Labeled packing of non-star trees into their $k^{\text {th }}$ power, $k \geq 5$
 Maidoun Mortada* Sara Nasser ${ }^{\dagger}$
 Faculty of Sciences (I), Mathematics Department KALMA Laboratory, Lebanese University
 Beirut, Lebanon
 maydoun.mortada@ul.edu.lb sara.nasser@liu.edu.lb

Hamamache Kheddouci
Lyon 1 University, LIRIS Lab. UMR CNRS 5205
Bêtiment Nautibus, Lyon
France
hamamache.kheddouci@univ-lyon1.fr

Abstract

Duchêne et al. [Australas. J. Combin. 57 (2013), 109-126] introduced a new variant of the graph packing problem called the labeled packing of a graph, which aims to study the packing of a vertex labeled graph. In this paper, we show that there exists a labeled packing of a non-star tree T into its $k^{\text {th }}$ power $T^{k}, k \geq 5$, with $m_{T}+1$ labels, where m_{T} denotes the maximum number of leaves which can be removed from T in such a way that the tree so obtained is a non-star one.

1 Introduction

All graphs considered in this paper are finite. For a graph $G, V(G)$ and $E(G)$ will denote its vertex set and edge set respectively. For any two vertices x and y in $V(G)$, the edge between x and y is denoted by $x y$. We denote the cardinality of $V(G)$ and

[^0]$E(G)$ by $v(G)$ and $e(G)$ respectively. We denote by $N_{G}(x)$ the set of neighbors of a vertex x in G. The degree $d_{G}(x)$ of a vertex x in G is the cardinality of the set $N_{G}(x)$. For short, we use $d(x)$ instead of $d_{G}(x)$ and $N(x)$ instead of $N_{G}(x)$. The distance between two vertices of G, say x and y, is denoted by $\operatorname{dist}_{G}(x, y)$, and for simplicity we usually use $\operatorname{dist}(x, y)$. We say that a graph H is a subgraph of G if and only if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. Let H be a subgraph of G; we say that H is an induced subgraph of G if every edge in $E(G)$ whose vertices are in $V(H)$ is also an edge in $E(H)$. For $U \subseteq V(G)$, we denote by $G-U$ the graph obtained from G after deleting all the vertices in U and their incident edges. For $F \subseteq E(G)$, we define $G-F$ as the graph obtained from G after removing all the edges in F. A graph G is said to be connected if any two vertices of G are joined by a path. A connected component of a graph G is a maximal induced connected subgraph (with respect to \subseteq). We denote by $C_{G}(x)$ the connected component of G containing x.

Let k be an integer with $k \geq 2$. We denote by G^{k} the $k^{\text {th }}$ power of G, and it is the graph obtained from G after adding the edges $x y$ whenever $x y \notin E(G)$ and $\operatorname{dist}(x, y) \leq k$.

A vertex of degree one in a tree is called a leaf. One can easily notice that the removal of a set of leaves from a non-star tree may result in either a non-star tree or a star one. For a non-star tree T, we denote by m_{T} the maximum number of leaves that can be removed from T in such a way that the obtained graph is a non-star tree. The number of edges of a path P is its length $l(P)$. We denote by P_{n} a path of order n, and we say that a path is an $x y$-path if x and y are its ends. Let $P=v_{1} v_{2} \ldots v_{n}$ be a path, if $P_{1}, P_{2}, \ldots, P_{k}, k \geq 2$, are pairwise vertex disjoint subpaths of P such that $V(P)=\bigcup_{i=1}^{k} V\left(P_{i}\right), P_{i}$ is an $x_{i} y_{i}$-path with $x_{1}=v_{1}, y_{k}=v_{n}$ and $y_{i} x_{i+1} \in E(P)$ for $i=1,2, \ldots, k-1$, then we write $P=P_{1} P_{2} \ldots P_{k}$.

