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Abstract

We characterize the class of cycle types that can achieve all Young tableau
shapes (except the trivial ones with a single row or a single column) under
the Robinson–Schensted (RS) correspondence, a property that we call
RS-completeness. We prove that for even n, cyclic permutations comprise
the only cycle type that is RS-complete. For odd n, cyclic permutations
and almost cyclic permutations (which have a cycle of length n− 1) are
the only RS-complete cycle types.

1 Introduction

The Robinson–Schensted (RS) correspondence, described in [10, 11] and generalized
in [5], is a way of mapping a sequence (typically, one representing a permutation) to
a pair of Young tableaux. Both tableaux have the same shape, which we call the RS
shape of the sequence. See [2] for a thorough description of the RS correspondence
and its main application, to the representation theory of the symmetric group; other
applications in combinatorics and group theory can be found in [6, 8, 1].

This correspondence encodes certain permutation statistics in easily visible ways.
The one most directly relevant to our work is that the length of the longest increasing
(respectively, decreasing) subsequence of the permutation is the same as the length
of the first row (respectively, column) of its RS shape, described in [11]. Further, this
can be extended to the length of the largest possible union of k increasing/decreasing
subsequences, as shown in [3]. Given that some of the most interesting properties
of the RS correspondence relate to the shape of the resulting tableaux, much work
has been done in the past relating certain classes of permutations, such as Boolean
permutations [4] and pattern-avoiding permutations [7, 13, 14, 9], to their RS shapes.
In this paper, we consider classes of permutations based on their cycle type.

We start with the following natural question: what classes of permutations can
produce all possible RS shapes? The RS shapes that consist of a single row or a
single column can only be achieved using the identity permutation and the reverse
permutation respectively, so we leave these two trivial cases aside. Then we define
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Class of Symbols Objects Represented Examples

Lowercase Greek Letters Sequences (e.g., permutations, shapes) σ, φ

Lowercase Latin Letters Integers i, w

Capital Fraktur Latin Letters Young tableaux T

Capital Latin Letters Constructions of Sequences and Tableaux B,P

Capital Greek Letters Properties of Insertion Paths ∆,Λ

Table 1: Common notational conventions used in this paper.

a class of permutations over {1, 2, . . . , n} to be RS-complete if permutations in this
class can generate all remaining RS shapes of that size.

Involutions are easily visible under the RS correspondence: the involutions are
exactly the permutations for which the two RS tableaux are the same [12]. This
means that the class of involutions is RS-complete. Our focus in this paper will be on
permutations with a fixed cycle type. Specifically, we show that cyclic permutations,
which have the simple cycle type (n), are RS-complete, and for even n, this is the the
only RS-complete cycle type. For odd n, there is just one more RS-complete cycle
type, namely “almost cyclic” permutations with cycle type (n− 1, 1), i.e., those that
are (n− 1)-cycles. Thus we obtain a complete characterization of RS-complete cycle
types.

In Section 2, we define the RS correspondence and RS-completeness formally and
establish notation that we will use for the rest of the paper. A brief summary of
notational conventions can be found in Table 1. In Section 3, we show that cyclic
permutations are RS-complete. Section 4 shows that almost cyclic permutations are
RS-complete for odd n. In Section 5, we show that no other fixed cycle type can be
RS-complete, thus yielding a complete characterization of RS-complete cycle types.

In Section 4, we also prove an additional connection between almost cyclic per-
mutations and the class of realizable RS shapes when n is even: that the class of
realizable shapes includes everything except the two trivial shapes and the shape
containing just two rows of size n

2
each. An interesting problem for future work is to

characterize the class of RS shapes achievable by any given cycle type.

2 Preliminaries

Definition 2.1. A Young diagram is a subset of cells of a grid, with the cells in
each row being left-justified (i.e., the row is filled from left to right), and the row
lengths being nonincreasing from top to bottom. A Young tableau is obtained by
taking a Young diagram and filling each cell with a positive integer. We then say
a Young tableau is semistandard if its rows are weakly increasing from left to right
and its columns are strictly increasing from top to bottom. If there are n cells in our
tableau and each cell is filled with a distinct integer in {1, 2, . . . , n} in addition to
being semistandard, we say that the tableau is a standard Young tableau, or SYT.

Note that the above definition uses the English notation for Young diagrams. In
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1 4 5
2 6
3

(a) The SYT ((1, 4, 5), (2, 6), (3)). (b) The corresponding shape (3, 2, 1).

Figure 1: A standard Young tableau and its shape.

this paper, we are concerned primarily with studying the shapes of Young tableaux.
These shapes correspond to the shape of the underlying Young diagram.

Definition 2.2. The shape of a Young tableau is its list of row lengths, sorted in
nonincreasing order.

Thus the shape of a Young tableau with n elements is a partition of n. We can
write a Young tableau as a sequence of sequences. For example, the SYT in Figure 1a
corresponds to the sequence ((1, 4, 5), (2, 6), (3)), and Figure 1b represents its shape.
For a Young tableau T, let Tr represent the rth row of T, let Tr,c represent the cth

element in Tr, and let sh(T) represent its shape.

Definition 2.3. For a sequence γ, we let |γ| denote the length of the sequence, and
we implicitly let γi = 0 for i > |γ|. Then, given two sequences γ1 and γ2, we let
γ3 = γ1 + γ2 denote the sequence of length max(|γ1|, |γ2|) where γ3

i = γ1
i + γ2

i for
1 ≤ i ≤ max(|γ1|, |γ2|).

For example, (3, 2, 1) + (1, 1) = (4, 3, 1).

Given any sequence σ, we use σi to refer to the ith element, and σ[ℓ, r] to refer
to the subsequence (σℓ, . . . , σr). Additionally, we use (kn) to denote the sequence
consisting of n k’s.

Definition 2.4. We say that a sequence σ is a permutation if it contains every
element in {1, 2, . . . , n} exactly once.

