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Abstract

A (finite) partial order P is monomorphic if for all v, w ∈ V (P ), P − v ≃
P−w. Moreover, a partial order P is bimorphic if there exist x, y ∈ V (P )
such that P −x 6≃ P −y, and for every v ∈ V (P ), we have P −v ≃ P −x
or P − v ≃ P − y. Using the modular decomposition, we characterize
the monomorphic partial orders and the bimorphic partial orders. Their
reconstruction follows from these characterizations.

1 Introduction

A digraph D is defined by a (finite) vertex set V (D) and an arc set A(D), where an
arc is an ordered pair of distinct vertices. We denote |V (D)| by v(D). Let D be a
digraph. With W ⊆ V (D), we associate the subdigraph D[W ] of D induced by W
defined by V (D[W ]) = W and A(D[W ]) = A(D)∩(W×W ). When W = V (D)\W ′,
D[W ] is also denoted by D −W ′, and by D − w when W ′ = {w}.

We associate with a digraph D its dual D⋆ defined on V (D⋆) = V (D) as follows.
For any v, w ∈ V (D⋆), vw ∈ A(D⋆) if wv ∈ A(D).

A digraph D is transitive provided that for any u, v, w ∈ V (D), if uv, vw ∈ A(D),
then uw ∈ A(D). A (strict) partial order is a transitive digraph. Consider a partial
order P . For distinct v, w ∈ V (P ), v <P w means vw ∈ A(P ). For v, w ∈ V (P ),
v ≤P w means v = w or v <P w. For distinct v, w ∈ V (P ), v ‖P w means vw 6∈
A(P ) and wv 6∈ A(P ). We associate with a partial order P its comparability graph
Comp(P ) defined on V (Comp(P )) = V (P ) as follows. For distinct v, w ∈ V (P ),
vw ∈ E(Comp(P )) if v <P w or w <P v. A total order is a partial order whose
comparability graph is complete. Given k ≥ 1, the usual total order on {0, . . . , k−1}
is denoted by Tk. A partial order is discrete if its comparability graph is empty.
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As examples of partial orders,
∧

is the partial order defined on V (
∧

) = {0, 1, 2}
by E(

∧

) = {02, 12}. Set
∨

=
∧⋆. Furthermore, the partial order

∧∨

is defined on
V (

∧∨

) = {0, 1, 2, 3} by E(
∧∨

) = {02, 12, 13}.

Let P and Q be partial orders. An isomorphism from P onto Q is a bijection f
from V (P ) onto V (Q) such that for all v, w ∈ V (P ), we have v <P w if and only
if f(v) <Q f(w). The partial orders P and Q are isomorphic, which is denoted by
P ≃ Q, if there exists an isomorphism from P onto Q.

Let P be a partial order. We define an equivalence relation∼=P on V (P ) as follows.
For any v, w ∈ V (P ), v ∼=P w if P − v and P − w are isomorphic. This equivalence
relation comes naturally from the reconstruction problem (see Section 1.2). It comes
also from the notions of similar vertices and pseudo-similar vertices [12]. A partial
order P is said to be monomorphic (or (v(P ) − 1)-monomorphic [3]) if ∼=P admits
a unique equivalence class. A partial order P is said to be bimorphic if ∼=P admits
exactly two equivalence classes. We characterize the monomorphic partial orders and
the bimorphic partial orders. We deduce their reconstruction (see Section 1.2).

1.1 Modular decomposition

Let P be a partial order. A subset M of V (P ) is a module (or an order-autonomous
set) of P if for each v ∈ V (P ) \M , one of the next three statements holds

• for every x ∈ M , v <P x;

• for every x ∈ M , x <P v;

• for every x ∈ M , v ‖P x.

For instance, ∅, V (P ) and {v} (v ∈ V (P )) are modules of P , called the trivial modules
of P . A partial order P is indecomposable if all its modules are trivial, otherwise it
is decomposable. A partial order P is prime if it is indecomposable with v(P ) ≥ 3.
It is easy to verify that every partial order on 3 vertices is decomposable. Moreover,
a partial order on 4 vertices is prime if and only if it is isomorphic to

∧∨

.

Let P be a partial order. For disjoint modules M and N of P , one of the next
three statements holds

• for any v ∈ M and w ∈ N , v <P w;

• for any v ∈ M and w ∈ N , w <P v;

• for any v ∈ M and w ∈ N , v ‖P w.

This property allows us to define the quotient as follows. A modular partition of
P is a partition of V (P ) into modules of P . An element of a modular partition is
called a block of the partition. Recall that a transversal of a modular partition Π of
P is a subset W of V (P ) such that |W ∩M | = 1 for every M ∈ Π. With a modular
partition Π of P , we associate the quotient P/Π of P by Π as being the unique partial
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order defined on V (P/Π) = Π such that for a transversal W of Π, the function which
maps each w ∈ W to the unique block of Π containing w is an isomorphism from
P [W ] onto P/Π.

Let P be a partial order. A subset M of V (P ) is a strong module of P if M is
a module of P such that for every module N of P , if M ∩ N 6= ∅, then M ⊆ N or
N ⊆ M . For instance, the trivial modules of P are strong modules too. We denote
by G (P ) the family of the strong modules of P which are maximal under inclusion
among the proper strong modules of P . The next theorem is due to Gallai [4] (see
[11, Theorem 1.2]). We use the following notation.