The concept of graph packing was first introduced independently by Bollobás and Eldridge [1] as well as by Sauer and Spencer [6] in the late 1970s, and it was defined as follows: Let G be a graph of order n, and let σ be a permutation from $V(G)$ to $V\left(K_{n}\right)$. The map $\sigma^{*}: E(G) \rightarrow E\left(K_{n}\right)$ such that $\sigma^{*}(x y)=\sigma(x) \sigma(y)$ is the map induced by σ. We say that there is a packing of k copies of G (into the complete graph K_{n}) if there exist k permutations $\sigma_{i}: V(G) \rightarrow V\left(K_{n}\right)$, where $i=1, \ldots, k$, such that $\sigma_{i}^{*}(E(G)) \cap \sigma_{j}^{*}(E(G))=\emptyset$ for $i \neq j$. Such a packing will be called a k-placement of G. Thus, $\sigma: V(G) \rightarrow V\left(K_{n}\right)$ is a 2-placement (or embedding) of G if whenever an edge $x y$ belongs to $E(G)$, then $\sigma(x) \sigma(y)$ does not belong to $E(G)$; that is if G has a 2-placement, then G is a subgraph of its complement. A permutation σ on $V(G)$ such that $\sigma(x) \neq x$ for every x in $V(G)$ is called a fixed point free permutation.

The problem of packing paths and trees in their complements has been a longstanding fundamental inquiry in combinatorics, extensively explored in existing literature. To access an overview of this field, we refer to the survey articles of Woźniak [10] and Yap [12]. In [2], a complete description of all graphs with $v(G)=n$ and $e(G)=n-2$ admitting a 2-placement is given. A similar result about graphs with $v(G)=n$ and $e(G)=n$ is provided in [4]. Concerning non-star trees, it is wellknown that any non-star tree is contained in its own complement. This result has
been improved in many ways especially in considering some additional information and conditions about embedding. An example of such a result is the following theorem contained as a lemma in [11]:

Theorem 1.1. Let T be a non-star tree of order n with $n>3$. Then there exists a 2 -placement σ of T such that for every $x \in V(T)$, $\operatorname{dist}(x, \sigma(x)) \leq 3$.

This theorem immediately implies the following:
Corollary 1.2. Let T be a non-star tree of order n with $n>3$. Then there exists an embedding σ of T such that $\sigma(T) \subset T^{7}$.

In [5], Kheddouci et al. gave a better improvement in the following theorem:
Theorem 1.3. Let T be a non-star tree and let x be a vertex of T. Then, there exists a permutation σ on $V(T)$ satisfying the following four conditions:

1. σ is a 2-placement of T.
2. $\sigma(T) \subseteq T^{4}$.
3. $\operatorname{dist}(x, \sigma(x))=1$.
4. for every neighbor y of $x, \operatorname{dist}(y, \sigma(y)) \leq 2$.

Labeled graph packing problem is a well-known field of graph theory that has been considerably investigated. It was introduced by E. Duchêne et al. in [3]:

Definition 1.4. Consider a graph G on n vertices. Let f be a mapping from $V(G)$ into the set $\{1,2, \ldots, p\}$, where $p \in \mathbb{N}^{*}$. The mapping f is called a p-labeled packing of k copies of G into K_{n} if there exist k permutations $\sigma_{i}: V(G) \rightarrow V\left(K_{n}\right)$, where $i=1, \ldots, k$, such that:

1. $\sigma_{i}^{*}(E(G)) \cap \sigma_{j}^{*}(E(G))=\emptyset$ for all $i \neq j$.
2. For every vertex v of G, we have $f(v)=f\left(\sigma_{1}(v)\right)=f\left(\sigma_{2}(v)\right)=\cdots=f\left(\sigma_{k}(v)\right)$.

The maximum positive integer p for which G admits a p-labeled packing of k copies of G is called the labeled k-packing number of G and it is denoted by $\lambda_{k}(G)$.
E. Duchêne et al. also studied the labeled packing of two copies of graphs and proved the following result presented as a lemma in [3]:

Theorem 1.5. Let G be a graph on n vertices, and let I be a maximum independent set of G. If there exists an embedding of G into K_{n}, then

$$
\lambda_{2}(G) \leq|I|+\left\lfloor\frac{n-|I|}{2}\right\rfloor .
$$

Moreover, Tahraoui et al. in [8] gave exact values of $\lambda_{2}(G)$ when G is a caterpillar or a path in addition to a lower bound of $\lambda_{2}(T)$, where T is a non-star tree. In 2017, Tahraoui et al. in [7] improved Woźniak's bound present in [9] and they showed the following:

Theorem 1.6. Let G be a graph with $v(G)=n$ such that $n \geq 2$ and $e(G) \leq n-2$. Then, $\lambda_{2}(G) \geq\left\lfloor\frac{2 n}{3}\right\rfloor$.