Finally, we define the Robinson–Schensted correspondence [10, 11, 5] (or simply
the RS correspondence), which is the main topic of the paper. This is defined as two
functions P and Q, which take in a sequence as input. P returns a tableau containing
the elements of the sequence, and Q returns one containing the elements {1, 2, . . . , n},
where n is the length of the sequence. We will not use Q in this paper, and we are
further only interested in SYTs. Thus we will only consider the first tableau in the
pair, and only the case where the integers in the sequence are distinct.1

Definition 2.5. The Robinson–Schensted correspondence denoted by P maps a se-
quence σ of distinct integers to a Young tableau. It can be defined recursively as

1We will primarily be interested in applying this correspondence to permutations; however, in
the process of constructing these correspondences, we will also have to consider subsequences of
permutations, hence the use of sequences of distinct integers.
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follows: First, define P (σ[1, 1]) to be the SYT with only one row which contains
exactly one cell, filled with the element σ1. Now, assume that T = P (σ[1, c]) has
already been computed. To compute P (σ[1, c + 1]), we use the displacement proce-
dure. If the element to insert is a, and a is larger than the last element in the first
row of T, put a at the end of the first row and terminate. Else, let b be the leftmost
element greater than a in the first row. Replace b with a and insert b into the next
row recursively.

Example. Consider the permutation

σ = (2, 5, 1, 4, 6, 3). (1)

Then P (σ[1, 4]) is the following tableau:

1 4
2 5 .

When we add 6, it is the largest element in the first row, so we simply add it to the
end of the first row and stop. Hence P (σ[1, 5]) is

1 4 6
2 5 .

When we next add 3, it displaces 4 from the first row, which displaces 5 from the
second row, which in turn starts a new row, and we get the following tableau as
P (σ):

1 3 6
2 4
5 .

We also use the following theorem about SYTs.

Theorem 2.6 (Schensted [11]). The length of the first row of P (σ) is equal to the
longest increasing subsequence (LIS) of σ, and the length of the first column of P (σ)
is equal to the longest decreasing subsequence (LDS) of σ.

Given the concrete connection between the LIS/LDS and the RS shape of a
sequence, it is natural to ask which class of permutations can generate a given class
of shapes. From Schensted’s Theorem, it immediately follows that the trivial shapes
(n) and (1n) can only be generated by the identity permutation and the reverse
permutation, respectively. This motivates the definition of RS-complete classes of
permutations. Here Sn represents the nth symmetric group (i.e., all permutations of
{1, 2, . . . , n}).

Definition 2.7. A set of permutations S ⊆ Sn is said to be RS-complete if any
partition of n, other than the trivial partitions (n) and (1n), is sh(P (σ)) for some
σ ∈ S.
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Definition 2.8. A cycle type λ = (n1, n2, . . . , nk), where n1 ≥ n2 ≥ · · · ≥ nk and
∑k

i=1 ni = n, is said to be RS-complete if the set of all permutations with cycle type
λ is RS-complete.

Definition 2.9. A permutation σ is said to be a cycle or a cyclic permutation if its
cycle type is (|σ|).

Definition 2.10. For a sequence σ, we call its associated directed graph (or just its
directed graph) the directed graph G = (V,E) where

V = {1, 2, . . . , |σ|} ∪ {σ1, σ2, . . . , σ|σ|}

and
E = {(1, σ1), (2, σ2), . . . , (|σ|, σ|σ|)}.

For example, the directed graphs of (6, 5, 4, 2, 1) and (7, 6, 5, 3, 2, 1) are shown in
Figure 2.

Definition 2.11. A sequence of positive integers σ of length n is said to be a path
if there exists some permutation σ′ of size n such that for all 1 ≤ i < n, σσ′

i
= σ′

i+1,
and σσ′

n
> n. More explicitly, we say that σ is a path from σ′

1 to σσ′

n
.

Equivalently, a sequence forms a path if its directed graph also forms a path.
Thus the two sequences (and their directed graphs) shown in Figure 2 are paths.

Definition 2.12. The consecutive sequence σ[ℓ, r] is a shifted path if there is some
permutation σ′ of {ℓ, . . . , r} such that for all ℓ ≤ i < r, σσ′

i
= σ′

i+1. More explicitly,
we say that the subsequence is a shifted path from σ′

ℓ to σσ′

r
.

Informally, a shifted path is a part of a permutation that is a path when considered
in the context of the permutation’s graph.

We now introduce the idea of an insertion path.

Definition 2.13. The insertion path of an element x that is being inserted into a
Young tableau T is the sequence of positions modified when that element is inserted.
Since the row indices are consecutive, we can simply write the sequence of column
indices. We use ∆T(x) to denote this sequence, and we drop the subscript T when we
are inserting the element σi into P (σ[1, i− 1]) and σ is clear from context. Further,
we let ΛT(x) be the sequence of displaced elements, so (ΛT(x))i = Ti,∆(x)i , for 1 ≤
i < |∆(x)|. Again, we will often drop the subscript.

In the example containing equation (1), the insertion path of element 6 is (3),
the insertion path of element 3 is (2, 2, 1), and Λ(3) = (4, 5). Note that Λ(3) is
increasing. Insertion paths will prove useful in analyzing the properties of SYTs as
they are being constructed.

We now define tail-monotone permutations, where the largest elements of the
permutation are in decreasing order towards the end, with one possible exception.
These sequences will be useful for incremental construction of SYTs with a desired
shape.
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Definition 2.14. Let n and k be positive integers. A permutation σ of length
m = n+ k is said to be (n, k)-tail-monotone if the following are true:

• The subsequence σ[n+ 1, n+ k] is a descending sequence.

• σn+1 = m.

• There is at most one i ≤ n such that σi > n.

Theorem 2.15. Let σ be an (n, k)-tail-monotone permutation. Then

sh(P (σ)) = sh(P (σ[1, n])) + sh(P (σ[n+ 1, n+ k])) = sh(P (σ[1, n])) + (1k).

That is, the shape of P (σ) is the shape of P (σ[1, n]), with an extra cell in each of
the first k rows. For example, if σ = (4, 1, 2, 7, 3, 8, 6, 5), which is (5, 3)-tail-monotone,
then P (σ[1, 5]) is

1 2 3
4 7 ,

and P (σ) is
1 2 3 5
4 6 8
7 .

