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Abstract

A complete set of solutions for all instances of the Oberwolfach problem
for orders 61 ≤ n ≤ 100 is presented.

1 Introduction

A k-factor in a graph G is a k-regular spanning subgraph of G. A k-factorization of
G is a collection of edge-disjoint k-factors whose edge-sets partition the edge set of
G. If G has a k-factorization it is also called k-factorable.

Let F be a 2-factor; it consists of t disjoint cycles of lengths p1, p2, . . . , pt. In
1967, G. Ringel posed the famous Oberwolfach problem OP(F ) which asks whether,
for any 2-factor F of order n, the complete graph Kn when n is odd, or Kn \ I (i.e.,
the complete graph with a 1-factor I removed) when n is even, is 2-factorable into
2-factors, each isomorphic to F . If the 2-factor F consists of t disjoint cycles of
lengths p1 ≥ p2 ≥ . . . ≥ pt, we also use the notation OP(p1, p2, . . . , pt) in place of
OP(F ).

There are only four known instances for which the Oberwolfach problem does not
have a solution, cf. [14]: OP (3, 3), OP (5, 4), OP (5, 3, 3) and OP (3, 3, 3, 3). OP(F )
has been intensively studied and solved for several classes of 2-factors, in particular:
when F is bipartite [5, 10], F is uniform (all cycles have the same lengths) [3, 4, 11],
for t = 2 [16], when F contains a sufficiently long cycle [7], for some instances with
short cycles only, cf. [13]. Moreover, OP(F ) has been completely solved for orders
n = 2q, where q is any prime congruent to 5 (mod 8) [2], and for some values of
prime q congruent to 1 (mod 16) [6]. Asymptotic evidences (for large n without any
lower bound) have been provided [9, 12], although the problem still remains widely
open.

Solutions to the Oberwolfach problem were produced for orders n ≤ 17 [1], 18 ≤
n ≤ 40 [8], and recently for 41 ≤ n ≤ 60 [15]. The aim of this paper is to provide
solutions for the complete set of all 40,119,909 instances for orders 61 ≤ n ≤ 100.
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2 Constructions

Among numerous variations of standard difference methods, the following modifica-
tion of the well known Bose’s method of pure and mixed differences turned out to
be efficient to produce feasible solutions for each case in a reasonable computational
time. Since the number of 2-factors is, depending on the parity of n, either ⌊n−1

2
⌋ or

⌊n−2
2
⌋, it seems to be convenient to assume that a solution being constructed admits

as an automorphism a permutation containing exactly r fixed points and two cycles,
each of length m = n−r

2
, where r = 1 if n is odd and r = 2 otherwise.

Let P and R be a 2-element and an r-element set, respectively, P = {1, 2},
R = {1, 2, . . . , r}. Let V = V ′ ∪ V ′′ where V ′ = Zm × P and V ′′ = {∞} × R. A
standard notation xi is used for the pair (x, i). For any two vertices xi 6= yj of V ′,
the differences arising from this pair may be of two kinds:
(1) if i = j then ±(x− y) are pure differences of type i

(2) if i 6= j then ±(x− y) are mixed differences.
A pure difference of any type may be equal to any nonzero element of Zm while a
mixed difference may be equal to any element of Zm. Moreover, for any xi ∈ V ′ and
any ∞j ∈ V ′′ we get an infinity difference of type (i, j).

Let G be a regular graph of order n = 2m+ r and degree 2m such that V (G) =
V = V ′∪V ′′ andG admits as an automorphism the permutation α = (01, 11, . . . , (m−
1)1)(02, 12, . . . , (m− 1)2), where all vertices in V ′′ are fixed points of α. We say that
a 2-factorization F of G is (2, r)-rotational if there exists a 2-factor F of G such that,
among pairs determined by edges of F , every nonzero element of Zm occurs at most
once as a pure difference of type i for each i ∈ P , every element of Zm occurs at
most once as a mixed difference, moreover for each i ∈ P, j ∈ R there is at most one
edge with infinity difference of type (i, j) and there is no edge induced by V ′′. Then
F is the base 2-factor for F = {F, αF, α2F, . . . , αm−1F}.

