
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 89(2) (2024), Pages 196–214

Root distributions in Moebius–Kantor complexes

Sylvain Barré
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BP 573, 56017, Vannes

France
Sylvain.Barre@univ-ubs.fr
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Abstract

We study the distribution of roots of rank 2 in nonpositively curved 2-
complexes with Moebius–Kantor links. For every face in such a complex,
the parity of the number of roots of rank 2 in a neighbourhood of the face
is a well-defined geometric invariant determined by the root distribution.
We study the relation between the root distribution and the parity distri-
bution. We prove that there exist parity distributions in flats which are
disallowed in Moebius–Kantor complexes. This contrasts with the fact
that every root distribution can be realized. We classify the root distri-
butions associated with an even parity distribution (i.e., such that every
face is even) on a flat plane. We prove that there exists up to isomorphism
a unique even simply connected Moebius–Kantor complex — namely, the
Pauli complex.

1 Introduction

Let T denote the equilateral triangle lattice in the Euclidean plane R2. We shall call
the choice for every vertex in the lattice of one of the three simplicial directions in
T a root distribution on T .

Graphically, one may represent a root distribution by a field of segments of length
2ε (for some small fixed ε > 0) which takes a vertex x to the segment (x − ε, x + ε)
containing x in the direction specified at x. Figure 1 shows an example of a root
distribution in a simplicial ball of radius 3.
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Figure 1

The classification of root distributions subject to local constraints is a combinato-
rial problem similar to certain problems arising from physics (see §1.6). In the present
paper, we study a connection between root distributions and a class of discrete groups
acting on nonpositively curved spaces called the Moebius–Kantor complexes.

Definition 1.1. A Moebius–Kantor complex is a 2-complex with triangle faces whose
links are isomorphic to the Moebius–Kantor graph.

Figure 2

The Moebius–Kantor graph is shown in Figure 2. It is the unique cubic symmetric
graph with 16 vertices.

Every Moebius–Kantor complex can be viewed as a nonpositively curved 2-
complex, in which every face is isometric to an equilateral triangle with sides of
length 1 (by the Gromov link condition, see [7, II.5.1]).

In order to state our main results, we shall begin by reviewing a few definitions
which are directly relevant to the study of Moebius–Kantor complexes.

1.1 Roots

Let ∆ be a nonpositively curved 2-complex, x ∈ ∆ be a vertex, and Lx the link at
x, endowed with the angular metric. We call a root at x an isometric embedding
α∶ [0, π]↪Lx such that α(0) is a link vertex of degree greater than 2. Every root has
a rank rk(α), which is a rational number in [1,2] defined by

rk(α) ∶= 1 + N(α)
qα
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where
N(α) ∶= ∣{β ∈ Φx ∣ α ≠ β,α(0) = β(0), α(π) = β(π)}∣,

Φx denotes the set of roots at x and, for a root α, qα denotes the degree of α(0)
minus 1:

qα ∶= val(α(0)) − 1.

We refer to [2, §4] for more details on these definitions. In a Moebius–Kantor com-
plex, the rank of a root can be either 3

2 or 2. The reader can verify that both types
of roots can be found in the obvious Hamiltonian cycle of length 16 shown in the
above drawing of the Moebius–Kantor graph (see Figure 2). Furthemore, this graph
being 2-transitive, it is obvious that there can be only two distinct orbits of roots.

1.2 Parity in Moebius–Kantor complexes

Let ∆ be a Moebius–Kantor complex. Let f be a face in ∆. The parity of f is
defined as follows (cf. [4, §2]). Let f̃ denote the equilateral triangle formed by the
union of f and three faces in ∆ corresponding to a choice of a face not equal to f
adjacent to every side of f . We call f̃ a large triangle containing f . For every vertex
x of f , the triangle f̃ determines a root αx at x in ∆.

Definition 1.2. We call the parity of f the parity of the number of roots αx which
are of rank 2, when x runs over the three vertices of the face f .

This is a well-defined invariant, i.e., the parity of f does not depend on the choice
of the large triangle f̃ containing f , by [4, Lemma 2.1].

1.3 Root distributions

Let Π be a flat plane in a simply connected Moebius–Kantor complex ∆, i.e., the
image of an isometric embedding R2 → ∆, where R2 is endowed with the Euclidean
metric. Every flat is tessellated by equilateral triangles with sides of length 1.

Let x ∈ Π be a vertex. Let ` ⊂ Π be a simplicial line through x. Every root
α ∈ Φx whose image is included in Π and whose extremities belong to ` is has the
same rank. We call ` a simplicial direction at x, and the common value rk(α) the
rank of `. Observe that precisely two of the three simplicial directions at x in Π are
of rank 2 (a proof of this observation can be found in [5, §4.2, Prop. 41]).