Observe that the second tableau is not simply obtained by adding an element
from the tail to each row. We will prove Theorem 2.15 using insertion paths.

Lemma 2.16. Let σ be an (n, k)-tail-monotone permutation. For all z such that
1 < z ≤ k, we must have |∆(σn+z) | ≥ z.

We first present a weaker version of this lemma.

Lemma 2.17. Let σ be an (n, k)-tail-monotone permutation. For all z such that
1 < z ≤ k, we must have |∆(σn+z) | ≥ |∆(σn+z−1) |, and for all 1 ≤ r ≤ |∆(σn+z−1)|,
we must have ∆(σn+z)r ≤ ∆(σn+z−1)r.

Proof. We first prove that ∆(σn+z)r ≤ ∆(σn+z−1)r is equivalent to Λ(σn+z)r ≤
Λ(σn+z−1)r. Consider the tableaux Tn+z−2 = P (σ[1, n+ z− 2]),Tn+z−1 = P (σ[1, n+
z − 1]). Then we may note that Tn+z−2

r and Tn+z−1
r only differ at the position

∆(σn+z−1)r. All values to the right of this position in Tn+z−1 must be greater than
Λ(σn+z−1)r, while elements at positions less than or equal to ∆(σn+z−1)r must be
less than or equal to Λ(σn+z−1)r. Thus ∆(σn+z)r ≤ ∆(σn+z−1)r iff Λ(σn+z)r ≤
Λ(σn+z−1)r.

We proceed via induction on r. Specifically, for each 1 ≤ r ≤ |∆(σn+z−1)|, we
show that |Λ(σn+z)| ≥ r and Λ(σn+z)r ≤ Λ(σn+z−1)r. For our base case, consider
r = 1. Clearly, |Λ(σn+z)| ≥ 1. Since σn+z < σn+z−1, σn+z displaces an element with
a lower (or equal) index than σn+z−1 displaces in the first row. Thus Λ(σn+z)1 ≤
Λ(σn+z−1)1.
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For the inductive step, we assume that the hypothesis is true for 1 ≤ r <
|∆(σn+z−1)| and prove it for r+1. Since Λ(σn+z)r ≤ Λ(σn+z−1)r, the insertion of σn+z

cannot terminate at row r, and so |Λ(σn+z)| ≥ r + 1. Now, Λ(σn+z)r ≤ Λ(σn+z−1)r
is equivalent to saying the element displaced to row r + 1 by σn+z is less than or
equal to the element displaced by σn+z−1. A smaller element will displace a smaller
element, so Λ(σn+z)r+1 ≤ Λ(σn+z−1)r+1 as well. �

We may now prove Lemma 2.16.

Proof. Since σn+1 = n+ k, we must have |∆(σn+1)| = 1. Then, by induction, it suf-
fices to show that |∆(σn+z) | > |∆(σn+z−1) | for all 1 < z ≤ k. Let r = |∆(σn+z−1)|.
Then, by Lemma 2.17, ∆(σn+z)r ≤ ∆(σn+z−1)r. Therefore, the insertion of σn+z does
not terminate at row r, and |∆(σn+z)| > r = |∆(σn+z−1)| as desired. �

Lemma 2.18. Let σ be an (n, k)-tail-monotone permutation. For all z such that
1 ≤ z ≤ k, we must have |∆(σn+z)| ≤ z.

Proof. Consider two cases. First, assume that there does not exist an element 1 ≤
p ≤ n with σp > n. In this case, the only elements that may be on the insertion path
of σn+z are σn+1, σn+2, . . . , σn+z, and so |∆(σn+z)| ≤ z.

In the second case, consider the unique element 1 ≤ p ≤ n with σp > n. Let
σp be in the xth row of P (σ[1, n]). Then, for 1 ≤ z < x, we may use the argument
from the first case to conclude that |∆(σ[1, n+ z])| = z. Furthermore, σn+1 = n+ k
must be displaced in all insertions not involving row x. Thus σn+1 = n+ k is in the
(x − 1)st row of P (σ[1, n+ x− 1]). Hence, σp cannot be displaced in the insertion
of σn+x, since the element that would have to displace it is σn+1 = n + k. Thus
|∆(σ[1, n+ x])| = x.

Finally, for x < z ≤ k, we may proceed via induction. Since no element of
P (σ[1, n])z is initially greater than or equal to σn+z, and for all 1 ≤ z′ < z, we have
|∆(σn+z′) | < z, it must be that no element of P (σ[1, n+ z − 1])z is greater than or
equal to σn+z. Hence, no element in row z can be displaced in the insertion of σn+z,
and so |∆(σn+z) | ≤ z as desired. �

We can now prove Theorem 2.15.

Proof of Theorem 2.15. By Lemmas 2.16 and 2.18, |∆(σn+z)| = z for all 1 ≤ z ≤ k,
meaning that our final shape is

sh(P (σ[1, n])) + (1k). �

3 Cyclic Permutations

In this section, we prove the following theorem:

Theorem 3.1. The cycle type (n) is RS-complete.
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Our proof is constructive. To construct a cyclic permutation with a given shape,
we start with one of two base constructions: the first construction gives all shapes
where all boxes are either in the first row or the first column (namely, hook shapes),
and the second one gives all shapes with two columns which are not hook shapes.
Then we apply another construction to successively add columns, until we have the
desired shape.

First, let us begin with the following construction, which is the main building
block for the two-column base case as well as for adding columns.

Definition 3.2. For an integer n ≥ 1, let L(n) be defined as follows:

L(n) =
(

n, n− 1, . . . ,
⌈n

2

⌉

+ 1,
⌈n

2

⌉

− 1, . . . , 2, 1
)

.

Note that the length of L(n) is n− 1 since it is missing the element ⌈n/2⌉.

For example, L(6) = (6, 5, 4, 2, 1), and L(7) = (7, 6, 5, 3, 2, 1).

