into q
cylinders such that

• q ≤ 4h, where h ≤
(

k
2

)

/ε5, and

• all but εNk of the k-tuples (v1, v2, . . . , vk), vi ∈ Vi, i = 1, 2, . . . , k, are in
ε-regular cylinders of P.

For bipartite graphs, that is, when k = 2, the upper bound for the number of
cylinders is 41/ε

5

, which is much larger than the bounds in our decomposition the-
orems, whenever ε is small: the bounds for K in Theorems 3.1, 3.2, and 3.3 are
exp(O(1/ε)), expO(1/ε), and exp(O(1/ε2)), respectively. This extends the applica-
bility of regularity methods for graphs with vanishing densities. For example, let
G ∈ Bn with density dG = 1/

√
log n. One can apply Theorem 3.1 to G with d = dG

and ε = d/2, obtaining a non-trivial decomposition of G. On the other hand, the

bound for the number q of cylinders in Lemma 3.4 is 41/ε
5

= 4(log n)
5/2

> n2, clearly
larger than e(G). Hence, for this graph the cylindrical regularity lemma may not
give a useful decomposition.

Note that in the decomposition theorems of this paper we do not require that the
Cartesian product of the vertex parts of G has to be partitioned by the Cartesian
products of the vertex parts of the Hi graphs (here i ≥ 1).

The cylindrical regularity lemma has an algorithmic version [1]. In Section 5 we
present an algorithmic version of Theorem 3.3, and compare it with the algorithmic
cylindrical regularity lemma.

3.2 Decomposition when G is not bipartite

Our decomposition theorems are formulated for balanced bipartite graphs. In this
subsection, we present two methods which allow us to decompose arbitrary graphs.

The following well-known result is folklore; we omit the proof.

Lemma 3.5. Let G = (V,E) be an n-vertex graph with density dG. Then there exists
X ⊂ V , |X| = ⌊n/2⌋, such that dG(X, V −X) ≥ dG.
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Suppose that G is not bipartite. Then by Lemma 3.5 its vertex set V (G) has a
bipartition V (G) = X ∪ Y such that ||X| − |Y || ≤ 1, and the density of G[X, Y ] is
at least as large as that of G. Apply any of the decomposition theorems for G[X, Y ],
delete the edges of the non-exceptional subgraphs from G, and repeat the partitioning
of Lemma 3.5, until the density of what is left becomes sufficiently small.

Later we will discuss an algorithmic decomposition theorem, again for balanced
bipartite graphs. The following method can be used to extend it for non-bipartite
graphs. We need the following result; it is Theorem 16.1.2 from [3].

Theorem 3.6. Let A be a k×k matrix of reals with every entry from the [−1, 1] inter-
val. Then there exists a deterministic polynomial time algorithm that finds numbers
κ1, . . . , κk ∈ {−1, 1} such that for every i (1 ≤ i ≤ k) we have

∣

∣

∣

∣

∣

k
∑

j=1

Aijκj

∣

∣

∣

∣

∣

≤
√

2k log(2k).

Proposition 3.7. Let µ ∈ (0, 1) be a number and G = (V,E) be a graph on n ≥
5 vertices with density dG ≥ 2

√
log n/(µ

√
n). Then there exists a deterministic

polynomial time algorithm which finds a bipartition V = X∪Y such that ||X|−n/2| ≤√
n log n and the density of G[X, Y ] is at least dG(1− µ).

Proof: Let M be the (n+1)× (n+1) matrix which we obtain in the following way.
Add an all 1 row as the (n+ 1)st row to the n× n adjacency matrix of G, and then
add an all 0 column (containing n+ 1 elements). Clearly, M is an (n+ 1)× (n+ 1)
matrix.

We use Theorem 3.6 with k = n+1 and A = M . Set σ =
√

(2n+ 2) log(2n+ 2).
The desired bipartition is determined by the κi numbers: if κi = 1, then the ith
vertex of G belongs to X; otherwise it belongs to Y .

The inequalities of Theorem 3.6 imply that the inner product of the last row of
M and the vector κT = (κ1, . . . , κn+1) is at most σ; hence, ||X| − |Y || ≤ σ.

Let t denote n/2−|X|. Then |X| = n/2− t and |Y | = n/2+ t, and ||X| − |Y || =
|2t| ≤ σ. Hence we have

n

2
− σ

2
≤ |X|, |Y | ≤ n

2
+

σ

2
.