Notation 1.1. Let G be a graph. Recall that G denotes the complement of G. In
the sequel, the collection of the vertex sets of the (connected) components of G is
denoted by C (G).

Theorem 1.2. Given a partial order P such that v(P ) ≥ 2, G (P ) is a modular
partition of P and one of the next three assertions holds

• Comp(P ) is disconnected, G (P ) = C (Comp(P )), and P/G (P ) is discrete;

• Comp(P ) is disconnected, G (P ) = C (Comp(P )), and P/G (P ) is a total order;

• Comp(P ) and Comp(P ) are connected, G (P ) is the set of the maximal proper
modules of P , and P/G (P ) is prime.

Remark 1.3. Consider a partial order P such that v(P ) ≥ 3. Since the elements
of G (P ) are proper modules of P , we have |G (P )| ≥ 2. Consequently, if G (P )
admits an element M such that |M | ≥ 2, then P is decomposable. Moreover, if
G (P ) = {{v} : v ∈ V (P )}, then P ≃ (P/G (P )). Clearly, a transitive order or a
discrete partial order with at least 3 vertices are decomposable. It follows that P is
prime if and only if P/G (P ) is prime and G (P ) = {{v} : v ∈ V (P )}.

1.2 Reconstruction

Given digraphs D and ∆ such that V (D) = V (∆), D and ∆ are hypomorphic if
D− v and ∆− v are isomorphic for each v ∈ V (D). A digraph D is then said to be
reconstructible if every digraph, which is hypomorphic to D, is isomorphic to D. A
collection C of partial orders is recognizable if for any hypomorphic partial orders P
and Q, we have P is a member of C if and only if Q is a member of C.

We recall Kelly’s lemma.

Lemma 1.4 (Kelly [9]). Consider hypomorphic partial orders P and Q. For each
partial order R such that v(R) < v(P ), we have

|{X ⊆ V (P ) : P [X] ≃ R}| = |{X ⊆ V (Q) : Q[X] ≃ R}|.

We use the following result obtained from Lemma 1.4 by choosing R = T2.
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Corollary 1.5. Given hypomorphic partial orders P and Q, if v(P ) ≥ 3, then
|A(P )| = |A(Q)|.

The reconstruction of partial orders, the comparability graph of which is discon-
nected, is due to Harary [5] and Das [2].

Lemma 1.6. Given a partial order P such that v(P ) ≥ 3, if P/G (P ) is discrete,
then P is reconstructible.

Recall that a graph is coconnected if its complement is connected. The recon-
struction of partial orders, the comparability graph of which is not coconnected, is
due to Kratsch and Rampon [10].

Proposition 1.7. Given a partial order P such that v(P ) ≥ 3, if P/G (P ) is a total
order, then P is reconstructible.

We do not know if decomposable partial orders P such that P/G (P ) is prime
are reconstructible. However, the following result provides a partial answer in this
case. It is obtained by translating [1, Theorem 4.1] (or [13, Corollary 7.4]) in terms
of partial orders.

Proposition 1.8. Consider a partial order P such that P/G (P ) is prime. Suppose
that v(P ) − v(P/G (P )) ≥ 2. Let O be an orbit of P/G (P ) under the action of its
automorphism group. Let X ∈ O such that |X| ≥ 2. If there exists x ∈ X such that
for each Y ∈ O, P [Y ] 6≃ P [X \ {x}], then P is reconstructible.

We use Proposition 1.8 to prove that decomposable bimorphic partial orders are
reconstructible (see the proof of Proposition 5.1). Furthermore, we do not know if
prime partial orders are reconstructible. Nevertheless, Ille [6] proved that they are
recognizable.

Theorem 1.9. Let P be a prime partial order such that v(P ) ≥ 12. For every partial
order Q, if P and Q are hypomorhic, then Q is prime as well.

Remark 1.10. Schröder [13, Theorem 1.8] proved that prime graphs with at least
4 vertices are recognizable. Furthermore, a partial order is prime if and only if
its comparability graph is too (for instance, see Ille and Rampon [8, Corollary 1]).
Therefore, Theorem 1.9 holds for prime partial orders with at least 4 vertices.

Lastly, Ille and Rampon [7] established the reconstruction of partial orders by
assuming that both partial orders share the same comparability graph.

Theorem 1.11. Consider hypomorphic partial orders P and Q such that v(P ) ≥ 4.
If Comp(P ) = Comp(Q), then P and Q are isomorphic.

Obviously, the class of monomorphic partial orders and the class of bimorphic
partial orders are recognizable. We prove that monomorphic partial orders and
bimorphic partial orders are reconstructible (see Corollary 4.5 and Proposition 5.1).
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1.3 Main results

Let P be a partial order. We denote by min(P ) the set of the minimal vertices of
P . The set of the maximal vertices of P is denoted by max(P ). Furthermore, given
partial orders P and Q, the fact P and Q are isomorphic is denoted by P ≃ Q.

Definition 1.12. Let P be a partial order. We associate with P the set τ(P ) of the
subsets W of V (P ) such that P [W ] is a total order. The height ht(P ) of P is defined
by

ht(P ) = max({|W | : W ∈ τ(P )})− 1.