Lemma 3.3. Consider the directed graph G = (V,E), where V = {1, 2, . . . , n}, and
E = {(i, L(n)i) : 1 ≤ i < n}. Then G forms a path from

⌈

n
2

⌉

to n.

Proof. Note that n =
⌈

n
2

⌉

+
⌊

n
2

⌋

. Partition the vertices of G into two parts, with
nodes 1, 2, . . . ,

⌊

n
2

⌋

on the left, and nodes
⌊

n
2

⌋

+ 1,
⌊

n
2

⌋

+ 2, . . . , n on the right. Let
ℓi = i for 1 ≤ i ≤

⌊

n
2

⌋

, and let ri = n+ 1− i for 1 ≤ i ≤
⌈

n
2

⌉

.

For all j where 1 ≤ j ≤
⌊

n
2

⌋

, we have that L(n)j = n + 1 − j. Thus, for all
1 ≤ i ≤

⌊

n
2

⌋

, L(n)ℓi = n + 1 − ℓi = n + 1 − i = ri. Similarly, for all j where
⌊

n
2

⌋

< j < n, L(n)j = n− j. Thus, for 2 ≤ i ≤
⌈

n
2

⌉

, L(n)ri = n− ri = i− 1 = ℓi−1.

Thus, if n is even, our graph forms a path in the order

⌈n

2

⌉

= ℓn

2
, rn

2
, ℓn

2
−1, . . . , ℓ1, r1 = n,

and if n is odd, our graph forms a path in the order
⌈n

2

⌉

= rn+1

2

, ℓn−1

2

, rn−1

2

, . . . , ℓ1, r1 = n.

In either case, our graph forms a path from
⌈

n
2

⌉

to n. �

For example, the directed graphs corresponding to L(6) and L(7) (as defined in
Lemma 3.3) are shown in Figure 2.

We also need to introduce a key operation on sequences.

Definition 3.4. Given a sequence σ, let I(σ) be the sequence such that |I(σ)| = |σ|
and for all 1 ≤ i ≤ |σ|, I(σ)i = σi + 1. Define Ik(σ) to denote σ for k = 0 and
I
(

Ik−1(σ)
)

for k > 0, where k is an integer.

In the following constructions, we use ⊕ to denote the concatenation operator on
sequences. For example, (2, 4)⊕ (1, 3) = (2, 4, 1, 3).
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1

2

3 4

5

6

7

1

2

3 4

5

6

Figure 2: The directed graphs corresponding to L(6) = (6, 5, 4, 2, 1) and L(7) =
(7, 6, 5, 3, 2, 1), on the left and right respectively.

Definition 3.5. For two integers 1 < m < n, define B(m,n) to be the following
concatenation of sequences:

B(m,n) = (2, 3, . . . ,m− 1)⊕

(⌈

n+m− 1

2

⌉)

⊕ Im−1 (L(n−m+ 1))⊕ (1).

Lemma 3.6. For any two integers 1 < m < n, the sequence B(m,n) is a permutation
of length n.

Proof. We wish to show that every integer from 1 to n appears exactly once in
B(m,n). Let us reorder B(m,n) into four monotone sequences for clarity: (1),
(2, 3, . . . ,m − 1), Im−1 (L(n−m+ 1)), and

(⌈

n+m−1
2

⌉)

. Clearly, the first two se-
quences give us the elements {1, 2, . . . ,m − 1}. By definition, L(n − m + 1) con-
tains the elements {1, 2, . . . ,

⌈

n−m−1
2

⌉

,
⌈

n−m+3
2

⌉

, . . . , n − m,n − m + 1}. Hence,
Im−1 (L(n−m+ 1)) contains the elements

{

m,m+ 1, . . . ,

⌈

n+m− 3

2

⌉

,

⌈

n+m+ 1

2

⌉

, . . . , n− 1, n

}

= {m,m+ 1, . . . , n} \

{⌈

n+m− 1

2

⌉}

.

Thus our final two sets taken together yield each value in {m,m+1, . . . , n}, showing
that B(m,n) is a permutation. �

Lemma 3.7. The permutation B(m,n) is cyclic, and sh (P (B(m,n))) = (m, 1n−m).

Proof. First we prove cyclicity. Clearly, B(m,n)[1,m − 1] forms a path from 1 to
⌈

n+m−1
2

⌉

. Then note that positions m through n− 1 of B(m,n) are the elements of
L(n−m+1) with both indices and values increased by m− 1. Hence, we may apply
Lemma 3.3 to conclude that B(m,n)[m,n−1] forms a shifted path from

⌈

n+m−1
2

⌉

to
n. Additionally, B(m,n)[n] is an edge from n to 1. Since, by Lemma 3.6, B(m,n)
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is a permutation, the union of the paths corresponding to B(m,n)[1,m− 1] (from 1
to

⌈

n+m−1
2

⌉

), B(m,n)[m,n− 1] (from
⌈

n+m−1
2

⌉

to n), and B(m,n)[n] (an edge from
n to 1) is a cycle, and the permutation is cyclic.

To deduce its shape, we can use Schensted’s Theorem. Note that B(m,n) is
unimodal (i.e., it is increasing up to some point and decreasing after that point).
Further note that the maximum element occurs at position m. Hence, the LIS is
B(m,n)[1,m] with length m, and the LDS is B(m,n)[m,n] with length n − m +
1. Applying Schensted’s theorem, the shape of the corresponding tableau must be
sh (B(m,n)) = (m, 1n−m), as desired. �

For example, when (m,n) = (5, 7), we have B(m,n) = (2, 3, 4, 6, 7, 5, 1). This
permutation corresponds to the SYT

1 3 4 5 7
2
6 ,

which has the desired shape.

We also require use of the following construction.

Definition 3.8. For integers m,n such that 1 < m ≤ n
2
, define B′(m,n) to be the

following concatenation of sequences:

B′(m,n) =

(⌈

n+m

2

⌉)

⊕ I (L (m− 1))⊕ (1)⊕ Im (L (n−m))⊕

(⌈

m+ 1

2

⌉)

.

