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Abstract

Duchêne et al. [Australas. J. Combin. 57 (2013), 109–126] introduced a
new variant of the graph packing problem called the labeled packing of
a graph, which aims to study the packing of a vertex labeled graph. In
this paper, we show that there exists a labeled packing of a non-star tree
T into its kth power T k, k ≥ 5, with mT + 1 labels, where mT denotes
the maximum number of leaves which can be removed from T in such a
way that the tree so obtained is a non-star one.

1 Introduction

All graphs considered in this paper are finite. For a graph G, V (G) and E(G) will
denote its vertex set and edge set respectively. For any two vertices x and y in V (G),
the edge between x and y is denoted by xy. We denote the cardinality of V (G) and
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E(G) by v(G) and e(G) respectively. We denote by NG(x) the set of neighbors of
a vertex x in G. The degree dG(x) of a vertex x in G is the cardinality of the set
NG(x). For short, we use d(x) instead of dG(x) and N(x) instead of NG(x). The
distance between two vertices of G, say x and y, is denoted by distG(x, y), and for
simplicity we usually use dist(x, y). We say that a graph H is a subgraph of G if and
only if V (H) ⊆ V (G) and E(H) ⊆ E(G). Let H be a subgraph of G; we say that
H is an induced subgraph of G if every edge in E(G) whose vertices are in V (H)
is also an edge in E(H). For U ⊆ V (G), we denote by G − U the graph obtained
from G after deleting all the vertices in U and their incident edges. For F ⊆ E(G),
we define G − F as the graph obtained from G after removing all the edges in F .
A graph G is said to be connected if any two vertices of G are joined by a path. A
connected component of a graph G is a maximal induced connected subgraph (with
respect to ⊆). We denote by CG(x) the connected component of G containing x.

Let k be an integer with k ≥ 2. We denote by Gk the kth power of G, and it
is the graph obtained from G after adding the edges xy whenever xy /∈ E(G) and
dist(x, y) ≤ k.

A vertex of degree one in a tree is called a leaf. One can easily notice that the
removal of a set of leaves from a non-star tree may result in either a non-star tree or
a star one. For a non-star tree T , we denote by mT the maximum number of leaves
that can be removed from T in such a way that the obtained graph is a non-star tree.
The number of edges of a path P is its length l(P ). We denote by Pn a path of order
n, and we say that a path is an xy-path if x and y are its ends. Let P = v1v2 . . . vn
be a path, if P1, P2, . . . , Pk, k ≥ 2, are pairwise vertex disjoint subpaths of P such

that V (P ) =
k
⋃

i=1

V (Pi), Pi is an xiyi-path with x1 = v1, yk = vn and yixi+1 ∈ E(P )

for i = 1, 2, . . . , k − 1, then we write P = P1P2 . . . Pk.

The concept of graph packing was first introduced independently by Bollobás and
Eldridge [1] as well as by Sauer and Spencer [6] in the late 1970s, and it was defined
as follows: Let G be a graph of order n, and let σ be a permutation from V (G)
to V (Kn). The map σ∗ : E(G) → E(Kn) such that σ∗(xy) = σ(x)σ(y) is the map
induced by σ. We say that there is a packing of k copies of G (into the complete
graph Kn) if there exist k permutations σi : V (G) → V (Kn), where i = 1, . . . , k, such
that σ∗

i (E(G))∩σ∗
j (E(G)) = ∅ for i 6= j. Such a packing will be called a k-placement

of G. Thus, σ : V (G) → V (Kn) is a 2-placement (or embedding) of G if whenever an
edge xy belongs to E(G), then σ(x)σ(y) does not belong to E(G); that is if G has
a 2-placement, then G is a subgraph of its complement. A permutation σ on V (G)
such that σ(x) 6= x for every x in V (G) is called a fixed point free permutation.