Depending on the residue class of n modulo 4, these cases are considered sep-
arately. If n ≡ 3 (mod 4) then G = Kn and r = 1. If n ≡ 0 or 2 (mod 4) then
G = Kn \ I and r = 2, where I is a 1-factor of G and {∞1,∞2} ∈ I. If n ≡ 9
(mod 12) and p1 = 3 then G = Kn \ F

′ and r = 3, where F ′ is a 2-factor of G that
consists of 3-cycles only and one of them is induced by V ′′. For all remaining cases
when n ≡ 1 (mod 4), some modifications to the above method are necessary and
then 2-factorizations which are constructed are not (2, r)-rotational. Nevertheless,
the priority was to reduce the number of different constructions which could be used.
With respect to the large number of instances to verify, in order to simplify compu-
tations and to significantly shorten output files, the main assumption was made to
have every solution represented just by a single base 2-factor.

For the completeness of results, solutions for the cases when the Oberwolfach
problem has been settled before, are also included. The complete set of files is avail-
able from the author at http://home.agh.edu.pl/~meszka/op.html. Although the
authors of [15] claim they have constructed solutions for each instance and each or-
der 41 ≤ n ≤ 60, in the files they have provided online many instances are missing.
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Thus complete files for these orders are attached, too. Every text file (separate for
each 41 ≤ n ≤ 100) contains solutions for all instances for a given order n; files are
compressed using 7z archive format. Each line in a file corresponds to one instance; it
has the format OP (p1, p2, . . . , pt) : C1, C2, . . . , Ct, where each Ci contains consecutive
vertices of a cycle of length pi in the base 2-factor F , i = 1, 2, . . . , t.

2.1 n ≡ 3 (mod 4)

Let m = n−1
2

and V = Zm × {1, 2} ∪ {∞} be the vertex set of Kn. Then m is odd.
To get all remaining 2-factors it is enough to apply αi to the base 2-factor F , for
every i = 1, 2, . . . ,m.

2.2 n ≡ 0 (mod 4)

Let m = n−2
2

and V = Zm × {1, 2} ∪ {∞1,∞2} be the vertex set of Kn. Then m is
odd. Let I be a 1-factor with the edge set {{i1, i2} : i ∈ Zm} ∪ {∞1,∞2}. Thus,
in the base 2-factor F , the mixed difference 0 is excluded. The permutations αi,
i = 1, 2, . . . ,m, applied to F , produce all remaining 2-factors.

2.3 n ≡ 2 (mod 4)

Let m = n−2
2

and V = Zm × {1, 2} ∪ {∞1,∞2} be the vertex set of Kn. Then m

is even. Let I be a 1-factor with the edge set {{ij, (i +
m
2
)j} : i = 0, 1, . . . , m

2
−

1, j = 1, 2} ∪ {∞1,∞2}. In this way the base 2-factor F does not contain edges
of pure difference m

2
of both types. Similarly to the above, the permutations αi,

i = 1, 2, . . . ,m, are applied to F to get all remaining 2-factors.

2.4 n ≡ 1 (mod 4)

Since m = n−1
2

is even, in order to use pure differences m
2
, constructions used pre-

viously have to be modified. Let V = Zm × {1, 2} ∪ {∞} be the vertex set of Kn.
Although α is not assumed to be an automorphism of F anymore and two base
2-factors F and F ′ are needed to generate F , it is possible to easily transform F to
F ′ and to get in this way a 2-factorization F represented just by a single 2-factor F .
To do this, four cases are considered separately:

(1) p1 ≥ 5: To construct F , all pure, mixed and infinity differences except for the
mixed difference m