Definition 1.3. The root distribution of Π is the map δ which associates to every
vertex x ∈ Π the unique simplicial direction at x which is not of rank 2.

Thus, one may represent a root distribution δ as a field of segments of length 2ε
(for some small fixed ε > 0) as described above.

We call abstract root distribution on R2 the choice, for every vertex x of the
tessellation by equilateral triangle, of a simplicial direction δ(x) at x.

Definition 1.4. An abstract root distribution is realized in a simply connected
Moebius–Kantor complex ∆ if it is the root distribution of some flat Π in ∆.
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We shall first prove that every abstract root distribution can be realized in some
Moebius–Kantor complex:

Proposition 1.5. Every abstract root distribution can be realized in a simply con-
nected Moebius–Kantor complex.

We refer to §2 for the proof. This result does not hold for abstract parity distri-
butions (see Corollary 1.8).

In the terminology of §1.6, this shows that every abstract root distribution on the
tessellation T can be realized by a magnetic field associated with a simply connected
Moebius–Kantor complex.

1.4 Parity prescriptions in a flat

Every abstract root distribution δ on R2 induces a parity distribution p on the triangle
faces of the tessellation. If f is a face, then the parity p(f) ∈ {0,1} = {even, odd} is
the parity of the image of f under an isometric embedding R2 → ∆ which realizes
δ in some Moebius–Kantor complex ∆ (which exists by Proposition 1.5). Since the
value of p(f) does not depend on the choice of the large triangle f̃ , one may always
assume that f̃ is included in the image of R2 → ∆. Thus, p(f) depends only on
the abstract root distribution δ. It computes the parity of the number of sides of f̃
which are not in the simplicial directions selected by δ.

Definition 1.6. We call p the parity distribution of δ.

An abstract parity distribution on R2 is the choice, for every face f of the tessel-
lation by equilateral triangle, of value p(f) ∈ {0,1}.

We aim to show (in contrast with Proposition 1.5) that there exist abstract parity
distributions which are not the parity distribution of any flat in any simply connected
Moebius–Kantor complex. This will be an immediate corollary of the following result.

Theorem 1.7. There exists an abstract parity distribution which is not the parity
distribution of an abstract root distribution.

We refer to §3 for the proof.

An abstract parity distribution is said to be realized in a Moebius–Kantor complex
∆ if it is the induced parity distribution of some flat in ∆.

Corollary 1.8. There exists an abstract parity distribution on R2 which is not real-
ized in a simply connected Moebius–Kantor complex.

Proof. The parity distribution given by Theorem 3.1 is not realized in a Moebius-
Kantor complex ∆, for it would be the parity distribution of the root distribution
induced by ∆.

On the other hand, we can prove the following result.
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Proposition 1.9. Every parity distribution on a ball of radius 1 (a hexagon) in R2

can be realized by an abstract root distribution, and therefore can be realized in a
Moebius–Kantor complex.

This is established in §4.

1.5 Parity prescriptions in a Moebius-Kantor complex

By Theorem 3.1, there exists an abstract parity distribution on R2 which cannot be
realized in a Moebius–Kantor complex. This should be compared with the results in
§5 of [4]. In the latter paper, it is shown that the parity can be “freely prescribed”
in Moebius–Kantor complexes, and therefore, that any abstract parity distribution
can always “be realized” in some Moebius–Kantor complex.

The difference is as follows. In the case of a parity prescription as conceived in
[4], the parity distribution can only be pre-assigned in stages in successive spheres
of the complex under construction. Namely, the parity can be realized in an induc-
tive manner by constructing successive spheres appropriately, as opposed to being
prescribed in advance as a 0-1 valued function on a plane. In fact, for a prescription
theorem in the case of Moebius–Kantor complexes, there does not exist an a priori
defined “substratum space” ∆ that would serve as domain, for an abstract parity
function f ∶∆→ {0,1} which is to be realized.

More precisely, let us state here the free prescription (in stages) theorem (from
[4, §5]) for the parity in a Moebius–Kantor complex. Let Bn denote a ball of radius
n centered at a vertex in a simply connected Moebius–Kantor complex, and Sn ∶=
Bn ∖ (Bn−1)○ denote the closed simplicial sphere of radius n, where (Bn−1)○ denotes
the interior of Bn−1. One can realize an arbitrary parity function on Sn in a simply
connected Moebius–Kantor complex by iterating the following construction.

Theorem 1.10. Given an arbitrary function p∶Sn → {0,1} defined on the 2-skeleton
of Sn, there exists a ball Bn+1 in a simply connected Moebius–Kantor complex, con-
taining Bn, such that the parity of the faces of Sn in Bn+1 is given by p.

Free construction theorems of this sort originated in the theory of buildings, in
particular in works of Ronan and Tits (see for instance [9, 10, 11, 12] and references
therein).