Lemma 3.9. For any two integers m,n such that 1 < m ≤ n
2
, the sequence B′(m,n)

is a permutation of length n.

Proof. Once again, consider B′(m,n) in terms of the sets of elements that it contains:
(1), I (L(m− 1)),

(⌈

m+1
2

⌉)

, Im (L(n−m)), and
(⌈

n+m
2

⌉)

. Writing these as sets, we
obtain the following set of elements for the union of the first three:

{1} ∪

{

2, 3, . . . ,

⌈

m+ 1

2

⌉

− 1,

⌈

m+ 1

2

⌉

+ 1, . . . ,m− 1,m

}

∪

{⌈

m+ 1

2

⌉}

= {1, 2, . . . ,m}.

Following a similar process for our last two sequences, we obtain the set
{

m+ 1,m+ 2, . . . ,

⌈

n+m

2

⌉

− 1,

⌈

n+m

2

⌉

+ 1, . . . , n− 1, n

}

∪

{⌈

n+m

2

⌉}

= {m+ 1,m+ 2, . . . , n}.

Thus, overall, we have the set {1, 2, . . . , n}, as desired. �

Lemma 3.10. The permutation B′(m,n) is cyclic, and

sh (P (B′(m,n))) = (2m, 1n−2m).
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Proof. First we prove cyclicity. We can prove this the same way as in the proof of
Lemma 3.7. Since B′(m,n)[2,m − 1] = I (L(m− 1)) and B′(m,n)[m + 1, n − 1] =
Im (L(n−m)), by Lemma 3.3, these two subsequences form shifted paths, from
⌈

m+1
2

⌉

tom and from
⌈

n+m
2

⌉

to n respectively. Thus B′(m,n)[1,m] and B′(m,n)[m+
1, n] are shifted paths from

⌈

m+1
2

⌉

to
⌈

n+m
2

⌉

and from
⌈

n+m
2

⌉

to
⌈

m+1
2

⌉

respectively,
so B′(m,n) is cyclic, as desired.

To determine its shape, consider the LIS and LDS of B′(m,n). Since B′(m,n)
is a concatenation of two descending sequences, it has an LIS of 2. The LDS can
be computed by splitting B′(m,n) into four blocks:

(⌈

n+m
2

⌉)

, I (L (m− 1)) ⊕ (1),
Im (L (n−m)), and

(⌈

m+1
2

⌉)

. The second and third blocks form descending se-
quences, but all elements in the second block are less than all elements in the third
block. Hence, a decreasing sequence can only contain elements from at most one of
these two blocks. If we do not use the third block, we obtain a descending sequence
of length m, while not using the second block yields a descending sequence of length
n −m. Since m ≤ n

2
, our LDS is of length n −m. Hence by Schensted’s theorem,

our shape is (2m, 1n−2m) as claimed. �

Example. When (m,n) = (3, 7), B′(m,n) = (5, 3, 1, 7, 6, 4, 2). This permutation
corresponds to the SYT

1 2
3 4
5 6
7 ,

which has the desired shape.

Together, B(m,n) and B′(m,n) establish useful base cases which will help prove
the main theorem. Now, consider the following construction.

Definition 3.11. Given a cyclic permutation σ of length n and an an integer k > 1,
we define A(σ, k) to be the sequence of length n + k obtained by modifying σ as
follows: first, replace n in σ with n+

⌈

k
2

⌉

, and then append In (L(k))⊕ (n).

Lemma 3.12. For a cyclic permutation σ and an integer k > 1, A(σ, k) is a per-
mutation.

Proof. A(σ, k)[1, n] contains the elements {1, 2, . . . , n−1}∪
{

n+
⌈

k
2

⌉}

andA(σ, k)[n+
1, n + k] contains {n, n + 1, . . . , n + k} \

{

n+
⌈

k
2

⌉}

. Hence, the elements in A(σ, k)
are

{1, 2, . . . , n−1}∪

{

n+

⌈

k

2

⌉}

∪{n, n+1, . . . , n+k}\

{

n+

⌈

k

2

⌉}

= {1, 2, . . . , n+k}.

Thus A(σ, k) is a permutation. �

Lemma 3.13. The permutation A(σ, k) is cyclic, and

sh (P (A(σ, k)) = sh (P (σ)) + (1k).
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Proof. In terms of cyclicity, we see that A(σ, k) is a union of three shifted paths, one
from n to n +

⌈

k
2

⌉

, one from n +
⌈

k
2

⌉

to n + k, and one from n + k to n (a single
edge). Thus A(σ, k) is cyclic, as desired. Further, A(σ, k) is (n, k)-tail-monotone and
therefore Theorem 2.15 immediately implies sh (P (A(σ, k))) = sh (P (σ)) + (1k). �

Example. Consider the permutation σ = (4, 1, 5, 3, 2), which is B′(2, 5). Then P (σ)
is the SYT

1 2
3 5
4 .

Further, A(σ, 3) = (4, 1, 7, 3, 2, 8, 6, 5). Then P (A(σ, 3)) is the SYT

1 2 5
3 6 8
4 7 ,

which has the shape specified in Lemma 3.13.

We are now ready to prove our main result, Theorem 3.1.

Proof of Theorem 3.1. Consider a shape γ with at least two rows and at least two
columns. Now, we proceed via induction, assuming that for all nontrivial shapes
γ′ 6= γ with γi ≥ γ′

i for all i, we can construct a cyclic permutation with shape γ′.

Case 1 γ2 = 1. In this case, since γ1 > 1, we are done using the B construction.

Case 2 γ1 = γ2 = 2. In this case, we are done using the B′ construction.