The problem of packing paths and trees in their complements has been a long-
standing fundamental inquiry in combinatorics, extensively explored in existing lit-
erature. To access an overview of this field, we refer to the survey articles of Woźniak
[10] and Yap [12]. In [2], a complete description of all graphs with v(G) = n and
e(G) = n − 2 admitting a 2-placement is given. A similar result about graphs with
v(G) = n and e(G) = n is provided in [4]. Concerning non-star trees, it is well-
known that any non-star tree is contained in its own complement. This result has
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been improved in many ways especially in considering some additional information
and conditions about embedding. An example of such a result is the following theo-
rem contained as a lemma in [11]:

Theorem 1.1. Let T be a non-star tree of order n with n > 3. Then there exists a
2-placement σ of T such that for every x ∈ V (T ), dist(x, σ(x)) ≤ 3.

This theorem immediately implies the following:

Corollary 1.2. Let T be a non-star tree of order n with n > 3. Then there exists
an embedding σ of T such that σ(T ) ⊂ T 7.

In [5], Kheddouci et al. gave a better improvement in the following theorem:

Theorem 1.3. Let T be a non-star tree and let x be a vertex of T. Then, there exists
a permutation σ on V (T ) satisfying the following four conditions:

1. σ is a 2-placement of T .

2. σ(T ) ⊆ T 4.

3. dist(x, σ(x)) = 1.

4. for every neighbor y of x, dist(y, σ(y)) ≤ 2.

Labeled graph packing problem is a well-known field of graph theory that has been
considerably investigated. It was introduced by E. Duchêne et al. in [3]:

Definition 1.4. Consider a graph G on n vertices. Let f be a mapping from V (G)
into the set {1, 2, . . . , p}, where p ∈ N

∗. The mapping f is called a p-labeled packing
of k copies of G into Kn if there exist k permutations σi : V (G) → V (Kn), where
i = 1, . . . , k, such that:

1. σ∗
i (E(G)) ∩ σ∗

j (E(G)) = ∅ for all i 6= j.

2. For every vertex v of G, we have f(v) = f(σ1(v)) = f(σ2(v)) = · · · = f(σk(v)).

The maximum positive integer p for which G admits a p-labeled packing of k
copies of G is called the labeled k-packing number of G and it is denoted by λk(G).

E. Duchêne et al. also studied the labeled packing of two copies of graphs and
proved the following result presented as a lemma in [3]:

Theorem 1.5. Let G be a graph on n vertices, and let I be a maximum independent
set of G. If there exists an embedding of G into Kn, then

λ2(G) ≤ |I|+ ⌊n−|I|
2

⌋.

Moreover, Tahraoui et al. in [8] gave exact values of λ2(G) when G is a caterpillar
or a path in addition to a lower bound of λ2(T ), where T is a non-star tree. In 2017,
Tahraoui et al. in [7] improved Woźniak’s bound present in [9] and they showed the
following:
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Theorem 1.6. Let G be a graph with v(G) = n such that n ≥ 2 and e(G) ≤ n− 2.
Then, λ2(G) ≥ ⌊2n

3
⌋.

In this paper, we are concerned with finding a p-labeled packing of G into Gk,
and the definition of this new problem is given below:

Definition 1.7. Let f be a mapping from V (G) into the set {1, 2, . . . , p}, where
p ∈ N

∗. The mapping f is called a p-labeled packing of G into Gk if there exists a
‘permutation σ : V (G) → V (Kn), such that:

1. σ is a 2-placement of G.

2. σ(G) ⊆ Gk.

3. For every vertex v of G, we have f(v) = f(σ(v)).

The maximum positive integer p for which G admits a p-labeled packing of G
into Gk is called the labeled packing k-power number and it is denoted by wk(G).

In Section 2, we pass by the labeled packing of a non-star tree T into T k, k ≥ 5,
through a specific type of permutation:

Definition 1.8. Let T be a non-star tree and let x be a vertex of T . Then a fixed
point free permutation σ on V (T ) is called a (T, x)-good 2-placement if it satisfies
the following conditions:

1. σ is a 2-placement of T .

2. σ(T ) ⊆ T 5.

3. dist(x, σ(x)) ≤ 2.

4. dist(y, σ(y)) ≤ 3 for every neighbor y of x.

5. dist(y, σ(y)) ≤ 4 for every vertex y of T .