Let v ∈ V be an arbitrary vertex of G. Using Theorem 3.6 and the definition
of X and Y , we obtain | deg(v,X) − deg(v, Y )| ≤ σ. Very similarly to the above
calculations we obtain the following upper and lower bounds:

deg(v)

2
− σ

2
≤ deg(v,X), deg(v, Y ) ≤ deg(v)

2
+

σ

2
.

Finally, we prove the lower bound for the density of G[X, Y ] as follows:

e(G[X, Y ])

|X| · |Y | ≥ 1

2

∑

v∈V

(

deg(v)−σ
2

)

n2

4

≥ 1

n2

∑

v∈V

deg(v)− σ

n
.
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It is easy to see that (
∑

v∈V deg(v))/n2 ≥ dG(1− 1/n). Hence

1

n2

∑

v∈V

deg(v)− σ

n
≥ dG(1−

1

n
)− σ

n
≥ dG − 2

√

log n

n
≥ (1− µ)dG,

where in the last inequality we used the lower bound 2
µ

√

logn
n

for dG. �

Having the above theorem, one can iteratively apply it, as previously in the non-
algorithmic method, until the vast majority of the edges of G are in edge-disjoint
pseudorandom subgraphs.

4 A conditional triangle removal lemma

The celebrated result of Ruzsa and Szemerédi [28] states, roughly speaking, that if
a graph of order n has o(n3) triangles, then it can be made triangle-free by deleting
o(n2) edges from it.

Theorem 4.1. Let G be a graph on n vertices. Then for every ε > 0 there exists
δ = δ(ε) > 0 such that if G has at most δn3 triangles, then it can be made triangle-free
by removing at most εn2 edges.

This very important result has far reaching implications in graph and hypergraph
theory, number theory, etc.; see for example in [6]. The best bound for δ, due to
Fox [17], is the reciprocal of a tower of twos of height O(log 1/ε).

Bollobás and Győri raised the following question in [4]: How many triangles can
a graph G on n vertices have, if G has no cycle of length 5? They proved that the
number of triangles in such a graph is at most (5/4)n3/2+o(n3/2). Since then several
improvements were found on the constant multiplier of n3/2 [15, 16].

In [7], Conlon, Fox, Sudakov and Zhao considered a conditional removal problem,
which relates the above two questions. They proved that, given a graph of order n
with o(n2) copies of C4 and o(n5/2) copies of C5, it can be made {C3, C5}-free by
deleting o(n3/2) edges. Below we state and prove a somewhat similar theorem in
which we have no condition on the number of C4’s in the graph, only for the number
of C5’s. Since C4’s emerge when the number of edges is Ω(n3/2), the bound for the
number of edges to be removed is much larger. Still, the δ below is just a single
exponential function of a polynomial of 1/ε, a huge gain compared to the δ in the
known proofs of the (unconditional) triangle removal lemma.

Theorem 4.2. Let 0 < ε ≤ 1/4 be a number, and set n0 = exp(24 log(1/(3ε))/ε).
Let G be a tripartite graph with vertex parts X, Y and Z such that |X| = |Y | =
|Z| = n > n0. Set K0 = 16 · exp((48/ε) log(1/(3ε))), m = exp(24 log(3ε)/ε)n/3, and
δ = ε6 exp(48 log(3ε)/ε)/(9K2

0). If the number of C5’s in G is at most δn5, then G
can be made triangle-free by deleting at most 8εn2 edges.
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Proof: We begin with applying Theorem 3.2 with parameters ε and d = 3ε
for the bipartite subgraph G[X, Y ]. We obtain the (ε, ε)-super-lower-regular pairs
H1, H2, . . . , HK , each having parts on at least m vertices, and H0 with less than
2dn2 = 6εn2 edges. Delete the edges of H0 from G. Note that K ≤ K0.

Call a C5 = x1y1x2y2z good, if x1, x2 ∈ X, y1, y2 ∈ Y , z ∈ Z, and x1y1, y1x2, x2y2
belong to the same super-lower-regular pair of the decomposition. Observe that if
x′y′z′ is a triangle in G−H0 such that x′ ∈ X, y′ ∈ Y and z′ ∈ Z, then the x′y′ edge
must belong to some Hi (i ≥ 1).