Let P be a partial order. Given W ⊆ V (P ), we say that P is W -transitive if for
v, w ∈ W , there exists an automorphism ϕ of P such that ϕ(v) = w. Recall that
P is said to be vertex-transitive if it is V (P )-transitive. Clearly, the only (finite)
vertex-transitive partial orders are the discrete ones.

We obtain the following characterization of monomorphic partial orders in Sec-
tion 4.

Theorem 1.13. Given a partial order P such that v(P ) ≥ 2, P is monomorphic if
and only if either P is a total order or P/G (P ) is discrete and there exists k ≥ 1
such that for every X ∈ G (P ), P [X] ≃ Tk.

The characterization of bimorphic partial order follows from the next four results
by applying Theorem 1.2. We establish the next four theorems in Section 5.

Theorem 1.14. Given a partial order P such that Comp(P ) is disconnected, P is
bimorphic if and only if one of the following two assertions holds

(A1) • there exist l > k ≥ 1 such that for every X ∈ G (P ), P [X] ≃ Tk or Tl,

• there exist X, Y ∈ G (P ) such that P [X] 6≃ P [Y ];

(A2) there exists a bimorphic and connected partial order Q such that for every
X ∈ G (P ), P [X] ≃ Q.

Theorem 1.15. Given a partial order P such that v(P ) ≥ 3 and Comp(P ) is dis-
connected, P is bimorphic if and only if (at least) one of the following two assertions
holds

(B1) |G (P )| = 2 and for each X ∈ G (P ), P [X] is monomorphic;

(B2) G (P ) contains a unique block X such that |X| ≥ 2, moreover P [X] is monomor-
phic and min(P/G (P )) = {X} or max(P/G (P )) = {X}.

Theorem 1.16. If P is a prime partial order, then P is bimorphic if and only if
ht(P ) = 1, P is min(P )-transitive, and P is max(P )-transitive (see Example 1.18).

Theorem 1.17. Given a partial order P such that Comp(P ) and Comp(P ) are
connected, P is bimorphic if and only if all of the following statements hold
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(S1) P/G (P ) is prime and bimorphic (see Theorem 1.16);

(S2) there exists a monomorphic partial order Q1 such that for every X ∈
min(P/G (P )), P [X] ≃ Q1;

(S3) there exists a monomorphic partial order Q2 such that for every X ∈
max(P/G (P )), P [X] ≃ Q2.

Example 1.18. Trotter [14] introduced the crowns in the following way. Consider
n ≥ 3 and 2 ≤ m ≤ n − 1. The crown Cm

n is defined on V (Cm
n ) = {x0, . . . , xn−1} ∪

{y0, . . . , yn−1} as follows. Given v, w ∈ V (Cm
n ), v <Cm

n
w if there exist i, j ∈

{0, . . . , n − 1} and k ∈ {0, . . . ,m − 1} such that v = xi, w = yj, and j ≡ i + k
mod n. The crown Cm

n satisfies the following properties

• ht(Cm
n ) = 1, min(Cm

n ) = {x0, . . . , xn−1}, and max(Cm
n ) = {y0, . . . , yn−1};

• Cm
n is min(Cm

n )-transitive and Cm
n is max(Cm

n )-transitive; precisely, the per-
mutation of V (Cm

n ), defined by xi 7→ x(i+1 mod n) and yi 7→ y(i+1 mod n), is an
automorphism of Cm

n ;

• Cm
n is self-dual;

• Cm
n is prime.

It follows that Cm
n is bimorphic by Theorem 1.16.

2 Preliminaries

Let P be a partial order. For each v ∈ V (P ), the unique block of G (P ) containing
v is denoted by X(v).

Lemma 2.1. Let P be a partial order such that v(P ) ≥ 2. Suppose that Comp(P )
is disconnected. For v, w ∈ V (P ), if v ∼=P w, then P [X(v)] ≃ P [X(w)]. Moreover,
for v, w ∈ V (P ), if v ∼=P w and |X(v)| ≥ 2, then P [X(v)− v] ≃ P [X(w)− w].

Proof. By Theorem 1.2, G (P ) = C (Comp(P )) and P/G (P ) is discrete. Let x ∈
V (P ). Clearly, for every X ∈ G (P ) such that x 6∈ X, Comp(P )[X] is a component
of Comp(P − x). Therefore, one of the following cases holds

1. X(x) = {x}, Comp(P − x) is connected, and G (P ) = {V (P ) \ {x}, {x}};

2. X(x) = {x}, Comp(P − x) is disconnected and G (P ) = G (P − x) ∪ {{x}};

3. |X(x)| ≥ 2, Comp(P − x) is disconnected,

G (P − x) = (G (P ) \ {X(x)}) ∪ C (Comp(P [X(x)]− x)), (1)
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and hence for each Y ∈ G (P ), we have

|{Z ∈ G (P − x) : P [Z] ≃ P [Y ]}|

= |{Z ∈ G (P ) : P [Z] ≃ P [Y ]}| − 1 if P [X(x)] ≃ P [Y ]

or (2)

≥ |{Z ∈ G (P ) : P [Z] ≃ P [Y ]}| if P [X(x)] 6≃ P [Y ].

Note that Comp(P − x) is connected only in the first case. Furthermore, when
Comp(P − x) is disconnected, we have |G (P − x)| = |G (P )| − 1 in the second case
whereas |G (P − x)| ≥ |G (P )| in the third one.