We prove then:

Theorem 1.9. Let T be a non-star tree and let x be a vertex of T . Then there exists
a (T, x)-good 2-placement.

The above result allows us easily to find a lower bound of wk(T ), k ≥ 5, where
we will prove:

Corollary 1.10. wk(T ) ≥ mT + 1, k ≥ 5 for every non-star tree T on n vertices.

2 Labeled packing of a non-star tree T into T k, k ≥ 5

Before proving Theorem 1.9, we need to present some definitions. Let T be a non-
star tree and let xy be an edge in T . We call a neighbor tree of y the connected
component containing x in T − {xy}, and we denote it by T(x,y). Now, T(x,y) is said
to be a neighbor F -tree of y if T(x,y) is a path of length at most two such that x is
an end of T(x,y) whenever T(x,y) is a path of length two.

In order to prove Theorem 1.9, we have to pass first by the good 2-placement of
paths:
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Definition 2.1. Consider a path Pn, n ≥ 4. A fixed point free permutation σ on
V (Pn) is called a Pn-good path 2-placement if it satisfies the following conditions:

1. σ is a 2-placement of Pn.

2. σ(Pn) ⊆ P 5
n .

3. dist(y, σ(y)) ≤ 2 for every vertex y of Pn.

We are going to prove:

Theorem 2.2. There exists a Pn-good path 2-placement for any path Pn, n ≥ 4.

To build the proof of the above theorem, we use the following lemma:

Lemma 2.3. For every integer n ≥ 8, there exists a, b, c ∈ W such that n =
4a+ 5b+ 6c.

Proof. The proof is by induction. Clearly, we are done for n = 8. Suppose it is true
up to n with n ≥ 9. If n+ 1 is a multiple of 4, 5 or 6, then we are done. Otherwise,
there exist, by induction, a, b, c ∈ W such that n = 4a+5b+6c. Clearly, a+b+c ≥ 2
as n ≥ 9. If a ≥ 1, then n+1 = 4(a− 1)+ 5(b+1)+ 6c. Otherwise, we will consider
two cases regarding b. If b ≥ 1, then n+1 = 5(b− 1)+ 6(c+1). If b = 0, then c ≥ 2,
and so n+ 1 = 6c+ 1 = (4× 2) + 5 + 6(c− 2).

Proof of Theorem 2.2. We proceed by induction. For each path Pn, 4 ≤ n ≤ 7,
we will introduce below a Pn-good path 2-placement σ:

• For P4 = x1x2x3x4, σ = (x1 x2 x4 x3) is a P4-good path 2-placement.

• For P5 = x1x2x3x4x5, σ = (x1 x2 x4 x5 x3) is a P5-good path 2-placement.

• For P6 = x1x2x3x4x5x6, σ = (x1 x2 x4 x6 x5 x3) is a P6-good path 2-placement.

• For P7 = x1x2x3x4x5x6x7, σ = (x1 x2 x4 x6 x7 x5 x3) is a P7-good path
2-placement.

For n ≥ 8, let a, b, c ∈ W such that n = 4a+5b+6c. Then, there exists P4,1, . . . , P4,a,
P5,1, . . . , P5,b, P6,1, . . . , P6,c, where Pi,j is a subpath of P of order i such that Pn =
P4,1 . . . P4,aP5,1 . . . P5,bP6,1 . . . P6,c. It is clear that there exists a Pi,j-good path 2-
placement σj

i for 4 ≤ i ≤ 6 and 1 ≤ j ≤ k where k ∈ {a, b, c}. Thus, σ =
σ1
4 . . . σ

a
4σ

1
5 . . . σ

b
5σ

1
6 . . . σ

c
6 is a Pn-good path 2-placement. �

Regarding the proof of Theorem 1.9, an important technique, demonstrated as a
lemma, is needed in order to facilitate the presentation of the proof.