In this paper, we are concerned with finding a p-labeled packing of G into G^{k}, and the definition of this new problem is given below:

Definition 1.7. Let f be a mapping from $V(G)$ into the set $\{1,2, \ldots, p\}$, where $p \in \mathbb{N}^{*}$. The mapping f is called a p-labeled packing of G into G^{k} if there exists a 'permutation $\sigma: V(G) \rightarrow V\left(K_{n}\right)$, such that:

1. σ is a 2-placement of G.
2. $\sigma(G) \subseteq G^{k}$.
3. For every vertex v of G, we have $f(v)=f(\sigma(v))$.

The maximum positive integer p for which G admits a p-labeled packing of G into G^{k} is called the labeled packing k-power number and it is denoted by $w^{k}(G)$.

In Section 2, we pass by the labeled packing of a non-star tree T into $T^{k}, k \geq 5$, through a specific type of permutation:

Definition 1.8. Let T be a non-star tree and let x be a vertex of T. Then a fixed point free permutation σ on $V(T)$ is called a (T, x)-good 2-placement if it satisfies the following conditions:

1. σ is a 2-placement of T.
2. $\sigma(T) \subseteq T^{5}$.
3. $\operatorname{dist}(x, \sigma(x)) \leq 2$.
4. $\operatorname{dist}(y, \sigma(y)) \leq 3$ for every neighbor y of x.
5. $\operatorname{dist}(y, \sigma(y)) \leq 4$ for every vertex y of T.

We prove then:
Theorem 1.9. Let T be a non-star tree and let x be a vertex of T. Then there exists a (T, x)-good 2-placement.

The above result allows us easily to find a lower bound of $w^{k}(T), k \geq 5$, where we will prove:
Corollary 1.10. $w^{k}(T) \geq m_{T}+1, k \geq 5$ for every non-star tree T on n vertices.

2 Labeled packing of a non-star tree T into $T^{k}, k \geq 5$

Before proving Theorem 1.9, we need to present some definitions. Let T be a nonstar tree and let $x y$ be an edge in T. We call a neighbor tree of y the connected component containing x in $T-\{x y\}$, and we denote it by $T_{(x, y)}$. Now, $T_{(x, y)}$ is said to be a neighbor F-tree of y if $T_{(x, y)}$ is a path of length at most two such that x is an end of $T_{(x, y)}$ whenever $T_{(x, y)}$ is a path of length two.

In order to prove Theorem 1.9, we have to pass first by the good 2-placement of paths:

Definition 2.1. Consider a path $P_{n}, n \geq 4$. A fixed point free permutation σ on $V\left(P_{n}\right)$ is called a P_{n}-good path 2-placement if it satisfies the following conditions:

1. σ is a 2-placement of P_{n}.
2. $\sigma\left(P_{n}\right) \subseteq P_{n}^{5}$.
3. $\operatorname{dist}(y, \sigma(y)) \leq 2$ for every vertex y of P_{n}.

We are going to prove:
Theorem 2.2. There exists a P_{n}-good path 2-placement for any path $P_{n}, n \geq 4$.
To build the proof of the above theorem, we use the following lemma:
Lemma 2.3. For every integer $n \geq 8$, there exists $a, b, c \in W$ such that $n=$ $4 a+5 b+6 c$.

Proof. The proof is by induction. Clearly, we are done for $n=8$. Suppose it is true up to n with $n \geq 9$. If $n+1$ is a multiple of 4,5 or 6 , then we are done. Otherwise, there exist, by induction, $a, b, c \in W$ such that $n=4 a+5 b+6 c$. Clearly, $a+b+c \geq 2$ as $n \geq 9$. If $a \geq 1$, then $n+1=4(a-1)+5(b+1)+6 c$. Otherwise, we will consider two cases regarding b. If $b \geq 1$, then $n+1=5(b-1)+6(c+1)$. If $b=0$, then $c \geq 2$, and so $n+1=6 c+1=(4 \times 2)+5+6(c-2)$.