By assumption, G has at most δn5 = ε6m2n3/K2
0 good C5’s, so there are at most

εn vertices in Z which appear in at least δn5/(εn) = ε5m2n2/K2
0 good C5’s. Call

such vertices of Z bad; the rest of Z are the good vertices.

Delete every edge from G that joins a bad vertex in Z to any vertex in X; this
way we achieve that there are no triangles with a bad vertex from Z. We deleted at
most εn2 edges in this step.

Let z ∈ Z ′ be any good vertex. Assume that it has at least εn/K neighbors
in both parts of some Hi. Denote the parts of Hi by Xi ⊂ X and Yi ⊂ Y , and
let mi = |Xi| = |Yi| ≥ m. Notice that if x ∈ Xi, then by the (ε, ε)-super-lower-
regularity it has at least εmi neighbors in Y , and similar holds for any y ∈ Yi.
Hence, if x ∈ Xi, y ∈ Yi and x, y ∈ N(z), then, using ε-lower-regularity, there are
at least ε3m2

i paths of length 3 that connects x and y in Hi. Using our assumption
that z has at least εn/K neighbors in Xi and Yi, there are at least

ε5m2n2

K2 such good
C5’s which contain z and three edges from Hi. This contradicts the fact that z is
good, so we conclude that for every good vertex z ∈ Z there is no Hi (1 ≤ i ≤ K)
for which z has many neighbors in both parts of it.

Next we repeat the following for every good z ∈ Z, for every 1 ≤ i ≤ K: if
deg(z,Xi) ≤ deg(z, Yi), then delete all edges that join z to Xi; otherwise delete all
the edges that join z to Yi. This way we delete at most n · K · εn/K = εn2 edges
from G. Since after these deletions there is no good z ∈ Z which is contained in any
triangle, we have removed every triangle. �

We remark that in [7] it was proved that there exist n-vertex graphs with o(n2.442)
C5’s that cannot be made triangle-free by deleting o(n3/2) edges. Note the large gap
between the two bounds for conditional removal.

The proof method of Theorem 4.2 can easily be generalized to prove statements
of the following type. Let 2 ≤ k ≤ ℓ be integers. If an n-vertex, (2k − 1)-partite
graph G has o(n2ℓ+1) copies of C2ℓ+1’s, then it can be made C2k−1-free by deleting
o(n2) edges.

5 Algorithmic aspects

The algorithmic version of Szemerédi’s regularity lemma [1] by Alon, Duke, Leff-
mann, Rödl and Yuster proved to be very useful in many problems in computer
science, e.g., by providing good approximation algorithms for several NP-complete
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questions. The methods we considered earlier in the paper can be used to show
the existence of a large super-regular pair, but they are not capable of finding one
efficiently. In this section we present a deterministic polynomial time algorithm for
finding a large ε-regular subgraph in a sufficiently dense graph. This algorithm can
then be used for decomposing the edge set of a graph into large ε-regulars pairs, sim-
ilarly to Theorem 3.1, albeit the result will be somewhat weaker. The algorithmic
decomposition theorem is as follows.

Theorem 5.1. Let G be a balanced bipartite graph on 2n vertices with density dG,
and let 0 < δ and 0 < ε < 1/16 be real numbers such that the following is satisfied:
er/42n−1/4 < ε < δ ≤ 1, where r = (163/ε12) log(16/ε4). Then using a polynomial
time deterministic algorithm we can decompose the edge set of G as follows: E(G) can
be written as the edge-disjoint union of ε-regular balanced bipartite graphs F1, . . . , FK,
and another balanced bipartite graph F0, where K = K(ε, δ, dG) ≤ dGe

2r/δ. For i ≥ 1
each Fi has at least m = m(ε) ≥ e−rn vertices and density at least δ, while F0 has
density less than δ.

For proving the correctness of Theorem 5.1 we need to make preparations.

Let M(n) denote the time needed to multiply two n×n matrices with 0, 1 entries
over the integers (so M(n) = O(n2.376)). For proving an algorithmic version of the
regularity lemma, the authors of [1], among other lemmas, used the following:

Lemma 5.2. Let H be a bipartite graph with equal parts |A| = |B| = n. Let 2n−1/4 <
ε < 1/16. Then there is a O(M(n)) time deterministic algorithm which verifies that
H is ε-regular, or finds two subsets, A1 ⊂ A, B1 ⊂ B, |A1|, |B1| ≥ ε4n/16, such that
|d(A,B) − d(A1, B1)| ≥ ε4. The algorithm can be parallelized and implemented in
NC1.