Lemma 2.4. Consider a non-star tree T containing a vertex x such that d(x) = n ≥ 2
and T(xi,x) is a neighbor F -tree of x for i = 1, . . . ,m, 1 ≤ m < n, where {x1, . . . , xn}
are the neighbors of x. Let T ′ = T − {xxi : i = 1, . . . ,m}. If there exists a
(CT ′(x), z)-good 2-placement σ0 for some z in CT ′(x) such that dist(x, σ0(x)) ≤ 2
and dist(y, σ0(y)) ≤ 2 for any y in N(x) ∩ CT ′(x), then there exists a (T, z)-good
2-placement σ such that dist(u, σ(u)) ≤ dist(u, σ0(u)) for every u ∈ CT ′(x).
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Proof. Let r, p and q be the number of neighbor F -trees of x that are paths of length
zero, one and two respectively in the set {T(xi,x) : i = 1, . . . ,m}. In what follows we
need to rename some neighbors of x for the sake of the proof. Let Ti = T(xi,x) for
i = 1, . . . ,m such that if r > 0, then Ti is the vertex ai for i = 1, . . . , r, if p > 0, then
Ti = bi−rci−r for i = r + 1, . . . , p + r and if q > 0, then Ti = di−(p+r)ei−(p+r)fi−(p+r)

for i = r + p + 1, . . . , r + p + q. Set T (0) = CT ′(x), T (1) = T (0) ∪
i=r
⋃

i=1

Ti, T (2) =

T (1) ∪
i=p
⋃

i=1

Ti, T
(3) = T (2) ∪

i=q
⋃

i=1

Ti. In order to define a (T, z)-good 2-placement, we are

going to extend σi into σi+1, where σi+1 is a (T (i+1), z)-good 2-placement for every
i ∈ {0, 1, 2} and σ3 is the desired (T, z)-good 2-placement. To construct σ3, we
need to introduce the permutations Θ, Υ and ∆. If r > 1, p > 1 and q > 1, define

Θ over V (
i=r
⋃

i=1

Ti), Υ over V (
i=p
⋃

i=1

Ti) and ∆ over V (
i=q
⋃

i=1

Ti) respectively.

Θ = (a1 a2 . . . ar).

Υ = (b1 c1 b2 c2 . . . bp cp).

∆ = (e1 e2 . . . eq)(d1 f1)(d2 f2) . . . (dq fq).

Now, we are ready to define σ1, then σ2 and finally σ3.

If r > 1, let σ1 = σ0 Θ. For the case r = 1, if there exists u ∈ NT (0)(x) such that
σ0(u) = x, let

σ1(v) =











σ0(v) if v ∈ V (T (0))− {u},

a1 if v = u,

x if v = a1;

and if not, let

σ1(v) =











σ0(v) if v ∈ V (T (0))− {x},

a1 if v = x,

σ0(x) if v = a1.

Finally, if r = 0, let σ1 = σ0.

In order to construct σ2, we need as above to study three cases regarding the value
of p. If p > 1, let σ2 = σ1 Υ. For the case p = 1, let

σ2(v) =



















σ1(v) if v ∈ V (T (1))− {x},

c1 if v = x,

σ1(x) if v = b1,

b1 if v = c1.

Finally, if p = 0, let σ2 = σ1.
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Now, we are ready to define σ3. If q > 1, let σ3 = σ2 ∆. For the case q = 1, let

σ3(v) =































σ2(v) if v ∈ V (T (2))− {x},

e1 if v = x,

σ2(x) if v = d1,

f1 if v = e1,

d1 if v = f1.

Finally, if q = 0, let σ3 = σ2.

Thus, σ3 is a (T, x)-good 2-placement.

Proof of Theorem 1.9. The proof is by induction on the order n of T. Since T
is a non-star tree, then n ≥ 4. For n = 4, P4 is the only non-star tree, and so by
Theorem 2.2, there exists a P4-good path 2-placement.

Now, let T be a non-star tree of order n; n ≥ 5, and suppose that the theorem
holds for every non-star tree of order m < n. Let x be a vertex of T . If T is a path,
then the result holds directly by Theorem 2.2. In what follows, T is not a path.