Now, consider v, w ∈ V (P ) such that v ∼=P w. One of the three cases above
holds for both v and w. In the first two cases, X(v) = {v} and X(w) = {w},
so P [X(v)] ≃ P [X(w)]. Lastly, suppose that the third case holds for v and w.
It follows from (2) that P [X(v)] ≃ P [X(w)]. Moreover, it follows from (1) that
P [X(v)− v] ≃ P [X(w)− w].

Schröder [12] obtained similar results in the proof of [12, Proposition 2.3] when
v ∈ min(P ), w ∈ max(P ), and rkP (w) > 0.

Lemma 2.2. Let P be a partial order such that v(P ) ≥ 2. Suppose that Comp(P )
and Comp(P ) are connected. For v, w ∈ V (P ), if v ∼=P w, then P [X(v)] ≃ P [X(w)].
Moreover, for v, w ∈ V (P ), if v ∼=P w and |X(v)| ≥ 2, then P [X(v)−v] ≃ P [X(w)−
w].

Proof. By Theorem 1.2, G (P ) is the set of the maximal proper modules of P , and
P/G (P ) is prime. Given x ∈ V (P ), one of the following cases holds

1. X(x) = {x} and (P − x)/G (P − x) is not prime;

2. X(x) = {x}, (P − x)/G (P − x) is prime, and |G (P − x)| ≤ |G (P )| − 1;

3. |X(x)| ≥ 2, G (P − x) = (G (P ) \ {X(x)}) ∪ {X(x) \ {x}}, (P − x)/G (P − x)
is prime, and (2) holds.

We conclude as in Lemma 2.1.

Lemma 2.3. Let P be a partial order such that v(P ) ≥ 2. Suppose that Comp(P )
is disconnected. For v, w ∈ V (P ), if v ∼=P w and max(|X(v)|, |X(w)|) ≥ 2, then
X(v) = X(w).

Proof. By Theorem 1.2, G (P ) = C (Comp(P )) and P/G (P ) is a total order. Let
x ∈ V (P ). Clearly, for every X ∈ G (P ) such that x 6∈ X, Comp(P )[X] is a
component of Comp(P − x). Hence, one of the following cases holds

1. X(x) = {x}, Comp(P − x) is connected, and G (P ) = {V (P ) \ {x}, {x}};

2. X(x) = {x}, Comp(P − x) is disconnected, and G (P ) = G (P − x) ∪ {{x}};
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3. |X(x)| ≥ 2, Comp(P − x) is disconnected, and

G (P − x) = (G (P ) \ {X(x)}) ∪ C (Comp(P [X(x)]− x)).

Now, consider v, w ∈ V (P ) such that v ∼=P w. One of the three cases above holds
for both v and w. In the first two cases, X(v) = {v} and X(w) = {w), so P [X(v)] ≃
P [X(w)]. Therefore, suppose that the third case holds for v and w. We denote the
blocks of G (P ) by X0, . . . , Xn, where n ≥ 1, in such a way that

P/G (P ) = X0 < · · · < Xn.

We can assume that there exist i ≤ j ∈ {0, . . . , n} such that X(v) = Xi and
X(w) = Xj . We have

(P − v)/G (P − v) = X0 < · · · < Xi−1 < Y < · · · ,

where Y ∈ C (Comp(P [Xi]− v)). If i < j, we obtain

(P − w)/G (P − w) = X0 < · · · < Xi−1 < Xi < · · · .

It follows that i = j, that is, X(v) = X(w).

Definition and notation 2.4. Let P be a partial order. Consider v ∈ V (P ).
The filter of v in P is the set ↑P (v) = {w ∈ V (P ) : v ≤P w}. Set fP (v) = | ↑P (v)|.
The ideal of v in P is the set ↓P (v) = {w ∈ V (P ) : w ≤P v}. Set iP (v) = | ↓P (v)|.
The rank rkP (v) of v in P is defined by

rkP (v) = ht(P [↓P (v)]).

Proposition 2.5. Let P be a partial order. Consider distinct vertices u, v, w of P
such that u <P w, v <P w, and u ‖P v, so P [{u, v, w}] ≃

∧

. If fP (v) ≥ fP (u), then
u 6∼=P w.

Proof. We prove that

|{z ∈ V (P −u) : fP−u(z) ≥ fP (v)}| ≥ |{z ∈ V (P −w) : fP−w(z) ≥ fP (v)}|+1, (3)

which implies u 6∼=P w.

Consider the sets










X = {x ∈ (V (P )\ ↓P (w)) : fP (x) ≥ fP (v)}

and

Y = {y ∈ ↓P (w) : fP (y) > fP (v)}.

We verify that

{z ∈ V (P − w) : fP−w(z) ≥ fP (v)} = X ∪ Y. (4)
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Let x ∈ X. Since x 6∈ ↓P (w), we have ↑P (x) =↑P−w (x). Thus, fP (x) = fP−w(x).
Since x ∈ X, we have fP (x) ≥ fP (v), and hence fP−w(x) ≥ fP (v). Let y ∈ Y . Since
y ∈ ↓P (w) and fP (y) > fP (v), we obtain y 6= w. It follows that ↑P (y) =↑P−w

(y) ∪ {w}. Thus, fP (y) = fP−w(y) + 1. Since y ∈ Y , we have fP (y) > fP (v), and
hence fP−w(y) ≥ fP (v). Consequently, we have

(X ∪ Y ) ⊆ {z ∈ V (P − w) : fP−w(z) ≥ fP (v)}.