2
are used. Moreover, it is required that Cp1 contains the path

(01,
m
2 1
, m

2 2
, 02). Let F ′ denote a 2-factor obtained from F by replacing the edges

{01,
m
2 1
}, {02,

m
2 2
} with {01,

m
2 2
}, {02,

m
2 1
}. This transformation does not change the

length of Cp1 . Instead of pure differences m
2
of both types, mixed difference m

2
is used

twice in F ′. Then F = {F, αF, α2F, . . . , α
m−2

2 F, α
m

2 F ′, α
m+2

2 F ′, . . . , αm−1F ′}.

(2) p1 = 4 and n ≡ 1 (mod 8): Notice that pt = 3. It is assumed that Cp1 =
(01, 22,

m
2 1
,∞) and Cpt = (02, 11,

m
2 2
). Let F ′ be a 2-factor obtained from F by
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replacing Cp1 , Cpt with cycles (11, 02,∞, m
2 2
), (01,

m
2 1
, 22). Notice that both these

pairs of cycles contain the same vertices and differ in the use of the pure difference
m
2

(of type 1 missing in the first pair and of type 2 missing in the second) and
repeated infinity differences (type 1 in the first pair and type 2 in the second). Then

F = {F, αF, α2F, . . . , α
m−2

2 F, α
m

2 F ′, α
m+2

2 F ′, . . . , αm−1F ′}.

(3) p1 = 4 and n ≡ 5 (mod 8): A parity argument determines that the above
construction (2) cannot be used. Let F ′ be a 2-factor obtained from F by applying
a permutation β such that β(i1) = i2, β(i2) = ((i + m

2
)1) and β(∞) = ∞, for each

i = 0, 1, . . . ,m− 1. Then F = {F, αF ′, α2F, α3F ′, . . . , αm−2F, αm−1F ′}.

(4) p1 = 3: Then n ≡ 9 (mod 12). Letm′ = n−3
2
. In this case a solution that is (2, 3)-

rotational is constructed. To construct F , all pure, mixed and infinity differences
except for pure differences ±m′

3
of both types, are used. Let F ∗ = {{i1, (

m′

3
+

i)1, (
2m′

3
+ i)1}, {i2, (

m′

3
+ i)2, (

2m′

3
+ i)2} : i = 0, 1, . . . , m

′

3
−1}∪{∞1,∞2,∞3}. Then

F = {F, αF, α2, αm′−1F, F ∗}.

For any order n, the list of all instances OP (p1, p2, . . . , pt) simply contains all par-
titions of n into parts, none less than 3. Enumerations of such partitions, for each
41 ≤ n ≤ 100, are included in Table 1. In the case of each instance, purely combina-
torial methods were used to construct a required 2-factorization. A construction of a
base 2-factor F was split into two stages: in the first edges of F were partitioned just
according to their type, and in the second vertices were labeled. To accomplish both
steps efficiently, several randomized searches were applied. This approach allowed to
generate all solutions in average computational time 0.6 second (for n = 61) and 8.8
second (for n = 97) per instance on one core of the Intel Xeon E5-2680v3 2.5 GHz
processor. Due to the large number of instances to verify, a cluster of HPE ProLiant
XL730f Gen9 servers, each with two such processors and 12 cores per processor, was
used.
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n i n i n i n i

41 2075 42 2438 43 2842 44 3323

45 3872 46 4510 47 5237 48 6095

49 7056 50 8182 51 9465 52 10945

53 12625 54 14578 55 16779 56 19323

57 22210 58 25519 59 29269 60 33581

61 38438 62 44004 63 50305 64 57480

65 65585 66 74831 67 85241 68 97084

69 110441 70 125577 71 142627 72 161955

73 183669 74 208233 75 235858 76 267016

77 302008 78 341474 79 385714 80 435525

81 491365 82 554102 83 624363 84 703263

85 791483 86 890414 87 1001014 88 1124831

89 1263105 90 1417812 91 1590370 92 1783200

93 1998184 94 2238095 95 2505329 96 2803342

97 3134927 98 3504321 99 3915113 100 4372211

Table 1: The number i of instances for order n
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