We call the sets A1 and B1 the witnesses of ε4-irregularity. Note that the cardi-
nalities of the witnesses for irregularity could be much smaller than εn. As proved
in [1], this is unavoidable unless P = NP . We need a lemma for presenting the
decomposition algorithm, but before that we consider a simple fact, which will be
used in the proof of the lemma.

Fact 5.3. Let F be a bipartite graph with vertex parts X and Y such that |X| ≥
2. Then X contains vertices x1 and x2 such that dF (X, Y ) ≥ dF (X − x1, Y ) and
dF (X, Y ) ≤ dF (X − x2, Y ).

Proof: We choose x1 and x2 such that

deg(x1) = max{deg(x) : x ∈ X} and deg(x2) = min{deg(x) : x ∈ X}.

By the above we have that

deg(x1) ≥
∑

x∈X−x1
deg(x)

|X| − 1
and deg(x2) ≤

∑

x∈X−x2
deg(x)

|X| − 1
.
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Hence,

eF (X, Y ) ≥
∑

x∈X−x1

deg(x) +

∑

x∈X−x1
deg(x)

|X| − 1

=
|X|

|X| − 1

∑

x∈X−x1

deg(x)

=
|X|

|X| − 1
eF (X − x1, Y ).

This implies that

dF (X − x1, Y ) =
eF (X − x1, Y )

(|X| − 1)|Y | ≤ eF (X, Y )

|X||Y | = dF (X, Y ).

Very similarly, we can prove dF (X − x2, Y ) ≥ dF (X, Y ); the details are left for the
reader. �

Lemma 5.4. Let H be a bipartite graph with vertex parts A,B such that |A| =
|B| = n, and let 0 < η < d ≤ 1. Assume that the density of H is d, and that there
exists A1 ⊂ A,B1 ⊂ B such that |A1|, |B1| ≥ ηn, and |d − d(A1, B1)| ≥ η. Then
in polynomial time we can find A′ ⊂ A,B′ ⊂ B with |A′| = |B′| ≥ ηn such that
d(A′, B′) ≥ d+ η3.

Proof: We begin with the case d(A1, B1) ≤ d− η. Applying Fact 5.3 repeatedly, if
necessary, we may assume that |A1| = |B1| ≤ (1− η)n. Define the sets A2 = A−A1

and B2 = B − B1. Below we show that one of the densities d(A1, B2), d(A2, B1) or
d(A2, B2) must be at least d+ η3.

Suppose not. Then

e(H) = dn2 < (d− η)|A1| · |B1|+ (d+ η3)(n2 − |A1| · |B1|).

This implies that
η|A1| · |B1| < η3n2 − η3|A1| · |B1|.

Using the fact that |A1|, |B1| ≥ ηn, we arrived at a contradiction. Hence one of
the subgraphs H[A1, B2], H[A2, B1] or H[A2, B2] must have density at least d + η3.
Denoting the parts of the most dense of these subgraphs by A′ and B′, we are done
with proving this case.

Let us now assume that d(A1, B1) ≥ d+ η. If |A1| = |B1|, we are done; otherwise
apply Fact 5.3 for discarding vertices from the larger set while not decreasing the
density. In both cases we obtain the pair of sets A′, B′ such that d(A′, B′) ≥ d + η
and |A′| = |B′| ≥ ηn.

It is easy to see that the above subsets A′, B′ can be found in O(n2) time: we
need to compute densities of at most four subgraphs, and order vertices according
to their degrees. This completes the proof. �
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Using Lemma 5.4, we can easily formulate a polynomial time algorithm which
finds a large ε-regular subgraph in a graph. Let G = (A,B;E) be a bipartite graph
with |A| = |B| = n and density d, and assume that 0 < ε < d ≤ 1, such that

exp(4·16
3 log 1/ε
ε12

)2n−1/4 < ε < 1/16.

1. Apply Lemma 5.2. If G[A,B] is ε-regular, stop.

2. If not, by Lemma 5.4, substituting ε4/16 for η, we can find a balanced subgraph
G[A′, B′] with |A′| = |B′| ≥ ε4|A|/16 having density at least d(G[A,B]) +
ε12/163.