Conversely, consider z ∈ V (P − w) such that fP−w(z) ≥ fP (v). First, suppose that
z 6∈ ↓P (w). As previously seen, we have ↑P (z) =↑P−w (z). Therefore, we have
fP (z) ≥ fP (v), and hence z ∈ X. Second, suppose that z ∈ ↓P (w). We obtain
z ∈ (↓P (w) \ {w}). As previously seen, we have ↑P (z) =↑P−w (z) ∪ {w}, so
fP (z) = fP−w(z) + 1. Thus, fP (z) > fP (v), and hence z ∈ Y . It follows that (4)
holds.

Moreover, we verify that

X ∪ Y ∪ {v} ⊆ {z ∈ V (P − u) : fP−u(z) ≥ fP (v)}. (5)

Since u ‖P v, we have ↑P (v) =↑P−u (v). Thus, we have fP (v) = fP−u(v). Since
v 6= u, v ∈ {z ∈ V (P − u) : fP−u(z) ≥ fP (v)}. Let x ∈ X. Since x 6∈ ↓P (w) and
u <P w, we have x 6∈ ↓P (u). We obtain ↑P (x) =↑P−u (x), so fP (x) = fP−u(x).
Since x ∈ X, we have fP (x) ≥ fP (v), and hence fP−u(x) ≥ fP (v). Let y ∈ Y .
Since fP (y) > fP (v) and fP (v) ≥ fP (u), we obtain y 6= u. Since y ∈ ↓P (w), we
have (↑P (y) \ {u}) ⊆ ↑P−u (y). Thus, we have fP−u(y) ≥ fP (y) − 1, and hence
fP−u(y) ≥ fP (v). It follows that (5) holds.

Since X, Y , and {v} are pairwise disjoint, it follows from (4) and (5) that (3)
holds. Consequently, u 6∼=P w.

3 Schröder’s results

We use the following two important results due to Schröder [12] (see Theorems 2.4
and 4.5).

Theorem 3.1. Let P be a connected partial order. Suppose that there exists v, w ∈
V (P ) such that v ∼=P w and rkP (v) < rkP (w). If (v, w) 6∈ (min(P )×max(P )), then
there exists a nontrivial module M of P such that v ∈ M , P [M ] is connected, and
there exists w′ ∈ M satisfying

• (v, w′) ∈ (min(P [M ])×max(P [M ]));

• v ∼=P [M ] w
′.

Theorem 3.2. Let P be a connected partial order. Suppose that P is not a total
order. If there exist (v, w) ∈ (min(P ) ×max(P )) such that v ∼=P w, then for every
x ∈ V (P ) \ {v, w}, x 6∼=P v.
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4 Monomorphic partial orders

We recall the following claim which is a direct consequence of [7, Lemma 5].

Claim 4.1. Let P be a partial order into which
∧

and
∨

do not embed. If Comp(P )
is connected, then P is a total order.

Proof of Theorem 1.13. To begin, a total order is obviously monomorphic. Further-
more, suppose that P/G (P ) is discrete and there exists k ≥ 1 such that for every
X ∈ G (P ), P [X] ≃ Tk. Clearly, P is monomorphic.

Conversely, suppose that P is monomorphic. By Proposition 2.5,
∧

does not
embed into P . Since the dual P ⋆ of P is monomorphic as well,

∧⋆ does not embed into
P ⋆. Hence,

∨

does not embed into P . By Claim 4.1, P is a total order if Comp(P )
is connected. Hence, suppose that Comp(P ) is disconnected. By Theorem 1.2,
G (P ) = C (Comp(P )) and P/G (P ) is discrete. Consider X ∈ G (P ). By Claim 4.1,
P [X] is a total order because Comp(P [X]) is connected and P [X] contains neither
∧

nor
∨

. Since P is monomorphic, there exists k ≥ 1 such that for every X ∈ G (P ),
P [X] ≃ Tk.

Remark 4.2. It follows from Theorem 1.13 that there does not exist a finite partial
order which is both prime and monomorphic. Now, consider the partial order ≤P

defined on Z as follows. Given m,n ∈ Z, m ≤P n if there exist k, l ≥ 0 such that
n − m = 3k + 4l. It is not difficult to verify that P is prime. Furthermore, the
permutation of Z, defined by n 7→ n + 1, is an automorphism of P . It follows that
P is vertex-transive (without being discrete). In particular, we obtain that P is
monomorphic as well. Two problems follow.

Problem 4.3. Do there exist infinite partial orders that are monomorphic and prime,
but not vertex-transitive? (Observe that the usual order on N is monomorphic, but
neither prime nor vertex-transitive.)

Problem 4.4. Characterize the infinite monomorphic partial orders.

The next result is an immediate consequence of Theorem 1.13, Lemma 1.6, and
Proposition 1.7. It can be proved directly from the characterization provided in
Theorem 1.13 as well.

Corollary 4.5. Given a partial order P such that v(P ) ≥ 3, if P is monomorphic,
then P is reconstructible.