It was mentioned in [4] that the proof of Theorem 1.10 appears to provide ad-
ditional free parameters in the constructions, i.e., that the parity function p should
not determine the isomorphism type of Bn+1 in general.

That these additional degrees of freedom ultimately exist for a specific p depends
on the balance between the root distribution at the vertices in the boundary of Bn,
and the parity distribution on the faces of Sn.

A direct computation can be made to compare, very roughly, the degree of free-
dom for the parity in relation with the degree of freedom for the roots. Namely,
let fn denote the number of faces in Sn. There can be two types of vertices in the
boundary of Bn, those of degree 3 and those of degree 4. Let an and bn denote their
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respective number. Then the relative degree of freedom is computed as follows: there
are 2fn choices for the parity in Sn, and at most 8an16bn choices for the roots at the
boundary of Bn; the quantities an, bn, fn are related by the equality:

fn+1 = 18an + 15bn;

the quantities an and bn can be computed explicitly by the recurrence relation:

(an+1

bn+1
) = (6 2

3 4
)(an

bn
) .

Therefore,
2fn < 8an16bn .

Since we do not need them except for a general estimate of the degrees of freedom,
we leave to the reader the exercise of verifying these relations.

A Moebius–Kantor complex is said to be even if every face is even. In [4, Re-
mark 5.3(1)], it was suggested to study the case of even complexes, and that—in
view of the above estimates—there “ought to exist” uncountably many non isomor-
phic constructions of such complexes. It is this problem that lead us to study root
distributions and the relation between root distributions and parity distributions.

One of the main results of the present paper shows that there exists a unique
simply connected construction of an even complex up to isomorphism, i.e., that
the free constructions exhibited in [4] are in fact all isomorphic in the case of even
simply connected Moebius–Kantor complexes. In the remainder of this introduction,
we shall state this uniqueness result more precisely, together with some applications
which resolve other questions that we left open in earlier investigations (namely, [5]
and [6]).

1.6 An interpretation of root distributions

Root distributions are somewhat analogous in nature to standard combinatorial ob-
jects arising from physics. For example, the following are two well-known models
which lead to the study of fields of segments positioned at the vertices of a lattice in
R2.

1. The dimer model studies the set of configurations of all monomers (molecules
occuping a single vertex) and dimers (molecules occupying two adjacent ver-
tices) covering the vertex set of a Eulidean square lattice.

2. The Ising model studies the set of configuration of possible directions (say, up
or down) at the vertices of a Euclidean square lattice, in which the edges are
seen as bonds interacting in the neighbouring directions.

Although our root distributions originated in geometric group theory, one can
nevertheless imagine an abstract physics model in which the segments of length 2ε
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represent magnets in a given simplicial orientation, and that the local constraints on
the configuration space of magnets are produced by an ambient magnetic field applied
to the plane. Such a magnetic field, for instance, can be created by positioning a
generator at the center of every triangle of the plane. The distributions studied in
the present paper are of this type: they are created by fixing one magnetic generator
at the center of every triangle. The generators can be of two types, even and odd,
corresponding to their action on the neighbouring magnets. The effect of a generator
is to fix the parity of the number of magnets which are not parallel to the opposite
side of the triangle on which the generator sits.

Thus, a magnetic field in this case is entirely determined by a function on the set
of triangles of T with values in Z/2Z, which we called a parity distribution. Every
embedding of T as a flat in a Moebius–Kantor complex induces a corresponding
parity distribution, and can be seen as a way to create a magnetic field on T . As
shown above, these fields can induce an arbitrary root distribution, by choosing the
complex and the embedding appropriately. In the next section, we study the case of
a field with vanishing parity distribution, in which every magnetic generator is set
to even. As we shall see, these fields are all induced from some embedding in the
unique even simply connected Moebius–Kantor complex.

1.7 Even root distributions

We shall first describe the relation between root distributions and parity distributions
in the even case.

The even parity distribution on R2 is the contant distribution p ≡ 0 in which
every face is even. A root distribution is said to be even if its parity distribution is
the even parity distribution.

We say that two abstract root distributions δ and δ′ on R2 are isomorphic if there
exists a simplicial isometry α of R2 such that δ ○ α = δ′.

Theorem 1.11. The even root distributions can be classified up to isomorphism.

A more precise version of this result, stated below, contains an explicit classifi-
cation of the distributions (see Theorem 7.7).

The proof can be done in two ways, either directly, or as a consequence of [6]
and the results below. We provide both arguments in the present paper. The second
approach is shorter since it only requires two additions (Propositions 1.12 and 1.13)
to the results of [6]. The direct approach is given in §7.