Proof of Theorem 2.2. We proceed by induction. For each path $P_{n}, 4 \leq n \leq 7$, we will introduce below a P_{n}-good path 2-placement σ :

- For $P_{4}=x_{1} x_{2} x_{3} x_{4}, \sigma=\left(x_{1} x_{2} x_{4} x_{3}\right)$ is a P_{4}-good path 2-placement.
- For $P_{5}=x_{1} x_{2} x_{3} x_{4} x_{5}, \sigma=\left(x_{1} x_{2} x_{4} x_{5} x_{3}\right)$ is a P_{5}-good path 2-placement.
- For $P_{6}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}, \sigma=\left(x_{1} x_{2} x_{4} x_{6} x_{5} x_{3}\right)$ is a P_{6}-good path 2-placement.
- For $P_{7}=x_{1} x_{2} x_{3} x_{4} x_{5} x_{6} x_{7}, \sigma=\left(\begin{array}{llllll}x_{1} & x_{2} & x_{4} & x_{6} & x_{7} & x_{5}\end{array} x_{3}\right)$ is a P_{7}-good path 2-placement.

For $n \geq 8$, let $a, b, c \in W$ such that $n=4 a+5 b+6 c$. Then, there exists $P_{4,1}, \ldots, P_{4, a}$, $P_{5,1}, \ldots, P_{5, b}, P_{6,1}, \ldots, P_{6, c}$, where $P_{i, j}$ is a subpath of P of order i such that $P_{n}=$ $P_{4,1} \ldots P_{4, a} P_{5,1} \ldots P_{5, b} P_{6,1} \ldots P_{6, c}$. It is clear that there exists a $P_{i, j}$ good path 2placement σ_{i}^{j} for $4 \leq i \leq 6$ and $1 \leq j \leq k$ where $k \in\{a, b, c\}$. Thus, $\sigma=$ $\sigma_{4}^{1} \ldots \sigma_{4}^{a} \sigma_{5}^{1} \ldots \sigma_{5}^{b} \sigma_{6}^{1} \ldots \sigma_{6}^{c}$ is a P_{n}-good path 2-placement.

Regarding the proof of Theorem 1.9, an important technique, demonstrated as a lemma, is needed in order to facilitate the presentation of the proof.

Lemma 2.4. Consider a non-star tree T containing a vertex x such that $d(x)=n \geq 2$ and $T_{\left(x_{i}, x\right)}$ is a neighbor F-tree of x for $i=1, \ldots, m, 1 \leq m<n$, where $\left\{x_{1}, \ldots, x_{n}\right\}$ are the neighbors of x. Let $T^{\prime}=T-\left\{x x_{i}: i=1, \ldots, m\right\}$. If there exists a $\left(C_{T^{\prime}}(x), z\right)$-good 2-placement σ_{0} for some z in $C_{T^{\prime}}(x)$ such that $\operatorname{dist}\left(x, \sigma_{0}(x)\right) \leq 2$ and $\operatorname{dist}\left(y, \sigma_{0}(y)\right) \leq 2$ for any y in $N(x) \cap C_{T^{\prime}}(x)$, then there exists a (T, z)-good 2 -placement σ such that $\operatorname{dist}(u, \sigma(u)) \leq \operatorname{dist}\left(u, \sigma_{0}(u)\right)$ for every $u \in C_{T^{\prime}}(x)$.