5 Bimorphic partial orders

Proof of Theorem 1.14. Let P be a partial order such that Comp(P ) is disconnected.
Clearly, if Assertion (A1) or Assertion (A2) holds, then P is bimorphic. Conversely,
suppose that P is bimorphic. Denote by C1 and C2 the equivalence classes of ∼=P .
For i = 1 or 2, set

Gi(P ) = {X ∈ G (P ) : X ∩ Ci 6= ∅}.
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Given i = 1 or 2, it follows from Lemma 2.1 that there exists a partial order Qi such
that P [X] ≃ Qi for every X ∈ Gi(P ). We distinguish the following two cases.

1. Suppose that G1(P ) ∩ G2(P ) 6= ∅. Hence, we obtain Q1 ≃ Q2. Since P is
bimorphic, Q1 is bimorphic too. Thus, Assertion (A2) holds.

2. Suppose that G1(P ) ∩ G2(P ) = ∅. We verify that Q1 is a total order. This is
clear when v(Q1) = 1. Hence, suppose that v(Q1) ≥ 2. Let X ∈ G1(P ). For
v, w ∈ X, it follows from Lemma 2.1 that P [X − v] ≃ P [X − w]. Therefore,
P [X] and hence Q1 are monomorphic. Since Comp(Q1) is connected, it follows
from Theorem 1.13 that Q1 is a total order. Similarly, Q2 is a total order.
Since P is not monomorphic, it follows from Theorem 1.13 that v(Q1) 6= v(Q2).
Consequently, Assertion (A1) holds.

Proof of Theorem 1.15. Consider a partial order P such that

v(P ) ≥ 3 and Comp(P ) is disconnected.

Clearly, if Assertion (B1) or Assertion (B2) holds, then P is bimorphic. Conversely,
suppose that P is bimorphic. We denote the blocks of G (P ) by X0, . . . , Xn, where
n ≥ 1, in such a way that

P/G (P ) = X0 < · · · < Xn.

Set
G≥2(P ) = {X ∈ G (P ) : |X| ≥ 2}.

It follows from Lemma 2.3 that |G≥2(P )| ≤ 2. Since P is not monomorphic, P is not
a total order, so G≥2(P ) 6= ∅. Therefore, we have |G≥2(P )| = 1 or 2. We distinguish
the following two cases.

1. Suppose that |G≥2(P )| = 2. It follows from Lemma 2.3 that G (P ) = G≥2(P ).
Clearly, Assertion (B1) holds.

2. Suppose that |G≥2(P )| = 1. Denote by X the unique element of G≥2(P ). For a
contradiction, suppose that n ≥ 2 and X = Xi, where i ∈ {1, . . . , n− 1}. Set

Y =
⋃

0≤j≤i−1

Xj and Z =
⋃

i+1≤j≤n

Xj .

Let x ∈ X, y ∈ Y , and z ∈ Z. It follows from Lemma 2.3 that x 6∼=P y and
x 6∼=P z. Furthermore, it is not difficult to verify that y 6∼=P z, which contradicts
the fact that P is bimorphic. Consequently, we obtain X = X0 or X = Xn,
that is, Assertion (B2) holds.

Proof of Theorem 1.16. Consider a prime partial order P . Clearly, if ht(P ) = 1,
P is min(P )-transitive, and P is max(P )-transitive, then ∼=P has two equivalence
classes, namely min(P ) and max(P ). Conversely, suppose that P is bimorphic.
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For a contradiction, suppose that there exist (v, w) ∈ (min(P ) × max(P )) such
that v ∼=P w. It follows from Theorem 3.2 that ∼=P has two equivalence classes,
namely {v, w} and V (P ) \ {v, w}. Since P is prime, we have min(P ) 6= {v} and
max(P ) 6= {w}. Consider v′ ∈ min(P )\{v} and w′ ∈ max(P )\{w}. Since v′ ∼=P w′,
it follows from Theorem 3.2 that ∼=P has two equivalence classes, namely {v′, w′}
and V (P )\{v′, w′}. It follows that P ≃

∧∨

, which is impossible because ∼=∧∨ admits
three equivalence classes. Consequently, for any v ∈ min(P ) and w ∈ max(P ), we
have

v 6∼=P w. (6)

Denote by C1 and C2 the equivalence classes of P . By exchanging C1 and C2 if
necessary, it follows from (6) that min(P ) ⊆ C1 and max(P ) ⊆ C2. Since P is prime
and bimorphic, it follows from Theorem 3.1 that

V (P ) = min(P ) ∪max(P ),

and hence min(P ) = C1 and max(P ) = C2. In particular, we obtain ht(P ) = 1.
Let w,w′ ∈ max(P ). Since P − w ≃ P − w′, we have ip(w) = ip(w

′). Now, let
v, v′ ∈ min(P ) and consider an isomorphism ϕ from P − v onto P − v′. Since
ip(w) = ip(w

′) for any w,w′ ∈ max(P ), we obtain ϕ(↑P (v) \ {v}) =↑P (v′) \ {v′}.
Consequently, the extension of ϕ by v 7→ v′ is an automorphism of P . It follows that
P is min(P )-transitive. Similarly, P is max(P )-transitive.

Proof of Theorem 1.17. Consider a partial order P such that

Comp(P ) and Comp(P ) are connected.

Clearly, if Statements (S1), (S2), and (S3) hold, then P is bimorphic. Conversely,
suppose that P is bimorphic. Denote by C1 and C2 the equivalence classes of ∼=P .
For i = 1 or 2, set

G
i(P ) = {X ∈ G (P ) : X ∩ Ci 6= ∅}.