3. Let A = A′, B = B′, and continue with Step 1.

The above algorithm stops in at most 163/ε12 steps, since if the density of a
bipartite graph is 1, it must be ε-regular. With the above we have proved the
following.

Proposition 5.5. Let G = (V,E) be a balanced bipartite graph on 2n vertices with
density dG and let 0 < ε < 1/16 be a real number such that the following is satisfied:
er/42n−1/4 < ε < dG, where r = (163/ε12) log(16/ε4). Then in polynomial time we
can find an ε-regular subgraph H ∈ B of G with density δ ≥ dG and v(H) ≥ e−rn.

Proof: (of Theorem 5.1) The proof follows easily by repeatedly applying Proposi-
tion 5.5. The bounds for m and K, the density bounds for the Fi (i ≥ 0) bipartite
subgraphs can be obtained similarly to the proofs of Theorem 3.1 or 3.3. We leave
the details for the reader. �

Note that in Proposition 5.5 we guarantee only ε-regularity, not (ε, δ)-super-
regularity for some δ. If one needs super-regularity, similarly to the proof of Theo-
rem 3.2, Lemma 2.5 can be used, resulting only in a small decrease in the size of the
pairs. Of course, this remark also applies to Theorem 5.1.

An algorithmic version of the cylindrical regularity lemma can be found in [1].
Similarly for the non-algorithmic version discussed in Section 3.1 they consider k-
partite graphs with k ≥ 2. For bipartite graphs they prove the bound exp(O(ε−17))
for the number of ε-regular subgraphs in the decomposition; hence our bound of
exp(O(ε−12 log 1/ε)) in Theorem 5.1 is a substantial improvement.

5.1 Algorithmic applications for packing problems

The study of packing of graphs dates back more than a century, and recently it has
received much attention; see for example [10, 20]. The generic packing question is
as follows: Given a “large” host graph G and a “small” graph H, is it possible to
cover the edge set of G edge-disjointly by copies of H? Equivalently, we sometimes
say that the edge set of G is decomposed by edge-disjoint copies of H. In many
cases the single small graph H is replaced by a family of graphs. Perhaps one of
the most beautiful questions in the area is the still open tree packing conjecture of
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Gyárfás [23] (often referred to as the Gyárfás–Lehel conjecture) from 1976 on the
decomposition of the edge set of Kn into trees having every order between 1 and n.
In general even an approximate form of these problems, when we may leave a small
percentage of the edge set of the host graph uncovered, is very challenging. In the
rest of this section we consider algorithmic versions of such questions. We remark
that substituting Proposition 5.5 by Theorem 2.4 in the following proofs we could
get non-algorithmic results with better bounds.

5.1.1 Packing edge-disjoint 3-paths

In [11], Dreier, Fuchs, Hartmann, Kuinke, Rossmanith, Tauer, and Wang study the
edge-disjoint k-path packing problem: given a graph G on n vertices find ℓ edge-
disjoint copies of a path of length k (hence having k + 1 vertices) in it. It is easy
to see that in case k = 1 and ℓ = n/2 the question is: find a perfect matching
in G, if there exists any. This, and the k = 2, case can be solved in polynomial
time. However, for k = 3 path packing already becomes an NP-complete question,
as proved in [11]. Hence, it makes sense to consider an approximate version of the
problem.

Below we give the details of an algorithm which finds a set of edge-disjoint 3-
paths, covering all but a small proportion of the edges. First we need a simple
lemma which is at the heart of the algorithm.

Lemma 5.6. Let 0 < ε < d ≤ 1 be real numbers, and assume that H = (A,B;E)
is an ε-regular pair with density at least d. Then we can find a 3-path in H by a
deterministic polynomial time algorithm.

Proof: Using the lower bound for the density of H we can choose vertices u ∈ A and
v ∈ B such that deg(u) ≥ d|B| and deg(v) ≥ d|A|. Since d > ε, using ε-regularity
we have the following lower bound for the number of edges between N(u) and N(v):

eH(N(u), N(v)) ≥ (d− ε)d|A| · d|B| = (d− ε)d2|A| · |B| > 0.

That is, there is at least one edge connecting N(u) and N(v), which can be found
in O(n2) time, implying the existence of a polynomial time algorithm for finding the
3-path, as desired. �

Theorem 5.7. Let 0 < d ≤ 1 and 0 < ε < 1/16 be real numbers, and G ∈ Bn

with density dG ≥ d, such that the following is satisfied: er/42n−1/4 < ε < d, where
r = (163/ε12) log(16/ε4). Then in deterministic polynomial time we can find a set of
edge-disjoint 3-paths which covers at least e(G)− dn2 edges of G.