In [6], a Moebius–Kantor complex ∆P called the Pauli complex was introduced. It
is defined using a triangle of groups construction associated with the group generated
by the Pauli matrices in SU(2). The fundamental group of this triangle of groups
is a group GP which is developable and therefore acts properly isometrically on a
CAT(0) complex, the complex ∆P . (More details on this construction are given in
§5 below.)

The first observation is the following result.
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Proposition 1.12. The Pauli complex ∆P is even.

This proposition is established in §5 below; it relies on basic relations verified by
the Pauli matrices.

In order to deduce Theorem 1.11 from [6] (in particular, Theorem 5.7 therein), it
is sufficient to prove the following result (see §5).

Proposition 1.13. Every even root distribution can be realized in the Pauli complex.

One can reformulate this proposition by saying that the map Π ↦ δΠ which to
a flat Π of the Pauli complex associates its unique root distribution is surjective
onto the set of even root distributions. In [6], the flats of the Pauli complex were
classified by means of ring puzzles. The map Π ↦ δΠ can be reinterpreted as a map
from ring puzzles to root distributions. It follows by Theorem 5.7 in [6] that the
Pauli ring puzzles can be classified (i.e., listed explicitly); therefore, so can the even
root distributions.

This proves that one can deduce Theorem 1.11, and indeed, have an explicit
classification of the even root distributions, from the classification of Pauli puzzles
given in Theorem 5.7 in [6]. In the terminology of [6], the classification comprises:

1. a unique even root distribution associated with the Pauli M -puzzles; and,

2. an infinite family of pairwise non-isomorphic root distributions associated with
the Pauli T -puzzles;

every even root distribution is isomorphic to a root distribution in case (1) or (2).
This statement is the more precise version of Theorem 1.11 we were looking for. As
mentioned above, a more direct approach to this result, which classifies the even root
distributions, is given in §7.

1.8 Even Moebius–Kantor complexes

Several examples of even Moebius–Kantor complexes were given in [5]. In fact, it was
shown there that there exist precisely four pairwise non isomorphic even Moebius–
Kantor complexes having a single vertex. In the notation of [5], these complexes are
V 1

0 , V 2
0 , V̌ 2

0 , and V 1
4 ; we refer to [5] for their description (see also [4, Prop. 3.2]).

Theorem 1.14. Suppose that ∆ and ∆′ are even simply connected Moebius–Kantor
complexes, and let x ∈ ∆ and x′ ∈ ∆′ be two vertices. Let n ≥ 1, and let ϕn∶Bn(x) →
Bn(x′) be an isomorphism between the balls of radius n around x and x′ in ∆ and ∆′,
respectively. Then there exists a unique isomorphism ϕ∶∆ → ∆′ such that ϕ∣Bn(x) =
ϕn.

This result is established in §6. The following are immediate corollaries from
Theorem 1.14.

Corollary 1.15. Every even simply connected Moebius–Kantor complex is isomet-
rically isomorphic to the Pauli complex.
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In fact, we will prove Theorem 1.14 by cross referencing the additional structure
found in the Pauli complex with that of an arbitrary even simply connected Moebius–
Kantor complex.

Corollary 1.15 shows that the Pauli complex is unique in a family of nonpositively
curved complexes with “prescribed local data”. We refer the reader to [11], [1] and
[8], for well-known unique construction results of nonpositively curved complexes
in which the local data are prescribed. In these results, the manner to prescribe
the local data depends on the complex under consideration; for Moebius–Kantor
complexes, the link type is clearly not enough local data to ensure uniqueness, while
assuming in addition the parity to be uniformly even, is, by the first corollary.

The second corollary follows by choosing an appropriate isomorphism ϕ1∶B1(x) →
B1(y) where x and y are two points in the Pauli complex:

Corollary 1.16. The symmetry group of the unique even simply connected Moebius–
Kantor is flag transitive.

(We recall that a flag is a triple (x, e, f) where x is a vertex, e an edge, and f a
face, such that x ∈ e ∈ f .)

The following two corollaries were left open in [5] and [6], respectively.

Corollary 1.17. The universal covers of V 1
0 , V 2

0 , V̌ 2
0 , and V 1

4 , are pairwise isomet-
rically isomorphic.

We recall that GP denotes the fundamental group of the complex of groups defin-
ing the Pauli complex (see §1.7 and §5).

Corollary 1.18. The group GP contains a torsion free subgroup of finite index.

2 Abstract root distributions

Proposition 2.1. Every abstract root distribution can be realized in a simply con-
nected Moebius–Kantor complex.

Proof. Let Π be a flat plane endowed with a root distribution. Fix a vertex x ∈ Π.
Let Hn denote the hexagon of center x and radius n in Π. The proof proceeds by
induction to construct a ball Bn of radius n in a Moebius–Kantor complex, containing
Hn, and realizing the root distribution.