Proof. Let r, p and q be the number of neighbor F-trees of x that are paths of length zero, one and two respectively in the set $\left\{T_{\left(x_{i}, x\right)}: i=1, \ldots, m\right\}$. In what follows we need to rename some neighbors of x for the sake of the proof. Let $T_{i}=T_{\left(x_{i}, x\right)}$ for $i=1, \ldots, m$ such that if $r>0$, then T_{i} is the vertex a_{i} for $i=1, \ldots, r$, if $p>0$, then $T_{i}=b_{i-r} c_{i-r}$ for $i=r+1, \ldots, p+r$ and if $q>0$, then $T_{i}=d_{i-(p+r)} e_{i-(p+r)} f_{i-(p+r)}$ for $i=r+p+1, \ldots, r+p+q$. Set $T^{(0)}=C_{T^{\prime}}(x), T^{(1)}=T^{(0)} \cup \bigcup_{i=1}^{i=r} T_{i}, T^{(2)}=$ $T^{(1)} \cup \bigcup_{i=1}^{i=p} T_{i}, T^{(3)}=T^{(2)} \cup \bigcup_{i=1}^{i=q} T_{i}$. In order to define a (T, z)-good 2-placement, we are going to extend σ_{i} into σ_{i+1}, where σ_{i+1} is a $\left(T^{(i+1)}, z\right)$-good 2-placement for every $i \in\{0,1,2\}$ and σ_{3} is the desired (T, z)-good 2-placement. To construct σ_{3}, we need to introduce the permutations Θ, Υ and Δ. If $r>1, p>1$ and $q>1$, define Θ over $V\left(\bigcup_{i=1}^{i=r} T_{i}\right), \Upsilon$ over $V\left(\bigcup_{i=1}^{i=p} T_{i}\right)$ and Δ over $V\left(\bigcup_{i=1}^{i=q} T_{i}\right)$ respectively.
$\Theta=\left(a_{1} a_{2} \ldots a_{r}\right)$.
$\Upsilon=\left(b_{1} c_{1} b_{2} c_{2} \ldots b_{p} c_{p}\right)$.
$\Delta=\left(e_{1} e_{2} \ldots e_{q}\right)\left(d_{1} f_{1}\right)\left(d_{2} f_{2}\right) \ldots\left(d_{q} f_{q}\right)$.
Now, we are ready to define σ_{1}, then σ_{2} and finally σ_{3}.
If $r>1$, let $\sigma_{1}=\sigma_{0} \Theta$. For the case $r=1$, if there exists $u \in N_{T^{(0)}}(x)$ such that $\sigma_{0}(u)=x$, let

$$
\sigma_{1}(v)= \begin{cases}\sigma_{0}(v) & \text { if } v \in V\left(T^{(0)}\right)-\{u\} \\ a_{1} & \text { if } v=u \\ x & \text { if } v=a_{1}\end{cases}
$$

and if not, let

$$
\sigma_{1}(v)= \begin{cases}\sigma_{0}(v) & \text { if } v \in V\left(T^{(0)}\right)-\{x\} \\ a_{1} & \text { if } v=x \\ \sigma_{0}(x) & \text { if } v=a_{1}\end{cases}
$$

Finally, if $r=0$, let $\sigma_{1}=\sigma_{0}$.
In order to construct σ_{2}, we need as above to study three cases regarding the value of p. If $p>1$, let $\sigma_{2}=\sigma_{1} \Upsilon$. For the case $p=1$, let

$$
\sigma_{2}(v)= \begin{cases}\sigma_{1}(v) & \text { if } v \in V\left(T^{(1)}\right)-\{x\} \\ c_{1} & \text { if } v=x \\ \sigma_{1}(x) & \text { if } v=b_{1} \\ b_{1} & \text { if } v=c_{1}\end{cases}
$$

Finally, if $p=0$, let $\sigma_{2}=\sigma_{1}$.

Now, we are ready to define σ_{3}. If $q>1$, let $\sigma_{3}=\sigma_{2} \Delta$. For the case $q=1$, let

$$
\sigma_{3}(v)= \begin{cases}\sigma_{2}(v) & \text { if } v \in V\left(T^{(2)}\right)-\{x\} \\ e_{1} & \text { if } v=x \\ \sigma_{2}(x) & \text { if } v=d_{1} \\ f_{1} & \text { if } v=e_{1} \\ d_{1} & \text { if } v=f_{1}\end{cases}
$$

Finally, if $q=0$, let $\sigma_{3}=\sigma_{2}$.
Thus, σ_{3} is a (T, x)-good 2-placement.
Proof of Theorem 1.9. The proof is by induction on the order n of T. Since T is a non-star tree, then $n \geq 4$. For $n=4, P_{4}$ is the only non-star tree, and so by Theorem 2.2, there exists a P_{4}-good path 2-placement.

Now, let T be a non-star tree of order $n ; n \geq 5$, and suppose that the theorem holds for every non-star tree of order $m<n$. Let x be a vertex of T. If T is a path, then the result holds directly by Theorem 2.2. In what follows, T is not a path.