Moreover, set
G≥2(P ) = {X ∈ G (P ) : |X| ≥ 2}.

Furthermore, by Theorem 1.16, we can assume that P is decomposable. It follows
from Theorem 1.2 that G≥2(P ) 6= ∅. For instance, suppose that

G
1(P ) ∩ G≥2(P ) 6= ∅.

By Lemma 2.2, we have
G

1(P ) ⊆ G≥2(P ).

Let X, Y ∈ G 1(P ). Given x ∈ X and y ∈ Y such that x ∼=P y, consider an
isomorphism ϕ from P − x onto P − y. Since |X| ≥ 2, we have G (P − x) =
(G (P ) \ {X}) ∪ {X \ {x}} and (P − x)/G (P − x) is prime. The analogue holds for
P − y. It follows that the bijection

ϕ : G (P − x) −→ G (P − y)
Z 7−→ ϕ(Z)
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is an isomorphism from (P−x)/G (P−x) onto (P−y)/G (P−y). Furthermore, since
ϕ is an isomorphism from P − x onto P − y, there exists k ≥ 1 such that ϕk(y) = x.
It follows that

(ϕ)k(Y ) = X.

Clearly, the bijection
ϕx : G (P ) −→ G (P − x)

Z 7−→ Z \ {x)

is an isomorphism from P/G (P ) onto (P −x)/G (P −x). We define the isomorphism
ϕy from P/G (P ) onto (P − y)/G (P − y) in an analogous way. We obtain that

((ϕy)
−1 ◦ ϕ ◦ ϕx)

k(Y ) = X.

Since (ϕy)
−1 ◦ ϕ ◦ ϕx is an automorphism of P/G (P ), we obtain that P/G (P ) is

G 1(P )-transitive. By exchanging P and P ⋆ if necessary, we can assume that

G
1(P ) ∩min(P/G (P )) 6= ∅.

Since P/G (P ) is G 1(P )-transitive, we obtain

G
1(P ) ⊆ min(P/G (P )).

To conclude, we distinguish the following two cases.

1. Suppose that G 2(P ) ∩ G≥2(P ) 6= ∅. As for G 1(P ), we obtain G 2(P ) ⊆ G≥2(P )
and P/G (P ) is G 2(P )-transitive. Since G 1(P ) ⊆ min(P/G (P )), we obtain
G 2(P ) ∩max(P/G (P )) 6= ∅. Since P/G (P ) is G 2(P )-transitive, we obtain

G
2(P ) = max(P/G (P )).

It follows that G 1(P ) = min(P/G (P )) and for i = 1 or 2,

Ci =
⋃

X∈G i(P )

X.

It follows from Lemma 2.2 that there exists a monomorphic partial order Q1

such that for every X ∈ min(P/G (P )), P [X] ≃ Q1. Hence, Statement (S2)
holds. Similarly, Statement (S3) holds. Furthermore, since P/G (P ) is G 1(P )-
transitive and G 2(P )-transitive, P/G (P ) is monomorphic or bimorphic. Since
P/G (P ) is prime, it follows from Theorem 1.13 that P/G (P ) is not monomor-
phic. Hence, Statement (S1) holds.

2. Suppose that |X| = 1 for every X ∈ G 2(P ). Thus, we have

C2 =
⋃

X∈G 2(P )

X.

It follows that
C1 =

⋃

X∈G 1(P )

X.
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Since G 1(P ) ⊆ min(P/G (P )), we obtain max(P/G (P )) ⊆ G 2(P ).

For a contradiction, suppose that min(P/G (P )) \ G 1(P ) 6= ∅. There exist
v, w ∈ C2 such that {v} ∈ min(P/G (P )) and {w} ∈ max(P/G (P )). We have
v ∈ min(P ) and w ∈ max(P )). It follows from Theorem 3.2 that (V (P ) \
{v, w}) ⊆ C1. Since max(P/G (P )) ⊆ G 2(P ), we obtain max(P/G (P )) =
{{w}}, which contradicts the fact that P/G (P ) is prime. Consequently, we
have

min(P/G (P )) = G
1(P ).

It follows that P/G (P ) is min(P/G (P ))-transitive.

For a contradiction, suppose that min(P/G (P )) ∪ max(P/G (P )) ( G (P ).
There exist v, w ∈ V (P ) such that

{v} ∈ (G (P ) \ (min(P/G (P )) ∪max(P/G (P )))),

{w} ∈ max(P/G (P )), and {v} <P/G (P ) {w}. We have v, w ∈ C2 and w ∈
max(P ). Since {v} 6∈ min(P/G (P )), there exists X ∈ min(P/G (P )) such that
X <P/G (P ) {v}. Therefore, v 6∈ min(P ). It follows from Theorem 3.1 that
there exists a nontrivial module M of P such that v ∈ M , which is impossible
because {v} ∈ G (P ) and P/G (P ) is prime. Consequently, we obtain

min(P/G (P )) ∪max(P/G (P )) = G (P ),

and hence
G

2(P ) = max(P/G (P )).

It remains to prove that P/G (P ) is bimorphic. Let

{v}, {w} ∈ max(P/G (P )).