For H1 ⊂ B1, it suffices to embed a 6-cycle with marked roots in a Moebius–Kantor
graph respecting the rank of every root. Suppose Hn ⊂ Bn has been constructed. Let
B̃n be obtained by adding a pair of faces for every edge in the boundary Sn of Bn,
together with Hn+1, to Bn. For every vertex in Sn, the link is either a tree (of
diameter at most 5) or the union of such a tree and the 1-neighbourhood of a 6-cycle
(adding at most two edges to the tree). In the first case (which occurs at every vertex
not in Hn), the tree can be completed arbitrarily into a Moebius–Kantor graph. In
the second case (which occurs at every vertex in Hn), the roots are pre-positioned
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in the 6-cycle, and there exists a completion which respects the roots. These two
assertions are readily verified; the first one is obvious, and the second one follows by
embedding the 6-cycle first in a root preserving manner. We note that this argument
is specific to the Moebius–Kantor graph.

Finally, the links can be completed to form Bn+1 from B̃n, and the direct limit of
the Bn’s constructed in a such a way provides one (among uncountably many non
pairwise isomorphic) Moebius–Kantor complex realizing the root distribution.

Every root distribution defines uniquely the parity of its faces.

Example 2.2. A root distribution with parallel roots defines an even flat; however,
the same flat can also be obtained with different root distributions.

We shall prove in the forthcoming section that there exists a parity distribution
on a flat plane which is not realized by a root distribution. The notion of abstract
root (and parity) distribution extends to simplicial subsets of R2 (for example, strips
or balls of radius n centered at a vertex x) in the obvious way. Every parity (respec-
tively root) distributions on a simplicial subset of R2 is the restriction of a parity
(respectively root) distribution on R2.

Observe that every parity distribution on a bi-infinite strip of height 1 can be
realized in a flat in a simply connected Moebius–Kantor complex. Indeed, it suffices
to choose appropriately a root distribution on its boundary to realize the parity,
extend the partial distribution in a flat, and apply Proposition 2.1. The same holds
true for balls of radius 1 as we shall see in §4.

3 Abstract parity distributions

Theorem 3.1. There exists an abstract parity distribution which is not the parity
distribution of an abstract root distribution.

Proof. We shall start with an even face, say x, and define a parity distribution
stepwise building outward from the face x in such a way that the root distribution
is analytically determined, until a contradiction arises.

Consider the following root distribution:

x

Figure 3

In Figure 3, we have represented a root distribution graphically as mentioned in
the introduction (see §1.3).

In Figure 4, an extension of this root distribution is shown. The triangles labelled
with label “1” indicate the odd faces, every other face is even.
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x

1

1
y

Figure 4

It is obvious that the face with label y, which we define to be even, is odd
according to the root distribution. This provides a contradiction.

We may now extend the parity distribution by an order 3 symmetry as follows:

x

1

1

1

1

11

Figure 5

It follows that for every parity distribution on R2 containing the above distribu-
tion, the twelve (= 3 × 4) root distributions on x in which the number of roots of
rank 2 is 2, are disallowed. (Indeed, by symmetry, one may assume that the root
distribution is oriented downwards, as represented in the first figure above, then
by analyticity using the prescribed face parities, one obtain a last face y which is
supposed to be even but is odd according to the distribution.)

Finally, the remaining even root distribution on x:

x

Figure 6

is also disallowed, for the same reason (i.e., it extends as the initial root distribution).
This concludes the proof of the proposition.

4 Parity prescription in the neighbourhood of a vertex

Proposition 4.1. Every parity distribution on a ball of radius 1 (hexagon) can be
realized by an abstract root distribution.
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Proof. Let B be a ball of radius 1 around a vertex. We distinguish three cases: either
B contains at most two odd faces, at most two even faces, or precisely three odd
faces and three even faces.

The first two cases consists of five subcases each, which correspond to the number
of ways to assign a parity to B with at most two even (or odd) faces. In these cases,
the root distributions can be chosen as follows:

Figure 7: Root distributions with at most 2 odd faces

It is easily seen that the above root distributions exhaust the parity distributions
with at most two odd faces. Similarly:

Figure 8: Root distributions with at most 2 even faces

The last case, with 3 even faces and 3 odd faces, consists of three subcases, and
for each of these cases, a root distribution exists:

Figure 9: Root distributions with exactly three odd faces

This concludes the proof of the proposition.

5 The Pauli complex ∆P

The Pauli complex is a simply connected Moebius–Kantor complex ∆P obtained by
a standard graph of groups construction ([7, Chap. III.C]) using a triangle of groups
associated with the group P generated by the three Pauli matrices in SU(2):

X ∶= (0 1
1 0

) , Y ∶= (0 −i
i 0

) , and Z ∶= (1 0
0 −1

) .