If there exists a vertex u in T such that $N(u)=\left\{a_{1}, \ldots, a_{k}\right\}$ with $k \geq 2$ where a_{i} is a leaf for all $i \in\{1, \ldots, k\}$ and $d(u)=k+1$, then consider $T^{\prime}=T-\left\{a_{1}, \ldots, a_{k}\right\}$. If T^{\prime} is a non-star tree, $\sigma=\sigma_{i}\left(a_{1} \ldots a_{k}\right)$ with $i \in\{1,2\}$ is a ($\left.T, x\right)$-good 2-placement, where σ_{1} is a $\left(T^{\prime}, x\right)$-good 2-placement if $x \in T^{\prime}$ and σ_{2} is a (T^{\prime}, u)-good 2-placement by induction. If T^{\prime} is a star, then T is isomorphic to the tree in Figure 1 under which we define a (T, x)-good 2-placement.

Otherwise, for every $u \in V(T)$, if $\left\{a_{1}, \ldots, a_{k}\right\} \subset N(u)$ where a_{i} is a leaf for all $i \in\{1, \ldots, k\}$ and $k \geq 2$, then $d(u)>k+1$. Since T is a non-star tree, then there exists a path P in T containing x with $l(P) \geq 3$. By Theorem 2.2, there exists a P-good path 2-placement σ_{0}. Set $P=x_{1} x_{2} \ldots x_{r}$ where $x=x_{t}$ for some $t, 1 \leq t \leq r$. Clearly, $T-P \neq \emptyset$. For every $i \in\{1, \ldots, r\}$, set $N\left(x_{i}\right)=N_{i} \cup F_{i}$, where $N_{i}=\left\{w \in N\left(x_{i}\right)-V(P): T_{\left(w, x_{i}\right)}\right.$ is a non star tree $\}$ and $F_{i}=\left\{w \in N\left(x_{i}\right)-V(P)\right.$: $T_{\left(w, x_{i}\right)}$ is a neighbor F-tree of $\left.x_{i}\right\}$.

Set $T_{0}=P$ and $T_{i+1}=T_{i} \cup\left(\underset{w \in N\left(x_{i+1}\right)-V(P)}{\bigcup} T_{\left(w, x_{i+1}\right)}\right)$ for $i=0, \ldots, r-1$. Now, we are going to extend σ_{0} into a (T, x)-good 2-placement. This extension is done successively starting from $i=0$ and ending at $i=r-1$, by extending σ_{i} which is a $\left(T_{i}, x\right)$-good 2-placement into σ_{i+1} which is a ($\left.T_{i+1}, x\right)$-good 2-placement, in order to reach σ_{r} which is the desired (T, x)-good 2-placement, and the extension will be as following: if $N_{i+1} \neq \emptyset$, then let $N_{i+1}=\left\{w_{i+1}^{1}, w_{i+1}^{2}, \ldots, w_{i+1}^{l_{i+1}}\right\}$, where $l_{i+1} \geq 1$. By induction, there exists a $\left(T_{\left(w_{i+1}^{j}, x_{i+1}\right)}, w_{i+1}^{j}\right)$-good 2-placement, say σ_{i+1}^{j}, $j=1, \ldots, l_{i+1}$, and let

$$
\sigma_{i+1}^{\prime}(v)= \begin{cases}\sigma_{i}(v) & \text { if } v \in V\left(T_{i}\right) \\ \sigma_{i+1}^{j}(v) & \text { if } v \in V\left(T_{\left(w_{i+1}^{j}, x_{i+1}\right)}\right)\end{cases}
$$

Otherwise, let $\sigma_{i+1}^{\prime}=\sigma_{i}$. Then σ_{i+1}^{\prime} is a $\left(T_{i} \cup\left(\bigcup_{w \in N_{i+1}} T_{\left(w, x_{i+1}\right)}\right), x\right)$-good 2placement.

Now, if $F_{i+1}=\emptyset$, then let $\sigma_{i+1}=\sigma_{i+1}^{\prime}$ which is a $\left(T_{i+1}, x\right)$-good 2-placement. Otherwise, there exists a $\left(T_{i+1}, x\right)$-good 2-placement, name it σ_{i+1}, by Lemma 2.4. Thus, σ_{r} is a (T, x)-good 2-placement.