Case 3 γ1 > 2, γ2 > 1. In this case, consider the shape γ′ such that γ′
i = γi−1 for 1 ≤

i ≤ |γ|. Then, γ′
1 > 1, γ′

2 > 0, γ′ 6= γ, and for all i, γi ≥ γ′
i. Thus, by inductive

hypothesis, there exists some cyclic permutation σ′ with sh (P (σ′)) = γ′. We
conclude by letting σ = A(σ′, |γ|), and noting that sh (P (σ)) = γ′ + (1|γ|) = γ
as desired. �

4 Almost Cyclic Permutations

In this section we show that the cycle type (n− 1, 1) is RS-complete for odd n, and
that this cycle type can achieve all but one nontrivial RS shapes for even n.

Definition 4.1. A permutation is defined to be almost cyclic if its cycle type is
(n− 1, 1).

Theorem 4.2. When n is odd, all RS shapes apart from (1, 1, . . . , 1) and (n) can
be achieved using only almost cyclic permutations. When n is even, all RS shapes
apart from (1, 1, . . . , 1), (n), and

(

n
2
, n
2

)

can be achieved using only almost cyclic
permutations.
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4

3 5

2 6

1 7

8

Figure 3: The directed graph corresponding to the sequence (8) ⊕ L′(7) =
(8, 7, 6, 4, 3, 2, 1).

Remark 4.3. When n is even, the special case where γ = (n
2
, n
2
) and n > 2 is, in

fact, unachievable using any permutation with cycle type containing a 1 (and thus
unachievable using almost cyclic permutations). However, this claim is reserved for
Lemma 5.5 and is not part of Theorem 4.2.

The proof of Theorem 4.2 follows a path similar to the proof of Theorem 3.1. We
will introduce several new base cases and continue to use construction A. First, we
need the following variation on L(n).

Definition 4.4. Given any integer n > 1, let p be 0 when n is even and 1 when n is
odd, and let w denote

⌊

n
2

⌋

+ 2p. We define L′(n) to be the sequence

L′(n) = (n, n− 1, . . . , w + 1, w − 1, . . . , 2, 1).

Observe that this sequence is missing the element w, hence is of length n− 1.

Lemma 4.5. Let n, t be two positive integers such that n > 1 and t is not in L′(n).
Let σ denote the sequence (t)⊕L′(n). Consider the directed graph G = (V,E), where
V = {1, 2, . . . , n, t} and E = {(i, σi) : 1 ≤ i ≤ n}. Then G consists of a loop (a cycle
of size 1) at

⌊

n
2

⌋

+ 1 and a path from w to t.

Note that if t = w as defined in Definition 4.4, we may identify the node corre-
sponding to t with the node corresponding to w, creating a cycle.

Proof of Lemma 4.5. We separate the proof of Lemma 4.5 into two cases.
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Case 1 n is even. In this case, w = n
2
, as defined in Definition 4.4. Then σw+1 =

n+2−(w+1) = w+1. Hence, w+1 =
⌊

n
2

⌋

+1 forms a loop. With this in mind,
partition the remaining nodes in G into two parts, with nodes 1 through w on
the left and nodes w + 2 through n, as well as t, on the right. For 1 < j ≤ w,
σj = n + 2 − j, and for w + 2 ≤ j ≤ n, σj = n + 1 − j. For 1 ≤ i < w, let
ℓi = w + 1 − i and ri = w + 1 + i. Further, let ℓw = 1 and rw = t. Then, for
1 ≤ i < w,

σℓi = n+ 2− ℓi = n+ 2− (w + 1− i) = w + 1 + i = ri,

and
σri = n+ 1− ri = n+ 1− (w + 1 + i) = w − i = ℓi+1.

Additionally, note that σℓw = σ1 = t = rw. Therefore, the remaining nodes
form a path in the order w = ℓ1, r1, ℓ2, . . . , ℓw, rw = t.

Case 2 n is odd. In this case, w = n+3
2
, as defined in Definition 4.4. Then σw−1 =

n + 1 − (w − 1) = w − 1. Hence, w − 1 =
⌊

n
2

⌋

+ 1 forms a loop. With
this in mind, partition the remaining nodes of G into two parts, with nodes 1
through w − 2 on the left and nodes w through n, as well as t, on the right.
For 1 ≤ i ≤ w− 2, let ℓi = w− 1− i and ri = w− 1 + i. Further, let rw−1 = t.
Then, for 1 < j ≤ w − 2, σj = n + 2 − j, and for w ≤ j ≤ n, σj = n + 1 − j.
Then, for 1 ≤ i ≤ w − 3,

σℓi = n+ 2− ℓi = n+ 2− (w − 1− i) = w + i = ri+1,

and, for 1 ≤ i ≤ w − 2,

σri = n+ 1− ri = n+ 1− (w − 1 + i) = w − 1− i = ℓi.

Additionally, note that σℓw−2
= σ1 = t = rw−1. Therefore, the remaining nodes

form a path in the order w = r1, ℓ1, r2, . . . , ℓw−2, rw−1 = t. �

For example, (8) ⊕ L′(7) = (8, 7, 6, 4, 3, 2, 1), which corresponds to the directed
graph shown in Figure 3.

Definition 4.6. Given positive integers (m,n) 6= (2, 4) such that 1 < m ≤ n
2
, let p

be 1 if m is odd and 0 otherwise, and let w denote
⌊

m
2

⌋

+ 2p. Then define D(m,n)
to be the following concatenation of sequences:

D(m,n) =

(⌈

n+m

2

⌉)

⊕ L′(m)⊕ Im (L(n−m))⊕ (w).

Lemma 4.7. For 1 < m ≤ n
2
, D(m,n) is a permutation.

Proof. Take w and p to have values as defined in Definition 4.6. Then we once again
consider sets of elements. We have the sets {

⌈

n+m
2

⌉

}, {1, 2, . . . , w−1, w+1, . . . ,m−
1,m}, {m+ 1,m+ 2, . . . ,

⌈

n+m
2

⌉

− 1,
⌈

n+m
2

⌉

+ 1, . . . , n− 1, n}, and {w}. The union
of the second and the fourth sets is {1, 2, . . . ,m} (since 1 ≤ w ≤ m for m > 1), and
the union of the first and third sets is {m+ 1,m+ 2, . . . , n}. Thus, taken together,
the union of all of our sets is {1, 2, . . . , n}. �
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Lemma 4.8. The permutation D(m,n) is almost cyclic with the loop not at position
n, and

sh (P (D(m,n))) = (2m, 1n−2m).