The direct limit GP of this triangle of groups acts on ∆P in a flag transitive way.
The complex ∆P is obtained by developing around a fundamental face f using the
group P .
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The complex ∆P has an important property, which was used in [6] to classify the
flat planes that it contains: every face in ∆P can be assigned with a Pauli matrix
X, Y or Z in an equivariant way [6, §3]. Under this assignment, the link edges are
naturally labeled, and the link is a Moebius–Kantor graph isomorphic to the Cayley
graph of P with respect to {X,Y,Z}. The 6-cycles in the link (which correspond to
rings in ring puzzles) are given by the following relations between the Pauli matrices

XYXZY Z = Id

Y ZY XZX = Id

ZXZY XY = Id

in P . A root in ∆P corresponds to a path of length 3 in the link with an edge
labelling in {X,Y,Z}.

Lemma 5.1. A root is of rank 2 if and only if it contains the three labels X, Y , Z.

It is clear how to label the Moebius–Kantor graph in such a way that the above
property is true.

Proof. Since the Moebius–Kantor graph is 2-transitive, it is enough to prove the
lemma for the roots having labels XY Z and XYX. It is clear that a root with labels
XY Z can be extended in two ways using the 6-cycles XY ZXZY and XY ZY XZ,
and therefore is of rank 2. A root with labels XYX can be extended in a single
way using a 6-cycle, namely, XYXZY Z. The word XYXY is not a subword of a
relation of length 6 for the group P .

This implies:

Proposition 5.2. The Pauli complex ∆P is an even Moebius–Kantor complex.

Proof. Since ∆P is flag transitive, it is enough to prove that the fundamental face is
even. We assume that the face f is labelled with the matrix Y , and extend f into an
equilateral triangle f̃ using three faces with the same labels, say X. Then the three
roots associated with f have labels XYX. By the previous lemma, these roots are
not of rank 2. Therefore, ∆P is even.

As shown in the introduction, in order to deduce Theorem 1.11 from [6], it is
sufficient to prove the following result.

Proposition 5.3. Every even root distribution can be realized in the Pauli complex.

One argument would be to modify the proof of Proposition 2.1, to ensure that
the Moebius–Kantor complex is even, and apply Theorem 1.14.

We shall proceed as follows.
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Proposition 5.4. Let Π be a flat plane endowed with an even root distribution, and
consider a labelling by X and Y , of two consecutive faces in Π. There exists a unique
labelling of the faces of Π with labels in {X,Y,Z} such that the 6-cycles in the links
correspond to the relations XYXZY Z = Id, Y ZY XZX = Id, and ZXZY XY = Id.
In other words, there exists a unique Pauli puzzle associated with Π and the labelling
of two consecutive faces.

Proposition 5.3 follows from Proposition 5.4 and the fact that every Pauli puzzle
is realized in the Pauli complex (Theorem 3.3 in [6]).

Proof. Uniqueness is clear. We prove existence by induction on the radius n of
the ball Bn centered at one of the two common vertices of the labelled consecutive
triangles.

Suppose that there exists a labelling of Bn. For every vertex x in the boundary
of Bn, at least two faces of the ball B1(x) of radius 1 at x are labelled, and therefore
there exists a unique labelling of B1(x) which is consistent with the parity at x.

Let [x, y] be an edge in the boundary of Bn, and let t and t′ denotes the two
triangles adjacent to [x, y], where t is the triangle included in Bn.

We have to show that the labelling of t′ from B1(x) coincides with the labelling
from B1(y). However, since two of the three faces adjacent to t are included in Bn

and therefore labelled, only one of the two possible labels of t′ ensure, by Lemma
5.1, that t is an even face (compare Lemma 6.2).

6 Every even complex is isomorphic to ∆P

Let ∆ be a simply connected even complex, x0 ∈ ∆ be a vertex, Bn be the ball of
center x0 and radius n in ∆, and Sn ∶= ∂ Bn be the sphere of center x0 and radius n.
We fix an isometric embedding

ϕ1∶B1 →∆P .

Using ϕ1, we may label every face in B1 with one of the Pauli matrices X,Y,Z.

Theorem 6.1. There exists a unique isometric embedding ϕ∶∆ → ∆P such that
ϕ∣B1

= ϕ1.

Proof. We prove by induction that there exists a unique isometric embedding
ϕn∶Bn →∆P such that ϕn∣B1

= ϕ1. The theorem follows immediately.

Suppose that ϕn∶Bn → ∆P is an isometric isomorphism onto its image. Using
ϕn, we may label every face in Bn with one of the Pauli matrices X,Y,Z. Let us
construct ϕn+1. This construction will also establish Theorem 1.14.

For every vertex x ∈ Sn, there exists a unique isometric embedding ϕx∶Lx → ∆
whose restriction to Bn coincides with ϕn.