Proof of Corollary 1.10. Let $T^{\prime}=T-\left\{\alpha_{1}, \ldots, \alpha_{m_{T}}\right\}$, where $\left\{\alpha_{1}, \ldots, \alpha_{m_{T}}\right\}$ is a maximal set of leaves that can be removed from T in such a way that the obtained tree is a non-star one. Since T^{\prime} is a non-star tree, then there exists a $\left(T^{\prime}, x\right)$-good 2-placement σ^{\prime} for some x in T^{\prime}. We define a packing σ of T into $T^{k}, k \geq 5$, as follows:

$$
\sigma(v)= \begin{cases}\sigma^{\prime}(v) & \text { if } v \in V\left(T^{\prime}\right), \\ v & \text { if } v=\alpha_{i} \text { for } i=1, \ldots, m_{T}\end{cases}
$$

Label α_{i} by i, for $i=1, \ldots, m_{T}$ and label all the vertices of T^{\prime} by $m_{T}+1$. Hence, we obtain an $\left(m_{T}+1\right)$-labeled packing of T into T^{k}, and so $w^{k}(T) \geq m_{T}+1$.

Figure 1: A non-star tree all of whose vertices are leaves except for two vertices x and y that are adjacent and $N(x) \cap N(y)=\emptyset$.

We are going to define a (T, v)-good 2-placement σ for every $v \in\left\{x, y, \alpha_{1}, \beta_{1}\right\}$:
If k is even, then consider

$$
\sigma= \begin{cases}\left(x \alpha_{2} \alpha_{1} y \beta_{1} \ldots \beta_{m}\right) & \text { if } k=2 \\ \left(x \alpha_{2} \alpha_{1} y \beta_{1} \ldots \beta_{m}\right)\left(\alpha_{3} \ldots \alpha_{k}\right) & \text { if } k>2\end{cases}
$$

If k is odd, then consider $\sigma=\left(x \alpha_{1} y \beta_{1} \ldots \beta_{m}\right)\left(\alpha_{2} \ldots \alpha_{k}\right)$.

References

[1] B. Bollobás and S.E. Eldridge, Packing of graphs and applications to computational complexity, J. Combin. Theory Ser. B 25 (1978), 105-124.
[2] D. Burns and S. Schuster, Every ($p, p-2$) graph is contained in its complement, J. Graph Theory 1 (1977), 277-279.
[3] E. Duchêne, H. Kheddouci, R. J. Nowakowski and M. A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013), 109-126.
[4] R. J. Faudree, C. C. Rousseau, R. H. Schelp and S. Schuster, Embedding Graphs in their Complements, Czechoslovak Math. J. 31 (1) (1981), 53-62.
[5] H. Kheddouci, J.F. Saclé and M. Woźniak, Packing two copies of a tree into its fourth power, Discrete Math. 213 (2000), 169-178.
[6] N. Sauer and J. Spencer, Edge disjoint placement of graphs, J. Combin. Theory Ser. B 25 (1978), 295-302.
[7] M. A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled embedding of ($n, n-2$)-graphs in their complements, Discussiones Mathematicae 37 (2017), 1015-1025.
[8] M. A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015), 816-824.
[9] M. Woźniak, Embedding Graphs of Small Size, Discrete Appl. Math. 51 (1994), 233-241.
[10] M. Woźniak, Packing of graphs and permutations-a survey, Discrete Math. 276 (2004), 379-391.
[11] M. Woźniak, A note on embedding graphs without small cycles, Colloq. Math. Soc. J. Bolyai 60 (1991), 727-732.
[12] H. P. Yap, Packing of graphs-a survey, Discrete Math. 72 (1988), 395-404.

[^0]: * Also at:

 Faculty of Sciences (IV), Mathematics Department, KALMA Laboratory, Lebanese University, Baalbek;
 ${ }^{(*)}$ Graph Theory and Operation Research, Department of Mathematics and Physics, Lebanese International University (LIU), Beirut, Lebanon;
 (\#)Graph Theory and Operation Research, Department of Mathematics and Physics, The International University of Beirut (BIU), Beirut, Lebanon.
 \dagger Also at $(*)$ and (\#).