Proof: The following algorithm finds the desired path packing in G.

1. Apply Proposition 5.5 for G in order to obtain an ε-regular pair H ⊂ G.

2. Find a 3-path P in H using Lemma 5.6.
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3. Delete the edges of P from G. For simplicity, the remaining graph is also
called G.

4. If the density of G is at least d, then continue with step 1, otherwise stop.

It is easy to see that the above algorithm finds edge-disjoint 3-paths. Moreover, when
the algorithm terminates, it leaves at most dn2 edges uncovered. �

5.1.2 Packing large edge-disjoint trees

Observe that the algorithm of the proof of Theorem 5.7 generalizes for packing by
subgraph F if we can substitute Lemma 5.6 by another result that finds a copy of F
in an ε-regular pair. This also holds for super-regular pairs, since by Lemma 2.5 a
regular pair contains a super-regular pair, with only slightly worse parameters.

Next we show that one can find large trees in an (ε, δ)-super-regular pair, which
immediately implies an analogue of Theorem 5.7 for those trees. Depending on ε
and δ, these trees may have linear size and linear maximum degree.

Let T be a tree on t vertices and denote its root by r. Given any x ∈ V (T ),
let N∗(x) denote the set of its children, and deg∗T (x) = |N∗(x)|. We define the Li

level sets of T as follows: L1 = {r}, and for i ≥ 1 we have that Li+1 = ∪x∈Li
N∗(x).

Hence, if a vertex y lies in Lj, then y is at distance j − 1 from r. Let us denote the
total number of levels by s. We remark that the only upper bound imposed on the
maximum degree of T is max{|Li| : 1 ≤ i ≤ s}.
Lemma 5.8. Let T be a rooted tree on t vertices. Assume that H(A,B;E) is an
(ε, δ)-super-regular pair with vertex parts A and B, such that m = |A| = |B| ≥ 2t,
and δ ≥ 6ε. We further assume that |Li| ≤ δm/4 for every i ≥ 1. Then we can find
a copy of T in H using a deterministic polynomial time algorithm.

Proof: Our goal is to find an edge-preserving injection ϕ : V (T ) −→ A∪B. Denote
the root of T by r. The algorithm we use constructs ϕ step-by-step, alternately
embedding consecutive levels of T , starting at L1 = {r}.

At any point in time we denote the uncovered subset of A by Au, and similarly,
the uncovered subset of B by Bu. We need to define two more subsets:

A′ = {v ∈ Au : degH(v,Bu) ≥ (δ − ε)|Bu|}

and
B′ = {v ∈ Bu : degH(v, Au) ≥ (δ − ε)|Au|}.

In the beginning we have Au = A′ = A and Bu = B′ = B. Observe that Au, Bu, A
′

and B′ shrink dynamically as we embed more and more levels. It is easy to see that
|Au| ≥ |A| − t ≥ m/2, and similarly, |Bu| ≥ |B| − t ≥ m/2.

After succesfully embedding, say, level Li into A′, we update these sets as follows:
Au = Au−ϕ(Li), A

′ = A′−ϕ(Li), and we also have to leave out those vertices of B′

that have degree less than (δ − ε)|Au| in the newly updated Au; the set Bu remains
the same. We do the updating analogously when a level is embedded into B′.
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For the root r we greedily pick a vertex v ∈ A and let ϕ(r) = v. Now assume
inductively, that we have embedded levels L1, . . . , Li such that the following holds:
if i is odd, then ϕ(Li) ⊂ A′, otherwise ϕ(Li) ⊂ B′. Without loss of generality we
assume that i is odd, and prove that one can embed Li+1 into B′. The other case
can be dealt with similarly.

We need the following claim.

Claim 5.9. At any point in time during the embedding we have |A′| ≥ |Au| − εm
and |B′| ≥ |Bu| − εm.

Proof: Since the proofs of the two inequalities are essentially the same, below we
prove the first one. Note that dH ≥ δ, where dH is the density of H. LetX = Au−A′.
Assume on the contrary that |X| ≥ εm. Then by ε-regularity of H the following is
satisfied:

∣

∣

∣

∣

eH(X,Bu)

|X| · |Bu|
− dH

∣

∣

∣

∣

≤ ε.