Proof. First consider cyclicity. Since D(m,n)[1,m] =
(⌈

n+m
2

⌉)

⊕ L′(m), it forms a
path from w (as defined in Definition 4.6) to t =

⌈

n+m
2

⌉

and a loop at
⌊

m
2

⌋

+ 1 by
Lemma 4.5. Similarly, D(m,n)[m + 1, n − 1] = Im (L(n−m)), and forms a shifted
path from

⌈

n+m
2

⌉

to n by Lemma 3.3. Since D(m,n)[n] is an edge from n to w,
D(m,n) forms a cycle and a loop, giving the desired cycle type of (n − 1, 1). By
Lemma 4.5, the loop is at position

⌊

n
2

⌋

+ 1 6= n.

We can, once again, use the LIS and LDS of D(m,n) to determine its shape.
Since D(m,n) is composed of two descending sequences, it has an LIS of 2. To
determine its LDS, we split it into four blocks:

(⌈

n+m
2

⌉)

, L′(m), Im (L(n−m)), and
(w). Once again, the second and third blocks form descending sequences, but all
elements of the second block are less than all elements of the third block. Hence, a
decreasing sequence can only contain elements from at most one of these two blocks.
If we do not use the second block, we get a descending sequence of length n−m.

Now, assume that we do not use the third block. If m > 2, then w > 1 and hence
the second block ends with a 1. In this case, using the second block yields an LDS of
length m, which is not longer than n−m. However, if m = 2, then we get an LDS
of length m+ 1; but since n > 4 when m = 2, the third block still provides an LDS
of length n−m ≥ m+ 1.

In all cases, our LDS is of length n − m. Then, by Schensted’s theorem, we
have two columns and n − m rows. The only valid shape is then (2m, 1n−2m) as
claimed. �

Example. If (m,n) = (3, 7), D(m,n) = (5, 2, 1, 7, 6, 4, 3). This sequence corresponds
to the following tableau:

1 3
2 4
5 6
7

which has the shape specified in Lemma 4.8.

Definition 4.9. Given a positive integer n > 3, define D′(n) to be the following
concatenation of sequences:

D′(n) = (w)⊕ L′(n)

where w is defined as in Definition 4.4.

Lemma 4.10. For all n > 3, D′(n) is a permutation.

Proof. The set of elements contained in L′(n) is {1, 2, . . . , n} \ {w}, hence the set
of elements contained in D′(n) is {1, 2, . . . , n}. Since L′(n) is of length n − 1, the
sequence D′(n) forms a permutation. �
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Lemma 4.11. The permutation D′(n) is almost cyclic with the loop not at position
n, and sh (P (D′(n))) = (2, 1n−2).

Proof. We can see that D′(n) is almost cyclic by Lemma 4.5. Since n > 3, we have
D′(n)2 = n > D′(n)1, and so D′(n) is (1, n − 1)-tail-monotone. Then the shape
follows from Theorem 2.15. By Lemma 4.5, the loop is at position

⌊

n
2

⌋

+ 1 6= n. �

Lemma 4.12. If σ is an almost cyclic permutation with σn 6= n, and k > 1 is an
integer, then A(σ, k) is almost cyclic with shape sh (P (σ)) + (1k).

Proof. In terms of cyclicity, we see that A(σ, k) is a union of a fixed point and three
shifted paths: one from n to n+

⌈

k
2

⌉

, one from n+
⌈

k
2

⌉

to n+k, and one from n+k to
n (a single edge). Thus A(σ, k) is almost cyclic, as desired. Further, A(σ, k) is (n, k)-
tail-monotone and therefore Theorem 2.15 immediately implies sh (P (A(σ, k))) =
sh (P (σ)) + (1k). �

We can now prove Theorem 4.2.

Proof of Theorem 4.2. Let us consider any shape γ with at least two rows, at least
two columns, and not of the form (n

2
, n
2
).

Case 1 γ = (2, 1n−2). If n = 3, the permutation σ = (1, 3, 2) has the desired shape
and cycle type, while if n > 3, we may use σ = D′(n).

Case 2 γ1 > γ2, and γ1 > 2. In this case, we can consider the sequence γ′ where
γ′
1 = γ1 − 1, and γ′

i = γi for i > 1. This sequence clearly represents a shape
with at least two columns and at least two rows, and thus by Theorem 3.1, we
can create a cyclic permutation σ with the shape γ′. Then the almost cyclic
permutation σ ⊕ (|σ|+ 1) has shape γ′ + (1), which is γ.

For the remaining cases, in which γ1 = γ2 ≥ 2, γ3 > 0, we prove a slightly stronger
version of Theorem 4.2, in which we show that there is an almost cyclic permutation
σ with shape γ such that σ|σ| 6= |σ| (i.e., σ does not have a loop at position n).
We now proceed via induction, assuming that for all nontrivial shapes γ′ 6= γ with
γ′
1 = γ′

2 ≥ 2, γ′
3 > 0, and γi ≥ γ′

i for all i, we can construct an almost cyclic
permutation σ′ with shape γ′, such that σ′ does not have a loop at position |σ′|.

Case 3 γ1 = γ2 = 2, γ3 > 0. In this case, we may use D to obtain an almost cyclic
permutation with the desired shape.

Case 4 γ1 = γ2 > 2, γ3 > 0. Let q be the largest position with γ1 = γq. Then
let γ′ be the shape with γ′

i = γi − 1 for i ≤ q and γ′
i = γi for i > q. γ′ is

nonincreasing and represents a shape with at least two rows and columns since
γ′
2 ≥ 2. Furthermore, we have γ′

1 = γ′
2 = γ1 − 1 ≥ 2 and γ′

3 > 0, since either
q = 2 (and therefore γ′

3 = γ3 > 0), or q > 2 (and therefore γ′
3 = γ′

1 ≥ 2).
Hence, by the inductive hypothesis, there exists an almost cyclic permutation
σ′ with shape γ′ and loop not at position |σ′|. Then, by Lemma 4.12, we are
finished by setting σ = A(σ′, q). �
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5 The Converse

In this section, we complete the proof of our main theorem:

Theorem 5.1. For even n, the only RS-complete cycle type is (n). For odd n, only
the cycle types (n) and (n− 1, 1) are RS-complete.