For every edge [x, y] in Sn, let hkx,y, k = 0,1, denote the height, perpendicular to
[x, y], in the two faces containing [x, y] which are not contained in Bn. We write
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Hk
x,y and Hk

y,x for the two half faces, separated by hkx,y, respectively containing x and
y. Thus, Hk

x,y ∪Hk
y,x, k = 0,1, are the two faces on [x, y] not contained in Bn.

For every x ∈ Sn we may label, using ϕx, every half face Hk
x,y, k = 0,1, with one

of the Pauli matrices X,Y,Z.

We claim (Lemma 6.2):

for every [x, y] and k = 0,1, the labels of the half faces Hk
x,y and Hk

y,x

coincide.

This shows that there exists a well-defined isometric embedding ϕn+1∶Bn+1 → ∆
extending ϕn, which coincides with ϕx on Lx for every x ∈ Sn. It takes Hk

x,y ∪Hk
y,x

to the unique face in ∆P which contains ϕn([x, y]), and whose label is the common
label of Hk

x,y and Hk
y,x. The uniqueness of such an embedding is clear.

We now prove the claim.

Lemma 6.2. For every [x, y] and k = 0,1, the labels of the half faces Hk
x,y and Hk

y,x

coincide.

Proof. Consider the face F = [x, y, z] in Bn containing [x, y], and two faces Fx and
Fy in Bn, adjacent to [z, x] and [z, y] respectively, and having identical labels, say
X. Let k, l ∈ {0,1} denote the two indices such that Hk

x,y and H l
y,x have label X. We

must show that k = l.
Since the labels of the faces Fx, Fy, and half faces Hk

x,y and H l
y,x, coincide, the

rank of the roots corresponding three roots at x, y and z is 3
2 (Lemma 5.1).

Since F is an even face, the number of roots of rank 3
2 in a large triangle containing

F is odd. Since the root at z is of rank 3
2 , the roots at x and y must have the same

rank. Therefore, k = l. For the corresponding face in ∆, the large triangle adjoins
two roots of rank 3

2 at x and y for a total of 3 such roots.

7 Classifying the even root distributions

In this section, we provide a direct approach to the classification of even root dis-
tributions in a flat, which rely only on the root distribution rather than the Pauli
complex.

We will in fact start with an arbitrary even simply connected Moebius–Kantor
complex, not a priori known to be isomorphic to ∆P , and show how its flats can be
classified by studying the root distributions. The same proof applies to classify the
abstract even root distributions.

In §2 of [3], a notion of w-block in an Aut(F2)-puzzle was introduced. It is
a geometric configuration of shapes having the property of being forward analytic
in Aut(F2) puzzles. Informally, this refers to the fact that this block has a specific
direction in which it determines the puzzle uniquely, at least, in a cone. In fact, the w-
block can be viewed as a sort of ‘glider’ with the property of being ‘self-reproducing’,
in the chosen direction (implying analyticity).
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Our main claim is that a configuration similar to the w-block in Aut(F2)-puzzles,
exists in every even Moebius–Kantor puzzle, and leads to a similar ‘forward analytic’
behaviour that determines the puzzle analytically in a cone. The configuration is a
trapezoid, and the following lemma establishes analyticity.

Let ∆ be an even simply connected Moebius–Kantor complex.

Lemma 7.1. Consider a trapezoid t of height 1 with a base of length 3, such that
the roots on the base have rank 2, and the root on the top, rank 3/2. If t belongs to
a flat Π, then t admits a unique extension into a sector of Π of base t and rank 2
boundary.

The trapezoid is shown in Figure 10; the two roots at the bottom are of rank 2,
that on top of rank 3/2. Analyticity occurs in the upward direction in the figure.

Proof. The rank 3/2 root in t extends in a unique way (i.e., in Π). Since ∆ is even,
the slanted sides of length 2 are of rank 3/2. This follows from the fact that the inner
vertices are both of rank 2. Thus, t extends uniquely into a 2-strip S2 of length 3 in
Π. Since ∆ is even, the two upper roots in Π are of rank 3/2, and therefore extend
uniquely into Π. Again, the slanted sides of length 2 are of rank 3/2, and S2 extends
uniquely into Π into a partial cone S3 of height 3. By induction, the upper roots in
Sn are always of rank 3/2, which provides a uniquely defined sector S ∶= ⋃Si of base
t in Π.

2 2

3/2

Figure 10: The figure shows the sector S and its rank 2 boundary

For even Moebius–Kantor puzzles, the following strong property holds.

Lemma 7.2. The sector S (in the notation of Lemma 7.1) belongs to a unique flat
called the t-flat and denoted Πt.