We have v, w ∈ C2. Hence, there exists an isomorphism ϕ from P − v onto
P −w. Clearly, G (P )\{{v}} is a modular partition of P −v and G (P )\{{w}}
is a modular partition of P − w. We verify that

for each X ∈ (G (P ) \ {{v}}), ϕ(X) ∈ (G (P ) \ {{w}}). (7)

Indeed, since P/G (P ) is prime and min(P/G (P ))-transitive, there exists f ≥ 3
such that

for every X ∈ min(P/G (P )), fP/G (P )(X) = f . (8)

It follows from (8) that max(P − v) = max(P ) \ {v}. Similarly, max(P −w) =
max(P ) \ {w}. We obtain ϕ(max(P ) \ {v}) = max(P ) \ {w}. Consequently,
(7) holds for X ∈ (max(P/G (P )) \ {{v}}). Now, let X ∈ min(P/G (P )). Set

M = {Y ∈ min(P/G (P )) : Y ∩ ϕ(X) 6= ∅}.

Since ϕ(X) is a module of P−w, we obtain that the union of the elements of M

is a module of P −w. Therefore, M is a module of (P/G (P ))−{w}. It follows
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from (8) that M is a module of P/G (P ). Since P/G (P ) is prime, we have
|M | = 1, that is ϕ(X) ∈ min(P/G (P )). Consequently, (7) holds. We obtain
(P/G (P ))−{v} ≃ (P/G (P ))−{w}. It follows that P/G (P ) is monomorphic or
bimorphic. Since P/G (P ) is prime, it follows from Theorem 1.13 that P/G (P )
is bimorphic.

Proposition 5.1. Given a partial order P such that v(P ) ≥ 3, if P is bimorphic,
then P is reconstructible.

Proof. If P/G (P ) is discrete, then it suffices to apply Lemma 1.6. Furthermore,
if P/G (P ) is a total order, then it suffices to apply Proposition 1.7. By applying
Theorem 1.2, we can suppose that P/G (P ) is prime.

To begin, suppose that P is decomposable. By Theorem 1.17, the following
statements hold

• P/G (P ) is prime and bimorphic;

• there exists a monomorphic partial order P1 such that for every X ∈
min(P/G (P )), P [X] ≃ P1;

• there exists a monomorphic partial order P2 such that for every X ∈
max(P/G (P )), P [X] ≃ P2.

Since P is decomposable, v(P1) ≥ 2 or v(P2) ≥ 2. For instance, assume that v(P1) ≥
2. By Theorem 1.16 applied to P/G (P ), P/G (P ) is min(P/G (P ))-transitive. Hence,
min(P/G (P )) is an orbit of P/G (P ) and it suffices to apply Proposition 1.8.

Lastly, suppose that P is prime. Let Q be a partial order hypomorphic to P .
Clearly, Q is bimorphic too. Moreover, it follows from Remark 1.10 that Q is prime
too. By Theorem 1.16, we have ht(P ) = 1, P is min(P )-transitive, and P is max(P )-
transitive. The same holds for Q.

Let v ∈ min(P ). We have max(P − v) = max(P ). Furthermore, since P is prime
and max(P )-transitive, we have iP (w) ≥ 3 for every w ∈ max(P ). It follows that
min(P−v) = min(P )\{v}. Analogously, for each v ∈ max(Q), min(Q−v) = min(Q)
and max(Q − v) = max(Q) \ {v}. Consequently, we obtain min(P ) = min(Q)
and max(P ) = max(Q). Since P is min(P )-transitive and Q is min(Q)-transitive,
it follows from Corollary 1.5 that fP (v) = fQ(v) for every v ∈ min(P ). Given
w ∈ max(P ), it follows that the extension of an isomorphism from P −w onto Q−w
by w 7→ w is an isomorphism from P onto Q.

6 Epilogue: k-morphic partial orders

Given k ≥ 1, a partial order P is k-morphic if ∼=P has exactly k equivalence classes.
As in the proof of Theorem 1.16, the next result follows from Theorems 3.1 and 3.2.

Fact 6.1. Let k ≥ 2. Given a prime partial order P such that ht(P ) = k − 1, if P
is k-morphic, then the following statements hold
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(T1) for each i ∈ {0, . . . , k − 1}, {v ∈ V (P ) : rkP (v) = i} is an equivalence class of
∼=P ;

(T2) for each i ∈ {0, . . . , k− 1}, {v ∈ V (P ) : rkP ⋆(v) = i} is an equivalence class of
∼=P ;

(T3) for each v ∈ V (P ), rkP (v) + rkP ⋆(v) = ht(P ).

Proof. Statement (T1) follows from Theorems 3.1 and 3.2 as in the proof of Theo-
rem 1.16. Since ∼=P ⋆ and ∼=P coincide, Statement (T2) is the analogue of Statement
(T1) for P ⋆. Finally, Statement (T3) follows from Statements (T1) and (T2) by
considering W ∈ τ(P ) such that ht(P ) = |W | − 1 (see Definition 1.12).

Given Fact 6.1, we conjecture the following

Conjecture 6.2. Let k ≥ 2. Given a prime partial order P such that ht(P ) = k−1,
P is k-morphic if and only if the following statement holds

(U1) for every 0 ≤ l ≤ k − 1, P is {v ∈ V (P ) : rkP (v) = l}-transitive.

Remark 6.3. Let k ≥ 2. Consider a prime partial order P such that ht(P ) = k− 1.
If P satisfies Statement (U1), then P satisfies Statement (T3).
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