If there exists a vertex u in T such that N(u) = {a1, . . . , ak} with k ≥ 2 where ai
is a leaf for all i ∈ {1, . . . , k} and d(u) = k+1, then consider T ′ = T −{a1, . . . , ak}. If
T ′ is a non-star tree, σ = σi (a1 . . . ak) with i ∈ {1, 2} is a (T, x)-good 2-placement,
where σ1 is a (T ′, x)-good 2-placement if x ∈ T ′ and σ2 is a (T ′, u)-good 2-placement
by induction. If T ′ is a star, then T is isomorphic to the tree in Figure 1 under which
we define a (T, x)-good 2-placement.

Otherwise, for every u ∈ V (T ), if {a1, . . . , ak} ⊂ N(u) where ai is a leaf for
all i ∈ {1, . . . , k} and k ≥ 2, then d(u) > k + 1. Since T is a non-star tree, then
there exists a path P in T containing x with l(P ) ≥ 3. By Theorem 2.2, there
exists a P -good path 2-placement σ0. Set P = x1x2 . . . xr where x = xt for some
t, 1 ≤ t ≤ r. Clearly, T −P 6= ∅. For every i ∈ {1, . . . , r}, set N(xi) = Ni∪Fi, where
Ni = {w ∈ N(xi)−V (P ) : T(w,xi) is a non star tree} and Fi = {w ∈ N(xi)−V (P ) :
T(w,xi) is a neighbor F -tree of xi}.

Set T0 = P and Ti+1 = Ti ∪

(

⋃

w∈N(xi+1)−V (P )

T(w,xi+1)

)

for i = 0, . . . , r − 1. Now,

we are going to extend σ0 into a (T, x)-good 2-placement. This extension is done
successively starting from i = 0 and ending at i = r − 1, by extending σi which
is a (Ti, x)-good 2-placement into σi+1 which is a (Ti+1, x)-good 2-placement, in
order to reach σr which is the desired (T, x)-good 2-placement, and the extension

will be as following: if Ni+1 6= ∅, then let Ni+1 = {w1
i+1, w

2
i+1, . . . , w

li+1

i+1 }, where

li+1 ≥ 1. By induction, there exists a (T(wj
i+1,xi+1)

, wj
i+1)-good 2-placement, say σj

i+1,

j = 1, . . . , li+1, and let

σ′
i+1(v) =

{

σi(v) if v ∈ V (Ti),

σj
i+1(v) if v ∈ V (T(wj

i+1,xi+1)
).
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Otherwise, let σ′
i+1 = σi. Then σ′

i+1 is a

(

Ti ∪

(

⋃

w∈Ni+1

T(w,xi+1)

)

, x

)

-good 2-

placement.

Now, if Fi+1 = ∅, then let σi+1 = σ′
i+1 which is a (Ti+1, x)-good 2-placement.

Otherwise, there exists a (Ti+1, x)-good 2-placement, name it σi+1, by Lemma 2.4.
Thus, σr is a (T, x)-good 2-placement. �

Proof of Corollary 1.10. Let T ′ = T − {α1, . . . , αmT
}, where {α1, . . . , αmT

} is a
maximal set of leaves that can be removed from T in such a way that the obtained
tree is a non-star one. Since T ′ is a non-star tree, then there exists a (T ′, x)-good
2-placement σ′ for some x in T ′. We define a packing σ of T into T k, k ≥ 5, as
follows:

σ(v) =

{

σ′(v) if v ∈ V (T ′),

v if v = αi for i = 1, . . . ,mT .

Label αi by i, for i = 1, . . . ,mT and label all the vertices of T ′ by mT + 1. Hence,
we obtain an (mT + 1)-labeled packing of T into T k, and so wk(T ) ≥ mT + 1. �

x
•

y
•

αk
•

α1
•

βm

•

β1
•

T

Figure 1: A non-star tree all of whose vertices are leaves except for two vertices x
and y that are adjacent and N(x) ∩N(y) = ∅.

We are going to define a (T, v)-good 2-placement σ for every v ∈ {x, y, α1, β1}:

If k is even, then consider

σ =

{

(xα2 α1 y β1 . . . βm) if k = 2,

(xα2 α1 y β1 . . . βm)(α3 . . . αk) if k > 2.

If k is odd, then consider σ = (xα1 y β1 . . . βm)(α2 . . . αk).
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