Proof. Let S ⊂ Π be a copy of S in a flat, and let t denote the reflection of t with
respect to its rank 2 boundary. If the lower boundary of t is of rank 3/2, we have an
opposite copy of t in Π, and Lemma 7.1 shows that t extends to a copy S of S in Π.
By convexity, there exists at most one flat of ∆ containing S ∪S. It is easy to check
that such a flat indeed exists. (It is represented below.)
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Let us show that the lower boundary of t must be of rank 3/2. Otherwise, it is
of rank 2. Since the central triangle in t is even, the 2-triangle T (which is formed
of 4 equilateral triangles) of base the lower base of t admits two sides of rank 3/2 or
two sides of rank 2. Since the center triangle in t is even, this proves that the lower
side of T is of rank 3/2.

Figure 11: The t-flat Πt; three intersecting rank 2 (in dark) geodesics are drawn,
and one of the trapezoid t is shown; the symmetries S3 of the center triangle
extend to the t-flat.

Remark 7.3. The flat Πt corresponds to one of the Pauli M -puzzles in [6], where
M ∈ {X,Y,Z}. The root distribution of Πt was shown in Figure 1 (see §1).

By a strip of rank 2, we mean a simplicial flat strip whose boundary roots are of
rank 2.

Lemma 7.4. If ∆ is even, the minimal strips of rank 2 are of height 1.

Proof. Suppose that there exists a minimal strip Σ with rank 2 boundaries. If it is
not of height 1, then there exists a root of rank 3/2 at distance 1 from the boundary.
Since the boundary is of rank 2, Σ contains a trapezoid t. By Lemma 7.1 and Lemma
7.2, Σ must be included in the t-flat. However, the latter does not contain such a
strip.

By a geodesic of rank 2 in a flat, we mean a simplicial straight line containing
exclusively roots of rank 2.

Lemma 7.5. If a flat Π contains a geodesic l of rank 2, then either Π coincides with
the t-flat Πt, or it is a union of minimal strips of rank 2 parallel to l.
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Proof. Let l be a rank 2 geodesic. If Π is not a union of minimal strips of rank
2 parallel to l, then there exists a parallel geodesic l′ ∥ l of rank 2, and a parallel
geodesic at distance 1 from l′ which contains a root of rank 3/2. Thus, Π contains
the trapezoid t which implies Π = Πt.

We shall now consider a ‘glider’ (i.e., a configuration which is forward analytic
in flats) which behaves similarly to the w-block in Aut(F2) puzzles. Furthermore, if
Π ≠ Πt then it will also be backward analytic.

Lemma 7.6. Let ∆ be an even simply connected Moebius–Kantor complex. Consider
a trapezoid t′ of height 1 with a base of length 3, such that precisely one of the two
roots on the base have rank 2, and such that the top root has rank 3/2. Every flat
containing t′ contains a geodesic of rank 2.

Proof. Suppose that t′ belongs to a flat Π. We first show that t′ admits a unique
upward extension into a half-strip S↑ transverse to t′ of height 3 with rank 2 bound-
aries. By symmetry, we may assume that the bottom rank 2 root is on the right.
Consider the unique upward extension of t′ (whose boundary is of rank 3/2). Since
the left top face of the trapezoid is even, the righthand side of the extension is of
rank 3/2, and therefore admits a unique extension into Π. This implies that the top
root of the resulting extension is of rank 3/2. Therefore, a copy of t′ sits on top of
it; by induction, we find a half strip S↑ piling up infinitely many copies of t′.

Next we prove that if Π ≠ Πt then S↑ extends uniquely into a strip S of height 3
with rank 2 boundary. Consider a trapezoid t′′ extending S↑ downwards. Since the
faces of t′ are even, the right bottom root of t′′ is of rank 2. If the left bottom root
of t′′ is even, then t′′ is isomorphic to t, so Π = Πt by Lemmas 7.1 and 7.2. Therefore
t′′ is isomorphic to t′; by induction, we find a strip S containing S↑ and piling up
infinitely many copies of t′.

To prove the lemma, we may assume that Π ≠ Πt; note then that the strip S ⊂ Π
is a union of strips with rank 2 boundaries.

Theorem 7.7. A flat plane in an even simply connected Moebius–Kantor complex
is either a flat with the root distribution of Πt, or a union of strips of height 1 and
rank 2.

Proof. Let ∆ be an even Moebius–Kantor complex and Π be a flat in ∆. The
previous results show that the conclusions hold if Π contains t (see Lemma 7.1) or t′

(see Lemma 7.6). Otherwise, Π contains neither t nor t′. This implies the following
statement:

If τ is a trapezoid of base of length 3 and top root of rank 3/2, then the bottom
roots are of rank 3/2.

By connectedness, this statement in turn implies that the roots of rank 3/2 are
aligned in Π. There exists a unique configuration with this property. Since the roots
of rank 3/2 are aligned in Π and ∆ is a Moebius–Kantor complex, the two transverse
directions must be rank 2. Thus, Π is a union of strips of height 1 and rank 2.
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