In particular,
eH(X,Bu)

|X| · |Bu|
≥ dH − ε ≥ δ − ε.

Multiplying by |Bu| we get that there exists a vertex v ∈ X having at least (δ−ε)|Bu|
neighbors in Bu. This implies that v belongs to A′, contradicting the definition of X.

�

Let x ∈ Li be an arbitrary vertex. Since ϕ(x) = v ∈ A′, we have that

degH(v,Bu) ≥ (δ − ε)|Bu| ≥ (δ − ε)
m

2
≥ δm

4
+ εm,

where the last inequality follows from the condition δ ≥ 6ε.

Using Claim 5.9 we have

deg(v,B′) ≥ deg(v,Bu)− εm ≥ δm

4
≥ |Li+1|.

Hence, for every x ∈ Li, we can greedily choose a subset Sx ⊂ N(ϕ(x), B′) such
that |Sx| = deg∗T (x), and Sx ∩ Sx′ = ∅ for every x′ 6= x, x′ ∈ Li. Therefore we may
choose the ϕ(y) images for y ∈ N∗(x) greedily from Sx. This extension of ϕ clearly
preserves the edges of T going between Li and Li+1; moreover, ϕ(Li+1) ⊂ B′. Hence,
level by level, we can embed T , as desired. �

Theorem 5.10. Let 0 < d ≤ 1 and 0 < ε < 1/16 be real numbers, and G ∈ Bn

with density dG ≥ d ≥ 13ε, such that the following is satisfied: er/42n−1/4 < ε < d,
where r = (163/ε12) log(16/ε4). Set m = e−rn(1− ε). Assume that T1, T2, . . . , Tl are
rooted trees, each on at most t ≤ m/2 vertices such that every level set of each tree
has at most (d − ε)m/4 vertices. Denote the total number of edges in the trees by
eT =

∑

i e(Ti). If e(G)−eT ≥ dn2, then we can find edge-disjoint copies of T1, . . . , Tl

in G by a deterministic polynomial time algorithm.
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Proof: The proof of the theorem is very similar to the proof of Theorem 5.7. We
use the following algorithm.

1. Let i = 1.

2. Apply Proposition 5.5 to G in order to obtain a balanced ε-regular pair F on
at least 2m′ = 2m/(1− ε) vertices with density at least d.

3. Apply Lemma 2.5 to F in order to obtain a balanced (2ε, d− ε)-super-regular
pair H on at least 2m vertices.

4. Apply Lemma 5.8 to embed Ti in H.

5. Delete the edges of Ti from G. For simplicity, the remaining graph is also
called G.

6. If i < l, then let i = i+ 1, and continue with Step 2. Otherwise, if i = l, stop.

For proving the correctness of the above algorithm, note that ε and d are fixed
throughout. Let us assume that we have successfully found edge-disjoint copies of
the first i− 1 trees. The density of what is left from G must still be at least d. This
density is sufficiently large for finding an ε-regular pair F with required density and
order by Proposition 5.5 in Step 2. Then, in Step 3, we find a (2ε, d−ε)-super-regular
pair H ⊂ F by Lemma 2.5. Since d ≥ 13ε, we get that d− ε ≥ 6 · 2ε. Hence, in Step
4, we can apply Lemma 5.8 with parameters 2ε and d− ε, and find a copy of Ti. If
i < l, then we can repeat this procedure, since, by definition, the density of what is
left from G is at least d. �
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[1] N. Alon, R. Duke, H. Leffmann, V. Rödl and R. Yuster, The algorithmic aspects
of the regularity lemma, J. Algorithms 16 (1994), 80–109.

[2] N. Alon, E. Fischer and I. Newman, Efficient testing of bipartite graphs for
forbidden induced subgraphs, SIAM J. Comput. 37 (2007), 959–976.

[3] N. Alon and J. Spencer, “The probabilistic method”, 4th ed., Wiley Ser. Discrete
Math. Optim., 2016.
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[20] S. Glock, F. Joos, J. Kim, D. Kühn and D. Osthus, Resolution of the Oberwol-
fach problem, J. Europ. Math. Soc. 23 (8) (2021), 2511–2547.



B. CSABA/AUSTRALAS. J. COMBIN. 89 (2) (2024), 249–267 267

[21] W.T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma,
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