We have already proven, in Sections 3 and 4, that the cycle type (n) is RS-
complete for all n and the cycle type (n − 1, 1) is RS-complete for odd n. In this
section, we show that no other cycle type is RS-complete.

Let us start by describing the cycle types of permutations that can achieve the
shape (n− 1, 1).

Lemma 5.2. For n ≥ 2, all permutations that can achieve the shape (n− 1, 1) have
cycle types of the form (k, 1n−k), for some 1 < k ≤ n.

Proof. Consider any permutation σ with the desired shape. Then, by Schensted’s
Theorem, the LIS of σ has length n − 1. Thus all but one element are in the same
relative order as the identity permutation. Hence, we form σ by performing a cyclic
shift on some subrange [i, j] of the identity permutation, where 1 ≤ i < j ≤ n. Here,
we either move element i to position j and move elements i+1, . . . , j to one position
lower, or we move element j to position i and move elements i, . . . , j − 1 to one
position higher. Then the subrange [i, j] forms a cycle while the rest of the elements
are fixed points, so the resulting cycle type would be (j − i+ 1, 1n+i−j−1). �

Lemma 5.2 significantly restricts the structure of any RS-complete cycle type.
We now show that this restricted class does not contain any RS-complete cycle types
other than the ones that we have already identified.

Lemma 5.3. Given a permutation σ ∈ Sn such that |sh (P (σ)) | = 2 (i.e., the RS
shape of σ has two rows) and an integer 1 ≤ i ≤ n such that σi = i (i.e., i is a fixed
point of the permutation), we must have σj < i for all 1 ≤ j < i.

Proof. Let σj be the largest element for 1 ≤ j < i. By the pigeonhole principle, if
σj > i, there is some other j′ such that i < j′ ≤ n and σj′ < i. This would then
create a descending subsequence (j, i, j′) of length 3. Then, by Schensted’s Theorem,
|sh (P (σ)) | ≥ 3, which is a contradiction. �

Definition 5.4. Given a positive integer f and a sequence σ that does not contain
f , define R(σ, f) to be the sequence σ′ of the same size as σ constructed as follows:

σ′
i =

{

σi if σi < f

σi − 1 if σi > f.

Lemma 5.5. Any permutation σ with |sh (P (σ)) | = 2 whose cycle type contains at
least r 1’s must have sh (P (σ))1 ≥ sh (P (σ))2 + r.
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Proof. Let us proceed by induction. Let our base case be r = 0. Clearly the result
holds in this case. Now, for r > 0, assume the result holds for r − 1. Then consider
any i for which σi = i. Then, by Lemma 5.3, for all 1 ≤ j ≤ n, if j < i, σj < σi,
and if j > i, σj > i. Let σ′ = R(σ[1, i − 1] ⊕ σ[i + 1, n], i). By our inductive
hypothesis, sh (P (σ))1 ≥ sh (P (σ))2 + r − 1. Now, consider the LIS (denoted by
φ) of σ that does not contain i. Note that this has the same length as the LIS
of σ′. Then, since σj < i for j < i and σj > i for j > i, if we insert σi into φ,
the resulting sequence will still be increasing. Hence, the length of the LIS of σ
is one greater than the length of the LIS of σ′, and so, by Schensted’s theorem,
sh (P (σ))1 = sh (P (σ′))1 + 1 ≥ sh (P (σ′))2 + r = sh (P (σ))2 + r, completing the
induction. �

Finally, we can prove Theorem 5.1.

Proof of Theorem 5.1. We separate the proof of Theorem 5.1 into two cases.

Case 1 n is even. In this case, by Lemma 5.2, all permutations, apart from cyclic
ones, that have a shape of (n− 1, 1) have a cycle type containing at least one
fixed point. Thus, by Lemma 5.5, such a cycle type cannot have a permutation
with shape (n

2
, n
2
), as desired.

Case 2 n is odd. In this case, by Lemma 5.2, all permutations, apart from cyclic and
almost cyclic ones, that have a shape of (n− 1, 1) have a cycle type containing
at least two fixed points. Thus, by Lemma 5.5, such a cycle type cannot have
a permutation with shape (n+1

2
, n−1

2
). �

References

[1] S. V. Fomin, Generalized Robinson–Schensted–Knuth correspondence, J. Math.
Sci. 41(2) (1988), 979–991.

[2] W. Fulton, Young tableaux, with applications to representation theory and geom-
etry, London Math. Soc. Stud. Texts Vol. 35, Cambridge Univ. Press, Cambridge,
1997.

[3] C. Greene, An extension of Schensted’s theorem, Adv. Math. 14(2) (1974),
254–265.

[4] E. Gunawan, J. Pan, H. Russell and B. Tenner, Runs and rsk tableaux of
boolean permutations, Ann. Comb.04 (2024), 1–26.

[5] D. E. Knuth, Permutations, matrices, and generalized Young tableaux, Pacific
J. Math. 34(3) (1970), 709–727.

[6] V. Krishnamurthy, Combinatorics: theory and applications, Halsted Press,
USA, 1986.



A. GOEL ET AL. /AUSTRALAS. J. COMBIN. 89 (2) (2024), 215–233 233

[7] J. B. Lewis, Pattern avoidance for alternating permutations and Young tableaux,
J. Combin. Theory Ser. A 118(4) (2011), 1436–1450.

[8] H. Narayanan, On the complexity of computing Kostka numbers and Little-
wood–Richardson coefficients, J. Algebraic Combin. 24(11) (2006), 347–354.

[9] E. Ouchterlony, On Young tableau involutions and patterns in permutations,
Ph.D. thesis, Linköpings Univ., 2005.
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